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Abstract

In this note, we consider a special case of Chow-Heegner points that
has a simple concrete description due to Shouwu Zhang. Given a pair E, F
of nonisogenous elliptic curves, and a fixed choice of surjective morphisms
ϕE : X0(N) → E and ϕF : X0(N) → F of curves over Q, we associate a
rational point P ∈ E(Q). We describe a relatively elementary numerical
approach to computing P , state some motivating results of Zhang et al.
about the height of P , and present a table of data.

1 Introduction: Zhang’s Construction

Consider a pair E,F of nonisogenous elliptic curves over Q and fix surjective
morphisms from X0(N) to each curve. We do not assume that N is the con-
ductor of either E or F , though N is necessarily a multiple of the conductor.
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Let (ϕE)∗ : Div(X0(N))→ Div(E) and ϕ∗F : Div(F )→ Div(X0(N)) be the
pushforward and pullback maps on divisors on algebraic curves. Let Q ∈ F (C)
be any point, and let

PϕE ,ϕF ,Q =
∑

(ϕE)∗ϕ
∗
F (Q) ∈ E(C),

where
∑

means the sum of the points in the divisor using the group law on E,
i.e., given a divisor D =

∑
niPi ∈ Div(E), we have (

∑
D)−∞ ∼ D−deg(D)∞,

which uniquely determines
∑
D.

Proposition 1.1. The point PϕE ,ϕF ,Q does not depend on the choice of Q.

Proof. The composition (ϕE)∗ ◦ ϕ∗F induces a homomorphism of elliptic curves

ψ : Pic0(F ) = Jac(F )→ Jac(E) = Pic0(E).
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Our hypothesis that E and F are nonisogenous implies that ψ = 0. We denote
by [D] the linear equivalence class of a divisor in the Picard group. If Q′ ∈ F (C)
is another point, then under the above composition of maps,

[Q−Q′] 7→ [(ϕE)∗ϕ
∗
F (Q)− (ϕE)∗ϕ

∗
F (Q′)] = [PQ − PQ′ ].

Thus the divisor PQ − PQ′ is linearly equivalent to 0. But F has genus 1, so
there is no rational function on F of degree 1, hence PQ = PQ′ , as claimed.

We let PϕE ,ϕF
= PϕE ,ϕF ,Q ∈ E(C), for any choice of Q. When there is a

canonical choice of ϕE , ϕF , e.g., when E and F are both are optimal curves of
the same conductor N , then we write PE,F = PϕE ,ϕF

.

Corollary 1.2. We have PϕE ,ϕF
∈ E(Q).

Proof. Taking Q = O ∈ F (Q), we see that the divisor (ϕE)∗ ◦ϕ∗F (Q) is rational,
so its sum is also rational.

1.1 Outline

In Section 2 we discuss in detail a point PE,F , where E is the rank 1 curve of
conductor 37. Section 3 is about a recent Gross-Zagier style formula of Yuan-
Zhang-Zhang for the height of PE,F in terms of the derivative of an L-function,
in some cases. In Section 4 we discuss the connection between the present
paper and [DDLR11], which is about computing Chow-Heegner points using
iterated integrals. The heart of the present paper is Section 5, which describes
our numerical approach to approximating PE,F . Finally, Section 6 presents
extensive tables of points PE,F .

Acknowledgement: We would like to thank Ralph Greenberg, Ken Ribet,
Barry Mazur, Karl Rubin, Shouwu Zhang, and Jon Bober for helpful conver-
sations related to this paper, and especially thank Xinyi Yuan for introducing
us to this topic, Henri Darmon for encouraging us to flesh out the details and
write this up for publication, and Victor Rotger for correcting a serious mistake
in an early draft.

