Complete classification of torsion of elliptic curves over quadratic cyclotomic fields

Filip Najman
Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia

Abstract

In a previous paper ($\sqrt{10}$), the author examined the possible torsions of an elliptic curve over the quadratic fields $\mathbb{Q}(i)$ and $\mathbb{Q}(\sqrt{-3})$. Although all the possible torsions were found if the elliptic curve has rational coefficients, we were unable to eliminate some possibilities for the torsion if the elliptic curve has coefficients that are not rational. In this note, by finding all the points of two hyperelliptic curves over $\mathbb{Q}(i)$ and $\mathbb{Q}(\sqrt{-3})$, we solve this problem completely and thus obtain a classification of all possible torsions of elliptic curves over $\mathbb{Q}(i)$ and $\mathbb{Q}(\sqrt{-3})$.

1 Introduction

For an elliptic curve E over a number field K, it is well known, by the Mordell-Weil theorem, that the set $E(K)$ of K-rational points on E is a finitely generated Abelian group. The group $E(K)$ is isomorphic to $T \oplus \mathbb{Z}^{r}$, where r is a non-negative integer and T is the torsion subgroup. When $K=\mathbb{Q}$, by Mazur's Theorem, the torsion subgroup is either cyclic of order m, where $1 \leq m \leq 10$ or $m=12$, or of the form $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2 m}$, where $1 \leq m \leq 4$. If K is a quadratic field, then the following theorem classifies the possible torsions.

Theorem(Kamienny, [3], Kenku and Momose, [4]). Let K be a quadratic field and E an elliptic curve over K. Then the torsion subgroup $E(K)_{\text {tors }}$ of $E(K)$ is isomorphic to one of the following 26 groups:

$$
\begin{gathered}
\mathbb{Z}_{m}, \text { for } 1 \leq m \leq 18, m \neq 17, \\
\mathbb{Z}_{2} \oplus \mathbb{Z}_{2 m}, \text { for } 1 \leq m \leq 6 \\
\mathbb{Z}_{3} \oplus \mathbb{Z}_{3 m}, \text { for } m=1,2 \\
\mathbb{Z}_{4} \oplus \mathbb{Z}_{4}
\end{gathered}
$$

[^0]Moreover, the only quadratic field over which torsion $\mathbb{Z}_{4} \oplus \mathbb{Z}_{4}$ appears is $\mathbb{Q}(i)$ and the only quadratic field over which torsions $\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}$ and $\mathbb{Z}_{3} \oplus \mathbb{Z}_{6}$ appear is $\mathbb{Q}(\sqrt{-3})$.
In [2], Theorem 3.5, it is proved that if we let the quadratic fields vary, then all of the 26 torsion subgroups appear infinitely often.
Unfortunately, if we fix a quadratic field, this theorem does not tell us which of the 26 listed groups actually appear as torsion subgroups. In [10], we took this approach, fixing the fields $\mathbb{Q}(i)$ and $\mathbb{Q}(\sqrt{-3})$. These fields are somewhat special among quadratic fields, as they are the only cyclotomic quadratic fields $\left(\mathbb{Q}(i)=\mathbb{Q}\left(\zeta_{4}\right)\right.$ and $\mathbb{Q}(\sqrt{-3})=\mathbb{Q}\left(\zeta_{6}\right)$, where ζ_{n} is a primitive n-th root of unity). Also, as already mentioned, over each of these fields, torsion subgroups appear that appear over no other fields. Note that the rings of integers of both these fields are unique factorization domains.

The main results of [10] are given in the following theorem.
Theorem 1. (i) Let E be an elliptic curve with rational coefficients. Then $E(\mathbb{Q}(i))_{\text {tors }}$ is either one of the groups from Mazur's Theorem or $\mathbb{Z}_{4} \oplus$ \mathbb{Z}_{4}.
(ii) Let E be an elliptic curve defined over $\mathbb{Q}(i)$. Then $E(\mathbb{Q}(i))_{\text {tors }}$ is either one of the groups from Mazur's Theorem, $\mathbb{Z}_{4} \oplus \mathbb{Z}_{4}$ or \mathbb{Z}_{13}.
(iii) Let E be an elliptic curve with rational coefficients. Then $E(\mathbb{Q}(\sqrt{-3}))_{\text {tors }}$ is either one of the groups from Mazur's Theorem, $\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}$ or $\mathbb{Z}_{3} \oplus \mathbb{Z}_{6}$.
(iv) Let E be an elliptic curve defined over $\mathbb{Q}(\sqrt{-3})$. Then $E(\mathbb{Q}(\sqrt{-3}))_{\text {tors }}$ is either one of the groups from Mazur's Theorem, $\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}, \mathbb{Z}_{3} \oplus \mathbb{Z}_{6}$, \mathbb{Z}_{13} or \mathbb{Z}_{18}.

