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Introduction

The goal of this paper is to describe a complex-analytic algorithm for the computation
of triple Chow-Heegner points. Fix cuspidal eigenforms f, g ∈ S2(Γ0(N)) and assume f is
a newform with rational Fourier coefficients. To g is associated a Hecke correspondence
Tg ⊂ X0(N) ×X0(N), which gives rise to a rational point Pg ∈ J0(N)(Q). (A more precise
definition of Pg is given below.) The triple Chow-Heegner point Pg,f associated to the 3-
tuple of modular forms (g, g, f) is the image of Pg in Af , the elliptic curve quotient of J0(N)
associated to the newform f .

It is shown in [DRS] that the rational point Pg,f can be computed as an element of the
analytic curve Af (C) in terms of a certain iterated path integral (in the sense of [Ch]). This
formula is amenable to numerical computation, which we have implemented using the free
software package SAGE. The results of [DRS] together with work of Yuan-Zhang-Zhang give
a criterion (cf. [DRS, Theorem 1]) for when the points Pg,f are non-torsion. This criterion
implies that triple Chow-Heegner points comprise a collection of non-torsion points on many
elliptic curves Af of rank 1. Our algorithm makes these points readily computable in practice
for many elliptic curves Af of small conductor.

While the analytic formula is not the only way of computing the points Pg,f (see the
Appendix) our approach has a theoretical advantage: it requires knowing only the Hodge
class ξg associated to the cycle Tg. In future work, we hope to adapt the algorithm described
below to compute Chow-Heegner points [DRS2] associated to Hodge classes on “modular
varieties” (related to Kuga-Sato varieties), such as classes ξ arising from modular forms with
complex multiplication. The rationality of Chow-Heegner points computed in this manner
could provide numerical evidence for certain open cases of the Hodge conjecture.

In §1 we recall necessary facts about itegrated integrals and related ingredients for our main
algorithm. In §2 we specialize to the case of modular curves, define the points Pg,f precisely,
and write down an explicit analytic formula for them. In §3 we describe in detail an algorithm
for evaluating this formula numerically. The algorithm is illustrated with numerical examples
in §4. Some tables of triple Chow-Heegner points on elliptic curves of small conductor are
presented in §5, along with some discussion of a few phenomena apparent from this data.

1. Preliminaries

1.1. Let F be a number field (we take F = Q in the sequel) and fix an embedding ι : F ↪→ C.
Let X be a smooth, complete algebraic curve of genus g ≥ 2 over F , and let Y = X \ {∞}
be the complement of a single point in X(F ). For a smooth variety V/F (such as X or Y ) we
denote by V an the complex manifold (V ⊗F,ι C)(C) with its analytic topology.

1.2. The de Rham cohomology H1
dR(Xan,C) is the cohomology of the de Rham complex of

smooth C-valued differential forms on Xan.
1
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Because the Riemann surface Xan arises from an algebraic curve over F , we can identify
H1

dR(Xan,C) with H1
dR(X/F )⊗C, where

(1.2.1) H1
dR(X/F ) := H1(0→ OX → Ω1

X → 0)

is the algebraic de Rham cohomology of X/F , defined as the hypercohomology of the de Rham
complex of sheaves of regular differential forms on X.

As is well known, the fact that X is a curve means that H1
dR(X/F ) has a particularly

simple description in terms of ΩII(X), the space of differentials of the second kind on X. By
definition, these are rational 1-forms on X with vanishing residues at all points of X. By the
residue formula we may identify ΩII(X) with ΩII(Y ), the differentials of the second kind on
Y . Thus we have a canonical isomorphism

H1
dR(X/F ) = ΩII(Y )/dF (X),

where F (X) is the field of rational functions on X. By applying Riemann-Roch, this descrip-
tion can be simplified: it is not difficult to show that ΩII(Y )/dF (X) ∼= Ω1(Y )/dΓ(Y,OY ). So
H1

dR(X/F ) can also be computed as the space of regular 1-forms on Y , modulo exact forms.
For computational purposes, the latter description is the most useful: we will compute with
classes in H1(Y ) using rational 1-forms on X, regular away from the point ∞. These are
amenable to computation via their Laurent expansions about ∞.

1.3. Fix a base point o ∈ Y an; let Γ := π1(Y
an; o) denote the fundamental group of the

Riemann surface Y an. Let Z[Γ] be the integral group ring on Γ and write I ⊂ Z[Γ] for its
augmentation ideal. Note that H1(X

an,Z) = H1(Y
an,Z) ∼= Γab (as follows from the well-

known presentation for the fundamental group of a Riemann surface), and that this abelian
group is naturally identified with I/I2.

The path space on Y based at o, denoted P(Y ; o), is the set of piecewise-smooth paths

p : [0, 1] −→ Y an, with p(0) = o.

Let π : Ỹ → Y an denote the universal covering space of Y an corresponding to the choice of
basepoint o, which can be regarded as the space of homotopy classes in P(Y ; o). Likewise,

denote by X̃ the universal cover of X corresonding to the same basepoint o. The group Γ acts
on Ỹ transitively and without fixed points, and the map p 7→ p(1) identifies the quotient Ỹ /Γ
with Y an. Recall that if η is a closed C∞ 1-form (resp. a meromorphic 1-form of the second

kind) on Xan, then it admits a smooth (resp. meromorphic) primitive function Fη : X̃ → C,
defined by the rule

Fη(p) :=

∫ 1

0
p∗η.

The basic iterated integral attached to a tuple of smooth 1-forms ω1, . . . , ωn on Y an, eval-
uated along a path p ∈ P(Y ; o), is defined to be∫

p
ω1 · ω2 · . . . · ωn :=

∫
0≤tn≤tn−1≤···≤t1≤1

p∗(ω1)(t1) · · · p∗(ωn)(tn).

The integer n is called the length of this basic iterated integral. Note that when n = 2, the
basic iterated integral attached to ω and η can be computed by the formula∫

γ
ω · η =

∫
γ
ωFη =

∫ 1

0
γ∗(ωFη).

An iterated integral is a linear combination of basic iterated integrals, perhaps of different
lengths, viewed as a function on P(Y ; o). The length of an iterated integral is then defined to
be the maximum of the lengths of its constituent basic iterated integrals.

An iterated integral is said to be homotopy invariant if its value on any path p depends
only on the homotopy class of p. The space II(Y ) of homotopy invariant iterated integrals
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will be viewed as a subspace of the space of C-valued functions on Γ. Extending J ∈ II(Y )
to the group ring C[Γ] by C-linearity, we regard II(Y ) as a space of complex functionals on
C[Γ] via the inclusion II(Y ) ⊂ HomC(C[Γ],C).

For each n, let II≤n(Y ) denote the subspace of homotopy invariant iterated integrals of
length ≤ n. Observe that any element J ∈ II≤n(Y ) ⊂ Hom(Z[Γ],C) vanishes on In+1, and
hence gives rise to a well-defined element of Hom(I/In+1,C). The natural map II≤n −→
Hom(I/In+1,C) is an isomorphism.1

We will be interested in numerically evaluating certain iterated integrals J ∈ II≤2(Y ).
Specificaly, suppose we are given ω, η ∈ H1

dR(X/F ), represented as differentials of the second
kind, regular on Y . Recall that a differential on a Riemann surface is said to have a logarithmic
pole at a point if its expansion in terms of a local parameter q at this point is of the form∑∞

n=0 anq
n dq
q . Let αω,η be a meromorphic 1-form on X which is regular on Y and is such

that the induced differential ωFη−α on X̃ has at worst a logarithmic pole at (any point lying

over) ∞. This condition is well-posed because the principal part of ωFη at at x̃ ∈ X̃ depends
only on the image x of x̃; see [DRS, §1]. The form αω,η exists – and in fact can even be taken
to be algebraic and defined over F – by Riemann-Roch.

Lemma 1.3.1. The iterated integral Jω,η :=
∫
ω · η − αω,η, viewed as a function on P(Y, o),

is homotopy-invariant.
Moreover, suppose that ω and η represent integral cohomology classes. Then when II≤2(Y )

is identified with Hom(I/I3,C), the restriction of Jω,η to I2/I3 is Z-valued and can be iden-
tified with ω ⊗ η, viewed as an element of

H1(X,Z)⊗H1(X,Z) ∼= (H1(X,Z)⊗H1(X,Z))∨ = (I/I2 ⊗ I/I2)∨ = (I2/I3)∨,

where A∨ denotes the Z-dual of an abelian group A.

Proof. The homotopy invariance of Jω,η follows from the fact that Jω,η(γ) =
∫
γ ωFη − αω,η,

and the one form on X̃ in the integrand is holomorphic when restricted to Ỹ . For the second
claim, see the discussion at the beginning of §1 of [DRS], and loc. cit., Lemma 1.1(2). �

Now consider an integral class ξ =
∑
ωi ⊗ ηi ∈ H1(X,Z) ⊗ H1(X,Z). By the previous

lemma, the iterated integral Jξ =
∑
Jωi,ηi is homotopy invariant and induces a homomorphism

Jξ : H1(X,Z) = I/I2 → C/Z.

