KOLYVAGIN CLASSES FOR HIGHER RANK ELLIPTIC CURVES

Let E be an elliptic curve over \mathbf{Q} of conductor N, and let K/\mathbf{Q} be an imaginary quadratic field of discriminant -D for which all prime factors of N are split in K. Kolyvagin [?] uses the system of Heegner points of conductor m for K to construct a family of cohomology classes $c(m) \in H^1(K, E_p)$. Here p is an odd prime and m is a squarefree integer obeying a certain congruence condition relative to p. Once the existence of a nonzero Kolyvagin class c(n) is exhibited, there are strong consequences for the arithmetic of E. The most fundamental example is Kolyvagin's original application of the Euler system of Heegner points: if the extension $\mathbf{Q}(E_p)/\mathbf{Q}$ has Galois group $\mathrm{GL}_2(\mathbf{Z}/p\mathbf{Z})$, and c(1) does not vanish, then the group E(K) has rank 1, and the Tate-Shavarevich group $Sh(E/K)_p$ is trivial. Furthermore, in [?] Kolyvagin conjectures that if such a p is given, then there will exist a power $q = p^n$ and an integer m for which the class $c(m) \in H^1(K, E_q)$ is nonzero. Granting this conjecture, he gives a precise description of the structure of the Selmer group $\mathrm{Sel}(K, E_q)$.

The elliptic curve E is modular: let $f = \sum_n a_n q^n$ be the associated newform, let the sign in the functional equation for E/\mathbf{Q} be $-\varepsilon$, and let $\phi: X_0(N) \to E$ be a modular parametrization. We define a Kolyvagin prime to be a rational prime $\ell \nmid NDp$ satisfying the following pair of conditions:

- (1) ℓ is inert in K
- (2) $a_{\ell} \equiv \ell + 1 \equiv 0 \pmod{p}$.

These conditions imply that $(E(\mathcal{O}_K/\ell\mathcal{O}_K)\otimes \mathbf{Z}/p\mathbf{Z})^{\pm}$ is cyclic of order p. Let \mathcal{L}_s be the collection of squarefree products of s Kolyvagin primes. Given $n\in\mathcal{L}_s$, Kolyvagin constructs a class $c(n)\in H^1(K,E_p)^{(-1)^s\varepsilon}$.

Let $r^+ = \operatorname{rk}_{\mathbf{Z}} E(\mathbf{Q})$, $r^- = \operatorname{rk}_{\mathbf{Z}} E^K(\mathbf{Q})$, so that $r = r^+ + r^- = \operatorname{rk}_{\mathbf{Z}} E(K)$. For simplicity we make the assumption that $r^- \leq 1$. (Given E/\mathbf{Q} , there is always a field K/\mathbf{Q} satisfying the Heegner hypothesis for which $r^- \leq 1$.)

If ℓ is a rational prime inert in K, we will sometimes use the same symbol ℓ for the unique place of K lying above ℓ .

Let $loc_{\ell}: E(K)/p(K) \to E(K_{\ell})/pE(K_{\ell})$ be the obvious map.

Lemma 0.1. If $c(n) = \delta(P)$ for a rational point $P \in E(K)$, then $\log_{\ell} P = 0$ for every $\ell | n$.

Proof. Let Λ be a prime in K[n] lying over $\ell\mathcal{O}_K$, and let F_{Λ} be the residue field. If σ_{ℓ} is a generator of $G_{\ell} = \operatorname{Gal}(K[n]/K[n/\ell])$, then the operator $D_{\ell} = \sum_{i=1}^{\ell} i \sigma_{\ell}^{i}$ annihilates $E(F_{\Lambda}) \otimes \mathbf{Z}/p\mathbf{Z}$, because σ_{ℓ} acts as the identity on the residue field of Λ and because $\ell(\ell+1)/2 \equiv 0 \pmod{p}$. Since the kernel of the reduction map $E(K[n]_{\Lambda}) \to E(F_{\Lambda})$ is a pro- ℓ group, this implies that D_{ℓ} annihilates $E(K[n]_{\Lambda}) \otimes \mathbf{Z}/p\mathbf{Z}$ as well. Thus $P_{n} \in pE(K[n]_{\Lambda})$.

If $P \in E(K)$ and $c(n) = \delta(P)$, it implies that $P \in pE(K[n]_{\Lambda})$ and therefore the image of P in $E(F_{\lambda})$ lies in $pE(F_{\Lambda}) = pE(\mathbf{F}_{\ell^2})$. Thus $\log_{\ell} P = 0$.

(Remark: Without the hypothesis that c(n) lies in the image of δ , it would not follow that the localization $\log_{\lambda} c(n)$ vanishes. The above argument shows that

 $\log_{\Lambda} \delta(P_n)$ vanishes as an element of $H^1(K[n]_{\Lambda}, E_p)$, but this says nothing about $\log_{\ell} c(n)$ because $H^1(K, E_p) \to H^1(K[n]_{\Lambda}, E_p)^{G_n}$ is not an isomorphism.)

