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TORSION POINTS ON ELLIPTIC CURVES DEFINED

OVER QUADRATIC FIELDS

M. A. KENKU AND F. MOMOSE

Let H e a quadratic field and E an elliptic curve defined over k.
The authors [8,12, 13] [23] discussed the ^-rational points on E of prime
power order. For a prime number p, let n = n{k,p) be the least non
negative integer such that

Ep~(k) = U ker (p»: E > E)(k) c Epn

for all elliptic curves E defined over a quadratic field k ([15]). For prime
numbers p < 300, p ψ 151, 199, 227 nor 277, we know that n(k, 2) = 3 or
4, n(k9 3) = 2, n(k, 5) = n(k, 7) = 1, n(k, 11) = 0 or 1, n(k, 13) = 0 or 1, and
n(k, p) = 0 for all the prime numbers p >̂ 17 as above (see loc. cit.). It
seems that n(k, p) = 0 for all prime numbers p ^ 17 and for all quadratic
fields k. In this paper, we discuss the iV-torsion points on E for integers
N of products of powers of 2, 3, 5, 7,11 and 13. Let N ^ 1 be an integer
and m a positive divisor of N. Let Xι(m, N) be the modular curve which
corresponds to the finite adelic modular group

Λ(m, N) = | ( α *\ e GL2(Z)|α - 1 = c = 0 mod AT, 6 = d - 1 = 0 mod

where Z = limTC Z/nZ. Then -XΊ(/n, N) is defined over Q(ζm), where ζm is
a primitive m-th root of 1. Put Yi(m, N) = -Xi(m, iV)\{cusps}, which is the
coarse moduli space (IQ(ζm)) of the isomorphism classes of elliptic curves
E with a pair (Pm, PJV) of points Pm and P^ which generate a subgroup
ĉ  Z/mZ X Z/AΓZ, up to the isomorphism (— Ϊ)E: E ~ E. For m = 1, let
XX(N) = ^ ( 1 , JV), Λ(iV) = Λ(l, iV) and Yλ(N) = 7,(1, iV). For the integers
iV = 24, 11 and 13, Xt(N) are hyperelliptic and n(k, 2), n(fe, 11) and n(k, 13)
depend on k [23] (3.3). Our result is the following.

THEOREM (0.1). Let N be an integer of a product of powers of 2, 3, 5,
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7, 11 and 13, let m be a positive divisor of N. If X^m, N) is not hyperelliptic

(i.e. the genus g,(m, N) Φ 0 and (m, N) ψ (1,11), (1,13), (1,14), (1.15), (1,16),

(1,18), (2,10) nor (2,12)), then Y^m, N)(k) = φ for all quadratic fields k.

For prime numbers p ^ 17, it seems that Yx(p)(k) — φ for all quadratic

fields k [23]. With Theorem (0.1), we may conjecture that the torsion sub-

group of E(k) (k — a quadratic field) is isomorphic to one of the following

groups:

Z/NZ for 1 ^ N ^ 10 or N = 12 0

Z/2Z X Z/2rcZ for 1 <ί ra <; 4 0

Z/3n X Z/3nZ for n = 1 or 2 with A = Q(V- 3) 0

Z/4Z X Z/4Z with k = Q(v^^I) 0

or

ZINZ for JV = 11, 14 or 16 1

ZINZ for N = 13, 16 or 18 2

Z/2Z X Z/2rcZ for n = 5 or 6 1.

For (j?ι, AT) = (1,14), (1,15), (1,18), (2,10) and (2,12), we give examples of

quadratic fields k such that Y^m, N)(k) = φ (2.4), (2.5) (see also [23] (3.3)).

The proof of Theorem (0.1) consists of two parts. One is a study on

the Mordell-Weil groups of jacobian varieties of some modular curves

(1.4), (1.5). The other is a similar discussion as in [8,12,13] [23]. Suppose

that there is a /^-rational point x on Yx(m, N) for a pair (m, N) as in (0.1).

Then x defines a rational function g (/Q) on a subcovering X: Xx(m, N)->

X->XQ(N), whose divisor (g) is determined by x. Using the methods as

in [8, 12, 13] [23], we show that such a function does not exist and get

the result. It will be proved in Section 2 for m = 1 and in Section 3 for

m ^ 2.

NOTATION. For a rational prime p, Q%r denotes the maximal unramified

extension of Qp. Let if be a finite extension of Q, Qp or Q%r, and A an

abelian variety defined over K. Then Θκ denotes the ring of integers of

K, and A/Θκ denotes the Neron model of A over the base Θκ. For a finite

subgroup G of A defined over K, G/Θκ denotes the schematic closure of G

in the Neron model A/Θκ (, which is a quasi finite flat group scheme [28]

§ 2). For a subscheme Y of a modular curve XjZ and for a fixed rational

prime p, Yh denotes the open subscheme Y\{supersingular points on
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P}. For a finite extension K of Q and for a prime P of K, (Θκ){p)

denotes the local ring at P.

§ 1. Preliminaries

In this section, we give a review on modular curves and discuss the

Mordell-Weil groups of jacobian varieties of some modular curves. Let

N^>1 be an integer and m a positive divisor of N. Let X^m, N) (resp.

X0(m, N)) be the modular curve (/Q(ζm)) (resp. /Q) which corresponds to

the finite adelic modular group

Λ(m, N) = l(a b) e GL2(Z)|α - 1 = c = 0 mod N, b = d - 1 = 0 mod m\.

(resp. Γ0(m, N) = |Yα 6 ) e GL2 (Z)|c = 0 mod N, b = 0 mod m}) .

The modular curve X^m, N) is the coarse moduli space (IQ(ζm)) of the

isomorphism classes of the generalized elliptic curves E with a pair (Pm, PN)

of points Pm and P^ which generate a subgroup ~ ZjmZ X Z/NZ, up to the

isomorphism (— 1)#: E^E [4]. Let Y^m, N), Y0(m, N) denote the open

affine subschemes X^m, iV)\{cusps} and XQ(m, i\Γ)\{eusps}. For m = 1, let

^(iV) = ^ ( 1 , N), XQ(N) = Z0(l, iV), Λ(iV) = Λ(l, iV), Γo(iV) = Γ(l, iV), ^(iV)

= ^(1, N) and Y0(iV) = Y0(l, iV). Let if be a subfield of C. For a ir-

rational point x on Yi(m, iV) (resp. YO(^J ^V)), there exists an elliptic curve

E defined over K with a pair (Pm9 PN) of if-rational points Pm and P^ (resp.

(Am9 AN) of cyclic subgroups Am and AiV defined over K) such that (the

isomorphism class containing) the pair (E, ± (Pm, PN)) (resp. the triple

(E, Am9 AN)) represents x [4] VI (3.2). The modular curve XQ(mN) is iso-

morphic over Q to XQ(m, N) by

(E, A) i > (EIAN, AJAN9 E/AN),

where EN — ker(iV: E->E) and A^ is the cyclic subgroup of order N

of A. Let 7r = πm,N be the natural morphism of Xx(m,N) to XQ(m,N):

(E, ± (Pm, PN)) -> (E, <Pm>, (P,,)), where <Pm> and <Pm> are the cyclic sub-

groups generated by Pm and PN, respectively. Then π is a Galois covering

with the Galois group Γ,(m9 N) = Γύ(m, N)l ± Λ(/n, N) ~ ((Z/mZ)* X

(Z/NZ)x)/± 1. For integers α, /3 prime to N9 [a, β] denotes th3 automorphism

of Xtim, N) which is represented by geΓ0(m, N) such that g = (n

mod N. Then [a, β] acts as
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(E, ± (Pm, PN)) i • (E, ± (aPm, βPN)).

When a = β mod iVor m = 1, let [a] denote [a9 β]. When m — 1, let τrΛ- = 7r1)V

and Γ0(N) = Γ0(l, iV). For a positive divisor d of N prime to iV/d, let w;d
denote the automorphism of Xt(N) defined by

(E, ± P) i > (El(Pd\ ±(P + Q) mod <Pd» ,

where Pd = (Njd)P and Q is a point of order d such that ed(Pd9 Q) = Cd

for a fixed primitive d-th root ζd of 1. (βd: EdX Ed-^ μd is the e^-pairing).