While it is not hard to show that (i) and (iii) are best possible, we conjectured that the possible torsion \mathbb{Z}_{13} could be removed from (ii) and the possible torsions \mathbb{Z}_{13} and \mathbb{Z}_{18} could be removed from (iv). In this note we prove this conjecture, thus proving the following theorem.

Theorem 2. (i) Let E be an elliptic curve defined over $\mathbb{Q}(i)$. Then $E(\mathbb{Q}(i))_{\text {tors }}$ is either one of the groups from Mazur's Theorem or $\mathbb{Z}_{4} \oplus$ \mathbb{Z}_{4}.
(ii) Let E be an elliptic curve defined over $\mathbb{Q}(\sqrt{-3})$. Then $E(\mathbb{Q}(\sqrt{-3}))_{\text {tors }}$ is either one of the groups from Mazur's Theorem, $\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}$ or $\mathbb{Z}_{3} \oplus \mathbb{Z}_{6}$.

2 Torsion over $\mathbb{Q}(i)$ cannot be \mathbb{Z}_{13}

As seen from [12], case 2.5.2, page 30, elliptic curves with torsion \mathbb{Z}_{13} over $\mathbb{Q}(i)$ exist if and only if the curve C_{1} defined by

$$
\begin{equation*}
C_{1}: y^{2}=x^{6}-2 x^{5}+x^{4}-2 x^{3}+6 x^{2}-4 x+1 \tag{1}
\end{equation*}
$$

has points over $\mathbb{Q}(i)$ satisfying

$$
\begin{equation*}
x(x-1)\left(x^{3}-4 x^{2}+x+1\right) \neq 0 \tag{2}
\end{equation*}
$$

As the points of a hyperelliptic curve have no structure, it is useful to examine the Jacobian variety of a curve (see [1]). Let J_{1} be the Jacobian of $C_{1}, C_{1}^{(d)}$ the quadratic twist of C_{1} by d and $J_{1}^{(d)}$ the Jacobian of $C_{1}^{(d)}$.

Lemma 3. $J_{1}(\mathbb{Q}(i)) \simeq \mathbb{Z}_{19}$.
Proof:
In MAGMA ([5]) there exists a implementation of 2-descent on Jacobians (the RankBounds function, see [13] for the algorithm), but unfortunately only over \mathbb{Q}. However, we can compute $\operatorname{rank}\left(J_{1}(\mathbb{Q})\right)=0$ and $\operatorname{rank}\left(J_{1}^{(-1)}(\mathbb{Q})\right)=$ 0 , and thus

$$
\operatorname{rank}\left(J_{1}(\mathbb{Q}(i))\right)=\operatorname{rank}\left(J_{1}(\mathbb{Q})\right)+\operatorname{rank}\left(J_{1}^{(-1)}(\mathbb{Q})\right)=0
$$

Again for the torsion of the Jacobian, MAGMA has implemented functions only over the rationals. For an algortihm for computing the torsion, see [11]. The discriminant of the C_{1} is $2^{20} \cdot 13^{2}$, so 2 and 13 are the only rational primes with bad reduction.
We compute $J_{1}(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z}_{19}$. If p is a Gaussian prime of good reduction, then the prime-to- p part of $J_{1}(Q(i))_{\text {tors }}$ injects to $J_{1}\left(F_{p}(i)\right)$. As $p \equiv 3$ $(\bmod 4)$ remains prime in $\mathbb{Z}[i]$ and $F_{p}(i) \simeq F_{p^{2}}$, by computing

$$
\begin{gathered}
\left|J_{1}\left(F_{121}\right)\right|=\left|J_{1}\left(F_{11}(i)\right)\right|=7^{2} \cdot 19^{2} \\
\left|J_{1}\left(F_{529}\right)\right|=\left|J_{1}\left(F_{23}(i)\right)\right|=3 \cdot 7 \cdot 19 \cdot 229 \\
\left|J_{1}\left(F_{961}\right)\right|=\left|J_{1}\left(F_{31}(i)\right)\right|=2^{8} \cdot 3^{2} \cdot 19^{2}
\end{gathered}
$$

we conclude that $\left|J_{1}(Q(i))_{\text {tors }}\right|=19$ and thus $J_{1}(\mathbb{Q}(i)) \simeq \mathbb{Z}_{19}$.
Lemma 4. $C_{1}(\mathbb{Q}(i))=\left\{\infty_{+}, \infty_{-},(1, \pm 1),(0, \pm 1)\right\}$.
Proof:
The 18 non-zero elements of $J_{1}(\mathbb{Q})=J_{1}(\mathbb{Q}(i))$, in the Mumford representation that MAGMA uses (see [8] for details, and [6] for the particular implementation in MAGMA) are