Fix an auxiliary holomorphic 1-form ρ ∈ H1,0(XC) ⊂ H1(Xan,C). Denote by Λ the period
lattice 〈

∫
γ ρ : γ ∈ H1(X

an,Z)〉. The class γρ ∈ H1(X
an,C) which is Poincaré dual to ρ

actually belongs to H1(X
an,Z)⊗ Λ. Consequently Jξ(γρ) is a well-defined element of C/Λ.

1.4. Let X1, X2 denote copies of X, and X12 the diagonal copy of X in X1×X2. To a divisor
Z ⊂ X ×X = X1 ×X2 (defined over F ) we associate the point

PZ = DZ − deg(DZ)o ∈ Pic0(X),

where (recall) o ∈ X(F ) is a fixed base point and we set DZ = (Z∩X12)−(Z∩X1)−(Z∩X2).
We now state the iterated integral formula from [DRS] for the image of PZ under the

Abel-Jacobi map
AJX : Pic0(X)→ Ω1(Xan)∨/H1(X

an,Z).

Let εo be the projector on Pic(X ×X) defined by

εo(Z) = Z − i1∗π1∗ − i2∗π2∗
where π1, π2 : X ×X ⇒ X are the projections and i1, i2 : X ⇒ X ×X are the inclusions of
“vertical and horizontal” copies of X over the basepoint o.

1FIXME: add reference? This is stated without proof in DRS.



4 HENRI DARMON, MICHAEL DAUB, SAM LICHTENSTEIN AND VICTOR ROTGER

Let
cl(εo−) : Pic(X ×X)→ H1

dR(Xan,Z)⊗H1
dR(Xan,Z)

denote the composition of the cycle class map and the projector εo. (The effect of ε0 is to
annihilate H2 ⊗H0 and H0 ⊗H2 factors in the Künneth decomposition of H2(X ×X).)

Theorem 1.4.1 ([DRS], Corollary 3.6). Suppose cl(εoZ) is represented by
∑
ωi ⊗ ηi, where

ωi, ηi ∈ Ω1(Y ) (one of each pair being regular at ∞, since cl(εoZ) is a Hodge class). Then the
image AJX(PZ) ∈ Ω1(Xan)∨/H1(X

an,Z) is represented by the linear functional which maps
ρ ∈ Ω1(Xan) to∑

Jωi,ηi(γρ) =
∑∫

γρ

(ωi · ηi − αωi,ηi) + deg(DZ)

∫ ∞
o

ρ ∈ C,

where γρ ∈ H1(X
an,C) is Poincaré dual to ρ ∈ H1,0(Xan) ⊂ H1

dR(Xan,C). �

2. Triple Chow-Heegner points on modular curves

We now specialize the discussion of the preceding section to the case of classical modular
curves X. We shall define certain rational points on an arbitrary elliptic curve E/Q called
triple Chow-Heegner points, such that the corresponding points of E(C) ∼= C/ΛE can be
computed using iterated path integrals via Theorem 1.4.1.

2.1. Let N ≥ 1 be an integer and let X = X0(N) denote the canonical model over Q of
the classical modular curve of level N ; write J0(N) for the Jacobian of X0(N). With this
choice of X we place ourselves in the setup of §1, taking the ground field F to be Q and the
point ∞ ∈ X(Q) to be the usual cusp at infinity. Thus Y := X0(N) − {∞}. (Note that
Y ) Y0(N) = X0(N) − {cusps}.) We will be deliberately vague concerning our basepoint
o ∈ Y an for topological constructions, but see §3.1 for the relevance of the choice of o when
performing explicit computations.

We shall make use of the Poincaré pairing on H1(X), which is a symplectic form

〈, 〉 : H1
dR(X/Q)×H1

dR(X/Q)→ Q.

If ω and η are smooth 1-forms on X, then 〈ω, η〉 := 1
2πi

∫
X ω ∧ η. If ω and η are differentials

of the second kind on X, holomorphic away from the cusp ∞, then the induced pairing on
H1(Y ) can also be computed as

〈ω, η〉 = res∞(Fω · η) = −res∞(ω · Fη),

where as above Fν denotes the primitive function Ỹ → C of the differential ν. Given 1-forms
ω, η of the second kind on X, regular on Y , the Poincaré pairing of their cohomology classes
is thus computable from Laurent expansions of ω, η about ∞ by integrating formally.

2.2. Now let E/Q be an elliptic curve of conductor N whose isogeny class corresponds to a
newform f ∈ S2(Γ0(N)) with rational Fourier coefficients. In particular there is a modular
parametrization πE : J0(N) → E, a homomorphism of abelian varieties defined over Q. We
will assume for the remainder of this paper that E is optimal, so kerπE is connected. In
this case the Néron lattice of E coincides with the period lattice Λf of the differential ωf =
2πif(z)dz ∈ Ω1(Xan) corresponding to f . The map πE can be computed on complex points
explicitly, using the Abel-Jacobi isomorphism AJX : J0(N)(C) ∼= Ω1(Xan)∨/H1(X

an,Z), the
Weierstrass uniformization W : C/Λf ∼= E(C), and the analytic parametrization

πanE : Ω1(Xan)∨/H1(X
an,Z)

evaluate at ωf−→ C/Λf .

Namely, for PC ∈ J0(N)(C) we have πE,C(PC) = W (πanE (AJX(PC))) = W (AJX(PC)(ωf )).
Let T0 = Z[{Tn}n-N ] be the “anemic” Hecke algebra. Then T0 ⊗Q factors as a product∏
g′ Kg′ where g′ runs over newforms of all levels M dividing N and Kg′ = Q({an(g′)}n≥1)
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is the number field generated by the Hecke eigenvalues of g′. For any divisor M of N and a
newform g ∈ S2(Γ0(M)), denote by Tg ∈ T0 ⊗Q ∼=

∏
g′ Kg′ the idempotent with 1 in the Kg

component and 0 elsewhere. This gives rise to a correspondence in Pic(X ×X) ⊗Q, which
by abuse of notation will also be denoted by Tg.

Definition 2.2.1. The triple Chow-Heegner point Pg,f corresponding to the 3-tuple (g, g, f)
of modular forms is the element πE(PTg) ∈ E(Q)⊗Q.

For generalizations of this definition, see for example [BDP2].

Remark 2.2.2. In this definition, PTg is defined as in §1 taking Z = Tg. However note that
Tg might not literally be a divisor on X × X; the correspondence Tg is merely a Q-linear
combination of such divisors. Thus PTg belongs to Pic0(X)⊗Q = J0(N)(Q)⊗Q. If we define
the “denominator” dg of Tg ∈ T0 ⊗Q to be the smallest positive integer such that dgTg lies
in the image of T0 under the inclusion T0 ↪→ T0⊗Q, then dgPg,f ∈ E(Q) is rational. See §3
for more details.

2.3. To obtain from Theorem 1.4.1 an explicit formula for a triple Chow-Heegner point Pg,f
in terms of iterated integrals, we must know the components of cl(εoTg) ∈ H1

dR(X/Q)⊗2 when
this class is decomposed as a sum of pure tensors.

The action of the Hecke algebra T0 on modular forms extends to an action on the de Rham
cohomology of X. Under this action, we have

H1
dR(X/Q) ∼= H1

dR(X/Q)[g1]⊕ · · · ⊕H1
dR(X/Q)[gn],

indexed by Galois conjugacy classes of newforms of all levels M dividing N .

Lemma 2.3.1. Let M |N and let g ∈ S2(Γ0(M)) be a newform. Let {ωg,1, . . . , ωg,k, ηg,1, . . . , ηg,k}
be a collection of differentials of the second kind on X representing a basis for H1

dR(X/Q)[g]
that is symplectic with respect to the Poincaré pairing; i.e. assume 〈ωg,i, ηg,j〉 = δi,j and

〈ωg,i, ωg,j〉 = 〈ηg,i, ηg,j〉 = 0. Then cl(εTg) =
∑k

i=1 ωg,i ⊗ ηg,i − ηg,i ⊗ ωg,i.

Proof. By definition Tg is a correspondence which acts on H1(X) as the idempotent projector
onto H1(X)[g]. The H2 ⊗ H0 and H0 ⊗ H2 Künneth components of cl(Tg) act trivially
on H1(X). (See [BL, 11.5.1], for example.) Thus cl(εoTg) ∈ H1(X) ⊗ H1(X) also acts by
projecting onto H1(X)[g].

The action on H1(X) of a correspondence Z ⊂ X×X whose cycle class is in H1(X)⊗H1(X)
can be written in terms of the Poincaré pairing. Using that cl(εoTg) is a projector on H1(X)[g],
one finds that cl(εoTg) =

∑
i,j〈bi, bj〉bi ⊗ bj for any basis {b1, . . . , b2k} of H1(X)[g]. From the

the claim follows immediately. �

Combining the previous results, we obtain the following formula for Pg,f . Let γf be the
Poincaré dual of ωf and let ωg,1, . . . , ωg,k, ηg,1, . . . , ηg,k be (differentials of the second kind
which give rise to) a symplectic basis for the g-isotypic Q-subspace H1(X/Q)[g] ⊂ H1(X/Q).
Then, recalling that W denotes the Weierstrass uniformization of E(C), we find that Pg,f ∈
E(Q)⊗Q ⊂ E(C)⊗Q can be computed as

(2.3.1) Pg,f = W

(
k∑
i=1

(∫
γf

ωg,i · ηg,i − ηg,i · ωg,i − 2αωg,i,ηg,i

))
.