For a subcovering X : X^m, iV)->X->X0(iV) (resp. Xx(iV)->X-^X0(ΛΓ)),

we denote also by [or, /3] (resp. w;d) the automorphism of X induced by

[a, β] (resp. wd). For a square free integer iV, the covering XX(N) —> XQ(N)

is unramified at the cusps. Let #* denote the normalization of the pro-

jective j-line «TO(1) ~ Px

z in X For X = Xx(m, N)9 X = X0(m, AT), X = X^iV)
anH 3^ — ~¥ (l\Fλ Ipf ^ — Φ (m ~Nί\ &F — Φ (m Af\ Of QΓ (l\ϊ\ &*r\(\ ΰf
CLIIU. x\. — y\.Q^XV Jy ltJL CO — Jo lyf/ly XV J9 Cλj — Jo Q\ίΓLy IV y, Jo — Co i\ * ' / α-ilU. Jo —

ar,(N). Then ^ ® Z[l/N] ->SpecZ[l/iV] is smooth [4] VI (6.7).

(1.1) Let 0 = (A, oo = (A be the Q-rational cusps on X0(iV) which

are represented by (Gm X Z/NZ, Z/NZ) and (Gmy μN). Then wN(0) = oo.

The cuspidal sections of the fibre Xχ(N) X Zo(iV) 0 are represented by the

pairs (Gm X Z/NZ, ± P) for the points P e {1} X Z/NZ of order N, which

are all Q-rational. We call them the 0-cusps. For a positive divisor d

of N with 1 < d < N and for an integer i prime to N, let ( \ J denote the

cusps on X0(iV) which is represented by (Gm X Z\{N\d)Z, ZjNZ(ζN, ί)),

where Z/NZ(ζN, ί) is the cyclic subgroup of order N generated by the

section (ζN,i). Then (\\ is defined over Q(ζn)9 where n = G.CM. of d

and Njd. When N is a product of 2m for 0 ^ m ^ 2 and a square free odd

integer, all the cusps on X0(iV) are Q-rational.

(1.2) Let Δ C (Z/NZ)X be a subgroup containing ± 1 and X = XΔ be

the modular curve (/Q) corresponding to the modular group

eΓ 0 (iV) |(amodiV)ej) .

Then Xj is the subcovering of Xi(iV) -> XQ(N) associated with the subgroup

Δ. For a prime divisor p of iV, let Zf (resp. Z) be the irreducible com-

ponent of the special fibre ^ ( J V ) ® ^ such that Z'h ( = Z'Xίsupersingular

points on &Ό(N) ® Fp}) (resp. Z71) is the coarse moduli space (/Fp) of the
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isomorphism classes of the generalized elliptic curves E with a cyclic
subgroup A, A ~ Z/NZ (resp. A ~ μN), locally for the etale topology ([4]
V, VI). Let d be a positive divisor of N coprime to N/d. If p\d, then
wd exchanges Z' with Z. If p \ d, then wd fixes Z' and Z. Let Zf

x be the
fibre X XzQ(N)Z' Then Z'£ is smooth over Fp and the 0-cusps (® Fp) are
the sections of Z'£. If p||2V and Δ contains the subgroup

{a e (Z/iVZ)x|(a mod Njp) = ±1},

then &®FV is reduced and &h®Z{p) -> SpecZ(p) is smooth, where Z(p) is
the localization of Z at (p) ([4] VI).

(1.3) We will make use of the following subcoverings X — XΔ\ X^mN)

m

1

1

1

1

1

1

1

1

2

2

2

2V

14

15

18

20

21

24

35

55

16

10

12

(1.4)

X = X,(14

X = X1(15

X = Xi(18

* ( 2 1 ) - ^

*i(24)-?-»

X,(35)-^->

Z,(55)-^ί

Z,(32)-Λ

X,(20)—:

X

)-^>X,(14)

)-i*XQ(15)

)-l>X0(18)

)-i>X0(20)

• X-^X0(21)

«Z^>Z0(24)

-Z-^X0(35)

2

^ = ^(2,16)-

•X = X ι(2,10)-

Mordell-Weil group of

-^>X0(32)

2

^ X o ( 2 4 )

J(X).

Δ

{±1}

{±1}

{±1}

{±1}

(Z/3Z)X X {± 1}

(Z/3Z)X X {± 1}

(Z/5Z)X X {± 1}

{± 1} X (Z/11Z)X

{+ (1 + 16)}

ί± 1} X (± 1}

{± 1} X (± 1}

genus of X

1

1

2

3

3

3

7

9

5

1

1

Let Ji(m, N) and J0(m, N) be the jacobian varieties of X^m, N) and
X0(m, N), respectively. For m = 1, J^l, iV) = J îV) and J0(l, N) = JΌW-
For the integers JV = 13g, q = 2, 3, 5 and 11, there exist (optimal) quotients
(/Q) of J0(N) whose Mordell-Weil groups are of finite order ([36] table
1,5). For m = 1 and N = 14,15, 18, 20, 21, 24, 35 and 55, and (m, N) =
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(2,10), (2,12), let X = XΔ be the subcoverings in (1.3) and J{X) be their

jacobian varieties. Then Ji(2,10) and Ji(2,12) are elliptic curves with finite

Mordell-Weil groups ([36] table 1). Let Coker (JQ(N) -> J(X)) be the

cokernels of the morphisms as the Picard varieties. In the following

table, the factors A (/Q) of J(X) have finite Mordell-Weil groups ([36]

table 1, 5, [8] [14] [19], (1.5) below).

N
22

33

55

77

14

21

28

35

20

30

45

24

15

18

36

72

32

27

10

12

16

factor A of J(X) or A = J0(N)

4(22)
4(33)

Coker (Jo(55) • J(X))

J,(77)/(l + wMΊT)
4(14)

Coker (Jo(21) • J(X))

4(28)
Coker (4(35) • J(X))

4(20)
4(30)
4(45)

Coker (Jo(24) > J(X))

4(15)
4(18)
4(36)
4(72)
4(32)
4(27)
4(2,10)
4(2, 12)
4(2, 16)

dim A

2

3

4

3

1

3

2

4

3

3

3

3

1

2

1

5

1

1

1

1

5

genus of X0(N)

2

3

5

7

1

1

2

3

1

3

3

1

1

0

1

5

1

1

1

1

1

PROPOSITION (1.5). For the integers N = 20, 21, 24, 35 and 55, let X

be the subcoverings in (1.3) and put Cx = Coker (JQ(N) -> J(X)). m 7

Proo/.

Case AT" = 20: We use a result of Coates-Wiles on the Mordell-Weil

groups of elliptic curves with complex multiplication ([1] [3] [29]). Let 1
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be the multiplicative character of (Z[vΛ=:I]/(2 + v C Γ ϊ ) ) x with

— V — 1, and put

— ) ^κz/δZ)χ a n d ε —

where ί ——1 is the quadratic residue symbol. Let fε, fέ be the new forms

([2]) belonging to S2(Γι(20)) ( = the C-vector space of holomorphic cusp

forms of weight 2 belonging to Λ(20)) which are associated with the neben

types characters ε and e, respectively; Let ψ be the primitive Grδssen

character of Q(V — 1) with conductor (2 + V — 1) such that ψ((a)) = X(a)a

for α e Q(vΓ=:ΐ)>< prime to the conductor (2 + y ^ ΐ ) . Then

where iV(2I) = - ^ ( ^ ^ ( S ) is the norm of the ideal SI =£ {0} and 21 runs over

the set of integral ideals of Qi^Λ) ([33]). The modular curve ^(20) is

of genus 3 and iίo(X1(2O) ® C, β1) = Jϊ0(Xo(20) ® C, β1) Θ Cfε dz ® Cftdz.

For a cusp form /e S2(Γ1(20)) and έT = β J ) e GL2

+(Q), put

Z-±^) and /|AΓ(«) - (/(- z)Y ,

where — is the complex conjugation. Then for i ΐ ^ ί g Q Λ\ , fε\H =

λft with the absolute value \λ\ = 1 ([2]). Put ^ = / , - / , | ff and h=fε+fε\H.