$$
\left(x^{2},-2 x+1,2\right),\left(x-1,-x^{3}, 2\right),\left(x, x^{3}-1,2\right),\left(x, x^{3}+1,2\right),\left(x^{2}-x,-1,2\right)
$$

$$
\begin{aligned}
& \left(x^{2}-x,-2 x+1,2\right),\left(1, x^{3}-x^{2}, 2\right),\left(x^{2}-2 x+1, x, 2\right),\left(x-1, x^{3}-2,2\right) \\
& \left(x-1,-x^{3}+2,2\right),\left(x^{2}-2 x+1,-x, 2\right),\left(1,-x^{3}+x^{2}, 2\right),\left(x^{2}-x, 2 x-1,2\right) \\
& \left(x^{2}-x, 1,2\right),\left(x,-x^{3}-1,2\right),\left(x,-x^{3}+1,2\right),\left(x-1, x^{3}, 2\right),\left(x^{2}, 2 x-1,2\right)
\end{aligned}
$$

and we easily see that the points mentioned are the only ones on this curve.

By proving Lemma 4, we have actually proven Theorem 2, (i).

3 Torsion over $\mathbb{Q}(\sqrt{-3})$ cannot be \mathbb{Z}_{13} or \mathbb{Z}_{18}

To prove that the torsion can not be \mathbb{Z}_{13}, we again have to prove that there are no points on C_{1} over $\mathbb{Q}(\sqrt{-3})$ satisfying (2).
Lemma 5. $J_{1}(\mathbb{Q}(\sqrt{-3})) \simeq \mathbb{Z}_{19}$.

Proof:

We compute $\operatorname{rank}\left(J_{1}^{(-3)}(\mathbb{Q})\right)=0$, and thus

$$
\operatorname{rank}\left(J_{1}(\mathbb{Q}(\sqrt{-3}))\right)=\operatorname{rank}\left(J_{1}(\mathbb{Q})\right)+\operatorname{rank}\left(J_{1}^{(-3)}(\mathbb{Q})\right)=0
$$

As 5 and 17 are rational primes of good reduction that remain prime in $\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$, and

$$
\begin{gathered}
\left|J_{1}\left(F_{25}\right)\right|=\left|J_{1}\left(F_{5}(\sqrt{-3})\right)\right|=19^{2} \\
\left|J_{1}\left(F_{289}\right)\right|=\left|J_{1}\left(F_{17}(\sqrt{-3})\right)\right|=2^{6} \cdot 3^{2} \cdot 7 \cdot 19
\end{gathered}
$$

we conclude that $J_{1}(\mathbb{Q}(\sqrt{-3})) \simeq \mathbb{Z}_{19}$.

Lemma 6. $C_{1}(\mathbb{Q}(\sqrt{-3}))=\left\{\infty_{+}, \infty_{-},(1, \pm 1),(0, \pm 1)\right\}$.
Proof:
The proof is the same as the proof of Lemma 4.

As seen from [12], case 2.5.6, pages 38-39, elliptic curves with torsion \mathbb{Z}_{18} over $\mathbb{Q}(\sqrt{-3})$ exist if and only if the curve C_{2} defined by

$$
\begin{equation*}
y^{2}=x^{6}+2 x^{5}+5 x^{4}+10 x^{3}+10 x^{2}+4 x+1 \tag{3}
\end{equation*}
$$

has points over $\mathbb{Q}(\sqrt{-3})$ satisfying

$$
\begin{equation*}
x(x+1)\left(x^{2}+x+1\right)\left(x^{3}-3 x-1\right) \neq 0 \tag{4}
\end{equation*}
$$

Let J_{2} be the Jacobian of $C_{2}, C_{2}^{(d)}$ the quadratic twist of C_{2} by d and $J_{2}^{(d)}$ the Jacobian of $C_{2}^{(d)}$.

Lemma 7. $J_{2}(\mathbb{Q}(\sqrt{-3})) \simeq \mathbb{Z}_{3} \oplus \mathbb{Z}_{21}$.
Proof:
In MAGMA (5) we compute $\operatorname{rank}\left(J_{2}(\mathbb{Q})\right)=0$ and $\operatorname{rank}\left(J_{2}^{(-3)}(\mathbb{Q})\right)=0$, and thus

$$
\operatorname{rank}\left(J_{2}(\mathbb{Q}(\sqrt{-3}))\right)=\operatorname{rank}\left(J_{2}(\mathbb{Q})\right)+\operatorname{rank}\left(J_{2}^{(-3)}(\mathbb{Q})\right)=0 .
$$

The discriminant of C_{2} is $2^{23} \cdot 3^{4}$, so 2 and 3 are the only rational primes with bad reduction. We find the points in Mumford representation $\left(x^{2}+x+\right.$ $1,-\sqrt{-3} x-\sqrt{-3}, 2)$ and $\left(1,-x^{3}-x^{2}, 2\right)$ on the Jacobian generate a group isomorphic to $\mathbb{Z}_{3} \oplus \mathbb{Z}_{21}$.

