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0. Introduction. A deep theorem, finally proved in [Ma], states that
the torsion group E(Q)tors of an elliptic curve E over the rational numbers
must be isomorphic to one of the following 15 types:

Z/NZ, N = 1, . . . , 10, 12,

Z/2Z⊕ Z/2N ′Z, N ′ = 1, . . . , 4.

Actually, each of these groups occurs infinitely often as E(Q)tors. (By in-
finitely often in this context we always mean for infinitely many abso-
lutely non-isomorphic E, or in other words, for infinitely many different
j-invariants j(E).) This is mainly due to the fact that the modular curves
parametrizing elliptic curves with such a torsion structure are rational and
hence have infinitely many Q-rational points. See [Ku, Table 3] for the ex-
plicit parametrization of elliptic curves E such that E(Q)tors contains such
a group structure.

If E is an elliptic curve over a quadratic number field K, then E(K)tors
must be isomorphic to one of the following groups described in [Ka-Ma]:

Z/NZ, N = 1, . . . , 16, 18,

Z/2Z⊕ Z/2N ′Z, N ′ = 1, . . . , 6,

Z/3Z⊕ Z/3N ′′Z, N ′′ = 1, 2,

Z/4Z⊕ Z/4Z.
Again, each of these 26 groups occurs infinitely often as E(K)tors, provided
we allow the quadratic field K to vary as well. The main reason for this
is that the modular curves which parametrize these torsion structures are
rational, elliptic or hyperelliptic, and hence have infinitely many points that
are rational or quadratic over Q.
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It is not completely known which torsion groups are possible over cubic
number fields, although there exist effective upper bounds. By [P2] and [P3],
torsion points of prime order p exist only for p = 2, 3, 5, 7, 11, 13. (Actually,
in [P2] the non-existence of certain p-torsion points is only proved condi-
tionally; but as reported in [P3], that condition is now known to be true by
a theorem of Kato.)

Moreover, [P1] gives explicit uniform bounds for pn-torsion points over
any number field of degree d. But when specialized to d = 3 without further
fine-tuning, these bounds seem to be much too large. Momose [M] showed
that over cubic number fields there exist no 64-torsion points and no 27-
torsion points.

In this paper we solve the easier problem which torsion structures occur
infinitely often if we vary over all cubic number fields (Theorem 3.4). Be-
sides using some known deep results, the main step of the proof consists in
determining which of the modular curves X1(N) are trigonal.

In analogy with the rational and the quadratic case one might suspect
that the set of all possible torsion structures over cubic number fields consists
exactly of the groups we have found, or at least is not much larger.

We thank Prof. Pierre Parent, who after seeing the first version of this
paper sent us his preprint [P3]. We thank the referee for the careful reading
of the manuscript and pointing out an inaccuracy.

1. The main tools. We start with the following easy observation.

Lemma 1.1. If E is an elliptic curve over a cubic number field K, then
E(K)tors is either cyclic or of the form Z/2Z⊕ Z/2NZ.

Proof. If E(K)tors
∼= Z/MZ⊕Z/NZ with M |N , then by the Weil pair-

ing K must contain the Mth roots of unity. But K has a real embedding.
Thus M ≤ 2.

A point P on a curve X over a number field k is called a point of degree 3
over k if P is an L-rational point on X for some cubic extension L of k. This
includes of course the k-rational points. In the special case k = Q we also
use the term cubic point.

Now fix a natural number N . Saying “if K varies over all cubic number
fields, there are infinitely many elliptic curves E/K with a K-rational N -
torsion point” is tantamount to saying that the modular curve X1(N) has
infinitely many cubic points.

For the non-cyclic torsion structures we have to investigate the modular
curves X1(2N, 2) belonging to the congruence subgroups

Γ1(2N) ∩ Γ (2).

Infinitely many cubic points on X1(2N, 2) are equivalent to the existence
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of infinitely many elliptic curves E over cubic number fields K such that
E(K)tors contains a subgroup Z/2Z⊕ Z/2NZ.