Then g = fε + e~2V~lθfε\K = e" ^θ(e^θfε + e^θfε \ K) for a real number 0,

and e ^ ' g is real on the pure imaginary axis ([24] §2). Cx = Coker(c/0(20)

—> J(X)) is isogenous over Q(V —1) to the product of two elliptic curves

£J£ and #, with ff°(jB. ® C, β1) - C/Sd^ and iίo(£;6- ® C, β1) = C/.&. Further

C 2 is isogenous over Q to the restriction of scalars ReQ(Vzi)/Q(£r

s/Q(Vzi))

([5] [34]). For a cusp form / e S2(Λ(20)), put

= Γ
Jo

and

The (1-dimensional) L-function of Cz/Q and that of EJQiV^Ϊ) are

Lf£s)Lfi(s) and L / f(l)L / e(l) - |L/£(1)|2 (, since /, - fε\K) ([21]). The rank of

CX{Q) is zero if and only if Eε(Qs/ — 1) < oo. Then by the result on the

Birch-Swinnerton Dyer conjecture for elliptic curves with complex multi-
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plication ([1] [3] [29]), it suffices to show that I(fε) Φ 0. One sees that

I(h) = 0 and /(/,) = i(I(g) + I(h)). Since e^'g is real on the pure

imaginary axis, it suffices to show that g(V —l£/V20) Φ 0 for all t > 0. Let
r = (n ri) € Γo(2O) with ε(α) == - 1 . The g\[ϊ]2 = -g = £ | # , hence for 3 =

r '(20 "" 0) ' ^ l ^ 2 = 8' T h e < l u o t i e n t -3Γi(20)/<3> is an elliptic curve, so the

zero points of gdz are the fixed points of δ. The automorphism δ has four

fixed points, which correspond to (— 20/3 + V — 20)/20α: for integers a and

/3 such that ε(a) = — 1 and ί ̂  Π e Γ0(20). Then β ^ 0, so δ does not have

the fixed points on the pure imaginary axis.

For the remaining cases for N = 21, 24, 35 and 55, we apply a Mazur's

method in [14] [19]. It suffices to show that Cx is Q-simple and that CX(Q)

has a subgroup Φ {0} of order prime to the class numbers of Q(ζN), where

ζN is a primitive iV-th root of 1 (see loc. cit.). For the class numbers, see

e.g. [6] table.

Case N = 21 and 24: Cx are Q-simple. By [35], one finds cuspidal

subgroups of order 13 (JV = 21) and 5 (N = 24).

Case N = 35: The characteristic polynomial of the Hecke operator

T2 on S2(Γj) (associated with the prime number 2) is

(X3 + X2 - 420 X (X' + 2Z3 - 7X2 - UX + 1).

The first factor of the above polynomial corresponds to XQ(35), so Cx

is Q-simple. There is a cuspidal subgroup of order 13 (see loc. cit.).

Case N = 55: The characteristic polynomial of T2 on S2(Γj) is

(X + 2f(X - ΐ)(X2 -2X-ί)X (X4 - 9X2 + 12).

Cx corresponds to X" - 9X2 + 12 ([36] table 5), so Cx is Q-simple. There

is a cuspidal subgroup of order 3. •

(1.6) The following curves are hyperelliptic (of genus >̂ 2).

curve hyperelliptic involution

Xi(18) w2[5]

Xo(22) w22

wn

[5]



ELLIPTIC CURVES 133

PROPOSITION (1.7) ([7], [8]). Let X be the subcoverings in (1.3) for (ra, N)

= (2,16), (1,20), (1,21), (1,24) and (1,35). Then X are not hyper elliptic.

(1.8) For N = 35, 55 (resp. 77), let X be the subcoverings in (1.3)

(resp. X = X0(TT)). For an automorphism ϊ of X, let Sr denote the number

of the fixed points of ϊ. Then we see the following.

N

35

55

77

(E,

(E,

r =

A,, ± P7) i >

± P 5 , A,,) ι

= u>77: (E,A)h-

r
• (ElA,, EJ.

> (EIAtl, ±

-> (ElA, E,

A5, ± 3P7 mod A,)

2P5 mod An, En/An)

,7/A)

Sr

12

16

8

Here Pm is a point of order m and Am is a subgroup of order m.

For the integers N in (1.8), we will apply the following lemma.

LEMMA (1.9). Let K be a field, X a proper smooth curve defined over

K and (1 Φ) ϊ an automorphism of X with the fixed points xi9 1 ^ i rgj s.

Let f be a rational function on X such that the divisors (ΐ*f) φ (/). Then

the degree of f <L s/2 and

(r*flf-i\>Σ'(χ<),

where J^' is the sum of the divisors (xj such that f{x^) Φ 0, oo.

Proof. Let So (resp. SL, resp. T) be the set of the fixed points of ϊ

consisting of xi with f(xt) = 0 (resp. f(xt) = oo, resp. xi & So U STO). Then

the divisor

(f) = E+ Σ nt{Xi) - F - Σ nt(xt),

for effective divisors E and F, and positive integers re4. Then

(χ*flf) = r*E+ F- E-TΓ*F.

By the assumption (ΐ*f) Φ (/), g — ΐ*flf is not a constant function, so

deg (g) £ 2 • deg (/) - Σ X ( 6 S o U S o o »4. For x, e T, ^(x,) = 1. Therefore

(g - 1). > Σ (*i)

Then deg (g) ^ # Γ. Further 2. deg (/) ^ deg (g) + Σ^e.ou^ ^ ^ s. •

PROPOSITION (1.10) ([28] (3.3.2) [27]). Let K be a finite extension of

Qlr of degree e <Lp — I with the ring of integers R = Oκ. Let Gi (i = 1, 2)

be finite flat group schemes over R of rank p and f: G1—>G2 be a homo-

morphίsm such that f®K\ Gx® K—>G2®K is an isomorphism. If e <
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p — 1, then f is an isomorphism. If e — p — 1 and f is not an isomorphism,

then Gx ~ (Z/pZ)/R and G2 ~ μp/R.

COROLLARY (1.11). Under the notation as in (1.10), assume that e <

p — 1. Let G be a finite flat group scheme over R of rank p and x an R-

section of G. If x ® Fp = 0 ( = the unit section), then x = 0.

(1.12) Let if be a finite extension of Qp with the ring of integers

R = Θκ and its residue field ~ Fq. Put N= N'-pr for the integer Nf

prime to p. We here set an assumption on N that r = 0 if the absolute

ramification index e of p (in K) >̂ p — 1. Let E be an elliptic curve de-

fined over K with a finite subgroup G c E(K) of order JV. Then by the

universal property of the Neron model, the schematic closure G/R of G in

E/R is a finite etale subgroup scheme (, since e <p — 1 if r > 0 (1.11)).

If Nφ'2,3 nor 4, then # / i 2 is semistable (see e.g. [36] p. 46). When E has

good reduction, the Frobenius map F = Fq: E/R ® Fq -> 25/Λ ® Fff acts

trivially on G/R ® Fβ. In particular, N ^ (1 + V^) 2 (by the Riemann-Weil

condition). When E has multiplicative reduction, the connected component

T of £J/i2 (g) F 9 of the unit section is a torus such that T(Fq) ~ Z/(q — ε)Z

for e = ± 1. For a prime divisor I of iV, the /-primary part of G(Fq) ~

Z\1SZ X Z/Z'Z for integers s, ί with 0 <£ s ^ ί. Then Zs divides ^ — ε and

E/R®Fq contains T X Z/ZSZ. If Γ Jf q - ε, then E/R®Fq contains T X ZβιZ.