2 Example: N = 37

The smallest conductor curve of rank 1 is the curve E with Cremona label 37a
(see [Cre]). The beautiful paper [MSD74] discusses the modular curve X0(37) in
detail. In particular, it presents the affine equation y2 = −x6−9x4−11x2+37 for
X0(37), and describes explicitly how X0(37) is equipped with three independent
involutions w, T , and S. The quotient of X0(37) by w is E, the quotient by
T is an elliptic curve F with F (Q) ≈ Z/3Z and Cremona label 37b, and the
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quotient by S is the projective line P1.

X0(37)
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E = X/w F = X/T P1 = X/S

The maps ϕE and ϕF both have degree 2, since they are induced by quotienting
out by an involution. As explained in [MSD74], the fiber over Q = 0 ∈ F (Q)
contains 2 points:

1. the cusp [∞] ∈ X0(37)(Q), and

2. the noncuspidal affine rational point (−1,−4) = T (∞) ∈ X0(37)(Q).

We have ϕE([∞]) = 0 ∈ E(Q) and [MSD74, Prop. 3, pg. 30] explains that

ϕF ((−1,−4)) = (6, 14) = −6(0,−1),

where (0,−1) generates E(Q). We conclude that

PE,F = (6, 14) and [E(Q) : ZPE,F ] = 6.

On [MSD74, pg. 31], they remark: “It would be of the utmost interest to link
this index [the index of 6 above] to something else in the theory.”

This remark motivates our desire to compute many more examples. Un-
fortunately, it is very difficult to generalize the above approach directly, since
it involves computations with X0(37) and its quotients that rely heavily on
having simple explicit defining equations. Just as there are multiple comple-
mentary approaches to computing Heegner points, there are several approaches
to computing PE,F :

• Section 3: a Gross-Zagier style formula for the height of PE,F ,

• Section 4: explicit evaluation of iterated integrals, and

• Section 5: numerical approximation of the fiber in the upper half plane
over a point on an elliptic curve using a polynomial approximation to ϕF .

The present paper is mainly about the last approach listed above.

3 The Formula of Yuan-Zhang-Zhang

Consider the triple product L-function of [GK92]

L(E,F, F, s) = L(E, s) · L(E,Sym2(F ), s), (1)

where E and F are elliptic curves of the same conductor N . For simplicity,
in this section all L-functions are normalized so that 1/2 is the center of the
critical strip. The following theorem is proved in [YZZ11]:
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Theorem 3.1 (Yuan-Zhang-Zhang). Assume that the local root number of
L(E,F, F, s) at every prime of bad reduction is +1 and that the root number

at infinity is −1. Then ĥ(PE,F ) = (∗) · L′(E,F, F, 12 ), where (∗) is nonzero.

Remark 3.2. The above formula resembles the Gross-Zagier formula

ĥ(PK) = (∗) · (L(E/Q, s) · L(EK/Q, s))′|s= 1
2
,

where K is a quadratic imaginary field satisfying certain hypotheses.

Unfortunately, at present it appears that nobody has implemented a com-
puter program to evaluate the formula of Theorem 3.1 numerically in any inter-
esting cases yet. If one could evaluate L′(E,F, F, 12 ), along with the factor (∗) in
the theorem, this would yield an algorithm to compute ±PE,F (mod E(Q)tor)
in the special case when N is squarefree and all roots numbers for E are +1.
We hope to carry out this approach (using [Dok04]) in future work.

We have the following proposition that we can apply in specific examples.
This follows from [GK92, §1], which implies that the local root number of
L(E,F, F, s) at p is the same as the local root number of E at p when the
level is square free (computing the local root number when the level is not
square free is more complicated).

Proposition 3.3. Assume that E and F have the same conductor N , that
N is square free, that the local root numbers of E at primes p | N are all
+1 (equivalently, that we have ap(E) = −1) and that ran(E/Q) = 1. Then

L(E,Sym2 F, 12 ) 6= 0 if and only if ĥ(PE,F ) 6= 0.

