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ON THE TORSION OF ELLIPTIC CURVES OVER
QUARTIC NUMBER FIELDS

DAEYEOL JEON, CHANG HEON KIM and EUISUNG PARK

Abstract

We determine which groups Z/MZ⊕Z/NZ occur infinitely often as torsion groups E(K)tors when
K varies over all quartic number fields and E varies over all elliptic curves over K.

0. Introduction

The first two authors and Schweizer [19] proved that if K varies over all cubic
number fields and E varies over all elliptic curves over K, the group structures that
appear infinitely often as torsion groups E(K)tors are exactly the following:

Z/NZ, N = 1–16, 18, 20
Z/2Z ⊕ Z/2N ′Z, N ′ = 1–7.

By infinitely often in this context we always mean for infinitely many absolutely
non-isomorphic E or, in other words, for infinitely many different j-invariants j(E).
Their work started from the observation that the torsion group structures over the
rational or quadratic number fields, which are described by [22] and [20] also occur
infinitely often.

In their proof, the main step was the classification of the modular curves
parametrizing elliptic curves with such a torsion structure that have infinitely many
cubic points, which turns out to be determination of the trigonal modular curves
X1(N) and X1(2, 2N).

This paper follows the same strategy as [19] to find torsion structures that occur
infinitely often if we vary over all quartic number fields. Of course, in this case,
the classification of tetragonal modular curves will play a central role.

The quartic case is in some sense more interesting than the cubic case, because
not much is known which torsion groups exist at all. There are explicit bounds in
Parent [25], but for d = 4 they give huge bounds for N and even for N ′ the bound
by Merel [23] gives only N � 100 for d = 4. Thus, the results in the present paper
give a more realistic picture of what torsion exists at all.

In this case, we fall into different situations. For example, the classification of
tetragonal modular curves X1(N) requires more complicated calculations. Also,
the non-cyclic torsion structures depend on the roots of unity in the number field,
and so various non-cyclic groups may occur over quartic number fields. In fact,
we need new methods such as the implementation of a computer algebra system
Singular.
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1. Preliminaries

A point P on a curve X over a number field k is called a point of degree 4 over k,
if P is a K-rational point on X for some quartic extension K of k. This includes of
course the k-rational points and the rational points over quadratic extensions of k.
In the special case k = Q we also use the term quartic point.

For positive integers M and N with M |N , consider the congruence subgroup
Γ1(M, N) of SL2(Z) defined by

Γ1(M, N) :=
{(

a b
c d

)
∈ Γ(1) = SL2(Z)

∣∣∣∣
(

a b
c d

)
≡

(
1 ∗
0 1

)
mod N, M | b

}
.

Let X1(M, N) denote the modular curve corresponding to Γ1(M, N). Of course
X1(1, N) is the same as X1(N). Then there exist infinitely many quartic points on
X1(M, N) if and only if there exist infinitely many elliptic curves E over quartic
number fields K such that E(K)tors contain a subgroup Z/MZ ⊕ Z/NZ (see [5]).
Put KM = Q(ζM ) where ζM is a primitive Mth root of unity. Note that the field
of definition of X1(M, N) is equal to KM .

Moreover, for the proofs we need some more modular curves, lying between
X0(N) and X1(N). Let ∆ be a subgroup of (Z/NZ)∗ that contains −1. Let X∆(N)
be the modular curve defined over Q associated to the congruence subgroup

Γ∆(N) :=
{(

a b
c d

)
∈ Γ(1)

∣∣∣∣ a ∈ ∆, N | c

}
.

Note that for ∆ = {±1} this is just X1(N). A table of genera g(X1(N)) for N � 60
can be found in [16], which we do not want to repeat.

Conjugating the group Γ1(M, N) with the matrix
(

1 0
0 M

)
, we obtain a birational

map from X1(M, N) to X∆(MN) with

∆ = {±1,±(N + 1),±(2N + 1), . . . ,±((M − 1)N + 1)}.
For d|N , let πd be the natural projection from (Z/NZ)∗ to (Z/{d, N/d}Z)∗,

where {d, N/d} is the least common multiple of d and N/d.

