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Merel’s theorem on the boundedness of the torsion of elliptic

curves

Marusia Rebolledo

Abstract. In this note, we give the key steps of Merel’s proof of the Strong
Uniform Boundedness Conjecture. This proof relies on three fundamental in-
gredients: the geometric approach of Mazur and Kamienny, the innovative
introduction of the winding quotient by Merel, and the use of Manin’s presen-
tation of the homology group of modular curves.

1. Introduction

Interest in elliptic curves dates back at least to Fermat, who introduced his
fundamental method of infinite descent to prove his “Last Theorem” in degree 4.
Poincaré seems to have been the first to conjecture, around 1901, the now famous
theorem of Mordell asserting that the group of rational points of an elliptic curve
over Q is finitely generated. This result was later generalized by Weil to encompass
all abelian varieties over number fields. If E is an elliptic curve over a number field
K, it is therefore known that

E(K) ∼= Zr ⊕ T

as abstract groups, where T = E(K)tors is the finite torsion subgroup of E(K). The
integer r, called the rank, is a subtle invariant about which little is known and which
can be rather hard to compute given E and K. The torsion subgroup, in contrast,
is readily computed in specific instances, and this makes it realistic to ask more
ambitious questions about the variation of E(K)tors with E and K. A fundamental
result in this direction is the theorem of Mazur presented in Chapter 3 of Darmon’s
lecture in this volume, which gives a uniform bound on E(Q)tors as E varies over
all elliptic curves over Q. Kamienny [Kam92] was able to extend Mazur’s result
to quadratic fields, obtaining a bound on E(K)tors for K quadratic that was even
independent of K itself. This led him to formulate the Strong Uniform Boundedness
Conjecture, asserting that the cardinality of E(K)tors can be bounded above by
a constant which depends only on the degree of K/Q. (The weaker conjecture
asserting that the torsion can be bounded uniformly in the field K is presented as
being ‘a part of the folklore’ by Cassels [Cas66] (p. 264).) Actually, according to
Demjanenko (see [Dem72] and entry MR0302654 in Mathematical Reviews) this
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conjecture was posed in the 70’s by Shafarevich; his paper proved a result in this
direction. The Strong Uniform Boundedness Conjecture was proved in 1994 by
Merel, building on the methods developed by Mazur and Kamienny.

Theorem 1 (Merel 1994). For all d ∈ Z, d ≥ 1 there exists a constant B(d) ≥ 0
such that for all elliptic curves E over a number field K with [K : Q] = d then

| E(K)tors |≤ B(d).

Merel actually proved the following bound on the prime numbers dividing E(K)tors:

Theorem 2 (Merel - 1994). Let E be an elliptic curve over a number field K
such that [K : Q] = d > 1. Let p be a prime number. If E(K) has a p-torsion point

then p < d3d2

.

It is then sufficient to conclude for the case d > 1. Mazur and Kamienny [KM95]
have indeed shown that, by work of Faltings and Frey, Theorem 2 implies Theo-
rem 1. The case d = 1 of Theorem 1 has been proved by Mazur [Maz77, Maz78]
in 1976 as explained by Henri Darmon in his lecture. Mazur gives more precisely a
list of all possibilities for the torsion group over Q. It was actually a conjecture of
Levi formulated around 1908. We can mention also that the cases 2 ≤ d ≤ 8 and
9 ≤ d ≤ 14 have been treated respectively by Kamienny and Mazur (see [KM95]),
and Abramovich [Abr95].

The goal of this note is to give the key steps of the proof of Theorem 2.

Remark 1. Oesterlé [Oes] later improved the bound of Theorem 2 to (3d/2+1)2

but we will focus on Merel’s original proof (see Section 3.6 concerning Oesterlé’s
trick).

Remark 2. Unfortunately, the reduction of Theorem 1 to Theorem 2 is not
effective; this explains why the global bound B(d) is not explicit. However, in 1999,
Parent [Par99] gave a bound for the pr-torsion (r ≥ 1, p prime) and thus obtained
a global effective bound for the torsion (later improved by Oesterlé). This bound
is exponential in d. It is conjectured that B(d) can be made polynomial in d.

