Kolyvagin's Conjecture and Congruences Between Modular Forms

William Stein

July 11, 2011

Abstract

We use congruences to give a method to verify Kolyvagin's conjecture for specific elliptic curves, and give a table of examples that illustrates our method. This approach gives the largest list of specific curves to date that satisfy the conjecture.

1 Introduction

In this paper we provide an approach using congruences to verify Kolyvagin's Conjecture A from [Kol91, pg. 255] for certain elliptic curves of higher rank. Let E be an elliptic curve over \mathbb{Q} , let K be an imaginary quadratic field such that each prime dividing the conductor $N = N_E$ of E splits in K, let ℓ be an odd prime that does not divide the discriminant of $R = \operatorname{End}(E_{\mathbb{C}})$, and assume that $G_{\mathbb{Q}} \to \operatorname{Aut}_R(\operatorname{Tate}_{\ell}(E))$ is surjective. Let

$$\tau_{\lambda,\ell^n} = \operatorname{res}_{K_\lambda/K}^{-1}(\delta_{\ell^n}(D_\lambda(\phi_E(x_\lambda))))) \in \operatorname{H}^1(K, E[\ell^n])$$

be the cohomology class defined in [Kol91] using Heegner points, where $x_{\lambda} \in X_0(N)(K_{\lambda})$ is the Heegner point over the ring class field K_{λ} , the map $\phi_E : X_0(N) \to E$ is the modular parametrization, $D_{\lambda} \in \text{Gal}(K_{\lambda}/K)$ is the Kolyvagin derivation operator, $\delta_{\ell^n} : E(K_{\lambda}) \to H^1(K_{\lambda}, E[\ell^n])$ is the connecting homomorphism in Galois cohomology, and res_{K_{\lambda}/K} is the restriction map in Galois cohomology.

Conjecture 1.1 (Kolyvagin). There exists n and λ such that $0 \neq \tau_{\lambda,\ell^n}$.

When $r_{\rm an}(E/K) = 1$, Conjecture 1.1 is an immediate consequence of the Gross-Zagier formula [GZ86] by taking $\lambda = 1$ and $\ell^n \nmid [E(K)/_{\rm tor} : \mathbb{Z}y_K]$. When $r_{\rm an}(E/K) > 1$, the conjecture was only known for a handful of explicit triples (E, K, ℓ) , as explained in [Ste11].

The main idea of this paper is related to Mazur's notion of visibility of elements of Galois cohomology groups (see [CM00, AS02, AS05, JS07, Ste07]). We consider pairs (E, F) of elliptic curves of possibly different conductors with $E[\ell] = F[\ell]$, and study how the truth of Conjecture 1.1 for E and F are related. For example, we use congruences to verify Conjecture 1.1 for ???? pairs (E, ℓ) with E having rank 3 over K...

In Section 2 we prove a theorem that gives hypotheses on a pair of elliptic curves of the same conductor N under which one can deduce Kolyvagin's conjecture. Section 4 gives a table of examples that satisfy the hypothesis of the theorem. We thus obtain substantial new evidence in support of Kolyvagin's conjecture, using a third completely different approach to that of both [JLS09] and [Ste11].

The main contributions of this paper are:

- 1. Hypothesis under which Conjecture 1.1 for one curve implies it for another.
- 2. Improved techniques for efficiently computing with Heegner points.
- 3. Verification of nontriviality and visibility of many elements of Shafarevich-Tate groups of elliptic curves, and corresponding evidence for Conjecture 1.1.

2 Theorems

2.1 Preliminaries

Let M be a number field and $E, F \subset J$ two elliptic curves over M contained in a self-dual abelian variety J over M, and let $\phi_E : J \to E$ and $\phi_F : J \to F$ be the corresponding dual morphisms. Let $G = E \cap F$. Suppose that n is a positive integer such that E[n] = F[n] = G[n] and gcd(n, #G/n) = 1, so $G \cong G[n] \oplus G'$ with gcd(#G', n) = 1. The equality E[n] = F[n] induces an isomorphism $H^1(M, E[n]) \cong H^1(M, F[n])$. Let $\delta_{E,n} : E(M) \to H^1(M, E[n])$ be the connecting homomorphism, and likewise for $\delta_{F,n}$.