Assuming that the Kolyvagin system $\{c(n)\}$ does not vanish, and also assuming that Sh(E/K)[p] = 0, one can calculate the Kolyvagin classes c(n) for $n \in \mathcal{L}_{r^+-1}$ by studying the localization behavior of the rational points in E(K) at the primes dividing ℓ . We spell this out in a special case.

Proposition 0.2. Let $r^+ = 2$, $r^- = 1$, and assume that Sh(E/K)[p] = 0. Assume the Kolyvagin system $\{c(n)\}$ does not vanish. For a prime ℓ satisfying the Kolyvagin condition, we have $c(\ell) \neq 0$ if and only if the linear map $loc_{\ell} : E(K)/pE(K) \rightarrow E(K_{\lambda})/pE(K_{\lambda})$ has maximal rank. If loc_{ℓ} does have maximal rank, let $P \in E(\mathbf{Q})$ span the kernel; then up to a scalar we have $c(\ell) = \delta(P)$.

Proof. First suppose that $\log_{\ell}: E(K)/pE(K) \to E(K_{\lambda})/pE(K_{\lambda})$ does have maximal rank, with kernel spanned by P. Since $\operatorname{rk} E(K) > 1$, c(1) = 0. Therefore $c(\ell) \in \operatorname{Sel}(K, E_p)^+$. Since $\operatorname{Sh}(E/K)[p] = 0$ there exists $P' \in E(Q)$ with $c(\ell) = \delta(P')$. We have $P' \neq 0$ because....? Then Lemma ?? shows that $\log_{\ell} P' = 0$, so that up to a scalar P' = P as desired.

Now suppose $\operatorname{loc}_{\ell}$ does not have maximal rank. Write $c(\ell) = \delta(P)$. We claim P = 0. Assume otherwise: Let $\{P,Q\}$ be a basis for $E(\mathbf{Q})/pE(\mathbf{Q})$, and let $\{R\}$ be a basis for $E^D(\mathbf{Q})/pE^D(\mathbf{Q})$. Choose a prime ℓ' for which $\operatorname{loc}_{\ell'}: E(K)/pE(K) \to E(K_{\ell'})/pE(K_{\ell'})$ has kernel exactly $\langle Q \rangle$. Thus up to a scalar we have $c(\ell') = \delta(Q)$. Consider the two classes $c(\ell\ell'), \delta(R) \in H^1(K, E_p)^-$. For each place v of K away from $\ell\ell'$ we have $\langle \operatorname{loc}_v c(\ell\ell'), \operatorname{loc}_v \delta(R) \rangle = 0$ because both classes are finite at v.

We claim $\langle \operatorname{loc}_{\ell} c(\ell\ell'), \operatorname{loc}_{\ell} \delta(R) \rangle = 0$. By hypothesis, the kernel of the localization map $\operatorname{loc}_{\ell} : E(K)/pE(K) \to E(K_{\ell})/pE(K_{\ell})$ is strictly larger than $\langle P \rangle$. Thus $\operatorname{loc}_{\ell}(Q) = 0$ or $\operatorname{loc}_{\ell}(R) = 0$ (or possibly both). If $\operatorname{loc}_{\ell}(R) = 0$ the claim is obvious. If $\operatorname{loc}_{\ell}(Q) = 0$, then since $c(\ell') = \delta(Q)$ we have that $\operatorname{loc}_{\ell} c(\ell\ell')$ is finite and therefore that it is orthogonal to $\delta(R)$ in $H^1(K_{\ell}, E_p)^-$.

By the global reciprocity law, we have $\langle \operatorname{loc}_{\ell'} c(\ell\ell'), \operatorname{loc}_{\ell'} \delta(R) \rangle = 0$. Since $\operatorname{loc}_{\ell'} R$ is nonzero by our choice of ℓ' , it follows that $\operatorname{loc}_{\ell'} c(\ell\ell')$ lies in the finite part of $H^1(K_{\lambda'}, E_p)^-$. This implies that $\operatorname{loc}_{\ell'} c(\ell) = \operatorname{loc}_{\ell'} P = 0$, again contrary to our choice of ℓ' .

Keep the assumption that $r^+=2$ and $r^-=1$. We calculate the density of Kolyvagin primes ℓ for which $c(\ell)=0$. This can be computed using the Chebotarev Density Theorem as follows. Let $L=\mathbf{Q}(E_p)$, so that $\mathrm{Gal}(L/\mathbf{Q})\cong\mathrm{GL}_2(\mathbf{Z}/p\mathbf{Z})$. The image of complex conjugation τ in $\mathrm{Gal}(L/\mathbf{Q})$ is conjugate to $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$, and the size of the normalizer $N_{\mathrm{Gal}(L/\mathbf{Q})}(\tau)$ in $\mathrm{Gal}(L/\mathbf{Q})$ is the order of the split torus in $\mathrm{GL}_2(\mathbf{Z}/p\mathbf{Z})$, namely $(q-1)^2$. Since $L\cap K=\mathbf{Q}$, we have $\mathrm{Gal}(KL/\mathbf{Q})\cong\mathrm{GL}_2(\mathbf{Z}/p\mathbf{Z})\times\mathrm{Gal}(K/\mathbf{Q})$. let $\tau_{KL}\in\mathrm{Gal}(KL/\mathbf{Q})$ be the image of τ . The Kolyvagin condition on ℓ is equivalent to the requirement that for any prime $\lambda|\ell$ in KL, a Frobenius element $\left(\frac{\lambda}{KL/\mathbf{Q}}\right)\in\mathrm{Gal}(KL/\mathbf{Q})$ be conjugate to τ_{KL} . The density of such primes is $1/(2(q-1)^2)$.