But for the proofs we need some more modular curves, lying between
X0(N) and X1(N). Let ∆ be a subgroup of (Z/NZ)∗ that contains −1.
Following [I-M], we write X∆(N) for the modular curve belonging to the
group {(

a b
c d

)
∈ SL2(Z) : N | c and a ∈ ∆

}
.

Note that for ∆ = {±1} this is just X1(N). The paper [J-K] contains a
formula for the genus of X∆(N) and a table with g(X1(N)) for N ≤ 60,
which we do not want to repeat.

Conjugating the group Γ1(2N) ∩ Γ (2) with the matrix
(1 0

0 2

)
we obtain

a birational map, defined over Q, from X1(2N, 2) to X∆(4N) with ∆ =
{±1,±(2N + 1)}. In the moduli interpretation this corresponds to dividing
an elliptic curve with distinguished subgroup Z/2Z⊕Z/2NZ by the 2-torsion
point that generates Z/2Z, and obtaining an elliptic curve with a cyclic
4N -isogeny and distinguished underlying 2N -torsion point.

A smooth projective curve X over an algebraically closed field k is called
d-gonal if there exists a finite morphism f : X → P1 over k of degree d. For
d = 3 we say that the curve is trigonal. Also, the smallest possible d is called
the gonality of the curve.

For example, if k is a number field and X is trigonal over k, i.e., if there
exists a k-rational map X → P1 of degree 3, then X has infinitely many
points of degree 3 over k. Namely, over every k-rational point of P1 there
lies at least one point of X that is k-rational or L-rational for a suitable cubic
extension L of k. Conversely, we have the following necessary criterion.

Theorem 1.2. Let X be a curve over a number field k. Suppose that
X has at least one k-rational point P0 and infinitely many points of degree
3 over k. Then the gonality of X is at most 6. Moreover , if the gonality
is greater than 3, then the Jacobian variety Jac(X)/k contains an elliptic
curve E which has positive rank over k.

Proof. The first statement is Proposition 2 in [Fr]. In the proof of that
proposition it is also shown that if the gonality of X is greater than 3,
then the 3-fold symmetric product of X maps injectively (on points) as W3
into the Jacobian Jac(X) and that by a result of Faltings, W3 contains (a
translate of) an abelian subvariety A of Jac(X) such that A(k) is infinite.
By [D-F, Section 3], A must be an elliptic curve.

The best general lower bound for the gonality of a modular curve seems
to be the one that is obtained in the following way.
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Let λ1 be the smallest positive eigenvalue of the Laplacian operator on
the Hilbert space L2(XΓ ) where XΓ is the modular curve corresponding to
a congruence subgroup Γ of PSL2(Z). Let DΓ be the index of Γ in PSL2(Z)
and dΓ the gonality of XΓ . Abramovich [A] shows the following inequality:

λ1DΓ ≤ 24dΓ .

Using the best known lower bound for λ1, due to Henry Kim and Peter
Sarnak, as reported on page 18 of [B-G-G-P], i.e. λ1 > 0.238, we get the
following result.

Theorem 1.3. Let XΓ be the modular curve corresponding to a congru-
ence subgroup Γ ⊂ PSL2(Z) of index DΓ and let dΓ be the gonality of XΓ .
Then

DΓ <
12000
119

dΓ .

In the following, we call the inequality in Theorem 1.3 Abramovich’s
bound.

Corollary 1.4. If X1(N) is d-gonal , then we have

N <
20
√

1190
119

π
√
d ≤ 18.22

√
d.

Proof. Note that [PSL2(Z) : Γ1(N)] = 1
2ψ(N)ϕ(N), where ϕ is the Euler

function and ψ(N) = N
∏
p|N (1+1/p). Our result follows from the inequality

ψ(N)ϕ(N) > ζ(2)−1N2 =
6
π2 N

2

where ζ(s) is the Riemann zeta function.

When dealing with an individual curve, the following fact is very useful.

Theorem 1.5 (Castelnuovo’s inequality). Let F be a function field with
perfect constant field k. Suppose there are two subfields F1 and F2 with
constant field k satisfying

(1) F = F1F2 is the compositum of F1 and F2,
(2) [F : Fi] = ni, and Fi has genus gi (i = 1, 2).

