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1. Introduction

Let E/Q be an elliptic curve of conductor N and f =
∑

n≥1 ane
2πinz ∈ S2(Γ0(N)) the weight

two eigenform associated to E by modularity. The conjecture of Birch and Swinnerton-Dyer
(BSD) predicts that for any number field H, the rank of the Mordell-Weil group E(H) of
H-rational points on E is equal to the order of vanishing ran(E/H) of the L-series L(E/H , s)
at its central critical point s = 1. In particular, this raises the question:

If L(E/H , 1) = 0, how can one construct a non-torsion rational point P ∈ E(H)?

A fruitful approach to this question is afforded by the theory of Heegner points over imaginary
quadratic fields K. Work of Gross, Zagier and Kolyvagin using this theory provides what is
(at present) perhaps the best theoretical evidence for BSD; see [GrZa], [Ko], as well as the
more recent [Zh].

Let H∗ = {z ∈ C : Im(z) > 0} ∪P1(Q) denote the extended upper-half plane, topologized
in the usual manner (cf., for example, [DS, Ch. 2]). For z ∈ H∗, let γz be a choice of
continuous path between the cusp at ∞ ∈ P1(Q) and z. Heegner points may be defined
complex-analytically as the images of quadratic irrationalities z ∈ H ∩K under the modular
parametrization

(1.0.1) ϕ : X0(N)(C) ' Γ0(N)\H∗ −→ E(C) ' C/ΛE , z 7→
∫
γz

ωf = c
∑
n≥1

an
n
e2πinz.

Here we assume for simplicity that E is the strong Weil curve in its isogeny class. Thus the
regular differential form associated with f is ωf = 2πic · f(z)dz, where c ∈ Z is the Manin
constant, conjecturally equal to 1 and known to be so when N < 60000, cf. [ARS].

Heegner points, although a priori defined over C, are known to be algebraic. More precisely,
by the theory of complex multiplication they are defined over suitable abelian extensions H
of the imaginary quadratic field K. Conversely, denoting by Q̄ the algebraic closure of Q in
C, if z ∈ H ∩ Q̄ is such that [Q(z) : Q] > 2, then the image ϕ(z) lies in E(C) \ E(Q̄). (See
[Wa, Ch. 3], where it is shown that j(z) is trancendental for z ∈ H ∩ Q̄ with [Q(z) : Q] > 2.
Since the pair of rational functions (j(z), j(Nz)) give coordinates for a (singular) affine model
of X0(N) over Q, it follows that the class of z in X0(N)(C) is a point with transcendental
coordinates. The claim follows because ϕ is a finite map.)

Various attempts have been made to find other explicit analytic formulas for rational points
on E over number fields H:

• In [BD] and [Gr], the complex upper half-plane H∗ is replaced by the p-adic upper
half-plane, regarded as a rigid analytic variety. Using Coleman’s p-adic path integrals,
this work gives formulas for (and presents explicit calculations of) p-adic incarnations
of the same Heegner points considered in (1.0.1).
• Again exploiting p-adic path integrals, [D1] suggests a construction of points on E

defined over Cp, the completion of an algebraic closure of Qp. These Stark-Heegner
1
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points are conjectured to be H-rational for suitable abelian extensions of real quadratic
fieldsK for which p is inert. See [DP] for the numerical verification of these conjectures.
• Let E/F be a modular elliptic curve over a totally real number field F . Using coho-

mological constructions similar to those of [D1], but replacing (1.0.1) by a formula
involving integrals of complex-analytic differential forms of higher order associated
to Hilbert modular forms, [D2, Ch. VIII] proposes another construction of points in
E(C). These points are conjectured to be defined over suitable abelian extensions H
of quadratic extensions K/F which have exactly one non-real archimedean place. See
also [DL] for numerical calculations providing evidence for these conjectures.
• Let E/F be an elliptic curve defined over a number field F , and assume E has complex

multiplication over F̄ by an imaginary quadratic field K. As replacements for the set
of Heegner points z ∈ H ∩ K, [BDP2] defines, for any integer r ≥ 0, a collection of
generalized Heegner cycles on a (2r + 1)-dimensional manifold Wr ×Er, where Wr is
a Kuga-Sato variety. Here the role of the modular parametrization (1.0.1) is played
by Abel-Jacobi maps from the Chow groups of null-homologous cycles on Wr ×Er to
certain generalized Jacobians.

Here we follow a different approach, using K.-T. Chen’s iterated path integrals [Ch]. A
defect of the functional

π1(X0(N)(C);∞)→ C, defined by

γ 7→
∫
γ
ωf

is that it factors through the maximal abelian quotient H1(X0(N)(C),Z) of the fundamental
group of the Riemann surface underlying the modular curve X0(N). Chen observed that it is
nevertheless possible to obtain non-abelian information about this fundamental group using
integration. His theory of iterated integrals give rise to functionals

J : π1(X0(N)(C);∞) −→ C

which do not necessarily factor through H1(X0(N)(C),Z).
The goal of this paper is to describe an algorithm for the computation of Chow-Heegner

points, following [DRS]. In this construction one replaces the integral appearing in (1.0.1) by
an iterated integral of two modular forms. In order to describe it more precisely, we fix cuspidal
eigenforms f, g ∈ S2(Γ0(N)) and assume f is a newform with rational Fourier coefficients. To
g is associated a collection of one-dimensional algebraic cycles Tg,n for all integers n ≥ 1
on X0(N) × X0(N). Each of these cycles gives rise to a class in Pic(X0(N)), essentially by
intersecting Tg,n with the diagonal in X0(N) × X0(N), and to an associated rational point
Pg,n of the Jacobian J0(N); the construction of Tg,n and Pg,n is described more precisely in
§2.3 and §3.2 below. Write Af for the modular abelian variety attached to f by the Eichler-
Shimura construction. The image Pg,f,n of Pg,n in Af (Q) is called the Chow-Heegner point
attached to the eigenforms g and f and the integer n.

Work of Yuan–Zhang–Zhang [YZZ] gives a criterion in terms of L-functions (cf. [DRS,
Corollary 1.4]) for when the points Pg,f,n are non-torsion, which explains why Chow-Heegner
points are of interest in the context of the conjecture of Birch and Swinnerton-Dyer.

Although the Hodge class ξg,n in the cohomology of X0(N) × X0(N) associated to the
cycle Tg,n is easy to compute using linear algebra, the cycle Tg,n itself is much more difficult
to compute explicitly. This poses a challenge if one wishes to calculate the points Pg,f,n
numerically. However, it is shown in [DRS] that Pg,f,n can be computed as an element of the
analytic curve Af (C) using only the data of the Hodge class ξg,n, in terms of a certain iterated
path integral in the sense of [Ch]. This formula is amenable to numerical computation, which
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we have implemented using the free software package Sage [S+09]. Our algorithm makes these
points readily computable in practice for elliptic curves Af of small conductor.

While the analytic formula is not the only way of computing the points Pg,f,n (see the
Appendix) our approach has certain advantages: it applies to a broad class of eigenforms
g, and works for arbitrary Hodge classes. In future work, we hope to extend the algorithm
described below to compute Chow-Heegner points [DRS2] associated to exceptional Hodge
classes on products of Kuga-Sato varieties arising from CM forms. The rationality of Chow-
Heegner points computed in this manner could provide numerical evidence for certain open
cases of the Hodge conjecture.

Plan of the paper. In §2 we recall necessary facts about itegrated integrals and related
ingredients for our main algorithm. In §3 we specialize to the case of modular curves, define
the points Pg,f,n precisely, and write down an explicit analytic formula for them. In §4 we
describe in detail an algorithm for evaluating this formula numerically. The algorithm is
illustrated with numerical examples in §5, which also includes a table of triple Chow-Heegner
points on rank one elliptic curves of small conductor.

Source code. Our Sage implementation of the algorithm described in this paper can be
found at http://www-ma2.upc.edu/vrotger/publicacions−en.html1.

Acknowledgments. We warmly thank the organizers of the Arizona Winter School 2001 for
inviting the first and forth author to deliver a series of lectures at the meeting, for creating
such an inspiring atmosphere and bringing the four of us the opportunity of working together.

2. Preliminaries

2.1. Let X be a smooth, complete algebraic curve of genus g ≥ 2 over Q, and let Y = X\{∞}
be the complement of a single point in X(Q). For a smooth variety V defined over Q (such
as X or Y ) we denote by V an the complex manifold V (C) with its analytic topology.

The de Rham cohomology H1
dR(Xan,C) is the cohomology of the de Rham complex of

smooth C-valued differential forms on Xan. Since the Riemann surface Xan is algebraic and
defined over Q, there is a canonical isomorphism

H1
dR(Xan,C) = H1

dR(X/F )⊗C.

Here

H1
dR(X/Q) := H1(0→ OX → Ω1

X → 0)

is the algebraic de Rham cohomology of X/Q, defined as the hypercohomology of the de Rham
complex of sheaves of regular differential forms on X.

Because X is a curve, the group H1
dR(X/Q) has a particularly simple description using

Ω1
II(X) := rational 1-forms on X with vanishing residues at all points of X.

Such 1-forms are called differentials of the second kind (on X). Observe that Ω1
II(X) = Ω1

II(Y ),
by the residue formula. Thus there is a canonical isomorphism

H1
dR(X/Q) = Ω1

II(Y )/dQ(X),

where Q(X) is the field of rational functions on X. Using Riemann-Roch one sees that
Ω1

II(Y )/dQ(X) ∼= Ω1(Y )/dΓ(Y,OY ). So H1
dR(X/Q) can also be computed as the space of

regular 1-forms on Y , modulo exact forms. For computational purposes, the latter description
is the most useful: we will compute with classes inH1

dR(Y ) using rational 1-forms onX, regular
away from the point ∞. These are amenable to computation via their Laurent expansions
about ∞.

1If any of you has a website and wishes to provide a link to the code there, add the url here.
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Later on we shall make use of the symplectic Poincaré pairing

〈, 〉 : H1
dR(Xan,C)×H1

dR(Xan,C)→ C,

defined by

〈ω, η〉 :=
1

2πi

∫
X
ω ∧ η

for (the cohomology classes of) smooth C-valued 1-forms ω, η on Xan. If ω and η are differ-
entials of the second kind on X, regular away from the cusp ∞, then the induced pairing on
H1

dR(X/Q) can be computed as

〈ω, η〉 = res∞(Fω · η) = −res∞(ω · Fη),

where Fν denotes a local primitive of the differential ν at ∞.

2.2. We now turn to recalling the definition and basic properties of iterated integrals; see
[Ch], [H1], [H2] for more details.