We will now give the sketch of the proof of Theorem 2. From now on, we
will denote by d ≥ 1, an integer, by p a prime number and write Z = Z[1/p].
Following the traditional approach, Mazur and Kamienny translated the assertion
of the theorem into an assertion about rational points of some modular curves.

2. Mazur’s method

2.1. To a problem on modular curves. We briefly recall that there exist
smooth schemes X0(p) and X1(p) over Z which classify, coarsely and finely re-
spectively, the generalized elliptic curves endowed with a subgroup, respectively a
point, of order p. We refer for instance to Chapter 3 of [Dar] for more details. We
denote by Y0(p) and Y1(p) the respective affine parts of X0(p) and X1(p). We use
the subscript Q for the algebraic curves over Q obtained by taking the generic fiber
of X0(p) or X1(p). We will denote by J0(p) the Néron model over Z of the Jacobian
J0(p)Q of X0(p)Q.

Suppose that E is an elliptic curve over a number field K of degree d ≥ 1
over Q, endowed with a K-rational p-torsion point P. Then (E, P ) defines a point
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x̃ ∈ Y1(p)(K). We can map this point to a point x ∈ Y0(p)(K) through the usual
covering X1(p) −→ X0(p).

If we denote by v1, . . . , vd the embeddings of K into C, we then obtain a point
x = (v1(x), . . . , vd(x)) ∈ X0(p)(d)(Q). Here we denote by X0(p)(d) the d-th sym-
metric power of X0(p), that is to say the quotient scheme of X0(p) by the action of
the permutation group Σd. It is a smooth scheme over Z.

2.2. The Mazur and Kamienny strategy. The strategy is almost the same
as in the case d = 1 explained in [Dar] Ch.3. Let AQ denote an abelian variety
quotient of J0(p)Q and A its Néron model over Z. Kamienny’s idea is to approach
the Uniform Boundedness Conjecture by studying the natural morphism

φ
(d)
A : X0(p)(d) φ(d)

−−→ J0(p) −→ A

defined as follows. Over Q, this morphism is defined as the composition of the
Albanese morphism (Q1, . . . , Qd) 7→ [(Q1)+ . . . (Qd)− d(∞)] with the surjection of
J0(p)Q to AQ. It then extends to a morphism from the smooth Z-scheme X0(p)(d)

to A. For any prime number l 6= p, we denote by φ
(d)
A,Fl

: X0(p)
(d)
Fl

−→ AFl
the

morphism obtained by taking the special fibers at l. Just as in the case d = 1, we
have

Theorem 3 (Mazur-Kamienny). Suppose that

(1) A(Q) is finite;

(2) there exists a prime number l > 2 such that p > (1 + ld/2)2 and φ
(d)
A,Fl

is a

formal immersion at ∞
(d)
Fl

.

Then Y1(p)(K) is empty for all number fields K of degree d over Q, i.e., there does
not exist any elliptic curve with a point of order p over any number field of degree
d.

Proof. The proof of this theorem is analogous to the one in the case d = 1.
The principal ingredients of the proof are explained in [Dar] Ch. 3. For a complete
proof, the reader can see [Maz78], [Kam92] or, for a summary, [Edi95]. The
idea is the following: suppose that there exists a number field K of degree d and a
point of Y1(p)(K) and consider the point x ∈ X0(p)(d)(Q) obtained as explained in
Section 2.1. The condition p > (1 + ld/2)2 of Theorem 3 implies that the section
s of X0(p)(d) corresponding to x crosses ∞(d) in the fiber at l. Since s 6= ∞(d),

the fact that φ
(d)
A,Fl

is a formal immersion at ∞
(d)
Fl

and Condition 1 will then give a
contradiction.

�

We now need an abelian variety AQ quotient of J0(p)Q of rank 0 (see section 3.1)
and a formal immersion criterion (see below).

