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Abstract. This paper presents an explicit bound on the number of primitive ele-
ments that are linear combinations of generators for field extensions.

It is well known that every finite separable extension of an arbitrary field has a
primitive element; that is, there exists a single element in the extension field which
generates that field over the ground field. This is a fundamental theorem in algebra
which is called the primitive element theorem in many textbooks, see for example
[3, 6, 7], and it is a useful tool in practical computation of commutative algebra
[5]. The existence proofs found in the literature make no attempt at estimating
the density of primitive elements. The purpose of this paper is to give an explicit
lower bound on the density of primitive elements that are linear combinations of
generators. Our derivation uses a blend of Galois theory (specifically the Fundamental
Theorem of Galois Theory), basic linear algebra, and a simple form of the principle of
inclusion-exclusion from elementary combinatorics. Additionally, for readers familiar
with Grobner bases, we show by a geometric example, how to test a linear combination
for primitivity without relying on the Galois groups used in deriving our bound.
Let F be any field and K a finite algebraic extension of F. An element β ∈ K is

called primitive for K over F if K = F(β). Suppose K is generated by α1, . . . , αn, that
is,

K = F(α1, . . . , αn).

Consider elements of the form

β = b1α1 + · · ·+ bnαn

where bi ∈ F, 1 ≤ i ≤ n. We would like to know when and how frequently such
elements are primitive for K over F when the coefficients are required to come from
an arbitrary finite subset of F. An n-tuple b = (b1, . . . , bn) is called primitive with
respect to (α1, . . . , αn) if the corresponding β is primitive for K over F.
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Let S be a finite subset of F and Sn the set of all n-tuples with entries from S.
Define

ρ(S;α1, . . . , αn) =
1

|S|n
#{b ∈ Sn : b1α1 + · · ·+ bnαn is primitive for K over F}.

Thus ρ(S;α1, . . . , αn) represents the density of primitive n-tuples among all the n-
tuples over S. Equivalently, ρ(S;α1, . . . , αn) is the probability that β is primitive
when b ∈ Sn is chosen at random. Clearly ρ(S;α1, . . . , αn) > 0 implies the existence
of primitive elements.

Theorem. Let K be a separable extension of degree m of a field F with m > 1.
Suppose K = F(α1, . . . , αn). Then for any finite subset S of F, we have

ρ(S;α1, . . . , αn) ≥ 1−
m− 1

|S|
.

Proof. Our proof will come in steps. We first characterize when β generates K over
F, then we use linear algebra to translate this condition to a problem in matrix theory,
and finally we solve the matrix problem as a separate lemma, perhaps of independent
interest, using elementary combinatorics. Let L be a normal closure of K. Since K is
separable over F, L is Galois over F, say with Galois group G. Let H be the subgroup
of G that fixes K, i.e.,

H = {σ ∈ G : σ(β) = β,∀β ∈ K}.

We know from Galois theory that [G : H] = m. Let σ0 = 1, σ1, . . . , σm−1 be any
distinct representatives of (left) cosets of H in G. We claim that, for any β ∈ K,

K = F(β) iff σi(β) 6= β for 1 ≤ i ≤ m− 1.

In fact, if K = F(β) and σi(β) = β for some i ≥ 1 then σi also fixes K, hence σi
belongs to H, contradicting our choice of σi. On the other hand, suppose K 6= F(β).
Then [F(β) : F] < m. Let H1 be the subgroup of G that fixes F(β). Then H ⊆ H1
and, by Galois theory again, [G : H1] = [F(β) : F] < m = [G : H]. This implies that
H1 6= H. Hence H1 contains a coset of H other than H, say σiH for some i ≥ 1.
Since σi is in H1, it fixes β. This proves our preliminary claim.
Now let β = b1α1 + · · · + bnαn ∈ K where b1, . . . , bn ∈ F. Note that the functions

σj − σ0, 1 ≤ j ≤ m− 1, are linear transformations of L over F, so we have

(σj − σ0)β =
n∑

i=1

bi(σj − σ0)αi.

Let A be the n× (m− 1) matrix (aij) with aij = (σj − σ0)αi ∈ L for 1 ≤ i ≤ n and
1 ≤ j ≤ m− 1. Then

((σ1 − σ0)β, . . . , (σm−1 − σ0)β) = (b1, · · · , bn)A.
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Note that no column of A is zero, since if otherwise, say j-th column is zero for some
j ≥ 1, then σj(αi) = αi for all 1 ≤ i ≤ n, hence K = F (α1, . . . , αn) would be fixed by
σj, contradicting the choice that σj 6∈ H. By the characterization above, K = F(β)
iff (σj − σ0)β 6= 0 for all 1 ≤ j ≤ m − 1. This is equivalent to requiring that each
entry of the vector (b1, . . . , bn)A is nonzero. The theorem follows from the following
lemma.