(1.13) Let X (—> XQ(ΐ)) be a modular curve defined over Q with its

jacobian variety J — J(X). Let k be a quadratic field and p be a prime

of £ lying over a rational prime p. Let R — (Θk)(p)9 Z ( p ) denote the local-

izations at p and p, respectively. Let x be a ^-rational point on X such

that JC (x) ic(p) is a section of the smooth part Xsmooth ® Z ( p ) and that x ® Λ:(P)

= C ® κ(p), xσ ® Λ:(P) = Cσ ® fc(p) for Q-rational cusps C, C,, and 1 Φ

σ e Gal (k/Q), where 2£ is the normalization of the projective ./-line %Ό(Ϊ)

~ Pz in X Consider the Q-rational section ί(x) = cl((x) + (xσ) — (C) — (Cσ))

of the Neron model J/z:

) - (C,))

Then ( ( x x ή i l ) ® ιc(p) = 0 (= the unit section), hence i(x) ® Fp = 0.
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j

Let A/Q be a quotient of J; J —*• A which has the Mordell-Weil group

of finite order. If p Φ 2, then the specialization Lemma (1.11) shows that

j-i(x) = 0.

Remark (1.14). Under the notation as in (1.13), wa here consider the

case when C and Cσ are not Q-rational. Assume that the set {C, Cσ} is

Q-rational and that C <g) Z ( p ) and C, ® Z ( p ) are the sections of «r s m o o t h® Z ( p ).

Let if be the quadratic field over which C and Cσ are defined. Let P' be

a prime of K lying over p and e' be the ramification index p in if. Then

by the same way as in (1.3), we get ί(x) (x) κ{p) = 0 in J/Oκ. If e' < p — 1

or p does not divide #A(Q), then j /(#) = 0.

For a finite extension if of Q and for an abelian variety A defined

over if, let /(A/if) denote the conductor of A over if.

LEMMA (1.15) ([21] Proposition 1). Let E be an elliptic curve defined

over a finite extension K of Q and L be a quadratic extension of if, with

the relative discriminant D — D(L/K). Then the restriction of scalars

~R>&L/K(E/L) ([5] [34]) is isogenous over K to a product of E and an elliptic

curve FQK) with f(E\K)f(F\K) - NL/κ(f(EIL))2D.

§ 2. Rational points on Xt(N)

Let k be a quadratic field and N an integer of a product of 2, 3, 5,

7,11 and 13. Let x be a ^-rational point on -XΊ(iV). Then there exists

an elliptic curve E/k with a /^-rational point P of order N such that (the

isomorphism class containing) the pair (E, ± P) represents x ([4] VI (3.2)).

For 1 Φ σ e Gal (k/Q), xσ is represented by the pair (E% ±Pσ). For the

integers N, 1 ^ N ^ 10 or N = 12, X^iV) - P1. For iV - 11, 14 and 15,

XX(N) are elliptic curves. For N = 13, 16 and 18, -XΊ(iV) are hyperelliptic

curves of genus 2. In this section, we prove the following theorem.

THEOREM (2.1). Let N be an integer of a product of 2, 3, 5, 7, 11 and

13. // Xι(N) is of genus J> 2 and is not hyperelliptic, then Y^NXk) — φ

for any quadratic field k.

Proof. It suffices to discuss the cases for the following integers N =

2-13, 3-13, 5-13, 7-13, 11-13; 2-11, 3-11, 5-11, 7-11; 3-7, 4-7, 5-7; 4 5, 6-5,

9-5; 8-3, 4-9 (see [8,12] [23]). Suppose that there exists a /^-rational point

x on Yι(N). Let (E, ± P)/k be a pair which represents x with a ^-rational

point P of order N and let 1 Φ a e Gal (k/Q).
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Case N = 13q for q = 2, 3, 5, 7 and 11: We make use of the following

lemma.

LEMMA (2.2) ([23] (3.2)). Let y be a k-rational point on Y^lS). Then

the set {y, [5](y)} represents a Q-rational point on Xj(13)/<[5]> ~ PQ, where

[5] is the automorphism of Xj(13) represented by g e Γo(13) such that g =

mod 13.

Let TΓ: X^lSq) —> Xi(13) be the natural morphism and y be the ir-

rational point {π(x), [5]π(x))} on Y!(13)/<[5]>. Let p be a prime of k lying

over the rational prime p = 3 if g = 2, and p = 5 if q ;> 3. Then the

condition Z/iVZ C 25(Λ) leads that (Z/NZ)/R c jB/i2, where i? is the locali-

zation (0fc)(p) of (Pk at p (1.12). Then £J/i2 has multiplicative reduction cf.

(1.12). Let F be an elliptic curve defined over Q with a Q-rational set

{±Q, ±5Q} for a point Q of order 13 such that the pair (F,{±Q, ±5Q})

represents 3̂  on Yi(13)/<[5]>. Let p = pqhe the representation of the Galois

action of G = Gal (Q/Q) on the g-torsion points F,(Q). Then F ~E over

a quadratic extension K of A, since E has multiplicative reduction at p.

Then for G x = Gal(Q/JΓ),

(J )} GL2 (Fq) - Aut F,(®.

When g = 2, GL2(Fς) ~ £fz ( = the symmetric group of three letters) and

[p(G): /KGJP)] divides 4, so that p(G) ^^ lβ Λ\. Then F has a Q-rational

point Q2 of order 2 and the pair (F, <Q2, Q» represents a Q-rational point

on yo(26). But we know that Y0(26)(Q) = φ ([18] [24] [36] table 1, 5). Now

consider the cases for q ^ 3. Let θq be the cyclotomic character

θq: G - Gal (Q/Q) • Aut μq(Q).

Then det p = ^ρ. Let P ρ be a irrational point on F of order g and ge

Gk\Gκ for Gfc = Gal(Q/*). If Pf ^ ± Pq9 then <Pf> ^ <P,> and p(Gκ) =--

{1}. Then θq(Gκ) = {1}, hence g = 3, or <? = 5 and K = Q(ζ5). For 9 = 3,

if β r^ Q(ζ3), then if is an abelian extension of Q with the Galois group

~ Z/2Z X Z/2Z and p(G) =-> | ( j J)}. If A = Q(ζ3), then p(Gfc) - {± 1},

since deMG fc) = θ3(Gk) = {1}. Then p(G) --•{(; J)}, since fl,(G) - {± 1}.

For q = 5, K = Q(ζ5) and p(G)=—> |Y* ^ ] . Thus there exists a subgroup
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AJQ of F of order q. Then the pair (F, Aq + ( Q » represents a Q-rational

point on Y0(13g). But we know that Yϋ(lSq)(Q) = φ for q ^ 2 ([9, 10, 11]

[18] [20]). Now suppose that Pf = ± P.. Then ^(G,) ̂ ^{(r^1 *)]• Take

/ι e G\Gk and put A, - <P9>. If AJ - A,, then the pair (F, Aq + <Q»

represents a Q-rational point on Y0(13q). Therefore, A\ ψ Aq and p(Gk)

I f ^ G f c ) ^ > { ± ( o i ) } ' t h e n <? = 3> * = Q&) a n d

l ± (Q ) | and the same argument as above gives a contradiction. If

— \(rΓ 4-i )f> then q = 3 and ô(G) is contained in the normalizer of

a split Cartan subgroup (, since det p = 0β). Let Y be the modular curve

IQ which corresponds to the modular group

{(a b) e Γ0(13)|6 Ξ C Ξ O o r β Ξ d Ξ O mod 3) .
We d) J

Let w be the involution of Y represented by a matrix g e Γ0(13) such that
m o d 3 T h e n t h e isomorphism of Xo(9 13) to Y:

(C, A9 + A18) 1 > (C/Λ, {AJAi9 C3/A3}, (A18

induces an isomorphism of XQ(9 lS)l(w9) to Z = Y/(w), where Am are

cyclic subgroups of order m with Az C Ad. The jacobian variety J = J(Z)

of Z has an optimal quotient A/Q(J—»Ά) with finite Mordell-Weil

group ([36] table 1,5). As was seen as above, F has potentially mutiplica-

tive reduction at 5. Let z be the Q-rational point on Y represented by

(F, <Q» with a level structure mod 3, then z ® F5 = C <g> F5 for a Q-rational

cusp C on Z. Let f: Z-+J-+A be the morphism defined by f(y)~

d{(y) - (C)). Then we see that f(z) = 0 (see (1.11)). Let 2 denote the

normalization of #Ό(1) i n ^ Then we see that / ® Z 5 : Γ̂ (x) Z5 -> A/Zs is

a formal immersion along the cusp C (see the proof in [22] (2.5)). Therefore,

Mazur's method in [18] Section 4 can be applied to yield z = C. Thus

we get a contradiction.