Then the genus g of F is bounded by

g ≤ n1g1 + n2g2 + (n1 − 1)(n2 − 1).

A proof can be found for example in [Sti] (Theorem III.10.3).

2. Trigonal modular curves. In [Ha-S] it is shown that the mod-
ular curve X0(N) is trigonal if and only if it is trivially trigonal, i.e., if
g(X0(N)) ≤ 2 or if X0(N) is non-hyperelliptic of genus 3 or 4. In this
section we prove that the same holds for the modular curves X1(N) and
X1(2N, 2).
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(1) X1(N) is a rational curve if and only if N = 1, . . . , 10, 12. In this
case there obviously exists a Q-rational map of degree 3 from X1(N) to P1.

(2) X1(N) is an elliptic curve if and only if N = 11, 14, 15. One can
obtain a trigonal morphism defined over Q by mapping to the Y -coordinate
in a Weierstrass equation.

(3) The genus of X1(N) is 2 if and only if N = 13, 16, 18. There are
Q-rational maps of degree 3 from X1(18) and X1(13) to the rational curves
X0(18) resp. X∆(13) where ∆ = {±1,±3,±9}. For X1(16), where we do not
naturally see a trigonal map, we use the following lemma.

Lemma 2.1. Let X be a curve of genus 2 over a perfect field k. If X has
at least three k-rational points, then there exists a map X → P1 of degree 3
which is defined over k.

Proof. We use the Riemann–Roch theorem over k. Let P1, P2, P3 be
three different k-rational points on X. If there is no k-rational function with
pole divisor P1 + P2 + P3, then the Riemann–Roch space of at least one of
the divisors Pi+Pj , i 6= j, must have dimension 2 and hence Pi+Pj must be
in the canonical class. Similarly, if there is no k-rational function with pole
divisor 3Pi, then 2Pi must be in the canonical class. But then 2Pi would be
equivalent to Pi +Pj , and hence Pi−Pj would be a principal divisor, which
is impossible on a curve of positive genus.

We continue the discussion of X1(N).
(4) X1(20) has genus 3. Its canonical embedding is a smooth plane quar-

tic curve and the projection from a Q-rational point yields a trigonal mor-
phism X1(20)→ P1 over Q.

(5) In all other cases (i.e. N = 17, 19 or N > 20) the genus of X1(N) is
at least 5. Then a possible trigonal map would be defined over Q. (This is a
special case of [N-Sa, Theorem 2.1].) Thus the trigonality of X1(N) would
imply the existence of infinitely many elliptic curves over cubic number
fields L with an L-rational N -torsion point. But Momose [M, Theorem 4.1]
proved that there are no N -torsion points at all over cubic number fields
when N = 19, 23, 27. Hence for N = 19, 23, 27, X1(N) is not trigonal.

By Corollary 1.4, if X1(N) is trigonal, we must have N ≤ 31. Using
Abramovich’s bound itself, one can also exclude the values N = 31 and
N = 29.

In [J-K], the first two authors proved that there are eight bielliptic mod-
ular curves X1(N), namely for N = 13, 16, 17, 18, 20, 21, 22, 24. But by the
Castelnuovo inequality the genus of a curve that is bielliptic and trigonal is
bounded by 4. Thus X1(N) is not trigonal for N = 17, 21, 22, 24.

The Castelnuovo inequality also shows that the genus 9 curve X1(30)
cannot be trigonal since it maps of degree 3 to the elliptic curve X1(15).
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Similarly, for the genus 12 curve X1(25) the existence of a map of degree
5 to the rational curve X∆(25) where ∆ = {±1,±4,±6,±9,±11} rules out
the existence of a trigonal map.