Proof. By hypothesis, we have L(E, 12 ) = 0 and L′(E, 12 ) 6= 0. Theorem 3.1 and
the factorization (1) then imply that

ĥ(PE,F ) = (∗) · L′(E, 1

2
) · L(E,Sym2 F,

1

2
),

from which the result follows.

Section 6 contains numerous examples in which E has rank 1, F has rank
0, and yet PE,F is a torsion point. The first example is when E is 91b and
F is 91a. Then PE,F = (1, 0) is a torsion point (of order 3). In this case, we
cannot apply Proposition 3.3 since ε7 = ε13 = −1 for E. Another example is
when E is 99a and F is 99c, where we have PE,F = 0, and ε3 = ε11 = +1, but
Proposition 3.3 does not apply since the level is not square free. Fortunately,
there is an example with squarefree level 158 = 2 · 79: here E is 158b, F is
158d, we have PE,F = 0 and ε2 = ε79 = +1, so Proposition 3.3 implies that
L(E,Sym2 F, 12 ) = 0.

4 Iterated Complex Path Integrals

The paper [DDLR11] contains a general approach using iterated path integrals
to compute certain Chow-Heegner points, of which PE,F is a specific instance.
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Comparing our data (Section 6) with theirs, we find that if E and F are optimal
elliptic curves over Q of the same conductor N ≤ 100, if e, f ∈ S2(Γ0(N))
are the corresponding newforms, and if Pf,e,1 ∈ E(Q) ⊗Q Q the associated
Chow-Heegner point in the sense of [DDLR11], then 2PE,F = Pf,e,1. This is
(presumably) a consequence of [DRS11].

5 A Numerical Approach to Computing PE,F

The numerical approach to computing P that we describe in this section is easy
to explain and implement and uses little abstract theory. It is inspired by work
of Delaunay (see [Del02]) on computing the fiber of the map X0(389)→ E, over
rational points on the rank 2 curve E of conductor 389. We make no guarantees
about how many digits of our approximation to PE,F are correct, instead viewing
this as an algorithm to produce something useful for experimental mathematics.

Let h be the upper half plane, and let Y0(N) = Γ0(N)\h ⊂ X0(N) be the
affine modular curve. Let E and F be nonisogenous optimal elliptic curve quo-
tients of X0(N), with modular parametrization maps ϕE and ϕF , and assume
both Manin constants are 1. Let ΛE and ΛF be the period lattices of E and F ,
so E ∼= C/ΛE and F ∼= C/ΛF . Viewed as a map [τ ] 7→ C/ΛE , we have (using
square brackets to denote equivalence classes),

ϕE([τ ]) =

[ ∞∑
n=1

an
n
e2πinτ

]
,

and similarly for ϕF . This is explained in [Cre97, §2.10], which uses the oppos-
itive convention for the sign. Here an = an(E) are the L-series coefficients of
E, so for good primes p, we have ap = p+ 1−#E(Fp). For any positive integer
B, define the polynomial

ϕE,B =

B∑
n=1

an
n
Tn ∈ Q[T ],

and similarly for ϕF,B .
To compute PE,F , we proceed as follows. First we make some choices, and

after making these choices we run the algorithm, which will either find a “prob-
able” numerical approximation to PE,F or fail.

• y ∈ R>0 – minimum imaginary part of points in fiber in upper half plane.

• d ∈ Z>0 – degree of the first approximation to ϕF in Step 1.

• r ∈ R 6=0 – real number specified to b bits of precision that defines Q ∈ C/Λ.

• b′ – bits of precision when dividing points into Γ0(N) orbits.

• n – number of trials before we give up and output FAIL.

We compute PϕE ,ϕF ,Q using an approach that will always fail if Q is a
ramification point. Our algorithm will also fail if any points in the fiber over
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Q are cusps. This is why we do not allow r = 0. It is possible to modify the
algorithm to usually work when Q is a torsion point, by using modular symbols
and keeping track of images of cusps.