Lemma. Let L be any field (or any integral domain) and A = (aij) an n×m matrix
over L with no zero columns. Let S be any subset of L with k elements. The number
of n-tuples (b1, . . . , bn) ∈ Sn such that the row vector (b1, · · · , bn)A has no zero entry
is at least

(1−
m

k
) · kn.

Proof. We prove by induction on m and use the inclusion-exclusion principle. For
m = 1, the number of n-tuples (b1, b2, . . . , bn) ∈ Sn such that

bA = b1a11 + b2a12 + · · ·+ bna1n = 0

is at most kn−1. To see this, note that at least one of the entries a1j is nonzero which,
without loss of generality, we assume is a11. For each choice of (b2, . . . , bn) ∈ Sn−1, b1
is uniquely determined by the above equation, and this value of b1 may or may not
lie in S. Hence the total number of solutions b ∈ Sn is at most kn−1, or equivalently
the number of nonsolutions (i.e. the n-tuples b ∈ Sn such that bA is nonzero) is at
least kn − kn−1 = (n− 1/k)kn−1. This establishes the inequality for m = 1.
Now let m > 1 and assume the lemma is true for any n × (m − 1) matrix with

no zero columns. Let A be an n ×m matrix with no zero column. We partition A
as A = [A1, A2] where A1 has one column and A2 has m − 1 columns. Note that
bA = [bA1, bA2]. For i = 1, 2, let Bi be the set of b ∈ Sn so that bAi has at least one
zero component. Then |B1| ≤ kn−1 by the base case above, and |B2| ≤ (m− 1)kn−1

by the induction hypothesis, where |B| denotes the cardinality of a set B. Now by
the inclusion-exclusion principle, the number of elements b ∈ Sn such that bA has no
zero components is

kn−|B1|−|B2|+ |B1∩B2| ≥ k
n−|B1|−|B2| ≥ k

n−kn−1−(m−1)kn−1 = (1−
m

k
) ·kn.

Hence the proof is complete by induction. �
Remarks. 1. The above lemma may be of independent interest. It can be restated
in terms of probability, namely, if one picks bi from S randomly then the probability
that none of the vi is zero is at least 1 − m/k. The proof can also be phrased in
the probability language. We mention that this lemma is related to the Separation
Probability Lemma in [4], which deals with the probability that all vi are pairwise
distinct (assuming A has no repeated columns), which is a generalization of the well
known birthday paradox.
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2. Our bound on ρ(S;α1, . . . , αn) works for any collection of generators, even if
they contain a lot of linear dependency. For example, when K = Q[

√
2,
√
3], one may

take α1 =
√
2 and αi = i

√
3 for 2 ≤ i ≤ n (for any n > 1). The bound depends

only on the size of the set S and on the degree m = 4 of the extension, not on the
number of generators. On the other hand, the bound may be weak for special cases.
For example K = Q[

√
2,
√
3] with α1 =

√
2 and α2 =

√
3, in this case a

√
2 + b

√
3 is

primitive for K over Q for all a, b ∈ Q \ {0}; hence ρ(S;α1, α2) = 1 if 0 6∈ S, while
our bound says that ρ(S;α1, α2) ≥ 1− 4/(|S| − 1).
3. If F is a field of size greater than m, then there is a subset S of F of size
greater than m and the corresponding bound is positive, thus proving the existence
of primitive elements. When |S| ≤ m, our bound says nothing about the density; in
particular, when F is a finite field with less than m elements, our bound says nothing
about the existence of primitive elements. In fact, for certain generators α1, . . . , αn,
the density ρ(F;α1, . . . , αn) may be zero, so there is no primitive element among the
linear combinations of the generators. For example, let F = F2, and let α1 = γ1 + γ2
and α2 = γ2+ γ3 where γ1, γ2, γ3 ∈ F2 have degrees 3, 5, 7, respectively, over F2. Note
that F23·5·7 = F2(α1, α2), however, none of b1α1 + b2α2, where b1, b2 ∈ F2, generates
F23·5·7 !
Testing Primitivity. We now make some comments on how to test whether a
given element is primitive. From the proof of the main theorem, it might seem
that in order to do this one would need to know the Galois group of the extension
K = F(α1, . . . , αn) over F, which is in general hard to compute. However, testing
primitivity can be done in a much simpler way: To check whether β ∈ K is primitive,
one just needs to find the degree of the minimal polynomial of β over F via linear
algebra, that is, the smallest integer d > 0 such that βd is a linear combination of
1, β, . . . , βd−1 over F. If this degree d of the minimal polynomial is equal to the degree
of K over F then β is primitive; otherwise it is not. Here the important assumption is
that K = F(α1, . . . , αn) is given as a field and the α’s are represented appropriately.
Grobner basis techniques provide convenient tools in dealing with representation and
in finding the minimal polynomials. We demonstrate below by a concrete example
related to geometry. For background on Grobner bases and their applications, we
refer the reader to the excellent books [1, 2]. The method indicated below works in
general and all steps can be computed efficiently.
Consider F = Q(t), the field of rational functions in t where t is transcendental over
Q. Let f(x) = x4− (4t− 2)x2 +1 and g(x) = x4− (4t+2)x2 +1, both irreducible in
F[x]. We want to construct a field extension K of smallest degree that contains one
root for each of f and g, called a composite field of f and g. Let α1 be a root of f .
Then