Fix a base point o ∈ Y an and dente by Γ := π1(Y an; o) the fundamental group of the
Riemann surface Y an. We write I ⊂ Z[Γ] for augmentation ideal of the integral group ring
of Γ. Recall that H1(Xan,Z) = H1(Y an,Z) ∼= Γab, as can be seen from the well-known
presentation for the fundamental group of a Riemann surface, and that this abelian group is
naturally identified with I/I2.

Definition 2.2.1. The path space on Y based at o, denoted P(Y ; o), is the set of piecewise-
smooth paths

γ : [0, 1] −→ Y an, with γ(0) = o.

Let

π : Ỹ → Y an, resp. π : X̃ → Xan,

denote the universal covering space of Y an (resp. Xan) corresponding to the basepoint o. The

group Γ acts on Ỹ transitively and without fixed points, and the map γ 7→ γ(1) identifies the

quotient Ỹ /Γ with Y an.
Recall a closed, C-valued smooth 1-form (resp. a meromorphic 1-form of the second kind)

η on Xan admits a smooth (resp. meromorphic) primitive Fη : X̃ → C, defined by the rule

Fη(γ) :=

∫ 1

0
γ∗η.

Definition 2.2.2. The basic iterated integral attached to an ordered n-tuple (ω1, . . . , ωn) of
smooth 1-forms on Y an is the function P(Y ; o)→ C, denoted

∫
ω1 · ω2 · . . . · ωn, defined by

γ 7→
∫
γ
ω1 · ω2 · . . . · ωn :=

∫
∆

(γ∗ω1)(t1)(γ∗ω2)(t2) · · · (γ∗ωn)(tn),

where ∆ is the simplex in [0, 1]n defined by 0 ≤ tn ≤ tn−1 ≤ · · · ≤ t1 ≤ 1. The integer n is
called the length of this basic iterated integral.

Example 2.2.3. When n = 2, the basic iterated integral attached to ω and η can be computed
by the formula ∫

γ
ω · η =

∫
γ
ωFη =

∫ 1

0
γ∗(ωFη).

In the expression in the middle, we abusively use the same notation ω for the differential π∗ω
on Ỹ . The 1-form ωFη is to be integrated along a lift of γ to Ỹ , which is unique once a lift of

o to Ỹ is specified.
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Definition 2.2.4. An iterated integral is a linear combination of basic iterated integrals,
viewed as a function on P(Y ; o). Its length is defined to be the maximum of the lengths of
its constituent basic iterated integrals. It is said to be homotopy invariant if its value on any
path γ depends only on the homotopy class of γ.

A homotopy invariant iterated integrals defines a C-valued function on Γ, and by extend-
ing linearly induces a homomorphism of abelian groups Z[Γ]→ C. Observe that a homotopy
invariant iterated integral of length ≤ n vanishes on the (n+ 1)st power In+1 of the augmen-
tation ideal in Z[Γ], and hence gives rise to a well-defined element of Hom(I/In+1,C). The
natural map

(2.2.1) (homotopy invariant iterated integrals of length ≤ n) −→ Hom(I/In+1,C)

is an isomorphism; see, for example, [H2].
We will be interested in numerically evaluating certain homotopy invariant iterated integrals

on Y of length ≤ 2. Suppose ω and η are two differentials of the second kind on X, regular
on Y , representing cohomology classes ω, η ∈ H1

dR(X/Q) in the manner of §2.1. The basic
iterated integral

∫
ω · η of length 2 is not generally homotopy invariant. But when either ω

or η is holomorphic on X — i.e., has no pole at ∞ — a suitable modification of
∫
ω · η will

be homotopy invariant, as we now explain.
Recall that a differential on a Riemann surface is said to have a logarithmic pole at a point

if its expansion in terms of a local parameter q at this point is of the form
∑∞

n=0 anq
n dq
q .

When ω is holomorphic at ∞, we let αω,η be a meromorphic 1-form on X that is regular on

Y and is such that the induced differential ωFη − αω,η on X̃ has at worst a logarithmic pole
at (any point lying over) ∞. This condition is well-posed because the principal part of ωFη
at x̃ ∈ X̃ depends only on the image x of x̃; see [DRS, §2]. The form αω,η exists — and in
fact can even be taken to be algebraic and defined over Q — by Riemann-Roch. If ω is not
holomorphic at ∞ but η is, then we define αω,η := −αη,ω.

Lemma 2.2.5. Let ω and η be as above, and assume that either ω or η is holomorphic at ∞.
Then:

i. The iterated integral Jω,η :=
∫
ω · η − αω,η is homotopy-invariant.

ii. Suppose that ω and η represent integral cohomology classes. Using (2.2.1), identify
Jω,η with a homomorphism of abelian groups I/I3 → C. The restriction of Jω,η to
I2/I3 is Z-valued and can be identified with ω ⊗ η, viewed as an element of

H1(Xan,Z)⊗H1(Xan,Z) ∼= (H1(Xan,Z)⊗H1(Xan,Z))∨ = (I/I2 ⊗ I/I2)∨ = (I2/I3)∨.

(Here A∨ denotes Hom(A,Z), for any abelian group A.)

Proof. The homotopy invariance of Jω,η follows from the fact that Jω,η(γ) =
∫
γ ωFη − αω,η,

and the 1-form on X̃ in the integrand is holomorphic when restricted to Ỹ . For the second
claim, see the discussion at the beginning of §2 of [DRS], and loc. cit., Lemma 1.1(2). �

Remark 2.2.6. Note that if ω and η are both holomorphic at ∞, then we can take αω,η = 0.

Now consider an integral Hodge class ξ ∈ H1(Xan,Z)⊗H1(Xan,Z). The Hodge condition
implies that we can choose a basis {ωi} such that when we write ξ =

∑
ci,jωi⊗ωj , then either

ωi or ωj is holomorphic at ∞ whenever ci,j 6= 0. By the previous lemma, the iterated integral
Jξ =

∑
Jωi,ωj is homotopy invariant and induces a homomorphism

Jξ : H1(Xan,Z) = I/I2 → C/Z.

Fix an auxiliary holomorphic 1-form ρ ∈ H1,0(XC) ⊂ H1(Xan,C). Denote by Λ the period
lattice 〈

∫
γ ρ : γ ∈ H1(Xan,Z)〉. The class γρ ∈ H1(Xan,C) that is Poincaré dual to ρ actually

belongs to H1(Xan,Z)⊗ Λ. Consequently Jξ(γρ) is a well-defined element of C/Λ.
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2.3. Let X1, X2 denote copies of X, and X12 the diagonal copy of X in X1 × X2. To a
codimension-1 algebraic cycle Z ⊂ X × X = X1 × X2 (defined over Q) we associate the
divisor class

DZ = (Z ∩X12)− (Z ∩X1)− (Z ∩X2).

Define a corresponding degree-zero divisor class

PZ = DZ − deg(DZ)o ∈ Pic0(X).

(Recall that o ∈ X(Q) is a fixed base point.)
We now state the iterated integral formula from [DRS] for the image of PZ under the

Abel-Jacobi map

AJX : Pic0(X)→ Ω1(Xan)∨/H1(Xan,Z).

Let εo be the projector on Pic(X ×X) defined by

εo(Z) = Z − i1∗π1∗ − i2∗π2∗

where π1, π2 : X ×X ⇒ X are the projections and i1, i2 : X ⇒ X ×X are the inclusions of
“vertical and horizontal” copies of X over the basepoint o.

Let

cl(εo−) : Pic(X ×X)→ H1(Xan,Z)⊗H1(Xan,Z)

denote the composition of the cycle class map and the projector εo. (The effect of ε0 is to
annihilate the H2 ⊗ H0 and H0 ⊗ H2 factors in the Künneth decomposition of the second
Betti cohomology group of X ×X.) Suppose cl(εoZ) is represented by

∑
i,j ci,jωi⊗ωj , where

ωi or ωj is holomorphic at ∞ whenever ci,j 6= 0.

Theorem 2.3.1 ([DRS], Corollary 3.6). The image AJX(PZ) ∈ Ω1(Xan)∨/H1(Xan,Z) is
represented by the linear functional that maps ρ ∈ Ω1(Xan) to∑

Jωi,ωj (γρ) =
∑
i,j

ci,j

∫
γρ

(ωi · ωj − αωi,ωj ) + deg(DZ)

∫ ∞
o

ρ ∈ C,

where γρ ∈ H1(Xan,C) is Poincaré dual to ρ ∈ H1,0(Xan) ⊂ H1
dR(Xan,C). �

3. Chow-Heegner points on modular curves

We now specialize the discussion of the preceding section to the case of classical modular
curves X. We shall define certain rational points on an arbitrary elliptic curve E/Q called
Chow-Heegner points, such that the corresponding points of E(C) ∼= C/ΛE can be computed
using iterated path integrals via Theorem 2.3.1.

3.1. Let N > 1 be an integer and X = X0(N) denote the canonical model over Q of the
classical modular curve of level N ; write J0(N) for the Jacobian of X0(N). With this choice
of X we place ourselves in the setup of §1, taking the ground field F to be Q and the point
∞ ∈ X(Q) to be the usual cusp at infinity. Thus Y := X0(N) − {∞}. (Note that Y differs
from the usual open modular curve Y0(N).) For the moment we do not specify the basepoint
o ∈ Y an used for topological constructions.

We write S2(Γ0(N)) for the space of cuspidal weight 2 modular forms for Γ0(N). This
space is canonically isomorphic to the vector space Ω1(Xan) of holomorphic 1-forms on X, via
the map which associates to a modular form f : H∗ → C the 1-form ωf = 2πif(z) d z on X.
We recall that if f has Fourier expansion

∑
n≥1 anq

n then a Laurent expansion for ωf near

∞ is given by
∑

n≥1 anq
n d q
q .
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3.2. Let E be an elliptic curve over Q of conductor NE dividing N . Its isogeny class corre-
sponds to a newform f ∈ S2(Γ0(NE)) with rational Fourier coefficients, which gives rise to a
modular parametrization πE : J0(NE)→ E, a morphism of abelian varieties defined over Q.

For the ease of exposition, we will assume throughout that kerπE is connected. In this
case, assuming the Manin constant c = 1, the Néron lattice of E coincides with the period
lattice Λf of the differential ωf = 2πif(z)dz ∈ Ω1(X0(NE)an) corresponding to f .

The map πE can be computed on complex points explicitly, using the Abel-Jacobi isomor-
phism

AJX : J0(NE)(C) ∼= Ω1(X0(NE)an)∨/H1(X0(NE)an,Z),

the Weierstrass uniformization W : C/Λf ∼= E(C), and the analytic parametrization

πan
E : Ω1(X0(NE)an)∨/H1(X0(NE)an,Z)→ C/Λf .