We emphasize that by Lemma 1.3.1 (and the discussion immediately following it) the right-
hand side of (2.3.1) depends only on the homology class γf ∈ H1(Y

an,Z) = H1(X
an,Z)

Poincaré dual to ωf . It can therefore be evaluated by lifting γf arbitrarily to an element

γ̃f ∈ π1(Y an; o) and evaluating
∑
ωg,i · ηg,i − ηg,i · ωg,i − 2αωg,i,ηg,i ∈ II≤2(Y ) on any loop in

the homotopy class γ̃f .
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2.4. Recall that in the above definition of iterated integral, everything depends on the choice
of a base point o. Likewise, the projector εo depends on o, and hence a priori so does the
point Pg,f . However we have the following.

Lemma 2.4.1. The point Pg,f is independent of o.

Proof. Changing the basepoint from o to o′ amounts to conjugating the representative path
γf for the homology class Poincaré dual to ωf by a path β from o to o′. This manifestly does
not affect the value of the integral of the meromorphic 1-form 2αωg,i,ηg,i . Thus the issue is
whether we have an identity

(2.4.1)

∫
γf

ωg,i · ηg,i − ηg,i · ωg,i
?
=

∫
βγfβ−1

ωg,i · ηg,i − ηg,i · ωg,i.

But by [H1, Exer. 8], for any 1-forms ω, η, loop γ, and path β, we have

(2.4.2)

∫
βγβ−1

ω · η =

∫
γ
ω · η +

∣∣∣∣ ∫γ ω ∫
γ η∫

β ω
∫
β η

∣∣∣∣ .
In our situation, the determinants expressing the difference between the two sides of (2.4.1)
vanish. Indeed,

∫
γf
ωg,i = 〈ωg,i, ωf 〉 = 0 = 〈ηg,i, ωf 〉 =

∫
γf
ηg,i, since the decomposition into

isotypic components for the action of the Hecke algebra is orthogonal with respect to the
Poincaré pairing. �

2.5. We record a fundamental property of the points Pg,f .

Theorem 2.5.1 ([DRS], Theorem 1). Assume that the local signs of Garrett’s triple product
L-function L(g, g, f, s) at the primes p | gcd(M,N) are all εp(g, g, f) = +1. Then the point
Pg,f ∈ E(Q)⊗Q is nonzero (or equivalently, the point πE(dgPTg) ∈ E(Q) is non-torsion) if
and only if the following three conditions hold:

i. L(f, 1) = 0,
ii. L′(f, 1) 6= 0, and

iii. L(f ⊗ Sym2(g), 2) 6= 0.

3. Algorithm for effective computation of triple Chow-Heegner points

We now turn to the question of numerically evaluating formula (2.3.1) for a triple Chow-
Heegner point Pg,f ∈ E(Q) ⊗ Q for an optimal elliptic curve E = Ef . We retain all the
notation from §§1-2.

The following ingredients occur in the formula (2.3.1) for Pg,f .

1. The Poincaré dual γf ∈ H1(X,C) of ωf ∈ H1
dR(Xan,C).

2. A collection of rational differentials of the second kind ωg,1, . . . , ωg,k, ηg,1, . . . , ηg,k on
X, regular away from ∞, whose images in H1

dR(X/Q) are a symplectic basis for the
g-isotypic component H1

dR(X/Q)[g].
3. Meromorphic differentials αωg,i,ηg,i on X, regular on Y , such that ωg,iFηg,i − αωg,i,ηg,i

has at worst a logarithmic pole at (any point lying over) ∞.

These data must be “known” in a sufficiently concrete form to evaluate the iterated integrals
occuring in (2.3.1). It is also desirable to know

4. the denominator dg of the projector onto the g-isotypic component of the chomology
of X.

This last item will allow for the computation of a point in E(Q), as opposed to one in
E(Q)⊗Q. This section is devoted to methods of computing these four ingredients.
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3.1. Evaluating iterated integrals. Let J =
∑
ωi · ηi − αi ∈ II≤2(Y ) be a homotopy-

invariant iterated integral of length ≤ 2 on Y , expressed in terms of differentials of the second
kind on X, regular on Y . We seek to compute the righthand side of formula (2.3.1), which
is J(γ) for a particular choice of J and (homotopy class of) path γ ∈ π1(Y ; o). As remarked
earlier, said formula actually depends only on the homology class γ0 of of γ. This homol-
ogy class belongs to H1(Y

an,Z) = H1(X
an,Z), which is the abelianization of the quotient

π1(X
an, o) = Γ̄0(N) of Γ0(N) by the smallest normal subgroup containing the elliptic and

parabolic elements. To evaluate J(γ0) for γ0 ∈ H1(Y
an,Z), we lift γ0 arbitrarily to a path γ̃

in Ỹ based at o. If we choose the basepoint o away from the divisor of cusps on X, then o
can be lifted to an element τ0 in the upper half-plane H, regarded as a cover2 of Y0(N).

The path γ̃ can then be viewed as a path in H from τ0 to γτ0, where γ ∈ Γ0(N) is a lift of
γ0.

Lemma 3.1.1. Suppose γ0 is Poincaré-dual to ρ. As an element of C/Λρ, we have

J(γ0) =
∑∫ γτ0

τ0

ωiFηi − αωi,ηi

where we conflate 1-forms on X with their pullbacks to H∗ = H ∪ {∞}. Moreover, Fηi has
Laurent expansion about ∞ ∈ h∗ given by formally integrating the Laurent expansion of ηi
about the cusp ∞ ∈ X.

Proof. Clear. �

Given any differential form λ of the second kind on X, and any γ ∈ Γ0(N), let

I(λ; γ) :=

∫ γτ0

τ0

λ.

(As above, in the righthand side of this expression λ is conflated with its pullback to H∗.) By
the residue formula, this expression is independent of the choice of path on the upper half-plane
H from τ0 to γτ0. The Γ0(N)-invariance of λ also shows that this expression is independent
of the choice of base point τ0 ∈ H, which justifies suppressing τ0 from the notation.

If λ instead denotes a differential of the second kind on X̃ then the integral above still
makes sense but depends on both the basepoint o and the chosen lift of o to τ0 ∈ H. We
will primarily be interested in evaluating such integrals in the context of (2.3.1), for which
the choice of basepoint is ultimately irrelevant. (This is because the Poincaré dual of the
homology class of γ, is orthogonal to the 1-forms in the iterated integral giving rise to the
path integral we seek to evaluate; cf. Lemma 2.4.1.) However, as we are about to see, for
the purposes of algorithmic efficiency it is necessary to break up the path of integration into
pieces which can be computed relatively quickly. The integrals over these pieces may no longer
be basepoint-independent: when we express γ as a product of computationally-amenable
elements γ(j) ∈ Γ0(N), the corresponding homology classes may no longer lie in (the Poincaré
dual of) the orthogonal complement of H1

dR(X/Q)[g]. Thus for a general meromorphic 1-form

λ on X̃ and a general γ ∈ Γ0(N), we adopt the notation

Iτ0(η; γ) =

∫ γτ0

τ0

η

to emphase the dependence on the choice of basepoint.
By meromorphicity, for λ as above (defined on eitherX or X̃) the integral I(λ; γ) or Iτ0(λ; γ)

can be computed by integrating term-wise a Laurent expansion for λ using the fundamental
theorem of calculus. Thus, in practice, one computes the Laurent expansion for the primitive

2FIXME: this cover is ramified at the elliptic points, so some additional care in required to make this step
rigorous.
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Fλ about ∞ ∈ X (or a choice of ∞̃ ∈ X̃ lying over ∞), regarded as function given by a
convergent power series in q = e2πiτ on h, and evaluates it at τ0 and τ ′0 = γτ0. The larger the
imaginary parts of τ0 and τ ′0 are, the faster this series converges and the fewer coefficients of
the Laurent series of λ are necessary to approximate I(λ; γ) or Iτ0(λ; γ) to a give degree of
accuracy. Writing γ =

(
a b
c d

)
, it is well-known that the best compromise between Im(τ0) and

Im(τ ′0) is achieved when we choose τ0 = −d
c + 1

|c| i (cf., for example, [Cr, p. 35]). This optimal

basepoint for γ will be denoted τ∗γ .
With this remark in mind, we take the following approach to computing J(γ0) as in the

lemma above. First compute Laurent expansions for the differentials ωi, ηi, αωi,ηi . Then
find a “good” expression for the homology class γ0 ∈ H1(X

an,C), writing it as a C-linear

combination of classes γ
(j)
0 ∈ H1(X

an,Z) which lift to elements γ(j) ∈ Γ0(N) with small

lower-left entries cN . Finally, calculate approximations to the integrals Iτ0(ωiFηi ; γ
(j)) and

I(αωi,ηi ; γ
(j)). The appropriate linear combination of these integrals is an (approximate)

representative for the coset J(γ0) ∈ C/Λρ.)