2.3. Criterion of formal immersion. Recall first that a morphism φ :
X −→ Y of noetherian schemes is a formal immersion at a point x ∈ X which
maps to y ∈ Y if the induced morphism on the formal completed local rings

φ̂ : ÔY,y −→ ÔX,x is surjective. Equivalently, it follows from Nakayama’s lemma
that φ is a formal immersion at x if the two following conditions hold:

(1) the morphism induced on the residue fields k(y) −→ k(x) is an isomor-
phism;
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(2) the morphism induced on the cotangent spaces φ∗ : Coty(Y ) −→ Cotx(X)
is surjective.

The first condition is verified in our situation, so we are now looking for a criterion
to have

φ
(d)
A,Fl

∗
: Cot(AFl

) −→ Cot
∞

(d)
Fl

(X0(p)
(d)
Fl

)

surjective. For this, we will look in more detail at φ
(d)
A

∗
.

Let R be a Z-algebra. As in [Dar], denote by S2(Γ0(p), R) the regular dif-
ferentials on X0(p)R = X0(p) ×Z R. For R = C, we obtain the vector space of
classical modular forms S2(Γ0(p), C). The q-expansion principle gives an injective
morphism of R-modules

S2(Γ0(p), R) →֒ R[[q]].

Furthermore, we have an isomorphism between Cot(J0(p)(C)) and S2(Γ0(p), C)
coming from the composition of

(1) the isomorphism H0(J0(p)(C), Ω1) −→ Cot(J0(p)(C)) which maps a dif-
ferential form to its evaluation at 0 ;

(2) the isomorphism H0(J0(p)(C), Ω1)
φ∗

−→ H0(X0(p)(C), Ω1) = S2(Γ0(p), C)
given by Serre duality.

It is a nontrivial fact that this isomorphism Cot(J0(p)(C)) ∼= S2(Γ0(p), C) extends
to an isomorphism over Z (and actually even over Z). Indeed, Grothendieck du-
ality can be applied in this setting instead of Serre duality and we then obtain an
isomorphism: Cot(J0(p)) ∼= S2(Γ0(p), Z) (see [Maz78] 2 e)).

Our next task is to analyze the cotangent bundle Cot∞(d)(X0(p)(d)). Recall

that q is a formal local parameter of X0(p) at ∞, i.e., ÔX0(p),∞
∼= Z[[q]]. We then

have

ÔX0(p)(d),(∞)(d)
∼= Z[[q1, . . . , qd]]

Σd = Z[[σ1, . . . , σd]]

where for i = 1, . . . , d, qi is a local parameter at ∞ on the ith factor of X0(p)d

and σ1 = q1 + · · · + qd, . . . , σd = q1 · · · qd are the symmetric functions in q1, . . . , qd.
Consequently, Cot∞(d)(X0(p)(d)) is a free Z-module of rank d with a basis given by
the differential forms (dσ1, . . . , dσd).

We obtain the following diagram:

Cot(J0(p))
φ∗

∼
//

φ(d)∗

��

S2(Γ0(p), Z)
�

� q-exp
// Z[[q]]

Cot(X0(p)(d))

Lemma 1. Let ω ∈ Cot(J0(p)) be such that φ∗(ω) has a q-expansion equal to∑
m≥1 amqm dq

q . Then we have

φ(d)∗(ω) = a1dσ1 − a2dσ2 + · · · + (−1)d−1addσd.

Proof. Denote by π : X0(p)d −→ X0(p)(d) the canonical map. We have

π∗φ(d)∗(ω) =
d∑

i=1

∑

m≥1

amqm
i

dqi

qi
=

∑

m≥1

amm−1dsm
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where sm =
∑d

i=1 qm
i . Then Newton’s formula

sm − σ1sm−1 + · · · + (−1)mmσm = 0

gives m−1dsm = (−1)mdσm for m ∈ {1, . . . , d}. �

We suppose in the sequel that AQ is the quotient of J0(p)Q by an ideal I of the
Hecke algebra T ⊂ End(J0(p)Q), so that there is an induced action of T on A. The
exact sequence

0 → IJ0(p)Q → J0(p)Q → AQ → 0

induces a reverse exact sequence for the cotangent bundles after scalar extension
by Z[1/2]

0 → Cot(AZ[1/2]) → Cot(J0(p)Z[1/2]) → Cot(J0(p)Z[1/2])[I] → 0

where we denote by Cot(J0(p)Z[1/2])[I] the differential forms annihilated by I. This
is due to a specialization lemma of Raynaud (see [Maz78] Proposition 1.1 and
Corollary 1.1).