The map πan
E sends the coset of a functional on Ω1(X0(NE)an) to the evaluation of that

functional at ωf . Thus for PC ∈ J0(NE)(C) we have

(3.2.1) πE,C(PC) = W (πan
E (AJX0(NE)(PC))) = W (AJX0(NE)(PC)(ωf )).

For each divisor d of N/NE there is a degeneracy map πd : X0(N)→ X0(NE) which induces
by the Albanese universal property a morphism of abelian varieties πd : J0(N) → J0(NE),
which we denote with the same symbol. Put πdE = πE · πd : J0(N) → E for the composition
of πd with πE . When d = 1, π1 is the projection arising from the natural inclusion Γ0(N) ⊆
Γ0(NE) and we shall simply write π1

E = πE ; it will be clear from the context whether the
source of this map is J0(N) or J0(NE).

Let T = Q[. . . , Tn, . . .] be the Hecke algebra of level N , and let T0 denote the subalgebra
generated by Hecke operators prime to the level N . Then

T0 '
∏
h

Kh ⊆ T '
∏
h

Lh

where h runs over Galois conjugacy classes of newforms of all levels M dividing N , Kh =
Q({an(h)}n≥1) is the number field generated by the Hecke eigenvalues of h, and, if Nh | N
stands for the level of h, Lh is isomorphic to a product of finite field extensions of Kh, of
degree [Lh : Kh] = σ(N/Nh), the number of factors of N/Nh (cf. [Ka], [RS, Ch. 14]). The
endomorphism algebra End0(Jac(X)) := Q⊗ End(Jac(X)) contains the Hecke algebra T0 as
its center and T as a maximal commutative subalgebra (and End0(Jac(X)) ' T ' T0 only
when N is prime), as

(3.2.2) End0(Jac(X)) = 〈T, {δd}d|σ(N/Nh)〉 '
∏
h

Mσ(N/Nh)(Kh),

where δd are the degeneracy operators as defined e.g. in [Ka].

Definition 3.2.1. For a divisor M of N and a newform g ∈ S2(Γ0(M)), denote by

Tg ∈ T0
∼=
∏
h

Kh

the idempotent with 1 in the Kg component and 0 elsewhere.

We shall also view Tg as an idempotent of T and of End0(Jac(X)) by the natural inclusion,

so that T[g] := Tg ·T = Lg and End0(Jac(X))[g] := Tg · End0(Jac(X)) = Mσ(N/M)(Kg).

There are natural isomorphisms

(3.2.3) End(Jac(X))⊗Q ' Corr(X) := Pic(X ×X)⊗Q/(π∗1Pic(X)⊗Q⊕ π∗2Pic(X)⊗Q).

Under these identifications, an endomorphism T ∈ End0(Jac(X)) is associated to a divisor
class in Pic(X ×X)⊗Q, which we also denote by the same symbol, and is well-defined only
up to horizontal and vertical divisors.
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In §2.3 a point PT ∈ Pic0(X) = J0(N)(Q) was attached to a divisor T on X × X; this
point only depends on the class of T in Pic(X × X) ⊗ Q/(π∗1Pic(X) ⊗ Q ⊕ π∗2Pic(X) ⊗ Q).
This construction gives rise to a map

Pic(X ×X)⊗Q → J0(N)(Q)⊗Q

T 7→ PT .

Note that both these divisor classes and the projector εo depend on the basepoint o, so
we must now specify a particular choice of o. In the following definition, we fix the choice of
basepoint o to be the cusp 0 ∈ X, which is distinct from ∞ because N > 1.

Definition 3.2.2. For an operator T ∈ End0(Jac(X))[g] and a divisor d of N/NE , define the
Chow-Heegner point

PT,f (d) = πdE(PT ) ∈ E(Q)⊗Q

When we take d = 1 we shall just write PT,f for PT,f (d) ; in addition, the Chow-Heegner
point associated with T = Tg and d = 1 shall be denoted Pg,f .

For any positive integer n, define Tg,n := Tg · Tn ∈ T as the product of Tg and Tn, and
define

Pg,f,n := PTg,n,f .

Note that Pg,f = Pg,f,1 and Pg,f,n = an(g)Pg,f if eigenvalue an(g) of Tn acting on the
g-isotypic component is rational. Thus, the points Pg,f,n for n > 1 are only of interest when
g has irrational Fourier coefficients or is an oldform. For a general discussion of the notion of
Chow-Heegner point, of which the construction above is a special case, see the introduction
of [BDP2] and [DRS].

Remark 3.2.3. To avoid the troublesome tensor products with Q in the definition of the
above Chow-Heegner points PT,f (d) , one must work with an actual algebraic cycle on X×X, as
opposed to T which is merely a Q-linear combination of such cycles. Define the “denominator”
dT of T ∈ T to be the smallest positive integer such that dTT lies in the integral Hecke algebra
TZ := Z[. . . , Tn, . . .]. Then dTPT,f (d) belongs to E(Q); see also §4.7.

However, we regard dg,nPg,f,n as well-defined only modulo the torsion subgroup E(Q)tor.
The reason for this is that to obtain a computable formula for Pg,f,n one can take the basepoint
o to be any cusp other than ∞. There being no distinguished choice, one is left with an
ambiguity valued in the image in E(Q) of the (torsion) cuspidal subgroup of J0(N); see
(3.3.2) below and the subsequent remarks.

Theorem 3.2.4 ([DRS], Corollary 1.4). Assume that the local signs εp(g, g, f) of Garrett’s
triple product L-function L(g, g, f, s) are +1 at the primes p | N . Then the module of points

P g,f := 〈PT,f (d) , T ∈ End0(Jac(X))[g]〉d| N
NE

⊆ E(Q)⊗Q

is nonzero (or equivalently, there is at least one point
∑

d|N/NE ndπ
d
E(dTPT ) ∈ E(Q) for some

T and integers nd which is non-torsion) if and only if the following conditions hold:

i. L(f, 1) = 0,
ii. L′(f, 1) 6= 0, and
iii. L(f ⊗ Sym2(g), 2) 6= 0.

3.3. The aim of this section is to explain how to explicitly compute the slightly smaller
submodule

PT[g],f := {PT,f , T ∈ T[g]} = 〈Pg,f,n〉n≥1 ⊆ P g,f
of the Mordell-Weil group E(Q)⊗Q of E.

Theorem 2.3.1 gives rise to an explicit formula for a triple Chow-Heegner point Pg,f,n
in terms of iterated integrals. This formula is stated in terms of the components of the
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cohomology class cl(εoTg,n) ∈ H1
dR(X/Q)⊗2 expressed as a sum of pure tensors. In this

section we find an explicit formula for cl(εoTg,n).
The action of the Hecke algebra T0 on modular forms extends to an action on the de Rham

cohomology of X. Under this action, we have

H1
dR(X/Q) ∼= H1

dR(X/Q)[g1]⊕ · · · ⊕H1
dR(X/Q)[gn],

indexed by Galois conjugacy classes of newforms of all levelsM dividingN . Let g ∈ S2(Γ0(M))
be a newform and suppose {ωg,1, . . . , ωg,2k} is a collection of differentials of the second kind
on X representing a basis for H1

dR(X/Q)[g]. Write Tnωg,i =
∑

j a
n
ijωg,j , and denote by An

and B the matrices (anij)1≤i,j≤2k and (〈ωg,i, ωg,j〉)1≤i,j≤2k, respectively, where 〈 , 〉 denotes the
Poincare pairing. Then we have the following:

Lemma 3.3.1. cl(εoTg,n) =
∑

i,j c
n
ijωg,i ⊗ ωg,j, where (cnij)1≤i,j≤2k = −B−1An.

Proof. The projector εo acts on H2
dR(X × X) by annihilating the H0

dR(X) ⊗ H2
dR(X) and

H2
dR(X) ⊗ H0

dR(X) components of the Künneth decomposition, so we have cl(εoTg,n) ∈
H1

dR(X) ⊗ H1
dR(X). Note from the definition that Tg,n acts on H1

dR(X)[h] as Tn if h = g
and 0 otherwise, so cl(εoTg,n) is equal to the image of Tn under the identification:

End(H1
dR(X)[g]) ' H1

dR(X)[g]∨ ⊗H1
dR(X)[g] ' H1

dR(X)[g]⊗H1
dR(X)[g]

The first map is the canonical isomorphism of finite dimensional vector spaces, and the second
is induced from the inverse of the identification H1

dR(X)[g] ' H1
dR(X)[g]∨ via the map v 7→

(w 7→ 〈v, w〉). The remainder of the proof is a straightforward exercise in linear algebra, and
is left to the reader. �

Combining the previous results, we obtain the following formula for Pg,f,n. Let γf be the
Poincaré dual of ωf and let ωg,1, . . . , ωg,2k be differentials of the second kind that give rise to
a symplectic basis for the g-isotypic Q-subspace H1

dR(X/Q)[g]. That is, for 1 ≤ i ≤ k we have
〈ωg,i, ωg,i+k〉 = 1 and 〈ωg,i, ωg,j〉 = 0 for j 6= i+k. Assume moreover that this basis is adapted
to the Hodge filtration, in the sense that the 1-forms ωg,1, . . . , ωg,k are assumed to be regular
at∞. Since H0(X,Ω1(X/Q))[g] ⊂ H1

dR(X/Q)[g] is a maximal isotropic subspace with respect
to the Poincaré pairing, we can simply take any basis ωg,1, . . . , ωg,k for H0(X,Ω1(X/Q))[g] =
S2(Γ0(N))[g] and extend it to a symplectic basis of the sort desired. Write

(3.3.1) cl(εoTg,n) =

2k∑
i,j

cnijωg,i ⊗ ωg,j

where the coefficients can be computed as in Lemma 3.3.1. Since we chose the basis to
be symplectic, the matrix B is the standard symplectic matrix. Additionally, because Tn
preserves the holomorphic subspace of H1

dR(X/Q), then the computation of −B−1An shows
that cnij = 0 when k + 1 ≤ i, j ≤ 2k. Thus, the Hodge class in (3.3.1) is of the form discussed
after Remark 2.2.6.

Combining (3.3.1) with (3.2.1) and Theorem 2.3.1, we obtain the following formula for the
point Pg,f,n:

(3.3.2) Pg,f,n = W

 2k∑
i,j

cnij

(∫
γf

ωg,i · ωg,j − αωg,i,ωg,j

) .