To calculate I(αωi,ηi ; γ
(j)), one is free to change the basepoint from τ0 to the optimal

basepoint τ∗j := τ∗
γ(j)

for γ(j), since αωi,ηi is defined on X and not only on X̃. The same is not

true for ωiFηi . To evaluate Iτ0(ωiFηi ; γ
(j)) we appeal to the following lemma.

Lemma 3.1.2. Iτ0(ωiFηi ; γ
(j)) = Iτ∗j (ωiFηi ; γ

(j))− I(ηi; γ
(j))
∫ τ∗j
τ0
ωi.

Observe that every term on the righthand side can be computed using the fundamental
theorem of calculus, evaluating powerseries only at the points τ0 and τ∗j . In particular, taking

τ0 = i/N , each such evaluation converges at least as fast as an evaluation at τ∗j , so this formula
for the integral is “optimally efficient”.

Proof of the lemma. Since λ = ωiFηi is a holomorphic 1-form on H, its integral along a closed
contour vanishes. Thus

Iτ0(λ; γ(j)) = Iτ∗j (λ; γ(j)) +

∫ τ∗j

τ0

λ−
∫ γ(j)τ∗j

γ(j)τ0

λ.

To evaluate the second term on the righthand side, we observe that ωi comes from a 1-form on
X, so it is Γ0(N)-invariant; it thus pulls back to itself along the fractional linear transformation

defined by γ(j). On the other hand,

I(ηi; γ
(j)) =

∫
γ(j)

ηi = Fηi(γ
(j)τ)− Fηi(τ), for all τ ∈ H.

Hence (γ(j))∗Fηi = Fηi + I(ηi; γ
(j)). So (γ(j))∗λ = λ+ I(ηi; γ

(j))ωi, and we find∫ γ(j)τ∗j

γ(j)τ0

λ =

∫ τ∗j

τ0

(γ(j))∗λ =

∫ τ∗j

τ0

λ+ I(ηi; γ
(j))

∫ τ∗j

τ0

ωi,

which yields the lemma. �

Remark 3.1.3. We warn the reader that possibly Iτ0(ωiFηi ; γ
(j)) 6=

∫
γ(j) ωi · ηi (regarding γ(j)

as an element of π1(Y
an; o). Indeed, the iterated integral ωi · ηi need not even be homotopy

invariant (!) so
∫
γ(j) ωi · ηi is ill-defined. In particular, one cannot relate Iτ0(ωiFηi ; γ

(j)) to

Iτ∗j (ωiFηi ; γ
(j)) using the change-of-basepoint formula (2.4.2) for iterated integrals.

To efficiently evaluate the integrals in (2.3.1) using the method just explained, it is therefore
necessary to know:

a. the homology class γf as a C-linear combinationation of class γ
(j)
0 whose lifts to Γ0(N)

have small lower-left entries cN ; and,
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b. Laurent expansions about ∞ for a symplectic basis ωg,i, ηg,j of H1
dR(X/Q)[g] and the

forms αωg,i,ηg,i .

In the rest of this section we turn to the task of computing these data.

3.2. Calculating a symplectic basis for H1
dR(X/Q)[g]. The calculation of a basis for the

deRham cohomology can be carried out by first writing down a modular function u – that is,
a rational function on X = X0(N) – which is regular away from ∞. Such a function exists
by Riemann-Roch and a q-expansion for one such function can be computed explicitly using
the Dedekind eta-function, as explained in the next subsection.

Using a modular symbol algorithm, one can compute q-expansions for a basis of S2(Γ0(N),Q);
cf. [S2], for example. Write ω1, . . . , ωt for the corresponding holomorphic 1-forms on X, where
for convenience we set t = pa(X) = dimS2(Γ0(N)).

Define η1 = uωi, which is a differential of the second kind by the residue theorem, and let
B = {ω1, ..., ωt, η1, ..., ηt} ⊂ H1

dR(X/Q) be the corresponding set of cohomology classes. A
simple application of Riemann-Roch shows the following.

Lemma 3.2.1. The set B is basis for H1
dR(X/Q) whenever ∞ is not a Weierstrass point on

X and u has a pole of order t+ 1 (i.e., the smallest possible) at ∞. �

Proof. Since∞ is not a Weierstrass point onX, we may assume that ord∞(ωi) = i−1, and thus
ord∞(ηi) = i−t−2. For any differential of the second kind ω′, we can find a linear combination
of η1, . . . , ηt and dh for an appropriate rational function h having the same principal part as
ω′. Thus the difference is holomorphic, and lies in the span of {ω1, . . . , ωt}. �

Remark 3.2.2. By a result of Ogg [O], the cusp ∞ is not a Weierstrass point when the level
N is prime, or more generally when N = pM for prime p and an integer M ≥ 1 such that
X0(M) has genus zero and p - M . Even if u has a pole of order > g(X) + 1, the set B may
still be a basis of H1

dR(X/Q). This can be checked by computing the matrix for the Poincare
pairing, and in every example we have computed this is the case.

When ∞ is a Weierstrass point, there is a rational function with a single pole at ∞ of
order ≤ g(X). When u is taken to be such a function, then the set B will never be a basis.
Indeed, since ∞ is a Weierstrass point, there exists a holomorphic differential form ω with
order of vanishing ≥ g(X) at ∞. Then uω is still holomorphic, and thus lies in the span of
{ω1, . . . , ωt}. But uω also is in the span of {η1, . . . , ηt} by definition of the ηi, giving rise to a
linear dependence relation. Hence, in order for B to be a basis, it is necessary for u to have a
pole at ∞ of order greater than the order of vanishing at ∞ of any holomorphic differential.

Given one basis B for H1
dR(X/Q) – for example, one computed as above – it is then a

matter of linear algebra to produce a better basis which is adapted to the action of the Hecke
algebra. Note that the usual formula for the action of T on holomorphic modular forms in
terms of q-expansions extends to weakly holomorphic modular forms, such as 1-forms of the
second kind on X, as well.3 Thus, using q-series for the elements of the basis B, we can
write down the matrix [Tp] ∈ Mat2t×2t(Q) which describes the action of any Tp ∈ T on de
Rham cohomology. By finding the eigenspaces of finitely many such matrices4 we can write
down Q-bases for each isotypic component of H1. Using these it is elementary to produce the
desired symplectic bases {ωg,i, ηg,j} for each isotypic component H1

dR(X/Q)[g].

3FIXME: add reference?
4FIXME: Add a reference to the bound on the number of generators of T acting on modular forms of level

N ; must explain why a similar effective bound holds also for all of H1. Remark that in practice only very
small Hecke operators are required when N is small, but that using our strategy to write down an essentially
“random” basis in terms of ωs and uωs, the rational numbers showing up even in the matrix of T2 seem to
grow complicated exponentially fast (as a function of N).



10 HENRI DARMON, MICHAEL DAUB, SAM LICHTENSTEIN AND VICTOR ROTGER

3.3. Modular units and η-products. The preceding discussion raises the question of
how to compute the rational function u used to write down an initial choice of basis B for
H1

dR(X/Q). To “compute u” means to compute its Laurent expansion about ∞.
Recall that the modular units U (for Γ0(N)) are the multiplicative group of modular func-

tions u ∈ C(X)× with divisor supported on the cusps of X = X0(N).

Definition 3.3.1. The eta group Uη is the group of rational functions u ∈ Q(X) of the form

u(q) =
∏

0<d|N

η(qd)rd ,

where η(q) = q1/24
∏
n>0(1 − qn) is the classical eta function, and {rd}d|N is a collection of

integers satisfying the following conditions.

i.
∑

d|N rd = 0,

ii.
∏
d|N d

rd ∈ Q× is a square,

iii. (nd) := AN · (rd) is a vector (indexed by divisors d of N) of integers divisible by 24,

where AN is the σ(N)× σ(N)-matrix whose entry indexed by (d, d′) is N ·(d,d′)2
dd′(d′,N/d′) .

Work of Newman and Ligozat shows that such functions are indeed modular units on X;
that is, Uη ⊂ U . In fact more is true:

Proposition 3.3.2. Q⊗ Uη = Q⊗ U .

Proof. It easy to see that the set {ad : d | N, a ∈ (Z/(d,N/d)Z)×} ⊂ P1(Q) is a complete
set of representatives of the cusps of X. The subspace Q ⊗ Uη ⊂ Q ⊗ U coincides with
Q ⊗ U ′, where U ′ ⊂ U consists of modular units which have the same valuation at any two
cusps a/d, a′/d with the same denominator; cf. [G, Prop. 2]. This implies the proposition in
light of the next lemma, since an element u ∈ U ⊂ Q(X) has the same valuation at any two
Galois-conjugate cusps. �

Lemma 3.3.3. Let d|N . Then the cusp 1/d is rational if and only if (d,N/d) = 1. More
generally, the Galois orbit of the cusp 1/d is the set of cusps a/d with a relatively prime to
(d,N/d).