As the rational primes 5 and 11 remain prime in $\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$, we have

$$
\begin{gathered}
\left|J_{2}\left(F_{25}\right)\right|=\left|J_{2}\left(F_{5}(\sqrt{-3})\right)\right|=21^{2}, \\
\left|J_{2}\left(F_{121}\right)\right|=\left|J_{2}\left(F_{11}(\sqrt{-3})\right)\right|=2^{4} \cdot 3^{2} \cdot 7 \cdot 13 .
\end{gathered}
$$

We conclude that $J_{2}(\mathbb{Q}(\sqrt{-3}))_{\text {tors }} \simeq \mathbb{Z}_{3} \oplus \mathbb{Z}_{21}$.
Lemma 8. $C_{2}(\mathbb{Q}(\sqrt{-3}))=\left\{\infty_{+}, \infty_{-},(-1, \pm 1),(0, \pm 1),\left(\frac{-1-\sqrt{-3}}{2}, \pm \frac{-3-\sqrt{-3}}{2}\right)\right.$, $\left.\left(\frac{-1+\sqrt{-3}}{2}, \pm \frac{-3+\sqrt{-3}}{2}\right)\right\}$.

Proof:
Searching throught the 62 non-zero elements of $J_{2}(\mathbb{Q}(\sqrt{-3}))$, we see that the only points besides the obvious rational ones, satisfy $x^{2}+x+1=0=y-x+1$, and hence we obtain our result.

By Lemma 6 the torsion of an elliptic curve over $\mathbb{Q}(\sqrt{-3})$ cannot be \mathbb{Z}_{13} and by Lemma 8 , the torsion cannot be \mathbb{Z}_{18}. Thus we have proved Theorem 2.

Remark The fact that $J_{1}(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z}_{19}$ and $J_{2}(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z}_{21}$ was proven already 35 years ago by Ogg in [9, and the existence of rational 19-torsion points on $J_{1}(\mathbb{Q})$ was used by Mazur and Tate [7] to prove the non-existence of rational points on elliptic curves of order 13 over \mathbb{Q}.

References

[1] H. Cohen, G. Frey, Handbook of Elliptic and Hyperelliptic Curve Cryptography, Discrete Math. Appl., Chapman \& Hall/CRC, 2006.
[2] D. Jeon, C. H. Kim and E. Park, On the torsion of elliptic curves over quartic number fields, J. London Math. Soc. (2) 74 (2006), 1-12.
[3] S. Kamienny, Torsion points on elliptic curves and q-coefficients of modular forms, Invent. Math. 109 (1992), 221-229.
[4] M. A. Kenku and F. Momose, Torsion points on elliptic curves defined over quadratic fields, Nagoya Math. J. 109 (1988), 125-149.
[5] The MAGMA computer algebra system is described in W. Bosma, J. Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235-265.
[6] W. Bosma, J. Cannon, Handbook of Magma Functions, http://www.msri.org/about/computing/docs/magma/Handbook.pdf
[7] B. Mazur and J. Tate, Points of order 13 on elliptic curves, Invent. Math. 22 (1973/74), 41-49.
[8] D. Mumford, Tata lectures on theta II, volume 43 of Progr. Math. Birkhauser, 1984.
[9] A. Ogg, Rational points on certain elliptic modular curves, Analytic number theory (Proc. Sympos. Pure Math., Vol XXIV, St. Louis Univ., St. Louis, Mo., 1972), pp. 221-231, Amer. Math. Soc., Providence, R.I., 1973.
[10] F. Najman, Torsion of elliptic curves over quadratic cyclotomic fields, Math J. Okayama U., to appear.
[11] B. Poonen, Computing Torsion Points on Curves, Exp. Math. 10 (2001), 449-466.
[12] F. P. Rabarison, Torsion et rang des courbes elliptiques definies sur les corps de nombres algebriques, Doctorat de Universite de Caen, 2008.
[13] M. Stoll, Implementing 2-descent on Jacobians of hyperelliptic curves of genus two, II, Acta Arith. 98 (2001), 245-277.

FILIP NAJMAN
DEPARTMENT OF MATHEMTICS, UNIVERSITY OF ZAGREB,
BIJENIČKA CESTA 30, 10000 ZAGREB,
CROATIA
E-mail address: fnajman@math.hr

[^0]: ${ }^{0}$ Mathematics subject classification (2000) 11G05, 11G30, 14H40