Note that (3.3.2) omits the term deg(DTg,n)
∫∞
o ωf from the formula in Theorem 2.3.1. This

is justified by our choice of basepoint o, for it is well-known (cf. e.g. [Man]) that the difference
[∞] − [0] is a torsion point of J0(N)(Q). Since Pg,f,n is defined as an element of E(Q) ⊗Q,
torsion can be disregarded.
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We emphasize that by Lemma 2.2.5 (and the discussion immediately following it), the
right-hand side of (3.3.2) depends only on the homology class γf ∈ H1(Y an,Z) = H1(Xan,Z)
Poincaré dual to ωf . It can therefore be evaluated by lifting γf arbitrarily to an element
γ̃f ∈ π1(Y an; o) and evaluating the length ≤ 2 homotopy invariant iterated integral (3.3.2) on
any loop in the homotopy class γ̃f .

Remark 3.3.2. When n = 1, formula (3.3.2) greatly simplifies. In the notation of Lemma
3.3.1, A1 is the identity matrix and B is the standard symplectic matrix by our choice of
basis, and so if we write ηg,i for ωg,i+k, then

Pg,f = W

(
k∑
i=1

(∫
γf

ωg,i · ηg,i − ηg,i · ωg,i − 2αωg,i,ηg,i

))
3.4. Although Pg,f,n is defined relative to the choice of base point o as the cusp 0 on Y , it
will be convenient to compute it relative to a different choice of basepoint.

Lemma 3.4.1. The right hand side of (3.3.2) is independent of the choice of o ∈ Y (Q).

Proof. Changing the basepoint from o to o′ amounts to conjugating the representative path
γf for the homology class Poincaré dual to ωf by a path β from o to o′. This manifestly does
not affect the value of the integral of the meromorphic 1-form αωg,i,ωg,j . Thus the issue is
whether we have an identity

(3.4.1)

∫
γf

ωg,i · ωg,j
?
=

∫
βγfβ−1

ωg,i · ωg,j .

But by [H1, Exer. 8], for any 1-forms ω, η, loop γ, and path β, we have

(3.4.2)

∫
βγβ−1

ω · η =

∫
γ
ω · η +

∣∣∣∣ ∫γ ω ∫
γ η∫

β ω
∫
β η

∣∣∣∣ .
In our situation, the determinants expressing the difference between the two sides of (3.4.1)
vanish. Indeed,

∫
γf
ωg,i = 〈ωf , ωg,i〉 = 0, since the decomposition into isotypic components for

the action of the Hecke algebra is orthogonal with respect to the Poincaré pairing. �

4. Algorithm for effective computation of triple Chow-Heegner points

We now turn to the question of numerically evaluating formula (3.3.2) for a triple Chow-
Heegner point Pg,f,n ∈ E(Q) ⊗ Q for an elliptic curve E = Ef . We retain all the notation
from §§2–3. The following ingredients occur in the (3.3.2):

1. The Poincaré dual γf ∈ H1(X,C) of ωf ∈ H1
dR(Xan,C).

2. A collection of rational differentials of the second kind ωg,1, . . . , ωg,2k on X, regular
away from ∞, whose images in H1

dR(X/Q) are a symplectic basis for the g-isotypic
component H1

dR(X/Q)[g]. This basis should be adapated to the Hodge filtration
on H1

dR(X/Q)[g] in the sense that ωg,1, . . . , ωg,k are holomorphic everywhere on X,
including the point ∞.

3. The coefficients cnij arising from the action of Tn on H1
dR(X) with respect to the basis

ωg,1, . . . , ωg,2k.
4. Meromorphic differentials αωg,i,ωg,j on X, regular on Y , such that ωg,iFηg,j − αωg,i,ηg,j

has at worst a logarithmic pole at (any point lying over) ∞ for 1 ≤ i ≤ k.

These data must be “known” in a sufficiently concrete form to evaluate the iterated integrals
occuring in (3.3.2). It is also desirable to know

5. the denominator dg,n of the projector onto the g-isotypic component of the cohomology
of X.

This last item will allow for the computation of a point in E(Q), as opposed to one in
E(Q)⊗Q. This section is devoted to methods of computing these five ingredients.
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4.1. Evaluating iterated integrals. Let J =
∫
ω·η−αω,η be a homotopy-invariant iterated

integral of length ≤ 2 on Y , expressed in terms of differentials of the second kind on X,
regular on Y . We seek to compute the right-hand side of formula (3.3.2), which is a Q-
linear combination of J(γ) for various choices of J and (the homotopy class of) a path γ ∈
π1(Y ; o). As remarked earlier, (3.3.2) actually depends only on the homology class γ0 of γ.
This homology class belongs to H1(Y an,Z) = H1(Xan,Z), which is the abelianization of the
quotient π1(Xan, o) = Γ̄0(N) of Γ0(N) by the smallest normal subgroup containing the elliptic
and parabolic elements.

To evaluate J(γ0) for γ0 ∈ H1(Y an,Z), choose the basepoint o away from the set S of
elliptic points on Y0(N)an ⊂ Y an and lift γ0 arbitrarily to a path γ̃ ∈ π1(Y0(N)an \ S, o). For
each elliptic point x ∈ S, let ex = |StabΓ0(N)(x)/{±1}| denote the index of x (which is either 2
or 3) and γx be a sufficiently small counterclockwise loop around x. Writing H for the normal
subgroup of π1(Y0(N)an \ S, o) generated by {γexx , x ∈ S}, there is a natural isomorphism
Γ0(N) ' π1(Y0(N)an − S; o)/H.

We may regard then γ̃ as an element of Γ0(N); this causes no ambiguity because H lies
in the kernel of the natural projection H1(Y0(N)an − S,Z)→ H1(Y0(N)an,Z)→ H1(Y an,Z).
The path γ̃ can then also be viewed as a path in H from τ0 to γτ0, where γ ∈ Γ0(N) is a lift
of γ0.

Lemma 4.1.1. Suppose γ0 is Poincaré-dual to ρ. As an element of C/Λρ, we have

J(γ0) =

∫ γτ0

τ0

ωFη − αω,η

where we conflate 1-forms on X with their pullbacks to H∗ = H ∪ {∞}. Moreover, Fη has
Laurent expansion about ∞ ∈ h∗ given by formally integrating the Laurent expansion of η
about the cusp ∞ ∈ X.

Proof. This follows from the preceding discussion, using the definition of iterated integrals
and the homotopy invariance of J . �

Given any differential form λ of the second kind on X, and any γ ∈ Γ0(N), let

I(λ; γ) :=

∫ γτ0

τ0

λ.

(As above, in the righthand side of this expression λ is conflated with its pullback to H∗.) By
the residue formula, this expression is independent of the choice of path on the upper half-plane
H from τ0 to γτ0. The Γ0(N)-invariance of λ also shows that this expression is independent
of the choice of base point τ0 ∈ H, which justifies suppressing τ0 from the notation.

If λ instead denotes a differential of the second kind on X̃ then the integral above still
makes sense but depends on both the basepoint o and the chosen lift of o to τ0 ∈ H. We
will primarily be interested in evaluating such integrals in the context of (3.3.2), for which
the choice of basepoint is ultimately irrelevant. (This is because the Poincaré dual of the
homology class of γ, is orthogonal to the 1-forms in the iterated integral giving rise to the
path integral we seek to evaluate; cf. Lemma 3.4.1.) However, as we are about to see, for
the purposes of algorithmic efficiency it is necessary to break up the path of integration into
pieces that can be computed relatively quickly. The integrals over these pieces may no longer
be basepoint-independent: when we express γ as a product of computationally-amenable
elements γ(j) ∈ Γ0(N), the corresponding homology classes may no longer lie in (the Poincaré
dual of) the orthogonal complement of H1

dR(X/Q)[g]. Thus for a general meromorphic 1-form

λ on X̃ and a general γ ∈ Γ0(N), we adopt the notation

Iτ0(λ; γ) =

∫ γτ0

τ0

λ
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to emphase the dependence on the choice of basepoint.
By meromorphicity, for λ as above (defined on eitherX or X̃) the integral I(λ; γ) or Iτ0(λ; γ)

can be computed by integrating term-wise a Laurent expansion for λ using the fundamental
theorem of calculus. Thus, in practice, one computes the Laurent expansion for the primitive
Fλ about ∞ ∈ X (or a choice of ∞̃ ∈ X̃ lying over ∞), regarded as function given by a
convergent power series in q = e2πiτ on h, and evaluates it at τ0 and τ ′0 = γτ0. The larger the
imaginary parts of τ0 and τ ′0 are, the faster this series converges and the fewer coefficients of
the Laurent series of λ are necessary to approximate I(λ; γ) or Iτ0(λ; γ) to a give degree of
accuracy. Writing γ =

(
a b
c d

)
, it is well-known that the best compromise between Im(τ0) and

Im(τ ′0) is achieved when we choose τ0 = −d
c + 1

|c| i (cf., for example, [Cr, p. 35]). This optimal

basepoint for γ will be denoted τ∗γ .
With this remark in mind, we take the following approach to computing J(γ0) as in the

lemma above. First compute Laurent expansions for the differentials ω, η, αω,η. Then find a
“good” expression for the homology class γ0 ∈ H1(Xan,C), writing it as a C-linear combi-

nation of classes γ
(j)
0 ∈ H1(Xan,Z) that lift to elements γ(j) ∈ Γ0(N) with small lower-left

entries cN . Finally, calculate approximations to the integrals Iτ0(ωFη; γ
(j)) and I(αω,η; γ

(j)).
The appropriate linear combination of these integrals is an (approximate) representative for
the coset J(γ0) ∈ C/Λρ.)

To calculate I(αω,η; γ
(j)), one is free to change the basepoint from τ0 to the optimal base-

point τ∗j := τ∗
γ(j)

for γ(j), since αω,η is defined on X and not only on X̃. The same is not true

for ωFη. To evaluate Iτ0(ωFη; γ
(j)) we appeal to the following lemma.

Lemma 4.1.2. Iτ0(ωFη; γ
(j)) = Iτ∗j (ωFη; γ

(j))− I(η; γ(j))
∫ τ∗j
τ0
ω.

Observe that every term on the righthand side can be computed using the fundamental
theorem of calculus, evaluating power series only at the points τ0 and τ∗j . In particular,

taking τ0 = i/N , each such evaluation converges at least as fast as an evaluation at τ∗j , so this
formula for the integral is “optimally efficient”.

Proof of Lemma 4.1.2. Since λ = ωFη is a holomorphic 1-form on H, its integral along a closed
contour vanishes. Thus

Iτ0(λ; γ(j)) = Iτ∗j (λ; γ(j)) +

∫ τ∗j

τ0

λ−
∫ γ(j)τ∗j

γ(j)τ0

λ.

To evaluate the second term on the righthand side, we observe that ω comes from a 1-form on
X, so it is Γ0(N)-invariant; it thus pulls back to itself along the fractional linear transformation

defined by γ(j). On the other hand,

I(η; γ(j)) =

∫
γ(j)

η = Fη(γ
(j)τ)− Fη(τ), for all τ ∈ H.