To increase our confidence that we have computed the right point PE,F , we
often carry out the complete computation with more than one choice of r.

1. Low precision roots: Compute all complex double precision roots of
the polynomial ϕF,d − r = 0. One way to do this is to use “balanced QR
reduction of the companion matrix”, as implemented in GSL.1 Record the
roots that correspond to τ ∈ h with Im(τ) ≥ y.

2. High precision roots: Compute an integer B such that if Im(τ) ≥ y,
then ∣∣∣∣∣

∞∑
n=B+1

an(F )

n
τn

∣∣∣∣∣ < 2−b,

where b is the number of bits of precision of r. Explicitly, by summing the
tail end of the series and using that |an| ≤ n (see [GJP+09, Lem. 2.9]),
we find that

B =

⌈
log(2−(b+1) · (1− e−2πy1))

−2πy

⌉
works. Next, compute the polynomial ϕF,B ∈ Q[T ], and use Newton
iteration to refine all roots saved in Step 1 to roots α of f = ϕF,B−r ∈ R[T ]
to b bits of precision, i.e., so that |f(α)| < 2−b. Do this by iteratively

replacing α by α − f(α)
f ′(α) , and save those roots that correspond to τ ∈ h

with Im(τ) ≥ y.

3. Γ0(N)-orbits: Divide the τ ’s from Step 2 into Γ0(N)-equivalence classes,
testing equivalence to some bit precision b′ ≤ b. To test Γ0(N) equiv-
alence of two points τ1 and τ2, we first decide whether or not they are
SL2(Z) equivalent, using the standard fundamental domain, then if they
are equivalent, we check whether an explicit transformation matrix is in
Γ0(N) – see Section 5.1 below for details. It is easy to efficiently compute
the modular degree mF = deg(ϕF ) (see [Wat02]). If we find mF distinct
Γ0(N) classes of points, we suspect that we have found the fiber over [r],
so we map each element of the fiber to E using ϕE and sum, then apply
the elliptic exponential to obtain PE,F to some precision, then output this
approximation and terminate. If we find more than mF distinct classes,
that indicates an error in the choices of precision in our computation, so
we increase b or possibly decrease b′.

4. Try again: We did not find enough points in the fiber. Systematically
replace r by r+mΩF , for m = 1,−1, 2,−2, . . . and ΩF the least real period

1GSL is the the GNU scientific library, which is part of Sage [S+11]. Rough timings of
GSL for this computation: it takes less than a half second for degree 500, about 5 seconds for
degree 1000, about 45 seconds for degree 2000, and several minutes for degree 3000.
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of F , then try again going to Step 1 and including the new points found.
If upon trying n choices r+mΩF we find no new points at all, we output
FAIL and terminate the algorithm.

5.1 Determining Γ0(N) equivalency

To determine numerically if two points z1 and z2 in the upper half plane h are
equivalent modulo the action of Γ0(N), we first determine whether or not z1
and z2 are equivalent modulo SL2(Z) using the standard fundamental domain,
as explained in [Cre97, §2.14]. If z1 and z2 are not SL2(Z) equivalent, then they
are not Γ0(N) equivalent and we are done.

If z1 and z2 are SL2(Z) equivalent, then the algorithm mentioned above also
produces explicit elements g1, g2 ∈ SL2(Z) such that g1(z1) = g2(z2) is in the
standard fundamental domain. Let g = g−12 g1, so g(z1) = z2. Suppose h is any
other matrix in SL2(Z) such that h(z1) = z2 as well. Then

(h−1g)(z1) = h−1(g(z1)) = h−1(z2) = z1,

so h−1g fixes z1. Assume that k = h−1g 6= 1, viewed as elements of PSL2(Z).
Then k has a fixed point in the upper half plane. The only elements of PSL2(Z)
with a fixed point in the upper half plane are Stab(z), where

• z = i, so Stab(z) is generated by S =
(
0 −1
1 0

)
.