Let l 6= 2, p be a prime number. We finally have the following diagram in
characteristic l:

Cot(AFl
)
�

�

//

φ
(d)
A,Fl

∗

''O

O

O

O

O

O

O

O

O

O

O

Cot(J0(p)Fl
)

φ∗

Fl

∼
//

φ
(d)
Fl

∗

��

S2(Γ0(p), Fl)
�

� q-exp
// Fl[[q]]

Cot
∞

(d)
Fl

(X0(p)
(d)
Fl

)

This diagram and Lemma 1 give a criterion for φ
(d)
A,Fl

to be a formal immersion

at ∞
(d)
Fl

(see Theorem 5 below). Historically, Mazur first showed the following result

which completes the proof of Mazur’s theorem sketched in Section 4 of [Dar] using
for AQ the Eisenstein quotient.

Theorem 4. The morphism φA,Fl
is a formal immersion at ∞Fl

for all prime
numbers l 6= 2, p.

Proof. There is a nonzero ω ∈ Cot(AFl
) such that φ∗

Fl
(ω) ∈ S2(Γ0(p), Fl) is

an eigenform (under the action of the Hecke algebra T). Then by the q-expansion
principle and the injectivities in the above diagram, its q-expansion is not identically
zero (because if it were, φ∗

Fl
(ω) itself would be zero). We deduce that a1(ω) 6= 0:

indeed, if it were, since ω is an eigenform, we should have am(ω) = a1(Tmω) =
λm(ω)a1(ω) = 0 for all m ≥ 1, so ω = 0, which is impossible. It follows that a1(ω)
spans Cot∞Fl

(X0(p)Fl
) ∼= Fl and, by Lemma 1, that φA,Fl

is a formal immersion at
∞Fl

. �

Theorem 5 (Kamienny). The following assertions are equivalent:

(1) φ
(d)
A,Fl

is a formal immersion at ∞
(d)
Fl

;

(2) there exist d weight-two cusp forms f1, . . . , fd annihilated by I such that
the vectors (a1(fi), . . . , ad(fi))i=1,...,d are linearly independent mod l;

(3) the images of T1, . . . , Td in T/(lT + I) are Fl-linearly independent.
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Proof. The equivalence of (1) and (2) follows directly from Lemma 1 since
Cot(A) maps to the forms annihilated by I via the isomorphism φ∗. Condition
(3) is dual to Condition (2) Indeed, the multiplicity one theorem implies that the
pairing

〈 , 〉 : S2(Γ0(p), Z) × T −→ Z
(f, t) 7−→ a1(tf)

is perfect and then induces an isomorphism of T-modules between S2(Γ0(p), Z) and
the Z-dual of T. For a more detailed proof of this theorem, see [Kam92] or [Oes]
Sections 3, 4 and 6. �

3. Merel’s proof

3.1. The Winding Quotient. Denote by Je,Q the winding quotient (see
[Dar] Ch. 3) and Je its Néron model over Z. We just recall that Je,Q is the
abelian variety quotient of J0(p)Q by the winding ideal Ie of T.

Considering Theorem 3, we are now looking for a quotient AQ of J0(p)Q by an
ideal I ⊂ T such that A(Q) is finite. Mazur and Kamienny have used the Eisenstein
quotient, which has this property (see [Maz77, Kam92]). Merel’s fundamental
innovation was to use the winding quotient; this quotient is larger and easier to
exploit than the Eisenstein quotient. This was made possible after the works of
Kolyvagin on the Birch and Swinnerton-Dyer conjecture; indeed, it then turned out
that Je(Q) is finite by construction (see [Mer96] or [Dar] for a summary). Actually,
the Birch and Swinnerton-Dyer conjecture predicts that the winding quotient is the
largest quotient of J0(p)Q of rank zero.