Hence (γ(j))∗Fη = Fη + I(η; γ(j)). So (γ(j))∗λ = λ+ I(η; γ(j))ω, and we find∫ γ(j)τ∗j

γ(j)τ0

λ =

∫ τ∗j

τ0

(γ(j))∗λ =

∫ τ∗j

τ0

λ+ I(η; γ(j))

∫ τ∗j

τ0

ω,

which yields the lemma. �

Remark 4.1.3. We warn the reader that possibly Iτ0(ωFη; γ
(j)) 6=

∫
γ(j) ω · η (regarding γ(j)

as an element of π1(Y an; o)). Indeed, the iterated integral ω · η need not even be homotopy

invariant (!) so
∫
γ(j) ω · η is ill-defined. In particular, one cannot relate Iτ0(ωFη; γ

(j)) to

Iτ∗j (ωFη; γ
(j)) using the change-of-basepoint formula (3.4.2) for iterated integrals.
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To efficiently evaluate the integrals in (3.3.2) using the method just explained, it is therefore
necessary to know:

a. Laurent expansions about ∞ for a symplectic basis ωg,1, . . . , ωg,2k of H1
dR(X/Q)[g]

and the forms αωg,i,ωg,j ; and,

b. the homology class γf as a C-linear combinationation of class γ
(j)
0 whose lifts to Γ0(N)

have small lower-left entries cN .

In the rest of this section we turn to the task of computing these data.

4.2. Calculating a symplectic basis for H1
dR(X/Q)[g]. The calculation of a basis for the

de Rham cohomology can be carried out by first writing down a modular function u — that
is, a rational function on X = X0(N) — which is regular away from ∞. Such a function
exists by Riemann-Roch and a q-expansion for one such function can sometimes be computed
explicitly using the Dedekind eta-function, as explained in the next subsection.

Using a modular symbol algorithm, one can compute q-expansions for a C-basis of S2(Γ0(N))
consisting of cusp forms with rational Fourier coefficients; cf. [Stn], for example. Write
ω1, . . . , ωt for the corresponding holomorphic 1-forms on X, where for convenience we denote
by t = dimC S2(Γ0(N)) the genus of X.

Define ηi = uωi, which is a differential of the second kind by the residue theorem, and let
B = {ω1, ..., ωt, η1, ..., ηt} ⊂ H1

dR(X/Q) be the corresponding set of cohomology classes. A
simple application of Riemann-Roch shows the following.

Lemma 4.2.1. The set B is basis for H1
dR(X/Q) whenever ∞ is not a Weierstrass point on

X and u has a pole of order t+ 1 (i.e., the smallest possible) at ∞.

Proof. Since∞ is not a Weierstrass point onX, we may assume that ord∞(ωi) = i−1, and thus
ord∞(ηi) = i−t−2. For any differential of the second kind ω′, we can find a linear combination
of η1, . . . , ηt and dh for an appropriate rational function h having the same principal part as
ω′. Thus the difference is holomorphic, and lies in the span of {ω1, . . . , ωt}. �

Remark 4.2.2. By a result of Ogg [O], the cusp ∞ is not a Weierstrass point when the level
N is prime, or more generally when N = pM for prime p and an integer M ≥ 1 such that
X0(M) has genus zero and p - M . Even if u has a pole of order > g(X) + 1, the set B may
still be a basis of H1

dR(X/Q). This can be checked by computing the matrix for the Poincare
pairing, and in every example we have computed this is the case.

When ∞ is a Weierstrass point, there is a rational function with a single pole at ∞ of
order ≤ g(X). When u is taken to be such a function, then the set B will never be a basis.
Indeed, since ∞ is a Weierstrass point, there exists a holomorphic differential form ω with
order of vanishing ≥ g(X) at ∞. Then uω is still holomorphic, and thus lies in the span of
{ω1, . . . , ωt}. But uω also is in the span of {η1, . . . , ηt} by definition of the ηi, giving rise to a
linear dependence relation. Hence, in order for B to be a basis, it is necessary for u to have a
pole at ∞ of order greater than the order of vanishing at ∞ of any holomorphic differential.

Given one basis B for H1
dR(X/Q) — for example, one computed as above — it is then a

matter of linear algebra to produce a better basis that is adapted to the action of the Hecke
algebra. Note that the usual formula for the action of the Hecke algebra T0 on holomorphic
modular forms in terms of q-expansions extends to weakly holomorphic modular forms (i.e.,
meromorphic 1-forms on X with possible poles only at the cusps), and preserves the subspace
of differentials regular on Y . In particular one can compute the action of T0 on any 1-form
representing an element of H1

dR(X/Q). Using q-series for the elements of the basis B, we can
thus write down the matrix [Tp] ∈ Mat2t×2t(Q) that describes the action of any Tp ∈ T0. After
identifying H1

dR(X/Q) ≈ Q2t via the basis B, by finding the eigenspaces of finitely many such
matrices one can write down Q-bases for each isotypic component of H1

dR(X/Q). As is shown

in [Stn], the Hecke algebra T0 is generated as a Z-module by Ti for 1 ≤ i ≤ m
6 −

m−1
N , where
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m = [Γ(1) : Γ0(N)]. This gives an upper bound on the number of matrices needed, although
in practice considerably fewer are necessary. Using these it is simple linear algebra to produce
the desired symplectic basis ωg,1, . . . , ωg,2k for each isotypic component H1

dR(X/Q)[g].

Remark 4.2.3. FIXME: Add a remark about the alternative method which avoids computing
Hecke actions on differentials explicitly. (M-symbols, periods, blah blah) Note from Mike: I
have been unable to implement this method without ending up with complex matrices, rather
than ones with rational entries. Sage cannot compute eigenspaces of complex matrices, so I’m
not sure if this method can produce explicit bases of isotypic components. The computation
can be done without explicitly finding isotypic bases, but it is far less efficient.

4.3. Modular units and η-products. The preceding discussion raises the question of how
to compute the q-expansion about ∞ of a rational function u used to write down an initial
choice of basis B for H1

dR(X/Q).
Recall that a modular unit (for Γ0(N)) is a modular function u ∈ Q(X)× whose associated

divisor is supported on the cusps of X = X0(N). Denote by U the multiplicative group of
modular units.

Definition 4.3.1. The eta group Uη is the subgroup of Q(X)× of rational functions of the
form

u(q) = λ
∏

0<d|N

η(qd)rd ,

where λ ∈ Q×, η(q) = q1/24
∏
n>0(1−qn) is the classical eta function and {rd}d|N is a collection

of integers satisfying the following conditions.

i.
∑

d|N rd = 0,

ii.
∏
d|N d

rd ∈ Q× is a square,

iii. (nd) := AN · (rd) is a vector (indexed by divisors d of N) of integers divisible by 24,

where AN is the σ(N)× σ(N)-matrix whose entry indexed by (d, d′) is N ·(d,d′)2
dd′(d′,N/d′) .

Work of Newman and Ligozat shows that such functions are indeed modular units on X;
that is, Uη ⊂ U . In fact more is true:

Proposition 4.3.2. Q⊗Z Uη = Q⊗Z U .

Proof. It easy to see that the set {ad : d | N, a ∈ (Z/(d,N/d)Z)×} ⊂ P1(Q) is a complete
set of representatives of the cusps of X. The subspace Q ⊗ Uη ⊂ Q ⊗ U coincides with
Q ⊗ U ′, where U ′ ⊂ U consists of modular units that have the same valuation at any two
cusps a/d, a′/d with the same denominator; cf. [G, Prop. 2]. This implies the proposition in
light of the next lemma, since an element u ∈ U ⊂ Q(X) has the same valuation at any two
Galois-conjugate cusps. �

Lemma 4.3.3. Let d|N . Then the cusp 1/d is rational if and only if (d,N/d) = 1. More
generally, the Galois orbit of the cusp 1/d is Gal (Q̄/Q) · 1

d = {ad : a ∈ (Z/(d,N/d)Z)×}.
Proof of the lemma. We prove the first statement using the results of [Stv, §1.3]. Namely, it is
known that the cusps ofX are rational over Q(ζN ), and the Galois action of Gal (Q(ζN ))/Q) '
(Z/NZ)× can be described explicitly as follows [Stv, Thm. 1.3.1]: given b ∈ (Z/NZ)×, let τb be
the automorphism of Q(ζN ) that sends ζN 7→ ζbN . If a ∈ Z is chosen so that ab ≡ 1 (mod N)

then τb sends the cusp 1
d to 1

ad = a
d . Hence the Galois orbit of 1

d is {ad , a ∈ (Z/NZ)×}, and it can
be shown by an elementary argument that this set of cusps is equal to {ad , a ∈ (Z/(d,N/d)Z)×}
in Γ0(N)\P1(Q). �

By the Riemann-Roch theorem, there exist nonconstant rational functions on X that are
regular away from∞. The proposition implies that an integer power of such a function belongs
to the subgroup Uη ⊂ U , which yields the following.
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Corollary 4.3.4. There exists an eta product u ∈ Uη that is regular away from ∞. �

It is thus possible to compute the rational function u required in the compation of a basis
for H1

dR(X) as an eta product. A practical approach to finding the vector (rd)d|N giving rise
to the u we seek is to apply a mixed-integer linear programming algorithm: one minimizes
the pole order −nN of u at ∞ subject to the criteria of Newman-Ligozat in Definition 4.3.1
and the condition that the orders nd of u at other cusps are non-negative.

Remark 4.3.5. To determine the complexity of the algorithm described in this paper (see §4.8),
it is necessary to bound effectively (as a function of N) the order of the pole at ∞ of the eta
quotient u in Corollary 4.3.4. This can be done by examining the proof of Corollary 4.3.4. By
the Riemann-Roch theorem, there is a nonconstant rational function w on X that is regular
on Y and has a pole of order ≤ t = genus(X) at ∞. From the formula for genus(X) as a
function on N , one can thus extract the bound −ord∞(w) = O(N log logN); cf. for example
[CWZ]. (We adopt the convention that unless decorated with a subscript, an expression O(−)
denotes a bound with an absolute implied constant.) An examination of the proof of [G, Prop.
2], which was invoked to show Proposition 4.3.2, actually gives the more precise result that
wµ belongs to Uη for an integer µ = O(detAN ). Combining this with the explicit formula

[G, Prop. 1] for detAN , one deduces the estimate −ord∞(u) = O(N2σ0(N)+2), where σ0(N)
denotes the number of positive divisors of N .

4.4. Computing the Poincaré dual γf of ωf . Assume that {γ(j)} is a collection of

elements of Γ0(N) with small lower-left entries cN , whose homology classes γ
(j)
0 generate

H1(Xan,Z). By a brute-force search it is straightforward to find such elements γ(j) in prac-
tice. (For small N , often one need take c no greater than 2 or 3.)