Theorem 1.1 [18]. The genus of the modular curve X∆(N) is given by

g(X∆(N)) = 1 +
µ

12
− ν2

4
− ν3

3
− ν∞

2
where

µ = N ·
∏
p|N

prime

(
1 +

1
p

)
· ϕ(N)

|∆|

ν2 = |{(b mod N) ∈ ∆ | b2 + 1 ≡ 0 mod N}| · ϕ(N)
|∆|

ν3 = |{(b mod N) ∈ ∆ | b2 − b + 1 ≡ 0 mod N}| · ϕ(N)
|∆|

ν∞ =
∑
d|N
d>0

ϕ(d) · ϕ(N/d)
|πd(∆)| .
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A smooth projective curve X over an algebraically closed field is called d-gonal
if there exists a finite morphism f : X → P1 of degree d. For d = 4, we say that
the curve is tetragonal. Also, the smallest possible d is called the gonality of the
curve X and we denote it by Gon(X).

The best general lower bound for the gonality of a modular curve seems to be
that which is obtained in the following way.

Let λ1 be the smallest positive eigenvalue of the Laplacian operator on the
Hilbert space L2(XΓ) where XΓ is the modular curve corresponding to a congruence
subgroup Γ of Γ(1). Let DΓ be the index of ±Γ in Γ(1) and dΓ = Gon(XΓ).
Abramovich [1] shows the following inequality:

λ1DΓ � 24dΓ.

Using the best known lower bound for λ1, due to Henry Kim and Peter Sarnak
(as reported in [3, p. 187]), that is, λ1 > 0.238, we get the following result.

Theorem 1.2. Let XΓ be the modular curve corresponding to a congruence
subgroup Γ of index DΓ = [Γ(1) : ±Γ] and dΓ = Gon(XΓ). Then

DΓ <
12 000
119

dΓ.

In the following, we call the inequality in Theorem 1.2 Abramovich’s bound.

Remark 1.3. Applying Abramovich’s bound we can get a good universal bound
on the torsion of elliptic curves which occur infinitely often. Suppose that there exist
infinitely many K-rational N -torsion points as K varies with [K : Q] = d, which
implies that X1(N) has infinitely many points of degree d over Q. By Proposition 2
of [11]

Gon(X1(N)) � 2d.

Corollary 1.4 of [19] says that if X1(N) is d-gonal, then

N <
20

√
1190

119
π
√

d.

Therefore, we get the following universal bound:

N < 26
√

d.

When dealing with an individual curve, the following facts are very useful.

Theorem 1.4 (Castelnuovo’s inequality). Let F be a function field with perfect
constant field k. Suppose that there are two subfields F1 and F2 with constant field k
satisfying:

(1) F = F1F2 is the compositum of F1 and F2;
(2) [F : Fi] = ni, and Fi has genus gi (i = 1, 2).

Then the genus g of F is bounded by

g � n1g1 + n2g2 + (n1 − 1)(n2 − 1).

If k is a number field and X is tetragonal over k, that is, if there exists a k-rational
map X → P1 of degree 4, then X has infinitely many points of degree 4 over k.
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Namely, over every k-rational point of P1 there lies at least one point of X that
is k-rational or K-rational for a suitable quadratic or quartic extension K of k.
Concerning this argument, there is a theorem by Abramovich and Harris [2].

Theorem 1.5. Let X be a curve over a number field k. Suppose that X is not
of genus 7. Then X has infinitely many points of degree 4 or less over some finite
extension K of k if and only if X admits a map of degree 4 or less to P1 or an
elliptic curve.

Proof. The proof follows from Theorem 1 in [2].

Proposition 1.6. Let X be a curve over a number field k. Suppose that X
has infinitely many points of degree 4 over k. If the genus g(X) � 7 and gonality
Gon(X) > 4, then the Jacobian variety J(X) contains an elliptic curve E which
has positive rank over k.

Proof. In the proof of Proposition 2 in [11] it is shown that if Gon(X) > 4,
then the four-fold symmetric product of X embeds as W4 into the Jacobian J(X)
and that by the results of Faltings [9, 10], W4 contains (a translate of) an abelian
subvariety A of J(X) such that A(k) is infinite. By Corollary 3.6 in [7], A must be an
abelian variety of dimension 1 or 2. Suppose that A is of dimension 2. In Lemma 3.4
in [7] we take Z to be a translate of A contained in W4. Then all of the conditions
of the lemma are satisfied and we can conclude that there exists a map X → B of
degree 2 where B is a curve of genus 2. This is a contradiction to the assumption
of Gon(X) > 4.