Finally, to prove Theorem 2, thanks to Theorems 3 and 5, it suffices to deter-
mine for which prime numbers p the following is true for a prime number l 6= 2
such that p > (1 + ld/2)2:

(⋆l) the images of T1, . . . , Td in T/(lT + Ie) are Fl-linearly independent.

3.2. Merel’s strategy. Suppose now that d ≥ 3. Recall that the Hecke al-
gebra T ⊂ End(J0(p)) also acts on the first group of absolute singular homology
H1(X ; Z) of the compact Riemann surface X = X0(p)(C) and that Ie is the an-
nihilator of the winding element e ∈ H1(X ; Q) (see the article of Darmon in this
volume). Then T·e is a free T/Ie-module of rank 1. It follows that (⋆l) is equivalent
to

(⋆l) the images of T1e, . . . , Tde in Te/lTe are Fl-linearly independent.

As before, the characteristic zero analogous condition

(⋆) T1e, . . . , Tde are Z-linearly independent in T · e.

is equivalent to φ
(d)
Ie

being a formal immersion at ∞
(d)
Q . If (⋆l) is true for a prime

number l then (⋆) is true, while the condition (⋆) implies (⋆l) for almost all prime
numbers l. Kamienny showed that if (⋆) is true then there exists a prime number
l < 2(d!)5/2 (depending on p) such that (⋆l) is true (see [Kam92] Corollary 3.4 and
[Edi95] 4.3 for the precise bound). The heart of Merel’s proof for the boundedness

of the torsion of elliptic curves is then to prove (⋆) for p > d3d2

> 2d+1(d!)5d/2 ≥
(1 + (2(d!)5/2)d/2)2.

We will now explain the key steps of this proof omitting the details of the
calculations. For a completed proof, we will refer to [Mer96].
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Consider a fixed prime number p > d3d2

for d ≥ 3 an integer. To prove that
e, T2e, . . . , Tde are linearly independent, it suffices to prove that so are e, t2e, . . . , tde
where tr = Tr−σ′(r) with σ′(r) the sum of divisors of r coprime to p. These slightly
different Hecke operators tr are more pleasant to work with because they annihilate
the “Eisenstein part” of e and we can then work as if e were equal to the modular
symbol {0,∞} (see section 3.3 for a definition)1.

The idea of the proof is to use the intersection product

• : H1(X ; Z) × H1(X ; Z) −→ Z.

Suppose indeed that λ1e+λ1t2e+ · · ·+λctce = 0 for 1 ≤ c ≤ d and some λ1, . . . , λc

in Z with λc 6= 0. The strategy is then to find xc ∈ H1(X ; Z) such that

i) tce • xc 6= 0 and ii) tre • xc = 0 (1 ≤ r ≤ c − 1).

This will give a contradiction.2

Two key facts make it possible to follow this strategy: first, there is a pre-
sentation of H1(X ; Z) by generators and relations due to Manin [Man72] (see the
section 3.3); secondly, a lemma called lemme des cordes by Merel (Proposition 1
below) enables us to compute the intersection product of two such generators. It
suffices then to express tre in terms of Manin’s generators (see 3.4).

3.3. Manin’s symbols. Denote by H the Poincaré upper half-plane. For
α, β ∈ P1(Q), consider the image in Γ0(p)\H of the geodesic path from α to β in H.
Denote by {α, β} its homology class in the homology group H1(X, cusps; Z) relative
to the set cusps of the cusps of X.

Exercise 1. (1) Show that {α, β} is the sum of classes of type {b/d, a/c}
with a, b, c, d ∈ Z such that ad − bc = 1 (hint: use continued fractions).

(2) Show that {b/d, a/c} depends only on the coset Γ0(p)
(

a b
c d

)
.