For any m ∈ H1(Xan,C), write ηm for the Poincaré dual of c; conversely, for any differential
η of the second kind on X, let mη ∈ H1(Xan,C) denote the Poincaré dual of its cohomology
class. We normalize the Poincaré duality isomorphism so that it is characterized by the
property

(4.4.1) 〈ηm, η〉 =

∫
m
η.

The vector space H1(Xan,C) is also equipped an intersection product, which is related to
the Poincaré pairing by the formula

(4.4.2) m ·mη =
1

2πi
〈ηm, η〉.

The homology of X also admits a natural action of the Hecke algebra, compatible with the
action on cohomology via Poincaré duality. For any normalized eigenform f ∈ S2(Γ0(N)) and
any m ∈ H1(Xan,C), write mf ∈ H1(Xan,C)[f ] for the projection of m onto the f -isotypic
component of homology. Similarly, for η ∈ H1

dR(X/Q) write ηf for its projection onto the
f -isotypic component.

We can assume that via the method described above a symplectic basis

S = {ωf,1, . . . , ωf,`, ηf,1, . . . , ηf,`}
for H1

dR(X/Q)[f ] has already been computed, where 〈ωf,i, ηf,j〉 = δi,j .

Lemma 4.4.1. Fix γ1, γ2 ∈ Γ0(N) and let m1, m2 ∈ H1(Xan,Z) denote the corresponding
homology classes on X. For any normalized eigenform f ∈ S2(Γ0(N)), we have

mf
1 ·m

f
2 =

1

2πi

∑̀
i=1

I(ωf,i;m1)I(ηf,i;m2)− I(ωf,i;m2)I(ηf,i;m1),

where ωf = 2πif(z)dz is the 1-form corresponding to f .
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Proof. Let ηk = ηmk and write ηfk =
∑
c

(k)
i ωf,i +

∑
d

(k)
i ηf,i. Then we compute mf

1 · m
f
2 =

1
2πi〈η

f
1 , η

f
2 〉 =

∑
i

1
2πi(c

(1)
i d

(2)
i − c

(2)
i d

(1)
i ) = 1

2πi

∑
i(I(ωf,i; γ1)I(ηf,i, γ2) − I(ηf,i; γ1)I(ωf,i; γ2)).

�

Using (4.4.1), (4.4.2), and Lemma 4.4.1, we can compute the Poincaré dual γf of ωf .
Let m1, . . . ,m2` be modular symbols giving rise to a basis of H1(Xan,Z)[f ], which can be
computed using a modular symbols algorithm (cf. [Stn]). In particular, if f is new, then ` = 1.
Write A for the matrix (mi ·mj)1≤i,j≤2`, which can be computed using Lemma 4.4.1, and let v

be the column vector (mi ·mωf )2`
i=1, which can be computed using (4.4.2) in conjunction with

(4.4.1). Then the vector A−1v gives the coefficients expressing mωf as a linear combination
of m1, . . . ,m2`. These coefficients can then easily be converted to an expression for γf as a

linear combination of {γ(j)
0 }.

4.5. Computing the adjustments
∫
γf
α. Write the homology class γf Poincaré dual to

ωf as

γf =
∑

βjγ
(j)
0

for βj ∈ C and homology classes γ
(j)
0 whose lifts γ(j) to Γ0(N) have small lower-left entries

cN . Let ω and η be differentials of the second kind, at least one of which is regular at ∞.
Using the methods described so far, we are already able to compute

zω,η :=
∑
j

βj

∫ γ(j)τ0

τ0

ωFη.

We stress that the value of zω,η depends on τ0 and the choices we made in representing γf .
It is simply one part of the iterated integral Jω,η(γf ) =

∫
γf
ω · η − αω,η, which is independent

of these choices. In this section, we describe a method for computing Jω,η(γf ) − zω,η. This
amounts to computing the q-expansion of αω,η, for then we have

Jω,η(γf )− zω,η = −
∑
j

βj

∫ γ(j)τ0

τ0

αω,η.

Recall that the defining property of αω,η is that its principal part at ∞ agrees with that of

ωFη on X̃, modulo dq/q; i.e., their difference has at worst logarithmic poles. However, note
that since

∫
γf
λ = 0 for exact 1-forms λ, we may replace αω,η by any cohomologous 1-form.

The cohomology class of αω,η is determined by the data 〈λi, αω,η〉, where λ1, . . . , λ2t (for t the
genus of X) form a basis of H1

dR(X/Q), so it suffices to compute these values of the Poincaré
pairing.

We can choose λ1, . . . , λt to be holomorphic. In this case, we can compute

〈λi, αω,η〉 = res∞(Fλi · αω,η) = res∞̃(Fλi · Fη · ω),

where the second equality holds because res∞(Fλi · αω,η) depends only on

pp∞(αω,η) mod
d q

q
= pp∞̃(ωFη).

Lemma 4.5.1. Let λ1, . . . , λt ∈ H0(X,Ω1
X/Q) be a basis of regular 1-forms on X. Then

α ∈ H1
dR(X/Q) lies in the subspace H0(X,Ω1

X/Q) if and only if 〈λi, α〉 = 0 for all 1 ≤ i ≤ t.

Proof. The subspace H0(X,Ω1
X/Q) ⊆ H1

dR(X) is isotropic for the Poincaré pairing because

the pairing can be computed using residues. For dimension reasons, it is maximal isotropic,
and the lemma follows. �
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By the lemma, if 〈λi, α〉 = 〈λi, α′〉 for i = 1, . . . , t, then α − α′ is cohomologous to a
regular 1-form. Since αω,η is only well-defined modulo H0(X,Ω1

X/Q), it follows that we can

choose 〈λi, αω,η〉 for i = t+ 1, . . . , 2t arbitrarily. For convenience, we choose 〈λi, αω,η〉 = 0 for
i = t+ 1, . . . , 2t. Define the matrix B = (〈λi, λj〉)2t

i,j=1 and the vector

w = (〈λi, αω,η〉)2t
i=1 = (res∞̃(Fλ1Fηω), · · · , res∞̃(FλtFηω),

t︷ ︸︸ ︷
0, . . . , 0).

It then follows by elementary linear algebra that the vector B−1w yields the coefficients of an
expression for αω,η as a linear combination of λ1, . . . , λ2t.

4.6. Computing the coefficients cij. Using the methods described so far, we may compute
all the integrals

∫
γf

(ω · η−αω,η) occuring in (3.3.2). The last input needed to evaluate (3.3.2)

is the set of coefficients cnij appearing in that formula. Using Lemma 3.3.1, these coefficients

can be computed using the matrix An which expresses the right action of Tn on H1
dR(X/Q)[g]

with respect to the basis ωg,1, . . . , ωg,2k, and the matrix B = (〈ωg,i, ωg,j〉)1≤i,j≤2k, which by our
choice of basis is the standard symplectic matrix. In section 4.2, we gave a method for comput-
ing An using the action of Tn on q-expansions. However, this only works if gcd(n,N) = 12, so
we must resort to other methods. We exploit the fact that the action of Tn on H1(Xan,C)[g]
is readily computable using modular symbols; see [Stn] for details. Recall that we have a
Hecke-equivariant duality

H1
dR(Xan,C)[g]×H1(Xan,C)[g]→ C

given by the integration pairing 〈ω, λ〉 =
∫
γ λ; here the Hecke-equivariance means that

〈Tnω, α〉 = 〈ω, Tnα〉. Using modular symbols and the techniques of [Stn] one can compute
the matrix Bn of Tn acting on H1(Xan,C)[g] on the left, with respect to a basis m1, . . . ,m2k.
Write Q = (〈ωi,mj〉)2k

i,j=1, which can be computed efficiently via the method explained in §4.1

(using an appropriate basis {mj} derived from the generators γ
(j)
0 for H1(Xan,Z) discussed

above). Then it is straightforward linear algebra to show that An = QBnQ
−1.

4.7. Computing the denominator dg,n. The final ingredient to be computed is the de-
nominator dg,n, or the smallest positive integer such that dg,nTg,n ∈ TZ. This can be ac-
complished by computing a Z-basis for the (Z-finite free) Hecke algebra TZ as a subring of
M2t(Q), where t is the genus of X0(N), by identifying T with an algebra of endomorphisms of
the (2t)-dimensional Q-vector space of cuspidal modular symbols of weight 2 and level N .As
TZ is generated as an abelian group by Ti for 1 ≤ i ≤ m

6 −
m−1
N , where m = [Γ(1) : Γ0(N)],

this is a finite computation. For more details on modular symbols and generating the Hecke
algebra, see [Stn]. Once TZ has been computed it is a simple matter to find the matrix
representation of Tg,n and compute the smallest dg,n such that dg,nTg,n ∈ TZ.

4.8. Remarks on complexity. The complexity of the computations we have described is
primarily determined by the number nD of Fourier coefficients required to compute Jω,α(γf )
to a given number D of digits of accuracy. In this subsection we sketch a method for obtaining
a bound on nD in terms of N .

4.8.1. Write the Fourier expansion of u as

u(τ) =
∑

n≥−n0

cnq
n, q = e2πiτ , τ ∈ H.

2FIXME: I’m still not sure why this doesn’t work for primes dividing the level
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Let the principal part of u at ∞ be

pp∞(u) =
∑

−n0≤−m≤0

dm
m
q−m, dm = mc−m.

In [BO], Bringmann and Ono prove an exact formula for the Fourier coefficients of harmonic
Maass forms, of which weakly holomorphic modular functions such as u are examples. To
avoid introducing unnecessary notation, we state only the very special case of their result
applicable to our situation. We remark that long ago Rademacher used the circle method to
prove a similar exact formula for the coefficients of the j-function [R], and a modification his
argument would probably yield a simpler and more direct proof of the special case we require.
Using [BO, Thm. 1.1], one can express the coefficients cn, n > 0 in terms of the coefficents
dm, the order-1 I-Bessel function I1(z), and the Kloosterman sum

K(−m,n, c) :=
∑

0<v<c
(v,c)=1

exp

(
2πi

c
(nv +mv̄)

)
,

where v̄ denotes the multiplicative inverse of v modulo c. Namely, loc. cit. yields the formula

(4.8.1) cn = 2π
∑

−n0≤−m≤0

dm
∑
c>0

c≡0 (mod N)

(mn )1/2K0(−m,n, c)
c

I1

(
4π
√
|mn|
c

)
, n > 0.