• z = ρ = exp(2πi/3) so Stab(z) is generated by ST , where T = ( 1 1
0 1 ).

• z = −ρ = exp(πi/3), so Stab(z) is generated by TS.

Assume that none of the 3 above are the case. Then g = h, so there is a matrix
in Γ0(N) that sends z1 to z2 if and only if g ∈ Γ0(N), since g is the unique
matrix in SL2(Z) that sends z1 to z2. In the other cases, we check the following:

• z = i: check that neither of g, gS are in Γ0(N)

• z = ρ: check that neither of g, gST , g(ST )2 are in Γ0(N)

• z = −ρ: check that neither of g, gTS, g(TS)2 are in Γ0(N).

6 Data

The columns of the tables in the rest of this section are as follows. The columns
labeled E and F contain Cremona labels for elliptic curves, and those labeled rE
and rF gives the corresponding ranks. The column labeled E(Q) gives a choice
of generators P1, P2, . . . for the Mordell-Weil group as explicit points, with rE
points of infinite order listed first, then 0,1, or 2 torsion points listed with a
subscript of their order. The column labeled PE,F contains a near rational point
(see below) to the numerically computed Chow-Heegner point, represented in
terms of the generators Pi from the column labeled E(Q), where P1 is the first
generator, P2, the second, and so on. The columns labeled mE and mF give the
modular degrees of E and F . The column labeled ε’s contains the local root
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numbers of L(E, s) at each bad prime. The notes column refers to the notes
after the table, which give information about the input parameters needed to
compute PE,F .

We believe that the values of PE,F are “likely” to be correct, but we empha-
size that they are not proven correct. In the table we give an exact point,
but the algorithm computes a numerical approximation P̃E,F to PE,F ∈ E(Q).
We find the exact point by running through several hundred points in E(Q) and
finding the one closest to P̃E,F .

The table contains every pair E,F of nonisogenous optimal elliptic curves of
the same conductor N ≤ 184 with rE = 1, and most curves for N ≤ 250. It also
contains a few additional miscellaneous examples, e.g., with rE = 0 and some of
larger conductor with rF = 2. Most rows took only a few seconds to compute,
though ones with mF large in some cases took much longer; the total CPU time
to compute the entire table was less than 10 hours. Unless otherwise noted, we
used y = 10−4, d = 500, b′ = 20, and r = 0.1 with 53 bits of precision, as in
Section 5. We also repeated all computations with at least one additional value
of r 6= 0.1, and in every case got the same result (usually we used r = 0.2).

6.1 Discussion

One numerical observation in the table is that in every case 2 | [E(Q)/ tor :
ZPE,F ]. This can likely be proved in some cases by using that ran(E) = 1
implies that the sign in the functional equation for L(E, s) is −1, so at least one
nontrivial Atkin-Lehner involution Wq acts as +1 on E, which means that the
map X0(N)→ E factors through X0(N)→ X0(N)/Wq.

There are four cases in which the index [E(Q)/tor : ZPE,F ] is divisible by
a prime ` ≥ 5. They are (106b, 106c, ` = 11), (118a, 118d, ` = 7), (121b,
121d, ` = 7), and (158b, 158c, ` = 7). In each case, the prime divisor ` of the
index does not appear to have anything to do with the invariants of E and F ,
individually.
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E εp’s rE E(Q) mE F rF mF PE,F Notes

37a + 1 (0,−1) 2 37b 0 2 −6P1

37b − 0 (8, 18)3 2 37a 1 2 P1

57a ++ 1 (2, 1) 4 57c 0 12 8P1

57a ++ 1 (2, 1) 4 57b 0 3 −8P1

57b −+ 0 (7/4,−11/8)2, (1,−1)2 3 57a 1 4 0

57b −+ 0 (7/4,−11/8)2, (1,−1)2 3 57c 0 12 0

57c −+ 0 (2, 4)5 12 57a 1 4 3P1

57c −+ 0 (2, 4)5 12 57b 0 3 P1

58a ++ 1 (0,−1) 4 58b 0 4 8P1

58b −+ 0 (−1, 2)5 4 58a 1 4 3P1

77a ++ 1 (2, 3) 4 77b 0 20 24P1 (1)