For a solution of this exercise, see [Man72] for instance.

The preceding results imply that there is a surjective map

ξ : Z[Γ0(p)\SL2(Z)] −→ H1(X, cusps; Z)
Γ0(p) · g 7−→ {g · 0, g · ∞} = { b

d , a
c } g =

(
a b
c d

)
∈ SL2(Z).

Since there is moreover an isomorphism

Γ0(p)\SL2(Z) −→ P1(Fp)
Γ0(p) ·

(
a b
c d

)
7→ [c : d],

we will simply write ξ(c/d) := ξ(
(

a b
c d

)
).

For k ∈ F×
p we obtain ξ(k) = {0, 1/k} which is an element of H1(X ; Z) (seen as

a submodule of H1(X, cusps; Z)) because 0 and 1/k are conjugate modulo Γ0(p).
These elements are generators of H1(X ; Z). The other generators of H1(X, cusps; Z)
are ξ(0) and ξ(∞) and they verify ξ(0) = −ξ(∞) = {0,∞}.

The following proposition, called lemme des cordes by Merel, gives a method to
compute the intersection product of two Manin symbols in the absolute homology
group. For k ∈ {1, . . . , p− 1}, denote by k∗ the element of {1, . . . , p− 1} such that
kk∗ ≡ −1 (mod p).

1In the relative homology group, the winding element e differs from {0,∞} by an element
which is an eigenvector for all Tn with system of eigenvalues {σ′(n)}n≥1 (up to a constant): this

is what I called the Eisenstein part.
2Actually, for c = 1 the situation will be slightly different because of the Eisenstein part of e.
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k′

∗

-1

k′

k∗

k

Figure 1. Lemme des cordes. Here ξ(k) • ξ(k′) = −1.

Proposition 1 (Merel). Let k, k′ ∈ {1, . . . , p− 1}. Denote by Ck the chord of
the unit circle from e2iπk∗/p to e2iπk/p and similarly for k′. Then

ξ(k) • ξ(k′) = C′
k ∧ Ck

where Ck′ ∧ Ck is the number of intersections of Ck′ by Ck (equal to 1, 0 or −1
according to the trigonometric orientation of the unit circle).

Proof. See [Mer96] Lemma 4. �

3.4. Two useful formulas. Because of their technical aspect, we will not
reproduce the proofs of the following formulas which appear in Lemmas 2 and 3 of
[Mer96].

We have first a formula for tre (r > 1) in terms of the Manin symbols ξ(k):

Proposition 2 (Merel). Let r < p be a positive integer. Then

tre = −
∑

( u v
w t )∈Xr

ξ(w/t)

where Xr is the set of matrices ( u v
w t ) of determinant r such that 0 < w < t and

u > v ≥ 0.

For r = 1, we can compute directly the intersection of e with a Manin generator:

Proposition 3 (Merel). For any k ∈ {1, . . . , p − 1} we have

(p − 1)e • ξ(k) =
k∗ − k

p
(p − 1) − 12S(k, p),

where S(k, p) =
∑p−1

h=0 B̄1(
h
p )B̄1(

kh
p ) is the Dedekind sum and B̄1 the first Bernoulli

polynomial made 1-periodic.

Remark 3. Note that in Proposition 2 the ξ(0) and ξ(∞) terms vanish. This
is not surprising since tre lies in the absolute homology group.

3.5. Conclusion of the proof. We will now explain how Merel put all the
previous ingredients together to obtain the proof of (⋆) for p large enough.

Suppose that there are integers λ1, . . . , λd such that

λ1e + λ2t2e + · · · + λdtde = 0.

We will show successively that λi = 0 for all i ∈ {1, . . . , d}, treating the case of λ1

independently.
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(p − 1)/d

l∗

k

l

0

k∗

Figure 2. Case i = 1.

Case i = 1. We look for x1 of the form x1 = ξ(k) for some k such that

i) e • ξ(k) 6= 0 and ii) tre • ξ(k) = 0 (1 < r ≤ d).