F[α1] ∼= F[x]/(f(x)),
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and it is a field extension of degree 4 over F. Factoring g(y) in F[α1][y] gives

g(y) =
(
y2 + (α31 + (1− 4t)α1)y − 1

)
·
(
y2 − (α31 + (1− 4 t)α1)y − 1

)
.

We remark that the problem of factoring g in F[α1][y] can be reduced to that of
factoring a polynomial in Q[t, z] using a Grobner basis for the ideal 〈f(x), g(y), z −
x − y〉 ⊂ F[x, y, z] under the lex order x > y > z, and we refer the reader to [4] for
an efficient algorithm for factoring multivariate polynomials.
We consider the two irreducible factors separatively, and we shall see that the field

extensions behave differently. For the first factor of g(y), let

g1(x, y) = y
2 + (x3 + (1− 4t)x)y − 1,

and let α2 be a root of g1(α1, y), so a root g(y). Then K1 = F(α1, α2) is a field exten-
sion of degree 8 over F and it is isomorphic to the quotient ring F[x, y]/〈f(x), g1(x, y)〉,
which provides an explicit representation for K1. To see whether β = α1+α2 is prim-
itive for K1 over F, define an ideal

I1 = 〈f(x), g1(x, y), z − x− y〉 ⊂ F[x, y, z].

Certainly, K1 is isomorphic to F[x, y, z]/I1. Note that the polynomials f(x), g1(x, y), z−
x − y form a Grobner basis for I1 under the lex order with z > y > x. We convert
this basis into a reduced Grobner basis under a new lex order with y > x > z:
(
576 t2 − 64

)
y − 3 z7 + 78 tz5 −

(
552 t2 + 28

)
z3 +

(
1152 t3 − 288 t2 − 344 t+ 32

)
z,

(
576 t2 − 64

)
x+ 3 z7 − 78 tz5 +

(
552 t2 + 28

)
z3 −

(
1152 t3 + 288 t2 − 344 t− 32

)
z,

z8 − 24 tz6 + (144 t2 + 8)z4 − (256 t3 − 160 t)z2 + 16.

The last polynomial, denoted by h1, belongs to F[z]. Since h1 has degree 8 equal to
the degree of K1 over F, we conclude that β = α1 + α2 is a primitive element of K1
over F. Note that the first two polynomials correspond to explicit expressions of α1
and α2 as elements of F[β].
For the second factor of g(y), let

g2(x, y) = y
2 − (x3 + (1− 4 t)x)y − 1,

and let α3 be a root of g2(α1, y), so a root of g(y). Then K2 = F(α1, α3) has degree 8
over F and is isomorphic to the quotient ring F[x, y]/〈f(x), g2(x, y)〉. Similar to the
above case, computing a reduced Grobner basis for the ideal 〈f(x), g1(x, y), z−x−y〉
under the lex order with y > x > z yields

y + x− z,

2x2 +
(
−z3 + (−2 + 4 t) z

)
x− 2,

z4 − 4 tz2 + 4.

The last polynomial belongs to F[z], but has degree 4 less than 8, the degree of K2
over F. Hence α1 + α3 is not primitive for K1 over F. To find a primitive element,
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consider β = α1 − α3 and the ideal I2 = 〈f(x), g1(x, y), z − x + y〉. Computing a
reduced Grobner basis for I2 gives(

576 t2 − 64
)
y + 3 z7 − 78 tz5 +

(
552 t2 + 28

)
z3 −

(
1152 t3 − 288 t2 − 344 t+ 32

)
z,

(
576 t2 − 64

)
x+ 3 z7 − 78 tz5 +

(
552 t2 + 28

)
z3 −

(
1152 t3 + 288 t2 − 344 t− 32

)
z,

z8 − 24 z6t+
(
144 t2 + 8

)
z4 −

(
256 t3 − 160 t

)
z2 + 16.

Now the last polynomial, denoted by h2, belongs to F[z] and has degree 8. Hence
β = α1 − α3 is primitive for K2 over F. Note that h2 = h1, hence K2 = K1 (but
represented differently).
A reader with algebraic geometry background may see that the above polynomials

f1, f2 and h1 (similarly for h2) have interesting geometric meaning. More precisely,
they each define an irreducible curve over Q, and these curves can be viewed as finite
covers of the affine line. The curve h1 defines a finite cover of smallest degree of the
affine line so that it can be factored (as map) through each of the covers defined by
f1 and f2, separately.
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