Ishii and Momose [15] asserted that there exist no hyperelliptic modular curves
X∆(N) with {±1} � ∆ � (Z/NZ)∗. However, the first two authors of the present
paper [17] found a counterexample.

Lemma 1.7. The curve X∆(21) is a hyperelliptic where ∆ = {±1,±8}.

Remark 1.8. In [15] there was a mistake in treating Atkin–Lehner involutions
on X∆(N). The Atkin–Lehner involutions define a unique involution on X0(N) but
they do not hold for X∆(N).

In what follows, we have to treat whether X∆(N) and X1(M, N) are hyperelliptic
or not individually.

2. Tetragonal modular curves

In this section we determine all of the modular curves X1(N) and X1(2, 2N) that
are tetragonal. A smooth projective curve X of genus g(X) � 2 is called bielliptic
(respectively bi-hyperelliptic) if it admits a map of degree 2 from X to an elliptic
curve (respectively a hyperelliptic curve).

In [16, 17] the first two authors of the present paper classified all bielliptic
modular curves X1(M, N) as follows.



ELLIPTIC CURVES OVER QUARTIC NUMBER FIELDS 5

Theorem 2.1. The curve X1(M, N) is bielliptic only for the following (M, N):

(1, 13), (1, 16), (1, 17), (1, 18), (1, 20), (1, 21), (1, 22), (1, 24),
(2, 14), (2, 16), (3, 12), (4, 12), (5, 10), (7, 7), (8, 8).

Note that all bielliptic and bi-hyperelliptic curves are automatically tetragonal.
We prove that X1(N) is tetragonal over Q if and only if it is rational, elliptic,
hyperelliptic or bielliptic and that X1(2, 2N) is tetragonal over Q if and only if it
is rational, elliptic, bielliptic or bi-hyperelliptic. First we consider X1(N). It is easy
to show that if a curve X defined over Q is rational, elliptic or hyperelliptic, then
it admits a tetragonal map to P1 defined over Q. Also, the first two of the present
authors [16, 17] proved that all bielliptic maps on X1(N) are defined over Q. So the
‘if’ part follows.

Applying Abramovich’s bound X1(N) can be tetragonal only when N = 1, . . . ,
28, 30, 32. Now we consider X1(25). Note that there is a natural map from X1(25)
to X∆(25) of degree 2 where ∆ = {±1,±7}. Suppose that X1(25) is tetragonal.
Then there is a map of degree 4 from X1(25) to P1. Let F1 (respectively F2, F3)
be the function field of X1(25) (respectively X∆(25), P1). Note that X1(25) is of
genus 12 and, by Theorem 1.1, X∆(25) is of genus 4. The proof for the non-
hyperellipticity of X∆(25) in [15] is correct. Thus, we can apply Castelnuovo’s
inequality, then we get a contradiction. By a similar argument we get the following
lemma.

Lemma 2.2. The curve X1(N) is not tetragonal for N = 25, 27, 32.

Proof. The only thing we need is to find suitable maps, and so we suggest
them. For X1(27), the map of degree 3 to X∆(27) that is of genus 1 where ∆ =
{±1,±8,±10}. For X1(32), the map of degree 2 to X∆′(32) that is of genus 5 where
∆′ = {±1,±15}. Note that X∆′(32) is not hyperelliptic because it is birational to
X1(2, 16) and we will prove that there exist no hyperelliptic curves X1(2, 2N) later.

Now we will show that X1(N) is not tetragonal for N = 19, 23, 26, 28, 30. To this
end we need some preparations.

Let X be a smooth projective curve of genus g(X) � 3. An invariant of X , closely
related to the gonality, is the Clifford index, which is defined as follows:

Cliff(X) := min{d − 2r | ∃ L ∈ Pic X, deg(L) = d, h0(L) = r + 1 � 2, h1(L) � 2}.
Recall that it is known that

Cliff(X) + 2 � Gon(X) � Cliff(X) + 3.

For details, see [4]. Thus, the following lemma shows that for N = 19, 23, 26, 28, 30,
Gon(X1(N)) � 5 and, hence, X1(N) is not tetragonal.

Lemma 2.3. For N = 19, 23, 26, 28, 30, Cliff(X1(N)) � 3.