For the remaining two cases N = 26 and 28 we use the method described
in Section 2 of [Ha-S]. Let X be a non-hyperelliptic modular curve of genus
g ≥ 4. Then X can be identified with the canonical curve which is the image
of the canonical embedding

X1(N) 3 P 7→ (f1(P ) : . . . : fg(P )) ∈ Pg−1

where {f1, . . . , fg} is a basis of the space of cusp forms of weight 2. Then X is
trigonal if and only if a minimal generating system of the ideal I(X) contains
a cubic polynomial and X is not isomorphic to a smooth plane quintic curve.
(This follows from Petri’s Theorem, see e.g. [Ha-S, Theorem 2.1].)

To obtain a minimal generating system of I(X), we only have to compute
the relations of the fifj and fifjfk (1 ≤ i, j, k ≤ g). The space of linear rela-
tions among the fifj has dimension (g−2)(g−3)/2. LetQ1, . . . , Q(g−2)(g−3)/2
be a system of quadratic generators of I(X). Since the space of linear rela-
tions among the fifjfk has dimension (g − 3)(g2 + 6g − 10)/6, the number
of cubic generators is given by

(g − 3)(g2 + 6g − 10)/6− dimL′

where L′ is the subspace generated by xiQj (1 ≤ i ≤ g; 1 ≤ j ≤ (g − 2) ×
(g − 3)/2) and xi is the ith homogeneous coordinate of Pg−1. Thus X is
trigonal only if the above difference is non-zero.

Lemma 2.2. X1(26) and X1(28) are not trigonal.

Proof. Let us consider the curve X1(26), which has genus 10. One can
use the Fourier series of cusp forms to compute generators of the ideal
I(X1(26)). We get a basis of S2(X1(26)) and the corresponding Fourier co-
efficients from [St]. Using the computer algebra system MAPLE, we obtain
28 quadratic generators of the ideal I(X1(26)), and find that the dimension
of L′ is exactly 175. It follows that there are no essential cubic generators.
Therefore X1(26) is not trigonal.

By the same method we see that X1(28), which is also of genus 10, is
not trigonal either.

Summarizing the above results, we obtain the following result.

Theorem 2.3. The modular curve X1(N) is trigonal if and only if
g(X1(N)) ≤ 4. Explicitly these N are:

• genus 0: N = 1, . . . , 10, 12;
• genus 1: N = 11, 14, 15;
• genus 2: N = 13, 16, 18;
• genus 3: N = 20.
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For each of these curves there exists a morphism X1(N) → P1 of degree 3
which is defined over Q.

The cover X1(2N, 2) → X1(2N) implies by [N-Sa, Lemma 1.3] that if
X1(2N, 2) is trigonal, then X1(2N) must also be trigonal. Thus X1(2N, 2)
cannot be trigonal for N > 10. Alternatively, one could prove this by using
Abramovich’s bound.

Moreover, Theorem 1.5 shows that X1(2N, 2) is not trigonal for N =
8, 9, 10. Namely, X1(2N, 2) is a double cover of X1(2N) and the genera of
X1(20, 2), X1(20), X1(18, 2) and X1(18) are 9, 3, 7 and 2 respectively. And
X1(16, 2) is isomorphic to the genus 5 curve X∆(32) with ∆ = {±1,±17},
which has a map of degree 2 onto the elliptic curve X∆̃(32) with ∆̃ =
{±1,±7,±17,±23} (compare [I-M, p. 419]).

On the other hand, for N = 1, . . . , 6, the curve X1(2N, 2) is rational or
elliptic, and hence trigonal over Q.

We are left with the curve X1(14, 2), which has genus 4 and is not
hyperelliptic (otherwise there would exist elliptic curves E over quadratic
number fields K such that E(K)tors contains a subgroup Z/2Z ⊕ Z/14Z).
So X1(14, 2) is trigonal, but it is not clear where the degree 3 map is de-
fined. Instead we investigate the curve X∆(28) corresponding to the group
Γ∆ = Γ1(14) ∩ Γ0(28), which is birational to X1(14, 2) over Q.

Lemma 2.4. The curve X∆(28) with ∆ = {±1,±13} is trigonal over Q.