Now let
$$M = KL\left(\frac{1}{p}E(K)\right)$$
. We have an isomorphism

$$Gal(M/KL) \cong Hom(E(K) \otimes \mathbf{Z}/p\mathbf{Z}, E_p),$$

wherein the image of $\sigma \in \operatorname{Gal}(M/KL)$ is the map $P \mapsto Q^{\sigma} - Q$, where $Q \in E(M)$ satisfies pQ = P. Let $V = \operatorname{Hom}(E(K) \otimes \mathbf{Z}/p\mathbf{Z}, E_p)$; then V admits a natural action by the group $\operatorname{Gal}(KL/\mathbf{Q}) \cong \operatorname{GL}_2(\mathbf{Z}/p\mathbf{Z}) \times \operatorname{Gal}(K/\mathbf{Q})$. We have the exact sequence

$$0 \to V \to \operatorname{Gal}(M/\mathbf{Q}) \to \operatorname{GL}_2(\mathbf{F}_q) \times \operatorname{Gal}(K/\mathbf{Q}) \to 1$$

which can be split once p-division points of elements of a basis for $E(K) \otimes \mathbf{Z}/p\mathbf{Z}$ are chosen. Thus $\operatorname{Gal}(M/\mathbf{Q})$ is isomorphic to the semidirect product $V \rtimes \operatorname{Gal}(KL/\mathbf{Q})$, with group law (v,g)(v',g')=(v+g(v'),gg'). Suppose ℓ is a prime satisfying the Kolyvagin hypothesis, so that $\left(\frac{\lambda}{KL/\mathbf{Q}}\right)$ is conjugate to the image of τ for any prime λ of KL above ℓ . Let Λ be a prime in M above λ . Since the residue degree of λ/ℓ is 2, we have that $\left(\frac{\Lambda}{M/\mathbf{Q}}\right)^2=\left(\frac{\Lambda}{M/KL}\right)\in V$. Furthermore, let $\phi_{\lambda}\colon E(K)\otimes\mathbf{Z}/p\mathbf{Z}\to E_p$ be the homomorphism represented by the automorphism $\left(\frac{\Lambda}{M/KL}\right)$. (Since M/KL is abelian, ϕ_{λ} does not depend on the choice of Λ .) For $P\in E(K)$ we have that $\phi_{\lambda}(P)=0$ if and only if $\log_{\ell}(P)=0$. Therefore \log_{ℓ} has maximal rank if and only if ϕ_{λ} does.

Let $V^{\max} \subset V$ denote the set of linear maps $E(K)/pE(K) \to E_p$ which have maximal rank. Write $\left(\frac{\Lambda}{M/\mathbf{Q}}\right) = (v,g)$ for $v \in V$, $g \in \mathrm{GL}_2(\mathbf{Z}/p\mathbf{Z})$. Since g is conjugate to the image of τ we have $g^2 = 1$ and $(v,g)^2 = (v+g(v),1)$. Thus

$$\begin{split} c(\ell) \neq 0 &\iff & \left(\frac{\Lambda}{M/KL}\right) \in V^{\max} \\ &\iff & = v + g(v) \in V^{\max} \end{split}$$

The subset $H \subset \operatorname{Gal}(M/\mathbb{Q})$ consisting of all pairs (v,g) having the properties that g is conjugate to τ_{KL} and $v + g(v) \in V^{\max}$ has cardinality

$$\#H = \# \langle \tau_{KL} \rangle \# \{ v \in V | v + \tau(v) \in V^{\max} \}$$

The order of $\langle \tau_{KL} \rangle$ is $\frac{\#\operatorname{GL}_2(\mathbf{Z}/p\mathbf{Z})}{(p-1)^2}$. Now consider the set S of $v \in V$ for which $v + \tau(v)$ has maximal rank. We have the direct sum decomposition $V = V^{\tau=1} \oplus V^{\tau=-1}$: therefore $\#S = \#(V^{\tau=1} \cap V^{\max}) \#V^{\tau=-1} = (p-1)^2 \times (p-1)p^3$. Therefore the density of Kolyvagin primes ℓ for which $c(\ell) \neq 0$ is $\#H/\#\operatorname{Gal}(M/\mathbf{Q}) = (p+1)/(2p^3)$. The relative density of such primes from the set of Kolyvagin primes is $(p+1)(p-1)^2/p^3$. Interestingly, it is roughly p times as likely for a Kolyvagin prime ℓ to have $c(\ell) = 0$ as it is for $c(\ell)$ to be any particular class in the image of $E(\mathbf{Q})/pE(\mathbf{Q})$.