Proof of the lemma. We prove the first statement using the results of [St, §1.3]. Namely, it is
known that the cusps of X are rational over Q(ζN ), and the Galois action can be described
explicitly as follows [St, Thm. 1.3.1]: if τ is the automorphism of Q(ζN ) which sends ζN 7→ ζnN
and n′ ∈ Z is chosen so that nn′ ≡ 1 (mod N) then τ sends the cusp x/y to x/n′y. In
particular, it follows straightforwardly that [1/d]τ = [n′/d]. Thus it suffices to prove that the
cusps n′/d and 1/d coincide for all n′ relatively prime to N , if and only if (d,N/d) = 1. This
fact can be shown by an elementary argument using the conditions for the integer matrix
sending 1/d to n′/d to be in Γ0(N). The second statement is proved similarly5. �

By the Riemann-Roch theorem, there exist nonconstant rational functions on X which
are regular away from ∞. The proposition implies that an integer power of such a function
belongs to the subgroup Uη ⊂ U , which yields the following.

Corollary 3.3.4. There exists an eta product u ∈ Uη which is regular away from ∞. �

It is thus possible to compute the rational function u required in the compation of a basis
for H1

dR(X) as an eta product. A practical approach to finding the vector (rd)d|N giving rise
to the u we seek is to apply a mixed-integer linear programming algorithm: one minimizes
the pole order −nN of u at ∞ subject to the criteria of Newman-Ligozat in Definition 3.3.1
and the condition that the orders nd of u at other cusps are non-negative.

5FIXME: double check this!
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Remark 3.3.5. By minimizing the pole order of u at ∞, we may compute using the method
of the previous subsection a basis B for the de Rham cohomology of X to a desired degree
of precision using as few Fourier coefficients as possible for the cusp forms ω1, . . . , ωt. It is
desirable that this minimal pole order −nN equal t + 1. This condition is relevant for the
computation of αωg,i,ηg,i (cf. §3.5.1), as well as to apply Lemma 3.2.1 from the previous
subsection. Unfortunately it does not always hold; see the discussion in §3.5.1.

Remark 3.3.6. To determine the complexity of the algorithm described in this paper (see
§3.7), it is necessary to bound effectively (as a function of N) the order of the pole at ∞ of
the eta quotient u in Corollary 3.3.4. This can be done by examining the proof of Corollary
3.3.4. By the Riemann-Roch theorem, there is a nonconstant rational function w on X
which is regular one Y and has a pole of order ≤ t = genus(X) at ∞. From the formula for
genus(X) as a function on N , one can thus extract the bound −ord∞(w) = O(N log logN); cf.
[CWZ]. (We adopt the convention that unless decorated with a subscript, an expression O(−)
denotes a bound with an absolute implied constant.) The proof of [G, Prop. 2], which was
invoked to show Proposition 3.3.2, shows that wµ belongs to Uη for an integer µ = O(detAN ).
Combining this with the explicit formula [G, Prop. 1] for detAN readily yields the estimate

−ord∞(u) = O(eC(logN)2) for an absolute constant C.

3.4. Computing the Poincaré dual γf of ωf . Assume that {γ(j)} is a collection of

elements of Γ0(N) with small lower-left entries cN , whose homology classes γ
(j)
0 generate

H1(X
an,Z). By a brute-force search it is straightforward to find such elements γ(j) in prac-

tice. (For small N , often one need take c no greater than 2 or 3.)
For any m ∈ H1(X

an,C), write ηm for the Poincaré dual of c; conversely, for any differential
η of the second kind on X, let mη ∈ H1(X

an,C) denote the Poincaré dual of its cohomology
class. We normalize the Poincaré duality isomorphism so that it is characterized by the
property

(3.4.1) 〈ηm, η〉 =

∫
m
η.

The vector space H1(X
an,C) is also equipped an intersection product, which is related to

the Poincaré pairing by the formula

m ·mη =
1

2πi
〈ηm, η〉.

The homology of X also admits a natural action of the Hecke algebra, compatible with the
action on cohomology via Poincaré duality. For any normalized eigenform f ∈ S2(Γ0(N)) and
any m ∈ H1(X

an,C), write mf ∈ H1(X
an,C)[f ] for the projection of f onto the f -isotypic

component of homology. Simiarly, for η ∈ H1
dR(X/Q) write ηf for its projection onto the

f -isotypic component.
We can assume that via the method described above a symplectic basis

S = {ωf,1, . . . , ωf,n, ηf,1, . . . , ηf,n}

for H1
dR(X/Q)[f ] has already been computed.

Lemma 3.4.1. Fix γ1, γ2 ∈ Γ0(N) and let m1, m2 ∈ H1(X
an,Z) denote the corresponding

homology classes on X.For any normalized eigenform f ∈ S2(Γ0(N)), we have

mf
1 ·m

f
2 =

1

2πi

n∑
i=1

I(ωf,i;m1)I(ηf,i;m2)− I(ωf,i;m2)I(ηf,i;m1),

where ωf = 2πif(z)dz is the 1-form corresponding to f .
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Proof. Let ηk = ηmk and write ηfk =
∑
c
(k)
i ωf,i +

∑
d
(k)
i ηf,i. Then we compute mf

1 · m
f
2 =

1
2πi〈η

f
1 , η

f
2 〉 =

∑
i

1
2πi(c

(1)
i d

(2)
i − c

(2)
i d

(1)
i ) = 1

2πi

∑
i(I(ωf,i; γ1)I(ηf,i, γ2) − I(ηf,i; γ1)I(ωf,i; γ2)).

�

Now assume f is the newform with rational Fourier coefficients which parametrizes the
elliptic curve E, and as above denote by ωf the corresponding holomorphic 1-form. Then the
f -isotypic components of the homology and cohomology of X are two-dimensional. Write ηf
for the “complementary” form of the second kind such that {ωf , ηf} is a symplectic basis for

H1
dR(X/Q); in particular, 〈ωf , ηf 〉 = 1. Let γ+f (resp. γ−f ) be a generator of the plus (resp.

minus) eigenspace of the f -isotypic component of H1(X
an,Z) under the action of complex

conjugation; these are unique up to sign. Since the splitting into plus and minus subspaces
only takes place over Z[12 ], we have γ+f · γ

−
f ∈ ±2N; after adjusting the signs if necessary, we

can assume that γ+f · γ
−
f = 2n for some n ≥ 0. This determines the pair (γ+f , γ

−
f ) up to a sign.

Let Ω±f = I(ωf , γ
±
f ). Note that Ω+

f and Ω−f generate a lattice ZΩ+ + ZΩ− ⊂ C which is

independent of the choice of the sign above, and is commensurable with the Néron lattice Λf
of E. Finally, let

γf :=
1

2n+1πi
(Ω+

f γ
−
f − Ω−f γ

+
f ) ∈ H1(X

an,C)[f ].

Proposition 3.4.2. The homology class γf is Poincaré dual to the cohomology class of ωf .

Proof. We only need to check (3.4.1) for η = ηf , and I(ηf ; γf ) = 1 = 〈ωf , ηf 〉 by 3.4.1. �

The preceding discussion reduces the computation of γf to finding the homology classes

γ±f , from which the periods Ω±f are readily obtained by integrating. The classes γ±f can be

calculated using modular symbols, for which we refer to [S2], and then expressed in terms of

the “good” basis {γ(j)0 }.

3.5. Computing the adjustments
∫
γf
α. At this point we are already able to compute

zg,f :=

k∑
i=1

∫
γf

(ωg,i · ηg,i − ηg,i · ωg,i),

part of the righthand side of formula (2.3.1).
We describe two approaches for computing the difference ∆g,f = Pg,f − zg,f .

3.5.1. The direct approach is to compute q-expansions for each 1-form α = αωg,i,ηg,i explicitly.
We do not know how to do this in general, but the method we now describe works under the
following hypothesis:

(†) The point ∞ is not a Weierstrass point, and the optimized eta product u of §3.3
has a pole of order t+ 1 = pa(X) + 1 at ∞.

Assume (†) holds. Then the meromorphic differentials uω as ω ∈ H0(X,Ω1
X) varies are all of

the second kind, regular on Y , and have poles of all orders 2, 3, . . . , t+ 1 at ∞.
Recall that the defining property of α is that its principal part at ∞ agrees with that of

ξ = ωg,iFηg,i on X̃, modulo dq/q; i.e., ξ − α has at worst logarithmic poles. The symplectic

basis {ωg,i, ηg,i} for H1
dR(X/Q)[g] is obtained by applying linear operations to a basis B

consisting of 1-forms which are either holomorphic or of the type uω for holomorphic ω. In
particular, ξ has poles of order ≤ t at the points lying over∞. Thus there exists holomorphic
ω such that uω has exactly the same principal part as ξ, modulo dq/q. So assuming (†), α can
be computed explicitly knowing only Fourier expansions of u and of a basis for S2(Γ0(N)).
The resulting explicit Laurent expansions for α can then be integrated over γf using the same
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approach discussed above for computing zg,f , to find an approximation to the rational number
∆g,f = Pg,f − zg,f . See §4.1 for an example computation of this sort.

Unfortunately, (†) is not always satisfied, but it does hold in some situations. For example,
using the results of Newman and Lizogat combined with the formula for the genus of X0(N),
it is an easy exercise to show that (†) holds if N = p for a prime p ≡ 1 (mod 12), N = 2q for
a prime q ≡ 1 (mod 4), or N = 3r for a prime r ≡ 1 (mod 3). On the other hand, it never
holds if N = p for a prime p 6≡ 1 (mod 12).