Proof. The canonical embedding ofX∆(28) in P3 is contained in a unique
irreducible quadric surface Q, and is the complete intersection of Q with an
irreducible cubic surface C (see Chap. IV, Example 5.2.2 of [H]). One can
get a basis of S2(Γ∆) and the corresponding Fourier coefficients from [St].
A proper linear combination gives a basis {f1, f2, f3, f4} with rational
Fourier coefficients. By computing the relations among the monomials fifj
and fifjfk using the computer algebra system MAPLE, we obtain defining
equations of Q and C as follows:{

Q: − x2
1 − 4x2

2 − 2x1x2 + x2
3 + x2

4 − x3x4 = 0,

C: x3
1 − 8x3

2 − x3
3 − x3

4 − 6x1x
2
2 + 3x2

1x2 − 12x3x
2
4 + 15x2

3x4 = 0.

The following coordinate change over Q makes Q a ruled surface XY −ZW
= 0:

x1 = 1
3X + 1

4Y + Z − 1
4W,

x2 = 1
3X + 1

8Y − 1
2Z + 1

4W,

x3 = 1
3X − 1

4Y + Z + 1
4W,

x4 = −1
3X + 1

4Y + Z + 1
4W.

Let F (X,Y,Z,W ) = 0 be the equation obtained from C by the above coor-
dinate change. By dehomogenization of F with respect to W and substitu-
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tions Z = XY, X = x/4 and Y = −y/3, we get a plane model of X∆(28)
as follows:

(x2 − 1)(y3 − 9y) + (x3 − 2x2 − 9x− 2)(y2 − 1) = 0.

This shows that the two trigonal maps (to the x-coordinate or to the y-
coordinate) are defined over Q.

Again, we summarize:

Theorem 2.5. The modular curve X1(2N, 2) is trigonal if and only if
its genus is at most 4. This happens in and only in the following cases:

• genus 0: N = 1, 2, 3, 4;
• genus 1: N = 5, 6;
• genus 4: N = 7.

In all these cases there exists a morphism X1(2N, 2)→ P1 of degree 3 which
is defined over Q.

3. Torsion of elliptic curves over cubic fields. Now we show that
the modular curve X1(N) has infinitely many cubic points if and only if it
is trigonal, and similarly for X1(2N, 2).

Theorem 3.1. (a) The modular curve X1(N) has infinitely many cubic
points if and only if N = 1, . . . , 16, 18, 20.

(b) The modular curve X1(2N, 2) has infinitely many cubic points if and
only if N = 1, . . . , 7.

Proof. (a) If X1(N) has infinitely many cubic points, then by Theo-
rem 1.2 the gonality of X1(N) can be at most 6 and hence N ≤ 44 by
Corollary 1.4. Moreover, if the gonality of X1(N) is greater than 3, then the
Jacobian J1(N) must contain an elliptic curve E with positive rank over Q.
As reported on page 2 of [B-G-G-P], the conductor of E divides N . From
Cremona’s table [C] we see that elliptic curves with conductor ≤ 44 and pos-
itive rank must have conductor 37 or 43. But for N = 37 and N = 43 the
gonality of X1(N) is greater than 6 by Abramovich’s bound. Since X1(N) is
hyperelliptic only for N = 13, 16, 18 ([I-M]), the result follows by combining
Theorems 1.2 and 2.3.

(b) If X1(2N, 2) has infinitely many cubic points, then from the canonical
cover X1(2N, 2) → X1(2N), which is defined over Q, we obtain infinitely
many cubic points on X1(2N) as well. Therefore N ≤ 10. Also, X1(2N, 2)
is birational over Q to X∆(4N) with ∆ = {±1,±(2N + 1)}. In part (a) we
have already seen that the elliptic curves in the Jacobian of X∆(4N) have
rank 0 over Q. From the torsion structures over quadratic number fields we
see that X1(2N, 2) is never hyperelliptic. Thus by Theorem 1.2, X1(2N, 2)
can only have infinitely many cubic points if it is trigonal.
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For lack of a reference we give a proof of the following (presumably well
known) result which we will need later.

Theorem 3.2. Each of the 15 groups listed in the Introduction occurs
infinitely often as the full torsion group E(Q)tors.