Proposition 2.1. For any $z \in J(M)$, we have $\delta_{E,n}(\phi_E(z)) = \delta_{F,n}(\phi_F(z))$.

Proof. Let $A = (E + F)^{\vee}$, which we view as an optimal quotient of J via the map $\phi_A : J \to A$ that is dual to the inclusion $E + F \subset J$. We have an exact sequence

$$0 \to G \xrightarrow{x \mapsto (x, -x)} E \times F \to A^{\vee} \to 0.$$

The Weil pairing induces a self-duality $G^* \cong G$, so the dual exact sequence is

$$0 \to G \to A \to E \times F \to 0.$$

The corresponding long exact sequence is

$$0 \to G(M) \to A(M) \xrightarrow{f} E(M) \times F(M) \xrightarrow{\delta} H^{1}(M,G) \to H^{1}(M,A) \to \cdots$$

We have that $f(\phi_A(z)) = (\phi_E(z), \phi_F(z)).$

We have a canonical direct sum decomposition $G \cong G[n] \oplus G'$ with G' the subgroup of elements of G of order coprime to n. This decomposition induces an isomorphism $\mathrm{H}^{1}(M,G) \to \mathrm{H}^{1}(M,G[n]) \oplus \mathrm{H}^{1}(M,G')$, and we let π denote projection onto the first factor. We obtain the following commutative diagram with exact rows:

Taking the northern route through the diagram, we see that z maps to 0 in $\mathrm{H}^1(M, G[n])$, since the middle 3-term row is exact. Taking the southern route, we see that z maps to $\delta_{E,n}(\phi_E(z)) - \delta_{F,n}(\phi_F(z))$, which proves that $\delta_{E,n}(\phi_E(z)) = \delta_{F,n}(\phi_F(z))$, as claimed.

2.2 Elliptic Curves of the Same Conductor

Suppose E and F are optimal elliptic curves of the same conductor N, and suppose that K and ℓ are as in Conjecture 1.1; in particular, $E[\ell]$ is irreducible. Let Λ_{ℓ^n} be the set of all squarefree products $\lambda = p_1 \cdots p_k$ of primes p_i such that $\ell^n | \operatorname{gcd}(a_{p_i}(E), p_i + 1)$ for all i. By duality, we also view E and F as abelian subvarieties of $J = J_0(N)$.

Theorem 2.2. If $E[\ell^n] = F[\ell^n]$ as subsets of J, then for all $\lambda \in \Lambda_{\ell^n}$, the two cohomology classes $\tau_{E,\lambda,\ell^n} \in \mathrm{H}^1(K, E[\ell^n])$ and $\tau_{F,\lambda,\ell^n} \in \mathrm{H}^1(K, F[\ell^n])$ are identified by the canonical isomorphism induced by the equality $E[\ell^n] = F[\ell^n]$ in J.

Proof. Let $G = E \cap F \subset J$. By hypothesis, we have $E[\ell^n] \subset G$, but G could be much larger. Let $M = K_{\lambda}$. By

2.3 Elliptic Curves of Different Conductors

2.4 Abelian Varieties

In this section, we generalize the definition of Kolyvagin classes and the main results of the previous section to abelian varieties.

3 Algorithms

There are many ways to try to verify that XXX (hypo) holds for an elliptic curve F.

3.1 *p*-adic *L*-series

Using the algorithm of shark we can compute the quadratic twist *L*-series in time |D| times how long it takes to compute the non-twisted *L*-series (so super fast once we have the modular symbols) and if the coefficient of *T* is a unit, then we conclude that III[p] = 0. Hopefully we do not have to use anything about the *p*-adic height being nondegenerate! I had a discussion with Wuthrich about this. Anyway, if not, we're set, and should get that Sha is trivial there, hence according to the structure them $m_{\infty} = 0$. This will in practice require thinking through details and writing much better code in PSAGE.