3.5.2. When (†) fails, an alternative approach is required. One such method is to make an
educated guess as to the value of ∆g,f . This also has the advantage of avoiding computation-
ally expensive integral evaluations. Note that ∆g,f =

∑
i〈ωf , αωg,i,ηg,i〉 is a rational number

because ωf and each α are algebraic and defined over Q. The method of lattice reduction is
well-suited to guessing the value of an unknown rational number.

We now sketch how this might be done. First compute the elliptic logarithm Q ∈ C/Λf of
a generator of the Mordell-Weil group E(Q). (This can be done in various ways. We remark
that the interest of computing the Chow-Heegner points Pg,f is not as a tool for computing
E(Q), so appealing to an independent algorithm to obtain Q is not circular reasoning.) Next
find a basis {b1, b2} for Λf . Since dgPg,f corresponds a rational point of E, some integer
multiple of it must be a Z-linear combination of b1, b2, and Q. Using LLL or another lattice
reduction algorithm, find an approximate dependence relation

Ddgzg,f +A1b1 +A2b2 +NQ+M = 0, A1, A2, D,M,N ∈ Z.

There will be such a relation with M/Ddg = ∆g,f , indicating that up to D-torsion in E,
dgPg,f maps to N times the chosen generator of E(Q).

Unfortunately it is not easy in practice to compute ∆g,f in this manner. The problem is
that a prohibitively large degree of accuracy is usually necessary to identify the “correct”
dependence relation as above, since in general the rational number ∆g,f may have fairly large
height. See §4.2 for an example.

3.6. Computing the denominator dg. The final ingredient to be computed is the denom-
inator dg, or the smallest positive integer such that dgTg ∈ T0. This can be accomplished
by computing the Hecke algebra in SAGE. Under the inclusion T0 ↪→ T0 ⊗Q ∼=

∏
gKg, the

operator Tn is sent to the vector (an(g))g. Since each eigenvalue is an algebraic integer, then
the image lies in

∏
gOKg . Therefore, T0 can be embedded (as a Z-module) in Zt, where t is

the genus of X0(N). The image of any Hecke operator Tn in Zt can be computed by finding
the image of an(g) in OKg with respect to an integral basis.

It is well known that T0 is generated as a Z-module by {Tn}1≤n≤r,(n,N)=1, where r =

dN6
∏
p|N (1 + 1

p)e; see for instance [S1]. Hence, the image of T0 as a submodule of Zt can

be computed by taking the submodule generated by the images of a finite number of Hecke
operators. It is then a simple matter to find dg for each newform g.

3.7. Remark on complexity. The complexity of the computations we have described is
primarily determined by the number nD of Fourier coefficients required to compute zg,f (and
also the correction ∆g,f , if using the method of §3.5.1) to a given number D of digits of
accuracy. In this subsection we sketch a method for obtaining a bound on nD in terms of N .

3.7.1. Write the Fourier expansion of u as

u(τ) =
∑

n≥−n0

cnq
n, q = e2πiτ , τ ∈ H.



14 HENRI DARMON, MICHAEL DAUB, SAM LICHTENSTEIN AND VICTOR ROTGER

Let the principal part of u at ∞ be

pp∞(u) =
∑

−n0≤−m≤0

dm
m
q−m, dm = mc−m.

In [BO], Bringmann and Ono prove an exact formula for the Fourier coefficients of harmonic
Maass forms, of which weakly holomorphic modular functions such as u are examples. To
avoid introducing unnecessary notation, we state only the very special case of their result
applicable to our situation. We remark that long ago Rademacher used the circle method to
prove a similar exact formula for the coefficients of the j-function [R], and a modification his
argument would probably yield a simpler and more direct proof of the special case we require.
Using [BO, Thm. 1.1], one can express the coefficients cn, n > 0 in terms of the coefficents
dm, the order-1 I-Bessel function I1(z), and the Kloosterman sum

K(−m,n, c) :=
∑

0<v<c
(v,c)=1

exp

(
2πi

c
(nv +mv̄)

)
,

where v̄ denotes the multiplicative inverse of v modulo c. Namely, loc. cit. yields the formula

(3.7.1) cn = 2π
∑

−n0≤−m≤0
dm

∑
c>0

c≡0 (mod N)

(mn )1/2
K0(−m,n, c)

c
I1

(
4π
√
|mn|
c

)
, n > 0.

By Remark 3.3.6, we have

(3.7.2) n0 = −ord∞(u) = O(eC(logN)2).

for an absolute constant C. We can trivially bound the numbers dm as follows. Let ξr(x) =
re2πix for 0 < r < 1 and set y = − 1

2π log r > 0. The Cauchy integral formula applied to the
meromorphic function U(q) =

∑
cnq

n of q in the unit disk gives

dm
m

=
1

2πi

∫
ξr

U(q)

qm+1
d q = e2πmy

∫ 1

0
u(x+ iy)e−2πinx dx.

Taking y = 1, say, we thus have

|dm| ≤ me2πm
∫ 1

0
|u(x+ i)|dx = me2πim

∫ 1

0

∏
d|N

|η(dx+ id)|rd dx,

where η is the Dedekind eta function and (rd)d|N is the vector giving rise to u. If B is any
absolute bound for the holomorphic function η on H∗ ∩ {Im(z) ≥ 1− ε}, then we obtain the
estimate (recall Definition 3.3.1)

(3.7.3) |dm| ≤ me2πmB
∑
rd = me2πm ≤ n0e2πn0 .

From (3.7.1) and (3.7.3), standard estimates for Kloosterman sums, and asymptotics for the
I-Bessel function, one obtains by the method of [BrPh, §§5.1-2] the estimate

cn = O(N5/4n
7/4
0 n−3/4 exp(2πn0 +N−14π

√
nn0)).

In light of (3.7.2) this yields

(3.7.4) cn ≤ An−3/4eBN
C logN√n,

for some absolute constants A,B,C.
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3.7.2. The coefficients cn determine the Fourier coefficients of the 1-forms occuring in the
formula (2.3.1) for Pg,f . Unfortunately the relationship is indirect, as the construction of
the 1-forms ωg,i, ηg,i, αωg,i,ηg,i involves multiplying u against a basis of cusp forms for Γ0(N)
and then performing a lot of linear algebra. By Deligne’s proof of the Ramanujan-Petersson

conjecture, the cusp forms have nth coefficient of size Oε(n
1
2
+ε). It follows that nth Fourier

coefficient of an element of the basis B for H1
dR(X/Q) computed in §3.2 has size

O(P (n)eBN
C logN√n),

for absolute constants B,C and a universal polynomial P (n). To compute the 1-forms
ωg,i, ηg,i, α, linear algebra operations are performed on this basis, which spans a vector space
of dimension genus(X) = O(N log logN). It thus seems likely that a careful analysis of the
linear algebra operations performed would yield a bound

(3.7.5) O(Q(n,N logN)eBN
C logN√n)

for the nth Fourier coefficient of any 1-form integrated in the course of computing (2.3.1).
Here B,C are absolute constants and Q(X,Y ) is a universal polynomial independent of N .

Suppose λ is such a 1-form (on X or X̃), and consider the problem of integrating the
pullback of λ to H∗ along a path from τ1 to τ2. By the method explained in §3.1, we can
assume that imτ1, imτ2 ≥ (cmax,N · N)−1, where cmax,N · N is the largest of the lower-left

entries of the elements γ(j) ∈ Γ0(N) introduced at the beginning of §3.4. Recall that these
consisted of a collection of elements which span H1(X

an,Z) and have lower-left entries as
small as possible. We do not know how to bound cmax,N in terms of N , although in practice
it seems to be very small (cmax,N ≤ 3 for N ≤ 500)6

If the Laurent expansion for λ about ∞ (or a lift of ∞ to X̃) is λ =
∑
aλ(n)d qq , then

setting τj = xj + iyj for j = 1, 2 (where yj ≥ (cmax,NN)−1), we have∫ τ2

τ1

λ =
∑

n�−∞

aλ(n)

n
(e2πinx2e−2πny2 − e2πinx1e−2πny1).

Our problem is to determine nD such that the tails of these sums are bounded by the requisite
precision, say 10−D. It clearly suffices to ensure that

S(nD) :=
∑
n≥nD

n−1|aλ(n)|e−2πny ≤ 10−D.

Granting (3.7.5), we have

S(nD)�
∑
n≥nD

n−1Q(n,N logN)eBN
C logN√n−2πn/cmax,NN �

∑
n≥nD

e−2πn/Ncmax,N =
e−2πnD/Ncmax,N

1− e−2π/Ncmax,N
.

This shows that provided (3.7.5) holds, we have the following estimate for nD in terms of D
and N :

(3.7.6) nD = O(DNcmax,N ),

where the implied constant is absolute. As remarked earlier, for practical purposes it seems
that cmax,N can be treated as a constant.

6FIXME: I just put this in as a rough guess; go back and add the right numbers.
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4. Numerical examples

4.1. Example: 37a1. Take N = 37 in the setup of our algorithm. In this setting, the space
of regular differentials on X = X0(37) is spanned by ωf and ωg, which are associated to elliptic
curves over Q (labeled 37a1 and 37b1 in Cremona’s database) of ranks 1 and 0, respectively.