Case N = llq for q = 2, 3, 5 and 7: <? = 2 and 3: Let P be a prime

of k lying over the rational prime 3 and put R = (0fc)(p). The condition

Z/iVZ C £(£) shows that {ZjNZ)fR c JS/Λ if g = 2 or g = 3 is unramified

(1.11). If q = 3 ramifies in A, then (Z/11Z)/Λ C ΐJ/jR and Λ:(P) = F3. Hence

Λ: ® Λ:(P) is also a cusp (see (1.12)). Denote also by x, xa the images of x

and xσ under the natural morphism π: Xχ(N) -> XQ(N). Then X ® Λ ( P ) =



138 M. A. KENKU AND F. MOMOSE

C (g) Λ (P), xσ ® κ(p) = Cσ ® κ(p) for Q-rational cusps C and Cσ on

Let ί(x) = cZ((x) + (xσ) - (C) - (C,)) be the Q-rational section of J0(N)/2.

The Mordell-Weil groups of JQ(llq) for q = 2 and 3 are finite and their

orders are prime to 3 [36] table 1, 3,5. Therefore ί(x) — 0, see (1.13).

Since YQ(llq)(Q) = φ [18], Cσ = w22(C) if q = 2 and Cσ = wn(C) if q = 3

(see (1.6)). As was seen as above, C and Cσ are represented by

(Gm X Z/llmZ, ff) and (Gm X Z/llmσZ, iίσ) for integers m, mσ ^ 1 and

cyclic subgroup iί, if, containing the subgroup ~ Z/11Z. Thus we get a

contradiction, since w22(C), wn(C) are represented by (Gm X Z\m!Z, H') for

integers T^ prime to 11 [4] VII.

q = 5: Let X be the subcovering as in (1.3):

5-* X^^> Zc(55).

Let l ^ ί e Gal (Z/Xo(55)) and 3 be the automorphism of X defined by

(F, ± P5, Bn) i • (F/JBn, ± 2P 5 mod J3U,

where P 5 is a point of order 5 and Bn is a subgroup of order 11. Then

δ has 16 fixed points (1.8). Let P be a prime of & lying over the rational

prime 5 and put R = (Θk\p). The condition Z/55Z c E(k) shows that

X ® Λ : ( P ) = C<g)fc(p), xσ®fc(P) = Cσ®κ(P) for 0-cusps C and Cσ (see (1.11),

(1.12)). Denote also by x, xσ, C and Cσ the images of x, x% C and Cσ under

the natural morphism πx: Xi(55) —> X. Put C x = Coker (π*: c/0(55) -> J(X)),

which has the Mordell-Weil group of finite order (1.5). Let i(x) = cl((x)

+ (xσ) - (C) - (Cσ)) be the Q-rational section of J(X)/Z. Then i(x)®F5 = 0

(1.13), so by (1.11), i(x) e π$(J0(55)). Then we get a rational function / on

X such that

(/) = (*) + (**) + (r(C)) + (r(Cσ)) - (r(x)) - (r(x°)) - (C) - (Cσ).

Since ϊ(C) ®F^Φ C ® F5, r(x) ^ x. If / is a constant function, then r(x)

= xσ and the set {x, ϊ(x) = xσ} defines a Q-rational point on Y0(55). But

yo(55)(Q) = ^ [18], so that / is not a constant function. If (δ*f) = (/),

then ^(C) = C or Cσ. But C, Cσ are 0-cusps and δ(C) is not a 0-cusps, so

that (δ*f) Φ (/). Applying (1.9) to / and δ, we get a contradiction.

Remark (2.3). For any cubic field A7, Y1(55)(^/) = 0. It is shown by the

same way as above, taking a prime P'\5 of the smallest Galois extension

of Q containing kf.
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q = 7: Let πn\ X0(77)-+XQ(77)l(wn} be the natural morphism and Jr be

the jacobian variety of X0(77)/(wn). Then A = Coker (TΓJ: J 7 -» Jo(77)) has

the Mordell-Weil group of finite order [36] table 1,5. Let p be a prime

of k lying over the rational prime 5. The condition Z/77Z c E(k) shows

that χ(g)κ(p) is a 0-cusp (® κ(p)) (1.12). Denote also by x, xσ the images

of x and xa under the natural morphism XΊ(77) —> X0(77) Then x ® yc(p) =

0 <g> /c(p). Let i(x) = c/((x) + (a*) - 2(0)) be the Q-rational section of JQ{77)/Z.

Then ί(x) ® F5 = 0 and ί(x) € TΓ^J') (see (1.11), (1.13)). Then we get a

rational function //Q on X0(77) such that

(/) = (*) + (*') + 2(wn(0)) - (wu(x)) - (wn(x°)) - 2(0).

Then (w&f) = - ( / ) φ 0, since M;Π(0) φ 0. Hence zi g/ = or//for α e Qx. The

fundamental involution ^ = w;77 of X0(77) has 8 fixed points xi (1 ^ i ^ 8).

The cusps z^u(0) ® F5 and 0 ® F5 are not the fixed point of w. Therefore

by (1.9),

Put g = (w*flf- I)"1. Then

(£) = (*) + (*0 + 2(wn(0)) + (M;7(X)) + (U;7(JC0) + 2(oo) - Z)

and

u;*^ = wgg = - 1 - g.

Then g defines a rational function A on 7 = X0(77)l(w7} with ττ7*(Λ) = ̂ ,

where πΊ: X0(77)-> Y is the natural morphism. Set {yJ1^ί^4 — {π7(Xj)}9 and

put £ = ΣUΛyd a n d C = ^7(00) (= πΊ(wΊ(0))). Then /ι is of degree 4 and

h e i/°(7, ^ F ( £ - 2(C))). Denote also by M; the involution of Y induced by

w (and wn). Then

w*h=-l-h and (h)^ = E.

Let τry: Y—>Z = X0(77)l(w7, wn} be the natural morphism. Zi s an elliptic

curve [36] table 5. The canonical divisor Kγ ~ E (linearly equivalent) and

dim H\Y, Oγ(E)) = 3. Let ω be the base of H°(Z, Ω1) and ωx = π$(ω\ ω2

and ω3 be the basis of H°(Y, Ωι) such that ωt{C) — 1 and that ωt are eigen

forms of the Hecke ring Q[Tm, w]{m,17)=1 with Tfω2 — 0 and Tξωz — ωz (see

[36] table 1, 3, 5). Then {1, f2 — ω2lωί9 fz = cog/cOi} is the set of basis of

H°(Y, ΘY(E)) such that f2 = 1 + q + and /3 = 1 - Zq + . for q =

exp (2πV — l,ε) (see loc. cit.). Then Λ = «! + a2f2 + α3/3 for at e Q. The
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conditions w*h = — 1 — h and w%fi — —ft show that ax— —\. Further

by the condition (h)0 > 2(C), α2 = -§• and α3 = -jt. Let <& be the quotient

&Q(77)I(w7}(g) Z 5 and 0yjC7 be the completion of the local ring 0 ^ along

the cuspidal section C. Then /4 e ^ ) ( 7 , so that h e Θ9tC. Put C" = τr7(0) ( =

π7(w7(0))). Then u;*A 6 <£<,, and w*h(πγ(x)) = ( - 1 - h)(πr(x)) = - 1 , w*/ι(C)

= ( - 1 - g)(0) = 0. But the conditions that x <g> *(P) = 0 ® *(P) for P ( |5)

and w*heΘw,C' give the congruence w*h(πγ(x)) = w*h(O) mod p. Thus

we get a contradiction.

Case N = 7n for n = 3, 4 and 7:

n = 3: Let X be the subcovering as n (1.3):

which corresponds to the subgroup Δ = (Z/3Z)X X {± 1}. Let SC denote

the normalization of #"0(l) i n ^ The special fibre 2£ ® F3 is reduced (1.2).

Let p be a prime of £ lying over the rational prime 3 and put R = (0fc)(P).

