MR1172689 (93h:11054) 11G05 (11F30 11G18 14H52) Kamienny, S. (1-SCA)

Torsion points on elliptic curves and q -coefficients of modular forms.

Invent. Math. 109 (1992), no. 2, 221–229.

This excellent paper makes a major contribution to the following well-known uniform boundedness conjecture: For every positive integer n there is a bound $B_n > 0$ such that if K is any number field of degree n over \mathbf{Q} and E is any elliptic curve defined over K then the number of K-rational torsion points on E is less than B_n . The main theorem of the paper establishes the validity of this conjecture when n = 2. Moreover, it is proved (for n = 2) that the order of the torsion subgroup $E(K)_{tor}$ is not divisible by any prime p > 13. This is a significant extension of a theorem of B. C. Mazur [Inst. Hautes Études Sci. Publ. Math. No. 47 (1977), 33–186 (1978); MR0488287 (80c:14015)] which gives a complete list of isomorphism classes of torsion subgroups of elliptic curves over \mathbf{Q} .

The present author's method extends ideas of Mazur. Let N be a prime with N > 61 and $N \neq$ 71 and let $X_{/S}^{(2)}$ be the symmetric square of the modular curve $X = X_0(N)_{/S}$ viewed as a smooth scheme over $S = \text{Spec}(\mathbb{Z}[1/N])$. Let $J = J_0(N)$ be the Jacobian variety of X and $h: X^{(2)} \to J$ be the morphism defined by $(x, y) \mapsto (x + y - 2\infty)$, where ∞ is the infinity cusp on X. Let $f: X^{(2)} \to \infty$ \widetilde{J} be the composition of h with Mazur's Eisenstein quotient $J \to \widetilde{J}$ [B. C. Mazur, op. cit.]. The key new observation in the paper under review is that f is a formal immersion along (∞, ∞) away from characteristics 2, 3, and 5. The proof of this fact reduces to a property of modular forms: For each prime $p \neq 2, 3, 5$ there exists a pair of weight-two cusp forms, F, G, attached to \widetilde{J} whose Fourier coefficients $a_n(F)$, $a_n(G)$, $n \ge 1$, are integral and such that the vectors $(a_1(F), a_2(F))$, $(a_1(G), a_2(G))$ are linearly independent modulo p. To prove that there is no K-rational point of order N on any elliptic curve $E_{/K}$, the author then shows how such a point would give rise to an S-section (x, x^{σ}) of $X_{/S}^{(2)}$ which is distinct from (∞, ∞) while intersecting (∞, ∞) above 7 and having the same image in $\widetilde{J}(S)$ under f. This would contradict the fact that f is an immersion along (∞, ∞) in characteristic 7. Completing the proof of the uniform boundedness conjecture for n = 2 now reduces to a case-by-case examination of each of the primes $N \le 61$ and N = 67, much of which had already been done in earlier works of the author.

The paper begins with a useful survey of previous work on this topic and closes with remarks concerning generalizations of the techniques to number fields of higher degree.

Reviewed by Glenn Stevens

© Copyright American Mathematical Society 1993, 2010