Remark 2.4. For a non-hyperelliptic curve X of g(X) � 3, the canonical line
bundle defines a projectively normal embedding X ↪→ Pg−1. There is a well-known
relation between the Clifford index of X and the higher syzygies of the canonical
embedding of X . More precisely, let S be the homogeneous coordinate ring of Pg−1,
IX the homogeneous ideal ofX andSX= S/IX the homogeneous coordinate ring ofX .
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Then one can consider a minimal free resolution

· · · → ⊕jS
βi,j(−i − j) → · · · → ⊕jS

β1,j (−1 − j) → S → SX → 0

of SX as a finitely generated graded S-module. We call βi,j the graded Betti
numbers. For a given p � 1, property Np holds if βi,j = 0 for 1 � i � p and
all j � 2 due to Green and Lazarsfeld [13]. Equivalently, property Np holds if the
resolution is of the form

· · · → Sβp,1(−p − 1) → · · · → Sβ2,1(−3) → Sβ1,1(−2) → S → SX → 0.

Therefore, for projectively normal varieties, property N1 holds if and only if the
homogeneous ideal is generated by quadrics, and property Np holds for p � 2 if and
only if it has property N1 and the kth syzygies among the quadrics are generated
by linear syzygies for all 1 � k � p − 1. Now we recall the following theorem.

Theorem 2.5 (Green and Lazarsfeld [12, Appendix]). Let X be a smooth non-
hyperelliptic curve of genus g(X) � 3. Then the canonical embedding X ↪→ Pg−1

fails to satisfy property Ne where e := Cliff(X).

This result says that if X ↪→ Pg−1 satisfies property N2, then Cliff(X) � 3.

Proof of Lemma 2.3. From the above remark, it suffices to show that for
N = 19, 23, 26, 28, 30, the canonical embedding of X1(N) satisfies property N2.
To compute the Betti numbers of the canonical embedding, we use the computer
programs ‘Maple’ and Singular.

Step 1. Calculate the homogeneous ideal of the canonical embedding of X1(N)
by using ‘Maple’.

Note that X1(N) is hyperelliptic if and only if N = 13, 16, 18 (see [24]). Thus,
for N = 19, 23, 26, 28, 30, X1(N) can be identified with the canonical curve that is
the image of the canonical embedding

X1(N) � P 	→ (f1(P ) : . . . : fg(P )) ∈ Pg−1

where {f1, . . . , fg} is a basis of the space of cusp forms of weight 2. One can get such
a basis and their Fourier coefficients from [26]. Then to obtain the homogeneous
ideal I(X1(N)), we only have to compute the relations of the fifj (1 � i, j � g).
There are (g − 2)(g − 3)/2 linear relations among the fifj .

Step 2. Compute the Betti numbers by using Singular. Note that because the
canonical embedding is always projectively Cohen–Macaulay, the Betti numbers of
the canonical curve are equal to those of the hyperplane section.

We show the so-called Betti table of the canonical embedding for our cases in
Table 1. Thus, we conclude that property N2 holds by definition.

Therefore, we get the following result.

Theorem 2.6. The following are equivalent:
(a) X1(N) is tetragonal;
(b) X1(N) is rational, elliptic, hyperelliptic or bielliptic;
(c) the genus g(X1(N)) � 6.
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Explicitly these N are:
• rational: N = 1, . . . , 10, 12;
• elliptic: N = 11, 14, 15;
• hyperelliptic: N = 13, 16, 18;
• bielliptic: N = 17, 20, 21, 22, 24.

All hyperelliptic curves are also bielliptic. For each of these curves there exists a
morphism X1(N) → P1 of degree 4 that is defined over Q.

Now we consider X1(2, 2N). For convenience we state the list of X1(M, N) that
are rational or elliptic as follows.

Proposition 2.7. The curve X1(M, N) with M � 2 is of genus 0 or 1 if and
only if (M, N) is one of the 13 following ordered pairs:

• genus 0 : (2, 2), (2, 4), (2, 6), (2, 8), (3, 3), (3, 6), (4, 4), (5, 5).
• genus 1 : (2, 10), (2, 12), (3, 9), (4, 8), (6, 6).

Proof. Using the birationality between X1(M, N) and X∆(MN) and Theorem
1.1, one can easily obtain the result.