The condition Z/21Z c 2?(&) shows that (Z/21Z)/Λ C ί?/Λ if the rational

prime 3 is unramified in k (1.11), (1.12). If 3 ramifies in k, then κ(p) = Fs,

so that in both cases E/R has multiplicative reduction see (1.12). There-

fore, x ® κ(p) = C ® κ(p), xσ ® fc(p) = Cσ ® A:(P) for Q-rational cusps C and

Cσ (see loc. cit.). Let i(x) = c/((x) + (xσ) - (C) - (C,)) be the Q-rational

section of J(X)/Z. Since the Mordell-Weil group of J{X) is finite (1.4),

(1.5), (x) + (xσ)~(C) + (Cσ). But X is not hyperelliptic (1.7).

n = 4: Let P be a prime of k lying over the rational prime 3 and put

R = (0fc)(p). The condition Z/28ZC E(k) shows that (Z/28Z)/Λ c £ / i 2. De-

note also by x, xσ the images of x and x* under the natural morphism

XX28) -> Xo(28). Then x <g> A:(P) = C ® Λ(P), xσ ® *(P) = C, ® Λ(P) for Q-

rational cusps C and Cσ. These cusps C, Cσ are represented by

(Gm X Z/7/nZ, i ϊ) and (Gm X Z\ΊmaZ, Hσ) for integers m and ra, and cyclic

subgroups H, Hσ containing {1} X mZjlmZ and {1} X maZ\ΊmaZ, respective-

ly. Let i(x) = cl((x) + (xσ) - (C) - (CJ) be the Q-rational section of J0(28)/z.

Since the Mordell-Weil group of J0(28) is finite (1.4), ί(x) = 0 (1.13) and

(x) + (xσ)~(C) + (Cσ). XQ(28) has the hyperelliptic involution w7, so Cσ

= w7(C). But as noted as above, Cσ =̂  w7{C).

n = 5: Let X be the subcovering as in (1.3):
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which corresponds to the subgroup Δ = (Z/5Z)X X {± 1}. The automorphism

ϊ of X represented by

(F, B5, ± Q7)ι >(F/B59 F5/β5, ± 3Q7 mod£5)

has 12 fixed points (1.8). Let P be a prime of k lying over the rational

prime 3 and put R = (Θk)ip). The condition Z/35Z C Z?(&) shows that

(Z/35Z) / J B C J£/J2. Denote also by x, xσ the images of x and x* by the natural

morphism πx: Xt(35) -> X. Then x ® κ(P) = C ® Λ(P), X* ® /c(P) = C, <8> Λ(P) for

Q-rational cusps C and Cσ (1.12). Let i(x) = c/((x) + (xσ) - (C) - (C,))

be the Q-rational section of J(X)/Z. The Mordell-Weil group of C x =

Coker (π%: J0(35) -> J(X)) is finite (1.5). Let δ be a generator of Gal (X/Xo(35)).

Then we get a rational function / on X such that

(/) = (x) + (*•) + (a(C)) + (δ(Cσ)) - (3(x» - (3(xθ) - (C) - ( O

(see (1.13)). If / is a constant function, then {x, xσ} = {δ(x), δ(x% Then

x = d(x) = δ\x), hence C®ΛΓ(P) = δ(C®fc(P)). But C®κ(P) is not a fixed

point of δ. The similar argument as above shows that (J*f) φ (/). Apply-

ing (1.9) to f and T, we get a contradiction.

Case N = 5n for n = 4, 6 ami 9:

n = 4: Let p be a prime of ^ lying over the rational prime 3 and

put R = (0fc)(p). The condition Z/20Z C E(h) shows that (Z/20Z)/Λ c E / Λ

and that ίJ/i2 has multiplicative reduction (1.12). Let T be the connected

component of the special fibre EίR®tc{P) of the unit section. If P is

of degree one, then Z/5Z ς£T(F^. Then x ® Λ;(P) = C ® κ(P), xσ ® κ(P) =

Cσ®κ(p) for Q-rational cusps C and Cσ, since ( ^ - ) = —1, where

is the quadratic residue symbol. If P is of degree two, then x ® yc(P) =

C <g> Λ:(P) for a Q(v^l)-rational cusp C, and xσ ® Λ;(P) = Cσ ® Λ(P) with

Cff = O for 1 ^ r e Gal(Q(/=Ί)/Q). Let i(x) = c/((x) + (xσ) - (C) - (C,))

be the Q-rational section of Jx(20)/z. Since #J1(20)(Q) < oo (1.4) (1.5), /(x)

= 0 (1.14) and (x) + (xσ) ~ (C) + (Cσ). But Xt(20) is not hyperelliptic (1.7).

n — 6: The modular curve X0(30) has the hyperelliptic involution w^\

(F, B) H-> (F/B15, (B + F15)/J515), where B15 is the subgroup of B of order 15.

Let p be a prime of £ lying over the rational prime 3 and put R = (Θk){p).

Then (Z/10Z)/Λ c £ / i 2 and £J/i2 is semistable (1.12). If 3 is unramified in k,

then (Z/30Z)/jB C £J/i2. Then E/R has multiplicative reduction and

(Z/3Z)/Λ ® Λ(P) is not contained in the connected component of th.3 special
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E/R ® κ(p) of the unit section (see (1.11), (1.12)). If 3 ramifies in k, then

E/R has also mutliplicative reduction and (Z/5Z)/R ® κ(p) is not containted

in the connected component of E/R ® /c(P) of the unit section (see loc.

cit.). Denote also by x, xσ the images of x and xσ under the natural mor-

phism XX30) -> X0(30). Then x ® κ(P) = C ® *(P), X" <g> *(P) = Cσ ® Λ(P) for Q-

fibre rational cusps C and Cσ. These cusps C, Cσ are represented by

(<7m X ZlqmσZ, Hσ) and (<7m X Z\qmcZ, Hσ) for integers m, τnσ :> 1 and cyclic

subgroups iϊ, Hσ containing {1} X mZ\qmZ and {1} X mσZ\qmσZ for q = 3

or 5, respectively. Let i(x) = C/((Λ) + (**) - (C) - (Cβ)) be the Q-rational

section of J0(30)/z. Since #J0(30)(Q) < oo (1.4), ί(x) = 0 (1.13) and (x) + (xff)

_ (C) + (Cσ). It yields w15(C) == Cσ. But as noted as above, w15(C) φ Cσ.

n = 9: Let p be a prime of £ lying over the rational prime 5 and

put R = (0fc)(p). Then (Z/45Z)/Λ c S / Λ and * ® Λ:(P) = C® tc(P)y x
σ ® ΛΓ(P) = Cff

® A:(P) for 0-cusps C and Cσ (1.11), (1.12). Denote also by x, x\ C and Cσ

the images of x, x% C and Cσ under the natural morphism ^(45) -• X0(4δ).

Let ί(x) = cl((x) + (xσ) - (C) - (C,)) be the Q-rational section of J0(45)/z.

Since #JO(45)/Z)(Q) < co (1.4), ί(x) = 0 (1.13). But Xo(45) is not hyperelliptic

[25].

Case N = 3/ι /or n = 8 and 12:

7i = 8: Let X be the subcovering as in (1.3):

which corresponds to the subgroup Δ = {± 1} X (Z/3Z)X. Let p be a

prime of & lying over the rational prime 3 and put R = (0fc)(P). Then

(Z/8Z)/R C E/R and E/R is semistable (1.12). If 3 is unramified in A, then

(Z/24Z)/Λ C JB/Λ (1.11) and E / β has multiplicative reduction (1.12). If 3

ramifies in k, then p is of degree one, so E/R has also multiplicative

reduction (see loc. cit.). Denote also by x, xa the images of x and xσ by

the natural morphism π: Xi(24)->X. If P is of degree one, then #®/c(p)

= C ® /c(p), x̂  ® Λ(P) = Cσ ® ic(p) for Q-rational cusps C and Cσ. Any cusp

on X is defined over Q or Q(V"2"). If p is of degree two, then x ® A;(P)

= C ® Λ:(P) for a Q(V 2 )-rational cusp C. Then xσ ® Λ:(P) = Cσ ® /c(P) for

Cσ - Cτ and 1 ^ τ e Gal (QVT)/Q), since ^ ) = - 1. Let ί(x) = cl((x) +

(xa) - (C) - ( O ) be the Q-rational section of J(X)/Z. Since #e/(X)(Q) <

co (1.4) (1.5), i(x) = 0 (1.13). But X is not hyperelliptic (1.7).