By Remark 4.3.5, we have

(4.8.2) n0 = −ord∞(u) ≤ A1N
2σ0(N)+2,

where the constant A1 is absolute and σ0 denotes the divisor function. We can trivially bound
the numbers dm as follows. Let ξr(x) = re2πix for 0 < r < 1 and set y = − 1

2π log r > 0. The
Cauchy integral formula applied to the meromorphic function U(q) =

∑
cnq

n of q in the unit
disk gives

dm
m

=
1

2πi

∫
ξr

U(q)

qm+1
d q = e2πmy

∫ 1

0
u(x+ iy)e−2πinx dx.

Taking y = 1, say, we thus have

|dm| ≤ me2πm

∫ 1

0
|u(x+ i)|dx = me2πim

∫ 1

0

∏
d|N

|η(dx+ id)|rd dx,

where η is the Dedekind eta function and (rd)d|N is the vector giving rise to u. Recall that η(z)
is a nonvanishing holomorphic function on H, and satisfies |η(z+1)| = |η(z)|. Thus there is an
absolute upper bound B for max(|η(z)|, |η(z)|−1) on the strip {1− ε ≤ Im(z) ≤ N + ε} ⊂ H.
It follows that

|dm| ≤ me2πmB
∑
|rd|.

To control this quantity we must bound both B and
∑
|rd| in terms of N .

As regards B, note that since η(z) is holomorphic on H∗, the upper bound for |η(z)| on the
strip of interest poses no problem; it is a constant independent of N . To find a lower bound
for |η(z)| on our strip, we can make use of the Euler formula

η(z) = eπiz/12

1 +
∑
m≥1

q
3m2−m

2 + q
3m2+m

2

 , q = e2πiz.

From this it is straightforward to deduce a bound |η(z)|−1 = O(eπN/12), for z in the strip in
question.
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To handle
∑
|rd|, we recall some results from numerical analysis. Let A be an invertible

σ×σ matrix of real numbers. We denote by ||A||2 the quantity sup
x∈Rσ ,|x|=1

|Ax| and by ||A||max

the maximum of the absolute values of the matrix entries aij . A result in numerical linear
algebra [Mal, Thm. 2.1] asserts that when A has integer entries, one can control its so-called
“condition number” and obtain the estimate

||A−1||2 ≤ σ2+σ/2||A||σ−1
max.

We apply this result to the matrix AN from Definition 4.3.1 with σ = σ0(N). By Newman
and Ligozat’s result, the vector r = (rd)d|N and the vector n = (24orda/d(u))d|N (where a/d is

any cusp of X0(N) of denominator d) satisfy r = A−1
N n. Moreover since u has a pole of order

n0 at infinity and no other poles, the fact that ÷(u) has degree 0 implies |n| = O(n0

√
σ0(N)).

Finally, the formula for the entry of AN indexed by (d, d′) entails ||AN ||max ≤ N3. We thus
have, using (4.8.2),√∑

d|N

|rd| ≤
√∑

d|N

|rd|2 = |r| ≤ ||A−1
N ||2|n| ≤ σ0(N)

σ0(N)+5
2 n0N

3(σ0(N)−1) = O(N
11σ0(N)+1

2 ).

Consequently, for an absolute constant C we have

|dm| � me2πmeπN
∑
|rd|/12 ≤ me2πmeCN

11σ0(N)+2

≤ n0e
2πn0eCN

11σ0(N)+2

= O(n0 exp(2πN2σ0(N)+2 + CN11σ0(N)+2))

From this we deduce

(4.8.3) |dm| = O(n0 exp(A0N
11σ0(N)+2)),

for an absolute constant A0.
From (4.8.1) and (4.8.3), standard estimates for Kloosterman sums, and asymptotics for

the I-Bessel function, one obtains by the method of [BrPh, §§5.1-2] the estimate

cn = O(N5/4n
7/4
0 n−3/4 exp(A0N

11σ0(N)+2 +N−14π
√
nn0)).

In light of (4.8.2) this yields

(4.8.4) cn = O(n−3/4 exp(A2N
11σ0(N)+2 + 4π

√
A1

N Nσ0(N)+1√n)),

for absolute constants A1, A2.

4.8.2. The coefficients cn determine the Fourier coefficients of the 1-forms occuring in the
formula (3.3.2) for Pg,f,n. Unfortunately the relationship is indirect, as the construction of
the 1-forms ωg,i and αωg,i,ωg,j involves multiplying u against a basis of cusp forms for Γ0(N)
and then performing a lot of linear algebra. By Deligne’s proof of the Ramanujan-Petersson

conjecture, the cusp forms have nth coefficient of size Oδ(n
1
2

+δ). It follows that nth Fourier
coefficient of an element of the basis B for H1

dR(X/Q) computed in §4.2 has size at most

O(P (n) exp(A2N
11σ0(N)+2 + 4π

√
A1

N Nσ0(N)+1√n)),

for absolute constants A1, A2 and a universal polynomial P (n). To compute the 1-forms ωg,i
and αωg,i,ωg,j , linear algebra operations are performed on this basis, which spans a vector
space of dimension genus(X) = O(N log logN). It thus seems likely that a careful analysis of
the linear algebra operations performed would yield a bound

(4.8.5) O(Q(n) exp(A3N
11σ0(N)+2 + 4π

√
A1

N Nσ0(N)+1√n)),

for the nth Fourier coefficient of any 1-form integrated in the course of computing (3.3.2).
Here A1, A3 are absolute constants and Q(X) is a universal polynomial independent of N .
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Suppose λ is such a 1-form (on X or X̃), and consider the problem of integrating the
pullback of λ to H∗ along a path from τ1 to τ2. By the method explained in §4.1, we can
assume that imτ1, imτ2 ≥ (c∗N · N)−1, where c∗N · N is the largest of the lower-left entries of

the elements γ(j) ∈ Γ0(N) introduced at the beginning of §4.4. Recall that these consisted of
a collection of elements that span H1(Xan,Z) and have lower-left entries as small as possible.
We do not know how to bound c∗N in terms of N , although in practice it seems to be very
small.

If the Laurent expansion for λ about ∞ (or a lift of ∞ to X̃) is λ =
∑
aλ(n)d q

q , then

setting τj = xj + iyj for j = 1, 2 (where yj ≥ (c∗NN)−1), we have∫ τ2

τ1

λ =
∑

n�−∞

aλ(n)

n
(e2πinx2e−2πny2 − e2πinx1e−2πny1).

Our problem is to determine nD such that the tails of these sums are bounded by the requisite
precision, say 10−D. It clearly suffices to take for nD any m such that

S(m) :=
∑
n≥m

n−1|aλ(n)|e−2πny ≤ 10−D.

Granting (4.8.5), we have

S(m)�
∑
n≥m

n−1Q(n) exp(A3N
11σ0(N)+2 + 4π

√
A1

N Nσ0(N)+1√n− 2πn
Nc∗N

).

For a suitable constantA4, we can assume n−1Q(n) exp(4π
√
A1

N Nσ0(N)+1√n) ≤ exp(A4
N N

σ0(N)+1√n).
Thus

S(m) � exp(A3N
11σ0(N)+2)

∑
n≥m

exp(
1

Nc∗N
(A4c

∗
NN

σ0(N)+1√n− 2πn))

≤ exp(A3N
11σ0(N)+2)

∑
n≥m

e−n/Nc
∗
N = exp(A3N

11σ0(N)+2)
e−m/Nc

∗
N

1− e−1/Nc∗N
,

provided m is large enough that A4c
∗
NN

σ0(N)+1√n − 2πn ≤ −n for n ≥ m. The latter can

be ensured by requiring m ≥ A5c
∗2
NN

2σ0(N)+2 for an absolute constant A5. It follows with a
bit of algebra that provided (4.8.5) holds, we have the following estimate for nD in terms of
D and N :

(4.8.6) nD = O(max{Nc∗N (D +N11σ0(N)+2), c∗2NN
2σ0(N)+2}),

where the implied constant is absolute, as always.

5. Numerical examples

5.1. Example: 37a1. Take N = 37 in the setup of our algorithm. In this setting, the
space of regular differentials on X = X0(37) is spanned by ωf and ωg, which are associated
to elliptic curves over Q (labeled 37a1 and 37b1 in Cremona’s database) of ranks 1 and 0,
respectively.

By computing the periods attached to ωf and ωg, it can be checked that the classes of the
matrices

γ1 =

(
2 −1
37 −18

)
, γ2 =

(
3 −1
37 −12

)
, γ3 =

(
5 2
37 15

)
, γ4 =

(
14 3
37 8

)
generate the rational homology of X. These are a “nice” basis for the homology in the sense
of the first paragraph of §4.4; that is, the lower left entries are exactly 37 (rather than 37c for
|c| > 1), so the integral

∫ γiτ
τ λ can be evaluated efficiently for any meromorphic differential

1-form λ on X0(37) or its universal cover regular away form ∞, by the method of §4.1.
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To obtain differentials of the second kind representing classes in the deRham cohomology,
we consider the elements of the form

η1 = u · ωf , η2 = u · ωg, u = η(q)2η(q37)−2 = q−3
∞∏
n=1

(1− qn)2(1− q37n)−2,

where η(q) is the Dedekind eta function. The modular function u is an example of an eta
product with its only pole at ∞, as considered in §4.3. It is not hard to check directly (by
calculating the Poincaré pairing on all pairs of elements) that the classes of ωf , ωg, η1 and η2

generate the deRham cohomology of X; alternatively one could apply Lemma 4.2.1.
After computing the matrixM of the Hecke operator T2 acting onH1

dR(X0(37)) with respect
to the basis ωf , ωg, η1, η2, and then determining the eigenspaces of M , one finds that

ηf =
1

4
(−37ωg + 4η1 − 8η2),

ηg =
1

4
(37ωf − 6η1 + 10η2)

are in the f and g isotypic components of the deRham cohomology respectively. In addition
these linear combinations of 1-forms have been chosen so that {ωf , ηf} and {ωg, ηg} form
symplectic bases for the components with respect to the Poincaré pairing.

When one computes the Poincaré dual γf of ωf as in §4.4, one finds (with our normalization)
that it is

γf =
1

2πi
(A ([γ2]− [γ3] + [γ4])−B (−[γ1] + 2[γ2])) .

Here

A ≈ (2.4513893 . . .)i, B ≈ 2.9934586 . . .

are certain linear combinations of the periods of f against a basis of H1(X)[f ]; see §4.4 for a
more exact description.

The method of §4.5 can be used to compute αωg ,ηg . However, in this case, it is easy
to find αωg ,ηg by inspection. Working with principal parts, one finds that pp∞(ωgFηg) ≡
pp∞(1

4(η1 − η2)) mod dq
q . Thus we may take αωg ,ηg = 1

4(η1 − η2). Integrating this over γf

yields the rational number
∫
γf
αωg ,ηg = −1

2 (to many digits of precision).