Suppose that X1(2, 2N) is hyperelliptic, so is X∆(4N) where ∆ = {±1,
±(2N + 1)}. Applying Abramovich’s bound X∆(4N) can only be hyperelliptic if
N � 8. Note that the genera of X1(2, 14) and X1(2, 16) are 4 and 5, respectively.
However, by Castelnuovo’s inequality, the genus of a curve that is both hyperelliptic
and bielliptic is bounded by 3. Thus, X1(2, 14) and X1(2, 16) are not hyperelliptic
and, hence, we can conclude that there exist no hyperelliptic curves X1(2, 2N).
Similarly to X1(N), if X1(2, 2N) is rational, elliptic or bielliptic, then it is tetragonal
over Q. The degree 2 cover X1(2, 18) → X1(18) over Q implies that X1(2, 18) is
also tetragonal over Q because X1(18) is hyperelliptic.

Table 1. The graded Betti numbers for the canonical embedding.

β0,2 β1,2 β2,2 β3,2 β4,2 · · ·
X1(N) β0,1 β1,1 β2,1 β3,1 β4,1 · · ·

β0,0 β1,0 β2,0 β3,0 β4,0 · · ·
0 0 0 16 10 · · ·

X1(19) 0 10 16 0 0 · · ·
1 0 0 0 0 · · ·
0 0 0 0 0 · · ·

X1(23) 0 45 231 550 693 · · ·
1 0 0 0 0 · · ·
0 0 0 0 84 · · ·

X1(26) 0 28 105 162 84 · · ·
1 0 0 0 0 · · ·
0 0 0 0 84 · · ·

X1(28) 0 28 105 162 84 · · ·
1 0 0 0 0 · · ·
0 0 0 0 70 · · ·

X1(30) 0 21 64 70 0 · · ·
1 0 0 0 0 · · ·
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Applying Abramovich’s bound to X∆(4N) we know that X1(2, 2N) can be only
tetragonal if N � 12. The covers X1(2, 2N) → X1(2N) with N = 11, 12 assure that
X1(2, 22) and X1(2, 24) are not tetragonal by applying Castelnuovo’s inequality as
in the proof of Lemma 2.2. Finally, by using the Betti number argument one can
show that X1(2, 20) is not tetragonal.

Theorem 2.8. The following are equivalent:
(a) X1(2, 2N) is tetragonal;
(b) X1(2, 2N) is rational, elliptic, bielliptic or bi-hyperelliptic;
(b) the genus g(X1(2, 2N)) � 7.

This happens in and only in the following cases:
• rational: N = 1, 2, 3, 4;
• elliptic: N = 5, 6;
• bielliptic: N = 7, 8;
• bi-hyperelliptic: N = 9.

For each of these curves there exists a morphism X1(2, 2N) → P1 of degree 4 that
is defined over Q.

3. Torsion of elliptic curves over quartic fields

Let K be a quartic number field and E an elliptic curve over K. If E(K)tors ∼=
Z/MZ ⊕ Z/NZ with M |N , then by the Weil pairing K must contain the Mth
roots of unity. Thus, M will be one of the numbers M = 1, 2, 3, 4, 5, 6, 8, 10, 12.
For determining the torsion structure that occurs infinitely often, it suffices to
consider the existence of infinitely many quartic points on X1(M, N) for those M .

First we consider the cases M = 1, 2 in which the field of definition KM is equal
to Q. We show that X1(N) has infinitely many quartic points if and only if it is
tetragonal, and similarly for X1(2, 2N).

Theorem 3.1. We have the following cases.
(a) The modular curve X1(N) has infinitely many quartic points if and only if

N = 1, . . . , 18, 20, 21, 22, 24.
(b) The modular curve X1(2, 2N) has infinitely many quartic points if and only

if N = 1, . . . , 9.
Actually, in all of these cases X1(N) and X1(2, 2N) are double covers of curves
that have infinitely many quadratic points.