77a ++ 1 (2, 3) 4 77c 0 6 −4P1

89a + 1 (0,−1) 2 89b 0 5 4P1

91a ++ 1 (0, 0) 4 91b 1 4 4P1

91b −− 1 (−1, 3), (1, 0)3 4 91a 1 4 P2

92b −− 1 (1, 1) 6 92a 0 2 0

99a ++ 1 (2, 0), (−1, 0)2 4 99b 0 12 −4P1

99a ++ 1 (2, 0), (−1, 0)2 4 99c 0 12 0

99a ++ 1 (2, 0), (−1, 0)2 4 99d 0 6 2P1

102a + + + 1 (2,−4), (0, 0)2 8 102b 0 16 −8P1 (1)

102a + + + 1 (2,−4), (0, 0)2 8 102c 0 24 32P1

106b ++ 1 (2, 1) 8 106a 0 6 −4P1

106b ++ 1 (2, 1) 8 106c 0 48 −88P1

106b ++ 1 (2, 1) 8 106d 0 10 12P1

112a ++ 1 (0,−2), (−2, 0)2 8 112b 0 4 0

112a ++ 1 (0,−2), (−2, 0)2 8 112c 0 8 0

118a ++ 1 (0,−1) 4 118b 0 12 −8P1 (1)

118a ++ 1 (0,−1) 4 118c 0 6 4P1

118a ++ 1 (0,−1) 4 118d 0 38 −28P1

121b + 1 (4, 5) 4 121a 0 6 4P1

121b + 1 (4, 5) 4 121c 0 6 4P1

121b + 1 (4, 5) 4 121d 0 24 −28P1 (2)

123a −− 1 (−4, 1), (−1, 4)5 20 123b 1 4 0

123b ++ 1 (1, 0) 4 123a 1 20 4P1

124a −− 1 (−2, 1), (0, 1)3 6 124b 0 6 0

128a + 1 (0, 1), (−1, 0)2 4 128b 0 8 0

128a + 1 (0, 1), (−1, 0)2 4 128c 0 4 0

128a + 1 (0, 1), (−1, 0)2 4 128d 0 8 0

129a ++ 1 (1,−5) 8 129b 0 15 −8P1

130a +−− 1 (−6, 10), (−1, 10)6 24 130b 0 8 0

130a +−− 1 (−6, 10), (−1, 10)6 24 130c 0 80 0

135a ++ 1 (4,−8) 12 135b 0 36 0 (1)

136a −− 1 (−2, 2), (0, 0)2 8 136b 0 8 0

138a + + + 1 (1,−2), (−2, 1)2 8 138b 0 16 −16P1 (1)

138a + + + 1 (1,−2), (−2, 1)2 8 138c 0 8 −8P1

141a −− 1 (−3,−5) 28 141b 0 12 0

141a −− 1 (−3,−5) 28 141c 0 6 0

141a −− 1 (−3,−5) 28 141d 1 4 0
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E εp’s rE E(Q) mE F rF mF PE,F Notes

141a - - 1 (−3,−5) 28 141e 0 12 0

141d ++ 1 (0,−1) 4 141a 1 28 −12P1

141d ++ 1 (0,−1) 4 141b 0 12 4P1

141d ++ 1 (0,−1) 4 141c 0 6 4P1

141d ++ 1 (0,−1) 4 141e 0 12 4P1

142a - - 1 (1, 1) 36 142b 1 4 0

142a - - 1 (1, 1) 36 142c 0 9 0

142a −− 1 (1, 1) 36 142d 0 4 0

142a −− 1 (1, 1) 36 142e 0 324 0 (2)