Since g is a rational newform, then by Remark 3.2.3, we can find all the points Pg,f,n by
only computing Pg,f . According to Remark 3.3.2, this amounts to computing the complex
number zg,f :=

∫
γf

(ωg · ηg − ηg ·ωg − 2αωg ,ηg). The method in §4.1, coupled with the previous

paragraph, yields

zg,f = −0.4093610 . . .+ (1.2256946 . . .)i.

Let W be the Weierstrass uniformization of E. Then the point W (zg,f ) ∈ E(C) does not
necessarily lie in E(Q). This is because Tg is a rational combination of cycles, and so W (zg,f )
is a Q-linear combination of points in E(Q). Thus, the image ofW (zg,f ) in E(C)⊗Q lies in the
subspace E(Q)⊗Q. So in order to write Pg,f as an element of this space, we must compute the
“denominator” of Tg. As in §4.7, one can compute using the first few Fourier coefficients of f
and g that the idempotent e = (0, 1) ∈ Q×Q ' T (?) does not belong to TZ ⊂ T but 2e does.
Here, the identification (?) associates Tn ⊗ 1 ∈ T to (an(f), an(g)) ∈ Q ×Q. By definition,
Tg corresponds to e as an element of the Hecke algebra, so it! s denominator is 2. Thus, we
can write Pg,f = W (2zg,f ) ⊗ 1

2 ∈ E(Q) ⊗Q. One finds that W (2zg,f ) = (1357
841 : 28888

24389 : 1) to
within 13 digits of accuracy using 350 Fourier coefficients, so

Pg,f =

(
1357

841
:

28888

24389
: 1

)
⊗ 1

2
∈ E(Q)⊗Q
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5.2. Example: 43a1. Let N = 43 and let E be the elliptic curve labeled 43a1 in Cremona’s
database. The modular curve X = X0(43) has genus 3. There are two isotypic components
of H1

dR(X), one of dimension 2 corresponding to the modular form f that parametrized E,

and another of dimension 4 corresponding to a newform g with Fourier coefficients in Q(
√

2),
associated to an abelian surface quotient of J0(43).

In this case, a linear programming algorithm identifies the eta-quotient u that is modular
for Γ0(43) of weight 0, holomorphic away from the cusp ∞, and with minimal pole order at
∞, as

u =
η(q)4

η(q43)4
= q−7 − 4q−6 + 2q−5 + 8q−4 − 5q−3 − 4q−2 − 10q−1 + 8 + 9q + 14q3 +O(q4).

Computing the residue pairing shows that for a basis of cuspforms with rational Fourier
coefficients, corresponding to holomorphic 1-forms ωf , ωg,1, ωg,2 on X, the collection

ωf , ωg,1, ωg,2, uωf , uωg,1, uωg,2

forms a basis for H1
dR(X/Q). By finding the matrices of a few Hecke operators with respect

to this basis, one can as in the case N = 37 produce symplectic bases

ωf , ηf , and ωg,1, ωg,2, ηg,1, ηg,2

for H1
dR(X)[f ] and H1

dR(X)[g] respectively.
We can compute the Poincaré dual γf and the iterated integrals∫

γf

(ωg,i · ωg,j − αωg,i,ωg,j ),
∫
γf

(ωg,i · ηg,j − αωg,i,ηg,j ),
∫
γf

(ηg,i · ωg,j − αηg,i,ωg,j )

in the same manner as in the case N = 37 with one exception. One simply cannot find
αωg,i,ηg,j by inspection. No linear combination of our chosen basis has the same principal part
as ωg,iFηg,j , however some linear combination is cohomologous to such a form. The techniques
from §4.5 can be used to find such a form.

Each Tg,n gives rise to an element of End(H1
dR(X)[g]) ⊗ Q. The collection of elements

arising from Tg,n, n ≥ 1 generate a subspace of dimension 2, generated by Tg,1 and Tg,2.
Thus, we can effectively compute Pg,f,n for all n simply by computing Pg,f and Pg,f,2. The
formula for Pg,f is the one given in Remark 3.3.2, so we have

zg,f =

∫
γf

(ωg,1 · ηg,1 − ηg,1 · ωg,1 − 2αωg,1,ηg,1 + ωg,2 · ηg,2 − ηg,2 · ωg,2 − 2αωg,2,ηg,2)

= −2.0768300 . . .+ (2.7263648 . . .)i

The Hecke algebra T can be identified with Q×Q(
√

2) via Tn⊗1 7→ (an(f), an(g)). Under this
identification, Tg,1 corresponds to e1 = (0, 1), and an examination of the Fourier coefficients
of f and g shows that e1 does not lie in the image of TZ, but 2e1 does. So, we have

Pg,f = W (2zg,f )⊗ 1

2
=

(
11

49
: −363

343
: 1

)
⊗ 1

2
∈ E(Q)⊗Q.

Finding Pg,f,2 is a little more involved, as we must compute the matrix of T2 acting on
ωg,1, ωg,2, ηg,1, ηg,2. Two methods for doing this were discussed in §4.2 and §4.6, and either
shows that T2ωg,1 = 2ωg,2, T2ωg,2 = ωg,1, T2ηg,1 = − 97997

132319ωg,2 +ηg,2 and T2ηg,2 = 97997
132319ωg,1 +

2ηg,1. So the matrix A2 is given by
0 2 0 0
1 0 0 0
0 − 97997

132319 0 1
97997
132319 0 2 0

 .
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Combining this with Lemma 3.3.1 and remembering that αωg,i,ωg,j = 0 by Remark 2.2.6, we
find that

zg,f,2 = − 97997

132319

∫
γf

(ωg,1 · ωg,2 − ωg,2 · ωg,1) +

∫
γf

(ωg,1 · ηg,2 − ηg,2 · ωg,1 − 2αωg,1,ηg,2)

+ 2

∫
γf

(ωg,2 · ηg,1 − ηg,1 · ωg,2 − 2αωg,2,ηg,1)

= 2.4055874 . . .− (1.0710898 . . .)i.

The cycle Tg,2 corresponds to the element e2 = (0,
√

2) in Q ×Q(
√

2), which belongs to TZ

by inspection of the Fourier coefficients of f and g. Thus, we have

Pg,f,2 = W (zg,f,2)⊗ 1 = (−1 : 0 : 1)⊗ 1 ∈ E(Q)⊗Q.

5.3. Table. In Table 1 we report some Chow Heegner points that lie on elliptic curves over
Q of rank 1 and conductor < 100. The format of the table is as follows. We list the strong
Weil curve E in each isogeny class of rank Let N be the conductor of the curve E in question,
and f ∈ S2(Γ0(N)) the newform corresponding to E. The first two columns of the table list
the label for E in Cremona’s database and a choice of generator for E(Q), using the canonical
minimal Weierstrass equation for E with invariants a1, a3 ∈ {0, 1} and a2 ∈ {−1, 0, 1}.

The next column indicates a Galois orbit of normalized Hecke eigenforms g ∈ S2(Γ0(N)).
The column gives the index of the orbit in question when the orbits are ordered (starting with
index 0) by3 The case g = f is omitted (often f has index 0).

The fourth column gives an integer n ≥ 1 corresponding to a Hecke operator Tn. The table
includes [Kg : Q] values of n such that Tg · Tn form a Q-basis for for the direct factor Kg of
T. The fifth column lists Pg,f,n as an element of E(Q) ⊗Z Q, in terms of the generator P
in the second column. The sixth column gives the denominator dg,n defined above, and the
seventh column gives a point of E(Q) (with respect to the same Weierstrass model as above)
which represents the coset dg,nPg,f,n ∈ E(Q)/E(Q)tor. (The symbol ∗ indicates that such a
coset representative would take up too much space to be included in the table. The symbol
O indicates that dg,nPg,f,n is 0 modulo torsion.

FIXME: Should we include the index Ig,f of the subgroup of E(Q)/E(Q)tor generated by
πE(PZ) for all Z ∈ T ∩Kg ⊂ T? If so, what is the best way to compute this index?

5.4. Discussion. 4

6. Extensions of the method

6.1. Allowing f to be an oldform. 5
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Table 1. Chow Heegner points on curves of rank 1 and conductor < 100

Curve
E = Ef

generator
P ∈ E(Q)

g n Pg,f,n dg,n

37a1 (0,−1) 1 1 −6P 2
43a1 (0,−1) 1 1 4P 2

2 2P 1
53a1 (0,−1) 1 1 −2P 2

2 −8P 2
3 4P 2

57a1 (2, 1) 1 1 4
3P 12

2 1 −16
3 P 3

3 1 −4P 2
3 −4P 2

58a1 (0,−1) 1 1 4P 4
2 1 0 2

2 4P 2
3 4P 2
4 4P 2

61a1 (1,−1) 1 1 −2P 2
2 4P 2
3 −4P 1

65a1 (−1, 1) 1 1 P 2
2 P 2

2 1 P 2
2 3P 2

77a1 (2, 3) 1 1 12
5 P 20

2 1 −4
3P 6

3 1 4
3P 6

7 44
3 P 6

4 1 −12
5 P 10

2 −4P 2
79a1 (0, 0) 1 1 −4P 2

2 −4P 2
3 −4P 2
4 0 2
5 0 2

82a1 (0, 0) 1 1 0 4
3 2P 2

2 1 2P 2
2 0 2
3 2P 2
4 0 2
5 4P 2
6 2P 2

83a1 (0, 0) 1 1 0 2
2 2P 2
3 4P 2
4 −4P 2
5 −4P 1
7 0 2

Curve
E = Ef

generator
P ∈ E(Q)

g n Pg,f,n dg,n

88a1 (2,−2) 1 1 0 16
3 0 16

2 1 0 8
2 8P 2

3 1 0 2
2 8P 2
4 16P 1
8 16P 1

89a1 (0,−1) 1 1 8
5P 5

2 1 2
5P 10

2 22
5 P 10

3 −16
5 P 10

4 −2
5P 10

6 24
5 P 10

91a1 (0, 0) 1 1 2P 4
2 1 2P 4

2 −2P 2
3 1 4P 4

2 2P 2
3 6P 2

91b1 (−1, 3) 0 1 0 4
2 1 0 4

2 0 2
3 1 0 4

2 0 2
3 0 2

92b1 (1, 1) 1 1 0 2
2 1 0 15

2 0 5
3 1 0 20

2 0 5
3 0 4
4 0 6
6 0 1
8 0 5

99a1 (2, 0) 1 1 −2
3P 12

2 1 0 12

3 1 2
3P 6

4 1 2
3P 12

3 8
3P 3

5 1 −2
3P 6

3 −2
3P 3

9 −22
3 P 3