Proof. (a) The ‘if’ part follows by Theorem 2.6. Suppose that X1(N) has
infinitely many quartic points, then by Proposition 2 of [11] the gonality Gon
(X1(N)) can be at most 8, and hence N = 1–40, 42, 44, 46, 48 by Abramovich’s
bound. Assume that g(X1(N)) � 7 and Gon(X1(N)) > 4, which holds for N =
19, 23 and N > 24 by [19, Theorem 2.3] and Theorem 2.6. By Proposition 1.6,
the Jacobian J(X1(N)) must contain an elliptic curve E of positive rank over Q.
As reported in [3, p. 2], the conductor of E divides N . From Cremona’s table [6]
we see that elliptic curves with conductor N � 48 and positive rank must have
conductor 37 or 43. Note that the case N = 43 is already omitted by Abramovich’s
bound. Now let us treat the case N = 37. Since the genus g(X1(37)) �= 7 and
Gon(X1(37)) > 4 by Abramovich’s bound, it must admit a map of degree 3 or 4 to
an elliptic curve by Theorem 1.5. Note that there is a natural map from X1(37)
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to X∆(37) of degree 2 where ∆ = {±1,±6}. Also X1(37) and X∆(37) are of genus
40 and 16, respectively. One can easily prove that X∆(37) is not bielliptic by the
same method as in the proof of Lemma 2.9 of [16]. Thus, we can apply Castelnuovo’s
inequality, and then we get a contradiction.

(b) The ‘if’ part follows by Theorem 2.8. Suppose that X1(2, 2N) has infinitely
many quartic points. Then the cover X1(2, 2N) → X1(2N) over Q implies the
existence of infinitely many quartic points on X1(2N), and hence N � 12. Also,
X1(2, 2N) is birational over Q to X∆(4N) with ∆ = {±1,±(2N + 1)}. In part (a),
if N � 12 we have already seen that the elliptic curves in the Jacobian of X∆(4N)
have rank 0 over Q. Combining Proposition 1.6, [19, Theorem 2.5] and Theorem 2.8,
the result follows.

Now we consider the cases M = 3, 4, 6. Since KM is a quadratic number field for
each M , X1(M, N) has infinitely many quartic points if and only if it has infinitely
many quadratic points over KM . Harris and Silverman [14] showed that if a curve X
with g(X) � 2 defined over a number field K is neither hyperelliptic nor bielliptic,
then the set of quadratic points on X over K is finite.

Suppose that X1(3, 3N) is hyperelliptic, so is X∆(9N) where ∆ = {±1,
±(3N +1),±(6N +1)}. Applying Abramovich’s bound X∆(9N) can only be hyper-
elliptic if N � 4. Note that X1(3, 9) is an elliptic curve, and X1(3, 3), X1(3, 6)
are P1. By Castelnuovo’s inequality the cover of degree 3 X1(3, 12) → X1(12)
implies that X1(3, 12) is not hyperelliptic. Thus, there exist no hyperelliptic curves
X1(3, 3N). Similarly, in the case X1(4, 4N), it suffices to prove that X1(4, 12) is
not hyperelliptic. By the Castelnuovo’s inequality the genus of a curve that is both
hyperelliptic and bielliptic is bounded by 3, and so the result follows. Applying
Abramovich’s bound only one can show that there exist no hyperelliptic modular
curves X1(6, 6N).

For the rational and elliptic X1(M, N) with M = 3, 4, 6, one can find a map
of degree 2 to P1 over KM that implies the existence of infinitely many quadratic
points over KM .

By Theorem 2.1 we have to consider the bielliptic curves X1(3, 12) and X1(4, 12).
Suppose that X1(3, 12) has infinitely many quadratic points over K3, then so is
X∆(36) where ∆ = {±1,±13,±25}. Following the same proofs as [19, Theorem 1.2]
or Proposition 1.6 one can show that the Jacobian J(X∆(36)) contains an elliptic
curve of positive rank over K3. However, the first two of the present authors [17]
proved that such an elliptic curve cannot appear as a factor of J(X∆(36)). Thus,
X1(3, 12) has only finitely many quartic points. By similar arguments we can show
that there are only finitely many quartic points on X1(4, 12) too.

Therefore we obtain the following.

Theorem 3.2. For M = 3, 4, 6, X1(M, N) has infinitely many quartic points if
and only if (M, N) is one of the ordered pairs (3, 3), (3, 6), (3, 9), (4, 4), (4, 8), (6, 6).

