MR1172689 (93h:11054) 11G05 (11F30 11G18 14H52)
Kamienny, S. (1-SCA)
Torsion points on elliptic curves and q-coefficients of modular forms.
Invent. Math. 109 (1992), no. 2, 221-229.
This excellent paper makes a major contribution to the following well-known uniform boundedness conjecture: For every positive integer n there is a bound $B_{n}>0$ such that if K is any number field of degree n over \mathbf{Q} and E is any elliptic curve defined over K then the number of K-rational torsion points on E is less than B_{n}. The main theorem of the paper establishes the validity of this conjecture when $n=2$. Moreover, it is proved (for $n=2$) that the order of the torsion subgroup $E(K)_{\text {tor }}$ is not divisible by any prime $p>13$. This is a significant extension of a theorem of B. C. Mazur [Inst. Hautes Études Sci. Publ. Math. No. 47 (1977), 33-186 (1978); MR0488287 ($80 \mathrm{c}: 14015$)] which gives a complete list of isomorphism classes of torsion subgroups of elliptic curves over \mathbf{Q}.
The present author's method extends ideas of Mazur. Let N be a prime with $N>61$ and $N \neq$ 71 and let $X_{/ S}^{(2)}$ be the symmetric square of the modular curve $X=X_{0}(N)_{/ S}$ viewed as a smooth scheme over $S=\operatorname{Spec}(\mathbf{Z}[1 / N])$. Let $J=J_{0}(N)$ be the Jacobian variety of X and $h: X^{(2)} \rightarrow J$ be the morphism defined by $(x, y) \mapsto(x+y-2 \infty)$, where ∞ is the infinity cusp on X. Let $f: X^{(2)} \rightarrow$ \widetilde{J} be the composition of h with Mazur's Eisenstein quotient $J \rightarrow \widetilde{J}$ [B. C. Mazur, op. cit.]. The key new observation in the paper under review is that f is a formal immersion along (∞, ∞) away from characteristics 2,3 , and 5 . The proof of this fact reduces to a property of modular forms: For each prime $p \neq 2,3,5$ there exists a pair of weight-two cusp forms, F, G, attached to \widetilde{J} whose Fourier coefficients $a_{n}(F), a_{n}(G), n \geq 1$, are integral and such that the vectors $\left(a_{1}(F), a_{2}(F)\right)$, $\left(a_{1}(G), a_{2}(G)\right)$ are linearly independent modulo p. To prove that there is no K-rational point of order N on any elliptic curve $E_{/ K}$, the author then shows how such a point would give rise to an S-section $\left(x, x^{\sigma}\right)$ of $X_{/ S}^{(2)}$ which is distinct from (∞, ∞) while intersecting (∞, ∞) above 7 and having the same image in $\widetilde{J}(S)$ under f. This would contradict the fact that f is an immersion along (∞, ∞) in characteristic 7 . Completing the proof of the uniform boundedness conjecture for $n=2$ now reduces to a case-by-case examination of each of the primes $N \leq 61$ and $N=67$, much of which had already been done in earlier works of the author.

The paper begins with a useful survey of previous work on this topic and closes with remarks concerning generalizations of the techniques to number fields of higher degree.

Reviewed by Glenn Stevens
(c) Copyright American Mathematical Society 1993, 2010