Suppose that p > d. By Proposition 2, the condition ii) is equivalent to

∑

( u v
w t )∈Xr

ξ(w/t) • ξ(k) = 0 (1 ≤ r ≤ d).

It suffices to find k such that ξ(w/t) • ξ(k) = 0 for all ( u v
w t ) ∈ Xr. That is what

Merel does. Let l ∈ {1, . . . , p−1} such that l ≡ wt−1 (mod p) for some ( u v
w t ) ∈ Xr.

Then l∗ ≡ −tw−1 (mod p). By Remark 3, we can suppose that neither t nor w are
divisible by p.

Exercise 2. Show that l and l∗ are larger than p−1
d .

Applying the lemme des cordes it suffices to find k such that both the complex
numbers e2iπk/p and e2iπk∗/p are in a portion of the circle where e2iπl/p cannot be,
so for instance, by the exercise, such that both k and k∗ lie in [0, p−1

d [. Merel uses
then the following analytic lemma ([Mer96] Lemma 5) to ensure that, provided

p > d3d2

and k ∈ Z∩] p
10d , p

5d + 1[ then k∗ ∈ Z∩] p
2d − 1 − 1

d , p−1
d [. (More precisely,

this is already true when p/ log4(p) > d4.)

Lemma 2. Let p be a prime number and a, b ≥ 1 two real numbers. Let A, B ⊂
{1, . . . , p − 1} be two intervals of cardinalities p/a and p/b respectively. If p >

a2b2 log4(p) then there exists k ∈ A such that k∗ ∈ B.

We deduce from the following exercise that condition i) above is also verified

assuming that p > d3d2

.

Exercise 3. Using the Dedekind’s reciprocity formula

12(S(k, p) + S(p, k)) = −3 +
p

k
+

k

p
+

1

pk

and the inequality |12S(p, k)| ≤ k, show that

e • ξ(k) ≥
p

10d
− 10d − 2

for all k as before.
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q − δ

k∗

q

k
q + δ

q∗

Figure 3. Case i > 1.

Case i > 1. Suppose now that

λ2t2e + · · · + λctce = 0

for some c ≤ d. The method is almost the same as before: we look for xc = ξ(k)
such that

i) tce • ξ(k) 6= 0 and ii) tre • ξ(k) = 0 (2 ≤ r < c).

We remark that in the formulas for tre, r = 2, . . . , c, of Proposition 2, the Manin
symbol ξ(1/c) occurs only in tce and not in tre for r < c. So we will look for k such
that ξ(1/c) • ξ(k) = ±1 and ξ(w/t) • ξ(k) = 0 for all ( u v

w t ) ∈ Xr (r ≤ c) such that
w/t 6= 1/c.

Let q and l in {1, . . . , p − 1} such that q ≡ 1/c (mod p) and l ≡ w/t 6= 1/c
(mod p) for some ( u v

w t ) ∈ Xr (r ≤ c).

Exercise 4. Show that |l − q| ≥ δ, where δ = p−d2

d(d−1) .

By the same analytic lemma as before, it is possible to find k ∈]q, q + δ] such
that k∗ ∈ [q − δ, q[ and q∗ 6∈ [q − δ, q + δ] when p is large enough, more precisely
when p/ log4(p) > Sup(d8, 400d4). By the lemme des cordes, this then forces λc to
be zero.

This finishes the proof of Theorem 2.

3.6. Oesterlé’s variant. As we said in Remark 1, Oesterlé improved Merel’s
bound for the torsion of elliptic curves. For this, Oesterlé proved directly the formal
immersion in positive characteristic:

Proposition 4. Suppose that p/ log4 p ≥ (2d)6. Then for all l ≥ 3, the condi-

tion (⋆l) is true, that is to say φ
(d)
A,Fl

is a formal immersion at ∞
(d)
Fl

.

For d ≥ 33, Theorem 2 with the bound (3d/2 + 1)2 then follows directly from
Theorem 4, since p > (3d/2 + 1)2 implies p/ log4 p ≥ (2d)6 in that case. Oesterlé
studied the cases d < 37 by computations.