Proof. The point that needs clarification is the following: Of the infinitely
many E/Q with (say) a 6-torsion point, infinitely many will have E(Q)tors ∼=
Z/12Z and infinitely many will have E(Q)tors ∼= Z/2Z ⊕ Z/6Z. We have to
make sure that there remain infinitely many with E(Q)tors ∼= Z/6Z.

This can be seen as follows: From [Ku, Table 3] we take the parametri-
zation of elliptic curves with a 6-torsion point and only consider values for
the parameter c that are congruent to ±2 modulo 5. Then E has good
reduction modulo 5. Hence the prime-to-5 torsion reduces injectively into
the group of F5-rational points of the reduced curve. But by the Hasse–Weil
bound, there are at most 10 rational points over F5.

For all other groups that pose a similar problem, one can always restrict
the parameter in [Ku, Table 3] to an infinite subset such that reduction
modulo 5 and/or reduction modulo 3 guarantees that E(Q)tors cannot be
larger.

Before coming to our main theorem we need one more auxiliary result.

Lemma 3.3. Let E be an elliptic curve over Q.

(a) For almost all cubic number fields K we have

E(K)tors = E(Q)tors.

(b) There are infinitely many cubic number fields Ki such that E(Ki)
has positive rank.

Proof. (a) There exists a bound B such that no elliptic curve over a
cubic number field K can have a K-rational N -torsion point with N > B
(see [Me]). Let L be the number field generated by all N -torsion points of
E with N ≤ B. Then for every cubic number field K that is not contained
in L we have E(K)tors = E(Q)tors.

(b) Of course, we can concentrate on the case where E(Q) has rank 0.
Moreover, we can assume E in the form Y 2 = X3 +AX +B with A,B ∈ Z.

Suppose the fields K1, . . . ,Kn are already constructed. Let p be a prime
that is not ramified in any of K1, . . . ,Kn. If X = ξ ∈ Q were a solution of the
equation p−20 = X3 +AX+B, then (ξ, p−10) would be a Q-rational torsion
point of E (since we assume rank 0). But this contradicts the Nagell–Lutz
theorem [Si, p. 221].

So let Kn+1 = Q(ξ) where ξ is a solution of p−20 = X3 +AX +B. Then
Kn+1 is a cubic number field and different from Ki, 1 ≤ i ≤ n, since p is
ramified in Kn+1 (Newton polygon). Moreover (ξ, p−10) is a Kn+1-rational
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point of E. By Theorem 7.1 on pp. 220–221 of [Si] it cannot be a torsion
point. Hence E(Kn+1) has positive rank.

Finally, we can prove the main result of this paper.

Theorem 3.4. If K varies over all cubic number fields and E varies
over all elliptic curves over K, the group structures which appear infinitely
often as E(K)tors are exactly the following :

Z/NZ, N = 1, . . . , 16, 18, 20,

Z/2Z⊕ Z/2N ′Z, N ′ = 1, . . . , 7.

Proof. So far we have proved that only these torsion structures can occur
infinitely often. By the uniform boundedness theorem ([Me]) only finitely
many other torsion structures are possible over cubic fields and for each of
these other structures there are only finitely many E/K in total. We have
also already shown that each of the groups listed in the theorem occurs
infinitely often as a subgroup of E(K)tors.

This proves the theorem for those groups that are maximal, whereas for
the other ones we still have to take care of the same problem as in the proof
of Theorem 3.2.

For the groups that occur already over Q (compare Theorem 3.2), each
of the infinitely many elliptic curves over Q (compare Theorem 3.2) can by
Lemma 3.3(a) be base-changed to a suitable cubic number field K without
increasing the torsion.

There only remains the group Z/14Z that has to be separated from
Z/2Z⊕Z/14Z. Now X1(14) is an elliptic curve and by Lemma 3.3(b) there
exists a cubic number field K1 over which it has infinitely many points. On
the other hand, X1(14, 2) as a curve of genus 4 has only finitely many points
over K1 by Faltings’s theorem.
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