By computing the periods attached to ωf and ωg, it can be checked that the classes of the
matrices

γ1 =

(
2 −1
37 −18

)
, γ2 =

(
3 −1
37 −12

)
, γ3 =

(
5 2
37 15

)
, γ4 =

(
14 3
37 8

)
generate the rational homology of X. These are a “nice” basis for the homology in the sense
that the lower left entries are exactly 37 (rather than 37c for |c| > 1), so the integral

∫ γiτ
τ λ

can be evaluated efficiently for any meromorphic differential 1-form on H or X0(37) which is
regular away form ∞, using relatively few Fourier coefficients of λ.

If we denote by [γ] the homology class attached to the group element γ, then

γ+f =
−1

2
[γ2] +

1

2
[γ3]−

1

2
[γ4]

γ−f = [γ1]− 2[γ2]

generate the f -isotypic part of the integral homology of X. The superscripts indicate the
eigenvalue of complex conjugation acting on the homology class.

To obtain differentials of the second kind representing classes in the deRham cohomology,
we consider the elements of the form

η1 = u · ωf , η2 = u · ωg, where u = q−3
∞∏
n=1

(1− qn)2(1− q37n)−2.

It is not hard to check (by calculating the periods along γ±f and γ±g ) that the classes of

ωf , ωg, η1 and η2 generate the deRham cohomology of X. Furthermore, by finding the matrix
M of the Hecke operator T2 acting on H1

dR(X0(37)) with respect to the basis ωf , ωg, η1, η2,
and then determining the eigenspaces of M , one finds that

ηf =
1

4
(−37ωg + 4η1 − 8η2),

ηg =
1

4
(37ωf − 6η1 + 10η2)

are in the f and g isotypic parts of the deRham cohomology respectively, and

〈ωf , ηf 〉 = 〈ωg, ηg〉 = 1.

When one computes the Poincaré dual γf of ωf , one finds (with our normalization) that it
is

γf =
1

2πi

(
Ω−E ([γ2]− [γ3] + [γ4])− Ω+

E (−[γ1] + 2[γ2])
)
.

Here

Ω+
E ≈ 2.993458646..., Ω−E ≈ (2.45138938...)i

are the real and imaginary periods of the elliptic curve E corresponding to f (labeled ’37a1’
in Cremona’s database).

By computing with principal parts, one finds that pp∞(2ωgFηg) = pp∞(12(η1−η2)) mod dq
q .

Thus 1
2(η1− η2) = αωg ;ηg and integrating this over γf yields −1 (to many digits of precision).

Computing the iterated integral
∫
γf

(ωg · ηg − ηg · ωg) via the algorithm we have described

yields the “raw” point

zg,f = −1.40936100075...+ (1.22569469099...)i.
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Thus Pg,f = zg,f −
∫
γ αωg ;ηg = 0.4093610075...+ (1.22569469099...)i.

Now E(Q) is generated by the point p = (0 : −1 : 1) ∈ P2(Q). The elliptic logarithm of
this point in C/ΛE is P ≈ 2.06386593094656...+ (1.22569469099340...)i.

By a lattice reduction algorithm one easily finds the linear dependence relation

2Pg,f − 8Ω+
E − 7Ω−E + 12P ≈ 0

holds to at least 15 digits of accuracy. (In this example, all of the iterated integrals have been
computed using 350 Fourier coefficients, and on a laptop comuter the entire computation
finished in a matter of seconds.) This says that the image of Pg,f in E(C) is equal to −6p =
(6 : 14 : 1) modulo an irrational 2-torsion point. To explain the denominator “2” that has
occured, let T0 denote the “anemic” Hecke algebra generated over Z by the Hecke operators
Tp for p 6= 37. Then one can compute using the first few Fourier coefficients of f and g that the

idempotent e = (0, 1) ∈ Q×Q
(?)∼= T⊗Q does not belong to T ⊂ T⊗Q but 2e does so. (The

identification (?) associates Tp⊗1 ∈ T⊗Q to (ap(f), ap(g)) ∈ Q×Q.) Thus in fact the point
we have denoted Pg,f is the wrong thing; the true triple Chow-Heegner point on E associated
to (g, g, f) is 2Pg,f which is the rational point −12P = (1357/841 : 28888/24389 : 1).

4.2. Example: 43a1. Let N = 43 and let E be the elliptic curve labeled 43a1 in Cremona’s
database. The modular curve X = X0(43) has genus 3. There are two isotypic components
of H1

dR(X), one of dimension 2 corresponding to the modular form f which parametrized E,

and another of dimension 4 corresponding to a newform g with Fourier coefficients in Q(
√

2),
associated to an abelian surface quotient of J0(43).

In this case, a linear programming algorithm identifies the eta-quotient u which is modular
for Γ0(47) of weight 0, holomorphic away from the cusp ∞, and with minimal pole order at
∞, as

u =
η(q)4

η(q43)4
= q−7 − 4q−6 + 2q−5 + 8q−4 − 5q−3 − 4q−2 − 10q−1 + 8 + 9q + 14q3 +O(q4).

Since this has a pole of order 7 > 3 + 1 = 4 at ∞, u is not optimal for the purpose of our
computations.

Nonetheless, computing the residue pairing shows that for a basis of cuspforms with rational
Fourier coefficients, corresponding to holomorphic 1-forms ωf , ωg,1, ωg,2 on X, the collection

ωf , ωg,1, ωg,2, uωf , uωg,1, uωg,2

forms a basis for H1
dR(X/Q). By finding the matrices of a few Hecke operators with respect

to this basis, one can as in the case N = 37 produce symplectic bases

ωf , ηf , and ωg,1, ωg,2, ηg,1, ηg,2

for H1
dR(X)[f ] and H1

dR(X)[g] respectively.
While we can compute the Poincaré dual γf and the “raw” point

zg,f =

2∑
i=1

∫
γf

(ωg,i · ηg,i − ηg,i · ωg,i) ≈ −1.1460154...+ (2.726364836...)i,

the fact that u has such a large pole at ∞ prevents us from being able to find the 1-forms
αωg,i;ηg,i on Ỹ . Nonetheless, we can use lattice reduction to try to see whether zg,f differs
from (the elliptic logarithm of) a rational point of E by an adjustment factor in Q. Actually,
we should first scale zg,f by the “denominator” of the idempotent e ∈ T⊗Q which projects
onto the g-isotypic component when viewed as an operator on H1(X); as in the case N = 37
a computation with Hecke eigenvalues of g and f reveals that the denominator of e is 2.
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The elliptic curve E again has rank 1, generated by the point p = (0 : −1 : 1), with elliptic
logarithm P ≈ 1.53155105.... Lattice reduction reveals the linear dependence (to at least 58
digits of accuracy, the previous computations having been done with 1200 Fourier coefficients):

(2zg,f ) + 5Ω+
E − 4Ω−E − 8P +

1847467

1984785
≈ 0.

The fact that so many Fourier coefficients were necessary to obtain this relation reflects the
fairly large prime factor occuring in the denominator

1984785 = 3× 5× 11× 23× 523.

When the differentials ηg,i are expanded with respect to a basis for H1
dR(X/Q) consisting

of differentials holomorphic away from ∞ and with integral Laurent expansions about ∞ –
which thus have integral period over γf – the prime factors above arise in the denominators
of the coefficients. One thus expects these primes to occur in the denominators of the forms
αωgi ,ηgi .

4.3. Table. In table 1 we report the triple Chow heegner points which lie on several strong
Weil curves of conductor < 200. With the exception of the curves labeled 43a1 and 65a1

in Cremona’s database, we report only in those cases where the differnetials αωg,i,ηg,i can be
computed explicity and integrated using the method explained in §3.5.1. The exceptional
cases were computed using the method of §3.5.2.

The format of the table is as follows. Let N be the conductor of the curve E in question.
We report the points as elements of E(Q) ⊗Q. They are ordered according to the ordering
of the isotypic components of the space S2(Γ0(N)) of cuspidal modular symbols for Γ0(N),
as listed via the command ModularSymbols(N).cuspidal subspace().decomposition() in
SAGE, skipping the nonsense point that corresponds to taking g = f .

The −⊗Q factor accounts for the denominator dg of the projector onto the corresponding
isotypic component of the anemic Hecke algebra. All the curves E in the list are optimal and
have rank 1; they are listed by their Cremona label. The points Pg,f are listed as multiples
of a generator P for E(Q) computed using SAGE.

The last two columns indicate the number of Fourier coefficients used in the computation
and a lower bound for number of decimal digits of accuracy to which each of the points we
have computed (after adjusting by the periods of the αωg,i,ηg,i) agree (modulo ΛE) with the
indicated elements of E(Q)⊗Q.

4.4. Discussion. 7

5. Extensions of the method

5.1. Allowing f to be an oldform. 8

7FIXME: Check when possible the conditions in the theorem saying whe Pg,f is non-torsion,
Explain why quadratric twists switch the sign of the points.
8FIXME: to be added!
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Table 1. Some elliptic curves with non-torsion triple Chow Heegner points

Curve
E = Ef

generator
P ∈ E(Q)

Pg,f (mod torsion) dg [E(Q) : ZdgPg,f ]
accuracy
and # coeff.