7i = 12: Let P be a prime of A lying over the rational prime 5 and put
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R = (Θk)(p). Then (Z/36Z)/Λ c # / Λ and E/R is semistable (1.12). If E/R has

good reduction, then %E/R(F25) = 1 + 25 - (-- 10) (, since Z/36Z C E/R(F25)

and #E/Λ(F25) ^ 36). But then the Frobenius map F = F 2 5: E/R®F^~>

E/R ® F25 does not act trivially on E/R(F2^) <—=> Z/36Z. Hence E/B has

multiplicative reduction. Let T be the connected component of E/R ® κ(p)

of the unit section. Then Z/9Z ςt T(F25). Denote also by x, xσ the images

of x and xσ under the natural morphism Xi(3β) —> Xj(18). Then x ® κ(P)

= C ® *(p), xσ ® yc(p) = Cσ ® Λ:(P) for Q-rational cusps C and Cσ on -XΊ(18)

(see above). The modular curve -XΊ(18) has the hyperelliptic involution

w2[5\ (1.6):

(F, B2, ± Q9) i • (F/B2, F2/B2, ± 5Q9 mod β 2 ) ,

where B2 is a subgroup of order 2 and Q9 is a point of order 9. Let i(x)

= cZ((x) + (xσ) - (C) - ( O ) be the Q-rational section of ^(18)^. Since

#JΊ(18)(Q) < oo (1.4), i(x) = 0 (1.13) and xσ = ^2[5](x). For a ^-rational

point Q e <P> of order 18, the pairs (E, ± Q), (Eσ, ± Qσ) represent x and

xσ on Xi(18). Put A2 = <9Q>. Then there is a quadratic extension K of

fe over which

λ: {E% ±Q')-^+(EIAz, ±(Q'2 + 5Q) mod A2),

where Q2 is a point of order 2 not contained in A2. For 1 Φ τ e Gal (K/k),

λτ = ± ,̂ since α; ® A:(P) is a cusp. Then Λ(Qσ) = ε(Q2 + 5Q) mod A2 for

ε = ± 1. The points Qσ and 2(Qσ) are ^-rational, so λτ(Qσ) - (^(Qσr))Γ =

λ(Qσ). Therefore λT = λ and A is defined over k. Since E/A2 contains

E2/A2 Θ <9P>M 2 (- Z/2Z X Z/2Z), E'(k) D Z/2Z X Z/36Z. Let X0(2, 36) be

the modular curve /Q corresponding to Γo(2, 36). Then E and Eσ (with

level structures) define /^-rational points y and 3̂ σ on Xo(2, 36) such that

y ® fc(p) — D ® κ(p)9 yσ ® fc(p) = Dσ ® Λ(P) for Q-rational cusps D and Dσ.

Let i(j) - c/((y) + (yσ) - (D) - (£>,)) be the Q-rational section of JG(2, 36)/z.

Then i(y) = 0, since #J0(2, 36)(Q) < oo (1.4) (1.13). But Xo(2, 36) is not

hyperelliptic [25]. •

Now we discuss the /^-rational points on Xλ(N) for A?" = 14, 15 and 18.

The modular curves -XΊ(14) and -XΊ(15) are elliptic curves, and X^lS) is

hyperelliptic of genus 2. We here give examples of quadratic fields k

such that Y^NXk) = φ for each integer JV as above.

PROPOSITION (2.4). Let k be a quadratic field. If one of the following

conditions (i), (ii) and (iii) is satisfied, then Y1(18)(fe) = ό:
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( i ) The rational prime 3 remains prime in k.

(ii) 3 splits in k and 2 does not split in k.

(iii) 5 or 7 ramifies in k.

Proof. Let x be a ^-rational point on Yi(18). Then x is represented

by an elliptic curve E defined over k with a /^-rational point P of order

18 [4] VI (32.). Let p = 2, 3, 5 or 7, and put R = (Θk)ip) for a prime p of

k lying over p. Then (Z/18Z)/2e c £ / i 2 if p = 5 or 7, (Z/9Z)/Λ C # / Λ if

p = 2 and (Z/18Z)/Λ C S / Λ if p = 3 is unramified in k (1.11).

Case (0 and (ii): The same argument as in the proof for N = 36

shows that x ® ιc(p) = C ® Λ;(P), X* ® Λ(P) = Cσ ® Λ;(P) for Q-rational cusps

C and Cσ and for a prime P of £ lying over p = 3. Using the Q-rational

section i(x) = cl((x) + (xσ) - (C) - (Cσ)) of JΊ(18)/Z, we see that w2[5](C)

= Cσ. If 3 remains prime in k, then Cσ ® F9 = xσ ® F9 = (x ® F9)
(3) = C® F9.

But C ® F 9 is not a fixed point of the hyperelliptic involution κ;2[5]. In

the case (ii), the same argument as above shows that C (g) Fι = Cσ® FA.

But Ct&Fi is not a fixed point of w2[5\.

Case (iii): Under the assumption that p = 5 or 7 ramifies in £, the
same argument as above gives the result. •

EXAMPLE (2.5). (1) Y^UXk) = φ for k = Q(V-3) and

(2)

Proof. For JV = 14 and 15, XQ(N) are elliptic curves with finite

Mordell-Weil groups [36] table 1. The restriction of scalars [5] [34]
ReQ(v~3)/Q(^0(14)/Q(V-3)), Re/Q(V-7)/Q(X0(14)/Q(/r-7)) and ReQuτ)/Q(XQ(lδ)/Quτ)) are

isogenous over Q (respectively) to products X^(14) X Em, XQ(14) X ϋ798 and

X0(15) X EΊi for elliptic curves En with conductor n (1.15). These En have

the Mordell-Weil groups of finite order [36] table 1. Therefore #X0(iV)(&)

< oo for (iV, ft) as above. Let x be a ^-rational point on Xγ(N) and denote

also by x the image of x under natural morphism XX(N) —> XQ(N) for (N, k)

as above. Then x ® /c(P) = C ® /c(P) for a Q-rational cusp C on X0(N)

and for a prime P oί k lying over p = 7 if iV = 14, and p = 5 if 2V = 15

(1.11) (1.12). Then the specialization Lemma (1.11) yields that x = C. •

§ 3. Rational points on Xx{m9 N)

Let AT be an integer of a product of powers of 2, 3, 5, 7, 11 and 13,

and m Φ 1 be a positive divisor of iV. Let & be a quadratic field. In this
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section, we discuss the /^-rational points on XJjn, N). For (m, N) = (2, 2),

(2, 4), (2, 6), (2, 8); (3, 3), (3, 6); (4, 4), X^m, N) ~ P1. For (m, N) = (2, 10)

and (2, 12), XJjn, N) are elliptic curves. For the other pairs (m, N) as

above, X^m, N) are not hyperelliptic [7]. We first discuss the fe-rational

points on Yi(m, N) for the pairs (m, N) such that XJjn, N) are not hyper-

elliptic. It suffices to treat the cases for the pairs (m, N): m = 2, N = 10,

12, 14, 16, 18; m = 3 (k = QCV1^)), N - 9, 12, 15; m = 4 (Jfe = Q(V^TL)),

N = 8,12; m = 6 (A = ©(V^)) , iV = 6. Let x be a ^-rational point on

Y^m, N). Then there exists an elliptic curve E defined over k with a pair

(PTO, Pa,) or /^-rational points P m and P^ such that <PTO> + <PV> ~ Z/mZ

X ZjNZ and that the isomorphism class containing the pair (E, ±(PTO, P^))

represents x [4] VI (3.2). For 1 Φ a e Gal (k/Q), xσ is represented by the

pair (E% ±(P°m, P$).

THEOREM (3.1). Let (m, N) be a pair as above and k be any quadratic

field. If X^m, N) is not hyperelliptic (i.e., Xx(m, N) Φ P1 nor (m, N) Φ (2,10),

(2, 12)), then Y^m, N)(k) = φ.