Finally, we consider the cases M = 5, 8, 10, 12. In each case KM is a quartic
number field and so X1(M, N) has infinitely many quartic points if and only if it has
infinitely many rational points over KM . However, by Faltings [8] this can happen
only when X1(M, N) is of genus 0 or an elliptic curve of positive rank. Only X1(5, 5)
can satisfy the condition by Proposition 2.7. Thus, we get the following.
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Theorem 3.3. Among X1(M, N) with M = 5, 8, 10, 12, only X1(5, 5) has
infinitely many quartic points.

Before coming to our main theorem we need some auxiliary results.

Lemma 3.4. Let E be an elliptic curve over Q and E′ an elliptic curve over a
quadratic number field k.

(a) For almost all quadratic number fields K we have

E(K)tors = E(Q)tors.

(b) For almost all quadratic extensions L of k we have

E′(L)tors = E′(k)tors.

Proof. Applying the same arguments as in [19, proof of Lemma 3.3(a)] the
results follow.

Mazur [22] proved that the torsion group E(Q)tors of an elliptic curve E over the
rational numbers must be isomorphic to one of the following 15 types:

Z/NZ, N = 1–10, 12
Z/2Z ⊕ Z/2N ′Z, N ′ = 1–4.

One can find a proof of the fact that each group occurs infinitely often as the full
torsion group E(Q)tors in [19]. Also if E is an elliptic curve over a quadratic number
field K, then E(K)tors must be isomorphic to one of the following groups described
in [20]:

Z/NZ, N = 1–16, 18
Z/2Z ⊕ Z/2N ′Z, N ′ = 1–6
Z/3Z ⊕ Z/3N ′′Z, N ′′ = 1–2
Z/4Z ⊕ Z/4Z.

We can prove the same phenomenon as follows.

Theorem 3.5. Each of the 26 groups listed as above occurs infinitely often as
the full torsion group E(K)tors if K varies over all quadratic fields and E varies
over all elliptic curves over K.

Proof. Each of the cyclic groups listed above occurs infinitely often as a
subgroup of E(K)tors because X1(N) is rational, elliptic or hyperelliptic for N =
1–16, 18. One can easily check that the same holds for the non-cyclic groups.

First, the group that already occurs over Q must appear infinitely often because,
by Lemma 3.4(a), we can find a suitable quadratic number field without increasing
the torsion.

Thus, there only remains the group Z/3Z ⊕Z/3Z that has to be separated from
Z/3Z ⊕ Z/6Z. Kubert [21, Table 1] suggested parametrizations of rational two
3-cycles as follows:

y2 = x3 + ax2 + bx + c; a = 3
4 (r + s), b = 1

2 (rs + t), c = 1
4rt



ELLIPTIC CURVES OVER QUARTIC NUMBER FIELDS 11

where r = 2t/(s−v), t = (v2 +3s2)/12, v = s−f2/2 with s �= v, v �= 0, v2 +3s2 �= 0.
Letting s := −3 and f := 2k+1

√
s (k = 0, 1, 2, . . . ) we get a family of non-isomorphic

elliptic curves defined over Q(
√−3) whose torsion subgroups contain Z/3Z⊕Z/3Z

and no 2-torsion. Thus, the result follows.

Finally we can prove the main result of this paper.

Theorem 3.6. If K varies over all quartic number fields and E varies over
all elliptic curves over K, the group structures which appear infinitely often as
E(K)tors are exactly the following:

Z/N1Z, N1 = 1–18, 20, 21, 22, 24
Z/2Z ⊕ Z/2N2Z, N2 = 1–9
Z/3Z ⊕ Z/3N3Z, N3 = 1–3
Z/4Z ⊕ Z/4N4Z, N4 = 1, 2
Z/5Z ⊕ Z/5Z,

Z/6Z ⊕ Z/6Z.

Actually, all of these torsion structures already occur infinitely often if K varies
over all quadratic extensions of all quadratic number fields, that is, all biquadratic
number fields.

Proof. Combining Theorems 3.1, 3.2 and 3.3 we know that only these torsion
structures can occur infinitely often. We have already proved that each of the groups
listed in the theorem occurs infinitely often as a subgroup of E(K)tors.

This proves the theorem for those groups that are maximal, whereas for the others
we still have to take care of the same problem as in the proof of Theorem 3.5.

For the non-maximal groups, observe that they already occur over quadratic
fields. Each of the infinitely many elliptic curves over quadratic fields can,
by Lemma 3.4, be base-changed to a suitable quartic number field without increas-
ing the torsion. Thus, the result follows.
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