37a1 (0,-1) −6P 2 12 54 800

43a1 (0,-1) 4P 2 8 58 1200

57a1 (2,1) 4
3P 12 16 31 800

−16
3 P 3 16

−4P 2 8

58a1 (0,-1) 4P 4 16 32 800

0 2 ∞

61a1 (1,-1) −2P 2 4 32 800

65a1 (-1,1) P 2 2 55 3200

P 2 2

82a1 (0,0) 0 4 ∞ 33 1200

2P 2 4

99a1 (2,0) −2
3P 12 8 37 1600

0 12 ∞
2
3P 6 4
2
3P 12 8

−2
3P 6 4

106b1 (2,1) 12
5 P 10 24 38 1800

−4
3P 6 8

−11
3 P 48 176

P 16 16
28
5 P 10 56

122a1 (1,-3) −16
13P 26 32 28 1600

−P 16 16

P 16 16

−36
13P 26 72

129a1 (1,-5) −16
15P 15 16 28 1600

−4
3P 12 16

−20
7 P 14 40

−8
5P 40 64

−8
7P 14 16

153a1 (0,1) P 48 48 24 1800

2P 24 48

0 24 ∞
−P 48 48

−P 16 16

−2P 24 48

P 16 16
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6. Appendix by William Stein: An Alternative approach to Numerically
Approximating Chow-Heegner Points in Some Special Cases

In this appendix we give an alternative approach to computing points PE,F ∈ E(Q) associ-
ated to a pair of elliptic curves E,F of conductor N with optimal modular parameterizations
X0(N) → E and X0(N) → F , following a construction of Zhang. We make no claims about
the complexity or rigor of our method, and explain it mainly because it is simple to under-
stand and implement, and provides a double check on the more sophisticated iterated integral
computations described above.

Our numerical strategy is partly inspired by work of Delaunay [?].

(1) Choose a random (probably) transcendental point t ∈ R/ΩF ⊂ F (R).
(2) For some B, e.g., 2000, numerically compute all double precision complex solutions to

the real polynomial equation
∑B

n=1
an(F )
n qn = t using balanced-QR reduction of the

companion matrix (implemented in [?]). As necessary, repeat this and the following
steps with integer multiples of ΩF added to t.

(3) Using Newton-Raphson, and a much larger choice of B that depends on the imaginary
part of each root, numerically refine the roots to large precision.

(4) Divide the roots in the upper half plane into Γ0(N) orbits. If the number of orbits
equals the modular degree of F , map representatives (with largest imaginary parts)

to E using
∑B′

n=1
an(E)
n qn, for B′ sufficiently large. Then sum up the result and apply

the elliptic exponential to obtain a numerical approximation to the point P = PE,F ∈
E(Q).

(5) Simultaneously, as we find roots in Step 3, map them to E(C), and if we find enough
distinct images, add them up to obtain P . By “enough”, we require that the number
of images equals the generic cardinality mE,F of the map R 7→ πE(π−1F (R)). Of course,
mE,F is bounded by the modular degree of F , but it will be strictly smaller in many

cases, e.g., if some Atkin-Lehner involution fix both E and the fiber π−1F (R). The
PI intends to more fully understand the invariant mE,F ; initial numerical data shows
that the “obvious guess” about how to compute it is right in many but not all cases.

There are numerous subtle parameters in the above strategy. Also, aspects of the strategy
are useful for other investigations. For example, computing information about the points on
X0(N) over points on higher rank curves (see [?]).

Our implementation can do many examples with conductor up to a few hundred in a few
seconds each, but there are cases, e.g., when the modular degree of F is large, where it can
take many hours.

The table has columns:

E F index degE degF rankF cputime

Where:

E = Cremona label of curve of rank 1

F = Cremona label of optimal curve of same conductor as E

Index [E(Q)/tor : Z*P], where P is the "Zhang" (=Chow Heegner)

point, which is by definition sum(phi_E(Q)), where Q is in

phi_F^(-1)(any fixed unramified point). For an unramified point, in

this table I took the *transcendental* point in F(R) that corresponds

to 0.1 in the period lattice. In many cases I tried using 0.2 and

got the same answer (of course).
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degE = modular degree of E

degF = modular degree of F

rankF = rank(F(Q))

cputime = how long the computation took

There’s some overlap with the table that Darmon-Rotger-Lichtenstein-Daub make, though:
(1) there are many cases where that table doesn’t have data, but I do and my data is

nonzero. Why?
(2) there is a lot of disagreement between the two tables. This might be because of the

difference between the different definitions we’re using (you guys project into the E-isotypical
component, and I take an image in a quotient).

Anyway, it took me a lot longer than I had expected to turn my hunch into something
more general, since there were a lot of different things ideas to try out. Still, the overall
algorithm is pretty naive and straightforward, and I should be able to write it up. It uses no
heavy machinery; not much more than the basic definitions, some numerical methods, and
Zhang’s definition of a point on E. The complexity is mainly a function of the modular degree
of F. The hardest example I did so far had modular degree 324 (E=142a,F=142e), which took
about 2 hours – the point turned out to be torsion.
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E F index mE mF rF

37a 37b 6 2 2 0

57a 57b 8 4 3 0

57a 57c 8 4 12 0

58a 58b 8 4 4 0

77a 77b 24 4 20 0

77a 77c 4 4 6 0

89a 89b 4 2 5 0

91a 91b 4 4 4 1

91b 91a 0 4 4 1

92b 92a 0 6 2 0

99a 99b 4 4 12 0

99a 99c 0 4 12 0

99a 99d 2 4 6 0

102a 102b 8 8 16 0

102a 102c 32 8 24 0

106b 106a 4 8 6 0

106b 106c 88 8 48 0

106b 106d 12 8 10 0

112a 112b 0 8 4 0

112a 112c ? 8 8 0

118a 118b 8 4 12 0

118a 118c 4 4 6 0

118a 118d 28 4 38 0

121b 121a 4 4 6 0

121b 121c 4 4 6 0

121b 121d ? 4 24 0

123a 123b 0 20 4 1

123b 123a 4 4 20 1

124a 124b ? 6 6 0

128a 128b 0 4 8 0

128a 128c ? 4 4 0

128a 128d ? 4 8 0

129a 129b 8 8 15 0

130a 130b 0 24 8 0

135a 135b 0 12 36 0

136a 136b ? 8 8 0

138a 138b 16 8 16 0

138a 138c 8 8 8 0

141a 141b 0 28 12 0

141a 141c 0 28 6 0

141a 141d 0 28 4 1

E F index mE mF rF

141a 141e 0 28 12 0

141d 141a 12 4 28 1

141d 141b 4 4 12 0

141d 141c 4 4 6 0

141d 141e 4 4 12 0

142a 142b 0 36 4 1

142a 142c 0 36 9 0

142a 142d 0 36 4 0

142b 142a 4 4 36 1

142b 142c 4 4 9 0

142b 142d 4 4 4 0

152a 152b 0 8 8 0

153a 153b 8 8 16 1

153a 153c 8 8 8 0

153a 153d 0 8 24 0

153b 153a 0 16 8 1

153b 153c 0 16 8 0

153b 153d 0 16 24 0

154a 154b 24 24 24 0

154a 154c 16 24 16 0

155a 155b 0 20 8 0

155a 155c 0 20 4 1

155c 155a 12 4 20 1

155c 155b ? 4 8 0

156a 156b 0 12 12 0

158a 158b 0 32 8 1

158a 158d 0 32 40 0

158a 158e 0 32 6 0

158b 158a 8 8 32 1

158b 158d 0 8 40 0

158b 158e 8 8 6 0

160a 160b ? 8 8 0

162a 162b 0 12 6 0

162a 162c 0 12 6 0

162a 162d ? 12 12 0

170a 170c 0 16 84 0

170a 170d 0 16 12 0

170a 170e 0 16 20 0

171b 171a 0 8 12 0

171b 171d 0 8 32 0

175a 175b 0 8 16 1
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E F index mE mF rF

175a 175c 0 8 40 0

175b 175a 16 16 8 1

175b 175c 16 16 40 0

176c 176a 0 8 16 0

176c 176b 0 8 8 0

184a 184b ? 8 8 1

184a 184c ? 8 12 0

184a 184d 0 8 24 0

184b 184a 0 8 8 1

184b 184c 0 8 12 0

184b 184d 0 8 24 0

185a 185b 8 48 8 1

185a 185c 24 48 6 1

185b 185c 0 8 6 1

185c 185a ? 6 48 1

185c 185b 2 6 8 1

189a 189b 12 12 12 1

189a 189c 12 12 12 0

189b 189a 0 12 12 1

189b 189c 0 12 12 0

190a 190b 0 88 8 1

190a 190c 0 88 24 0

190b 190a 16 8 88 1

190b 190c 16 8 24 0

192a 192b 0 8 8 0

192a 192c 0 8 8 0

192a 192d 0 8 8 0

198a 198b 0 32 32 0

198a 198c 0 32 32 0

198a 198d 0 32 32 0

200b 200c ? 8 24 0

201a 201b 4 12 12 1

201a 201c 84 12 60 1

201b 201a 0 12 12 1

201c 201a 24 60 12 1

201c 201b 8 60 12 1

203b 203c 0 8 12 0

205a 205c 0 12 8 0
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