Proof. Let J^m, N) and JJjny N) be the jacobian varieties of the

modular curves X^m, N) and XQ(m9 N) ~ XQ(mN), respectively, and π:

Xx{m, N) —> X0(m, N) be the natural morphism. Suppose that there is a

^-rational point x on Yλ(m, N). Let E be an elliptic curve defined over k

with /^-rational points Pm and PN such that the pair (E, ± (Pmy PN)) re-

presents x.

Case m = 6 (iV= 6): Let p be a prime of A — Q(V — 3) lying over

the rational prime 7 and put R = (Θk)ip). Then (Z/6Z)/Λ X (Z/6Z)/Λ c £7/Λ

(1.12), so that ^ ( x ) ® ^ ) = C ® 4 P ) for a Q(V:::3)-rational cusp C. The

modular curve X0(β, 6) is an elliptic curve and the restriction of scalars

ReQ(yr3)/Q(Z0(6, β)/Q(Vz3)) [5] [34] is isogenous over Q to the product Xo(6, 6) X

X0(β, 6). Since #X0(β, 6)(Q) < oo [36] table 1, we see that #X0(6, 6)(Q(V:r3))

< oo. Then 7r(x) = C (1,11), which is a contradiction.

Case m = 4 (AT = 8,12): In both cases for N = 8 and 12, ττ(x) ® ΛJ(P)

= C ® Λ(P) for a prime P oί k = Q(Λ/^Λ) lying over the rational prime 5

and for ^-rational cusps C (1.12). Let πf\ Xo(4, 12) -> Xo(2, 12) be the natural

morphism. The modular curves Xo(4, 8) and Xo(2, 12) are elliptic curves

and #X0(4,8)(Q(/ : : :Ϊ)), #X0(2, 12)(Q(/^I)) are finite (1.15) [36] table 1.

Then the same argument as in the proof for m = 6 gives a contradiction.
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Case m = 3 (N = 9, 12, 5): In all the cases for N = 9, 12 and 15,

π(x) ® fc(p) — C ® tc(p) for a prime P of k = Q(V — 3) lying over the ra-

tional prime 7 and for /^-rational cusps C(1.12). The modular curves

Z0(3, 9) and X0(39 12) are elliptic curves /Q with complex multiplication

IQW^-S), SO the restriction of scalars ReQU—3)/Q(X0(3, N)/QU—3)) (N = 9,12)

are isogenous over Q to the products Xo(3, N) X X0(3, iV). Further

ReQ(Vr3)/0(Xo(45)/Q(v/Γ3)) is isogenous over Q to a product Xo(45) and an

elliptic curve with conductor 15 (1.15) [36] table 1. Then J^

< oo for N — 9, 12 and 15 [36] table 1. The same argument as above

gives contradictions.

Case m = 2 (N = 14, 16, 18):

N= 14: The modular curve Xo(2, 14) ~ X0(28) has the hyperelliptic

involution w7 (see [36] table 5). Let P be a prime of A lying over the rational

prime 3. Then π(x) ® κ(P) = C ® A:(P), TrixO ® Λ:(P) == Cσ ® /c(p) for Q-rational

cusps C and C,. These cusps C, Cσ are represented by (Gm X Z/14Z, A2, A14)

and (<?m X Z/14Z, 5 2, Bu) such that A u 3 {1} X 2Z/14Z and Bu D {1} X

2Z/14Z (1.12). Let ί(x) = c/((x) + (x*) - (C) - (Cσ)) be the Q-rational

section of JQ(2,14)/z. Then ί(x) = 0 and %x) + (xσ) - (C) + (C,), since

#J0(2,14)(Q) < oo (1.4) (1.13). But as noted as above, wΊ(C) Φ Cσ.

N = 16: Let ϊ be a generator of the covering group of XX32) -> X0(32).

Then Y = X1(32)/<r4> - XX2,16) and #J(Y)(Q) < oo (1.4). Let p be a prime

of ^ lying over the rational prime 3. Then x ® κ(P) = C ® Λ:(P), xσ (g) /c(p)

= Cσ®fc(P) for Q-rational cusps C and C, (1.12). Considering the ir-

rational section ί(x) = c/((x) + (xtf) - (C) - (C,)) of J :(2, 16)/z, we get the

relation (x) + (xσ) - (C) + (C,). But ^ ( 2 , 16) is not hyperelliptic 1(1.7).

N = 18: Let P be a prime of /̂  lying over the rational prime 5 and put

R = (φk\p). By the condition Z/2Z X Z/18ZC E(k), E/R®κ(P) = GmXZ/18nZ

for an integer n^l (1.12). Then x®/<p) = C®ιc(P), x* ® ιc{P) = C,® A<P)

for Q-rational cusps C and Cσ. These cusps C and Cσ are represented

respectively by (Gm X Z/18Z, P2, ± P18), (Gm X Z/18Z, Q2, ± Q18), where Pny

Qn are points of order n such that P18, Q18 e //2 X Z/18Z (see loc. cit.). De-

note also by x, x% C and C, the images of x, x% C and Cσ under the

natural morphism of X,(2, 18) to

(F,S 2 , ±B l β )ι >(F, ± B l β ) .

Let i(x) = c/((x) + (**) - (C) - (CJ) be the Q-rational section of Ji(18)/Z.
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Since KO-βXQ) < oo (1.4), i(χ) = 0 and (*) + (*•) ~ (C) + (C,). The mod-

ular curve XtilS) has the hyperelliptic involution 7 — w2[b]:

(F, ± Qί3) i • (F/<Q2>, ± (Qί + 5Q18) mod

where Q2, Q2 are points of order 2 with Q2 e <Qi8) and Q2 £ <(Qis) Then

xσ = ^(χ)? so there exists an isomorphism λ (/C)

J: (£% ± PQ - ^ > (#/<9P18>, ± ( P ' + 5P18) mod <9P18» ,

where Pf is a point of order 2 not contained in <P18>. Since x®κ{P) is

a cusp, /I is defined over a quadratic extension K of k and ΛΓ = ± λ for

l ^ τ e Gal(UL/ife). Then λ{PQ = εfP7 + 5P18) mod <9P18> for ε = ± 1, and it

is /^-rational. Noting that all the 2-torsion points on E are defined over

k, we see that λτ(PQ = (KPϊs))* = (^(Pίs))r = (̂Pfβ), Thus λr = λ and λ is

defined over k. Then >l induces the isomorphism

λ: (E% P;, PJβ) - ^ > (S/<9P18>, ^(P2

σ), e(P' + 5PΓ8) mod <9P18» .

Let μ: E-+EI(9Pί8) be the natural morphism and put B = λ-'iO, λ(P%)}.

Then B Φ E2, so that B is a cyclic subgroup of order 4 defined over k.

Put A' = <P' + 2P18> and let y, ya be the /^-rational points on Zo(4,18) -

Xo(72) represented by the triples (E, B, Af) and (iJ% Ba, A'"), respectively.

Noting that BτbPf and B e 9P18, we see that y ® κ(P) = C ® A:(P) and

y®Λ;(p) = C^®A:(P) for Q-rational cusps C and Cff (1.12). The remaining

part of the proof is the same as that for the case X^Sβ). •

In the rest of this section, we give examples of quadratic fields k such

that ^(2, N)(k) = φfoτN=10 and 12.

EXAMPLE (3.2). For N = 10 and 12, Xx(2, N) are elliptic curves. Let

p be a prime of k lying over the rational prime 3. Then for a ^-rational

point x on Xx(2, N) (N = 10, 12), π(x) ® tc(P) = C ® tc(P) for a Q-rational

cusp C(1.12), where π: J?Ί(2, N) -> Xo(2, iV) is the natural morphism. Set

an assumption: %J0(2, N)(k) < 00, and the rational prime 3 is unramified

in k or 3^ίfJ0(2, N)(k). Under this assumption, the same argument as in

the proof for m = 6,4 and 3 (in (3.1)) shows that 3^(2, N)(k) = φ.

For example, #J0(2, iθ)(Q(V r^Ί))< 00, # J0(2,12) ( Q ^ ^ X 00 and SJ(

#J0(2,12)(Q(V-3)) (1.15) [36] table 1,3,5.
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