142b ++ 1 (−1, 0) 4 142a 1 36 4P1 (1)

142b ++ 1 (−1, 0) 4 142c 0 9 −4P1

142b ++ 1 (−1, 0) 4 142d 0 4 4P1

142b ++ 1 (−1, 0) 4 142e 0 324 8P1 (2)

152a ++ 1 (−1,−2) 8 152b 0 8 0

153a ++ 1 (0, 1) 8 153b 1 16 8P1

153a ++ 1 (0, 1) 8 153c 0 8 8P1

153a ++ 1 (0, 1) 8 153d 0 24 0

153b −− 1 (5,−14) 16 153a 1 8 0

153b −− 1 (5,−14) 16 153d 0 24 0

154a + + + 1 (5, 3), (−6, 3)2 24 154b 0 24 −24P1

154a + + + 1 (5, 3), (−6, 3)2 24 154c 0 16 16P1

155a −− 1 (5/4, 31/8), (0, 2)5 20 155b 0 8 0

155a −− 1 (5/4, 31/8), (0, 2)5 20 155c 1 4 0

155c ++ 1 (1,−1) 4 155a 1 20 −12P1

155c ++ 1 (1,−1) 4 155b 0 8 4P1

156a −+− 1 (1, 1), (2, 0)2 12 156b 0 12 0 (1)

158a −− 1 (−1,−4) 32 158b 1 8 0

158a −− 1 (−1,−4) 32 158c 0 48 0 (1)

158a −− 1 (−1,−4) 32 158d 0 40 0

158a −− 1 (−1,−4) 32 158e 0 6 0

158b ++ 1 (0,−1) 8 158a 1 32 −8P1

158b ++ 1 (0,−1) 8 158c 0 48 −56P1 (1)

158b ++ 1 (0,−1) 8 158d 0 40 0

158b ++ 1 (0,−1) 8 158e 0 6 −8P1

160a ++ 1 (2,−2), (1, 0)2 8 160b 0 8 0

162a ++ 1 (−2, 4), (1, 1)3 12 162b 0 6 0

162a ++ 1 (−2, 4), (1, 1)3 12 162c 0 6 0

162a ++ 1 (−2, 4), (1, 1)3 12 162d 0 12 0

170a +−− 1 (0, 2), (1,−1)2 16 170d 0 12 0

170a +−− 1 (0, 2), (1,−1)2 16 170e 0 20 0

171b −− 1 (2,−5) 8 171a 0 12 0

171b −− 1 (2,−5) 8 171c 0 96 0 (1)

171b −− 1 (2,−5) 8 171d 0 32 0

175a −− 1 (2,−3) 8 175b 1 16 0 (1)

175a −− 1 (2,−3) 8 175c 0 40 0 (1)

175b ++ 1 (−3, 12) 16 175a 1 8 16P1

175b ++ 1 (−3, 12) 16 175c 0 40 16P1 (1)

176c −− 1 (1,−2) 8 176b 0 8 0 (1)
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E εp’s rE E(Q) mE F rF mF PE,F Notes

176c −− 1 (1,−2) 8 176a 0 16 0

176c −− 1 (1,−2) 8 176b 0 8 0 (1)

184a −− 1 (0, 1) 8 184c 0 12 0

184a −− 1 (0, 1) 8 184d 0 24 0

184b ++ 1 (2,−1) 8 184a 1 8 0

184b ++ 1 (2,−1) 8 184c 0 12 0

184b ++ 1 (2,−1) 8 184d 0 24 0

185a ++ 1 (4,−13) 48 185b 1 8 8P1

185a ++ 1 (4,−13) 48 185c 1 6 24P1

· · · · · ·
185b −− 1 (0, 2) 8 185c 1 6 0

185c ++ 1 (−5/4, 3/8), (−1, 0)2 6 185b 1 8 2P1

189a ++ 1 (−1,−2) 12 189b 1 12 −12P1

189a ++ 1 (−1,−2) 12 189c 0 12 12P1

189b −− 1 (−3, 9), (3, 0)3 12 189a 1 12 0

189b −− 1 (−3, 9), (3, 0)3 12 189c 0 12 0

190a −+− 1 (13,−47) 88 190b 1 8 0

190a −+− 1 (13,−47) 88 190c 0 24 0 (1)