4 Tables

We make a table enumerating elliptic curves of rank ≥ 2 with conductor up to xxx, and for each list the elliptic curves F with E[p] = F[p] for an odd prime p such that $\rho_{E,p}$ is surjective. For each such F, we list the first few D and $\operatorname{ord}_p([F(K) : \mathbb{Z}y_{F,K}])$.

To compute $\operatorname{ord}_p([F(K) : \mathbb{Z}y_{F,K}])$, we numerically compute the point $y_{F,K}$, find the unique element $w \in F(K)$ such that $pw = y_{F,K}$ (which must exist by Proposition ??), then verify that w is not divisible by p using division polynomials.

E	r(E)	p	F	r(F)	$\sqrt{\mathrm{III}(F)_{\mathrm{an}}}$??
681c1	2	3	681b1	0	3	Heegner $D \ge -179$
1058c1	2	5	1058d1	0	5	-7
1102a1	2	3	1102d1	0	3	
1246c1	2	5	1246b1	0	5	
1611d1	2	3	1611a1			
1664n1	2	5	1664k1			
1701j1	2	3	1701a1			
1701j1	2	3	1701b1			
1701j1	2	3	1701f1			
1701j1	2	3	1701g1			
1913a1	2	3	1913b1			
1918c1	2	3	1918e1			
2006d1	2	3	2006e1			
2366e1	2	5	2366f1			
2429d1	2	3	2429b1			
2451d1	2	3	2451b1			
2451d1	2	3	2451c1			
2451d1	2	3	2451e1			
2482b1	2	3	2482e1			
2534g1	2	3	2534e1			
2534g1	2	3	2534f1			
2541c1	2	3	2541d1			
2574g1	2	5	2574d1			
	2					
6552ba1	2	$\overline{7}$	6552y1			
38088u1	?	11	38088t1			
60552c1	?	13	60552d1			

References

- [AS02] A. Agashe and W. Stein, Visibility of Shafarevich-Tate groups of abelian varieties, J. Number Theory 97 (2002), no. 1, 171–185.
- [AS05] Agashe Agashe and William Stein, Visible evidence for the Birch and Swinnerton-Dyer conjecture for modular abelian varieties of analytic rank zero, Math. Comp. 74 (2005), no. 249, 455-484 (electronic), With an appendix by J. Cremona and B. Mazur, http://wstein.org/papers/shacomp/. MR 2085902
- [CM00] J. E. Cremona and B. Mazur, Visualizing elements in the Shafarevich-Tate group, Experiment. Math. 9 (2000), no. 1, 13–28. MR 1 758 797
- [GZ86] B. Gross and D. Zagier, Heegner points and derivatives of L-series, Invent. Math. 84 (1986), no. 2, 225-320, http://wstein.org/papers/bib/ Gross-Zagier_Heegner_points_and_derivatives_of_Lseries.pdf. MR 87j:11057
- [JLS09] Dimitar Jetchev, Kristin Lauter, and William Stein, Explicit Heegner points: Kolyvagin's conjecture and non-trivial elements in the Shafarevich-Tate group, J. Number Theory 129 (2009), no. 2, 284-302, http://wstein.org/papers/ kolyconj/. MR 2473878 (2009m:11080)
- [JS07] Dimitar P. Jetchev and William Stein, Visibility of the Shafarevich-Tate group at higher level, Doc. Math. 12 (2007), 673-696, http://wstein.org/papers/ vishigher/. MR 2377239 (2009c:11081)

- [Kol91] V. A. Kolyvagin, On the structure of Selmer groups, Math. Ann. 291 (1991), no. 2, 253-259, http://wstein.org/papers/stein-ggz/references/ kolyvagin-structure_of_selmer_groups/. MR 93e:11073
- [Ste07] William A. Stein, Visibility of Mordell-Weil groups, Doc. Math. 12 (2007), 587-606, http://wstein.org/papers/vismw/. MR 2377241 (2009a:11128)
- [Ste11] William Stein, Verification of kolyvagin's conjecture for specific elliptic curves, Submitted (2011), http://wstein.org/papers/kolyconj2/.