Let us give a sketch of proof of Proposition 4. Let T ′
s be defined by Tr =

∑
s|r T ′

s

for all r ≥ 1 and, instead of tr = Tr−σ′(r) (r ≥ 1), consider the following generators
of the Eisenstein ideal I:

I1 = np and Ir =

{
T ′

r − r if p ∤ r

T ′
r if p|r

(r ≥ 2),
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where we denote by np the numerator of (p − 1)/12. We have tr =
∑

s|r,s6=1 Is for

all r > 1.

Proposition 5. If the images of I2e, . . . , I2de in Ie/lIe are Fl-linearly inde-
pendent, then T1e, . . . , Tde are Fl-linearly independent in Te/lTe; that is to say (⋆l)
is true.

Proof. We have

T ′
2T

′
r =

{
I2r − 2Ir if r is odd

I2r − 3Ir + 2Ir/2 if r is even.

So if I2e, . . . , I2re are linearly independent in Ie/lIe, so are T ′
2e, . . . , T

′
2T

′
2re and,

since T ′
2e = (T2 − 3)e ∈ Ie, we obtain that T ′

1e, . . . , T
′
de are linearly independent

in Te/lTe. But Tr = T ′
r +

∑
s|r,s<r T ′

s so T1e, . . . , Tde are linearly independent in

Te/lTe. �

Moreover, Oesterlé used Proposition 2 and the lemme des cordes to give an
explicit formula for tre • ξ(k) and then for Ire • ξ(k) (which is the unique “r-th
term” of tre • ξ(k)):

(1) Ire • ξ(k) =

[
rk

p

]
−

[
rk∗
p

]
+ vr(k) − vr(k∗) (r ≥ 2, k ∈ {1, . . . , p − 1}),

where vr(k) = #{(a, a′, b, b′) ∈ Z, a, a′, b, b′ ≥ 1, aa′ + bb′ = r, (a, b) = 1, bk ≡ a
(mod p)}. The end of the proof is then mutatis mutandis the same as Merel’s:

using Lemma 2, Oesterlé showed that, when p/ log4(p) > d6, it is possible for each
r ≥ 2 to find k such that Ire • ξ(k) = 1 and Ise • ξ(k) = 0 for s < r. He deduced

that for p/ log4(p) > d6, I2e, . . . , Ide are linearly independent. Applying this for 2d
instead of d and using Proposition 5 gives Proposition 4.

This is how one can obtain Oesterlé’s bound. As we said in Remark 2, the
question of finding a bound growing polynomially in d remains open.

Remark 4. As Merel pointed out to me, the result of Proposition 5 is still
true replacing Ir by tr, (2 ≤ r ≤ 2d). Indeed, a calculation proves that t2Ti ∈
t2i +

∑
1≤j≤i ZTj . Using the results of the section 3.5 case i > 1, it follows that

when p/ log4(p) > Sup(d8, 400d4), (⋆l) is true for all l ≥ 3. Since p > (3d/2 + 1)2

implies p/ log4(p) > Sup(d8, 400d4) provided that d ≥ 37, it gives Oesterlé’s bound
in that case. The other cases have been studied by Oesterlé.
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B. Mazur, Astérisque (1995), no. 228, 3, 5–17, Columbia University Number Theory
Seminar (New York, 1992). MR 1330925 (96c:11059)

[Cas66] J. W. S. Cassels, Diophantine equations with special reference to elliptic curves, J.
London Math. Soc. 41 (1966), 193–291. MR 0199150 (33 #7299)

[Dar] H. Darmon, Rational points on curves, in this volume.
[Dem72] V. A. Dem′janenko, The boundedness of the torsion of elliptic curves, Mat. Zametki 12

(1972), 53–58. MR 0447260 (56 #5575)
[Edi95] B. Edixhoven, Rational torsion points on elliptic curves over number fields (after Kami-
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Laboratoire de mathématiques, Université Blaise Pascal Clermont-Ferrand 2, Cam-
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