190b + + + 1 (1, 2) 8 190c 0 24 16P1 (1)

192a ++ 1 (3, 2), (−1, 0)2 8 192b 0 8 0

192a ++ 1 (3, 2), (−1, 0)2 8 192c 0 8 0

192a ++ 1 (3, 2), (−1, 0)2 8 192d 0 8 0

196a −− 1 (0,−1) 6 196b 0 42 0 (1)

198a +−− 1 (−1,−4), (−4, 2)2 32 198b 0 32 0 (1)

198a +−− 1 (−1,−4), (−4, 2)2 32 198c 0 32 0

198a +−− 1 (−1,−4), (−4, 2)2 32 198d 0 32 0 (1)

198a +−− 1 (−1,−4), (−4, 2)2 32 198e 0 160 0 (1)

200b −− 1 (−1, 1), (−2, 0)2 8 200c 0 24 0

200b −− 1 (−1, 1), (−2, 0)2 8 200d 0 40 0 (1)

200b −− 1 (−1, 1), (−2, 0)2 8 200e 0 24 0

201a ++ 1 (1,−2) 12 201b 1 12 4P1

201b −− 1 (−1, 2) 12 201a 1 12 0

201c ++ 1 (16,−7) 60 201a 1 12 −24P1

201c ++ 1 (16,−7) 60 201b 1 12 8P1

203b −− 1 (2,−5) 8 203a 0 48 0

203b −− 1 (2,−5) 8 203c 0 12 0

205a −− 1 (−1, 8), (2, 1)4 12 205b 0 16 0

205a −− 1 (−1, 8), (2, 1)4 12 205c 0 8 0

208a −− 1 (4,−8) 16 208c 0 12 0

208a −− 1 (4,−8) 16 208d 0 48 0 (1)

208b ++ 1 (4, 4) 16 208a 1 16 0 (1)

208b ++ 1 (4, 4) 16 208c 0 12 0

208b ++ 1 (4, 4) 16 208d 0 48 0 (1)

212a −− 1 (2, 2) 12 212b 0 21 0

214a −− 1 (0,−4) 28 214b 1 12 0 (1)

214a −− 1 (0,−4) 28 214d 0 12 0

214b ++ 1 (0, 0) 12 214a 1 28 −8P1 (1)

214b ++ 1 (0, 0) 12 214d 0 12 −4P1
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214c ++ 1 (11, 10) 60 214a 1 28 −4P1 (1)

214c ++ 1 (11, 10) 60 214d 0 12 16P1

214c ++ 1 (11, 10) 60 214b 1 12 12P1 (1)

216a ++ 1 (−2,−6) 24 216b 0 24 0

219a ++ 1 (2,−1) 12 219c 1 60 −12P1 (1)

219a ++ 1 (2,−1) 12 219b 1 12 −4P1

216a ++ 1 (−2,−6) 24 216d 0 72 0

219b −− 1 (−3/4,−1/8), (0, 1)3 12 219a 1 12 0

219b −− 1 (−3/4,−1/8), (0, 1)3 12 219c 1 60 0 (1)

219c ++ 1 (−6, 7), (10,−5)2 60 219a 1 12 −12P1

219c ++ 1 (−6, 7), (10,−5)2 60 219b 1 12 4P1

220a −−+ 1 (−7, 11), (15, 55)6 36 220b 0 12 0

224a ++ 1 (1, 2), (0, 0)2 8 224b 0 8 0

225a ++ 1 (1, 1) 8 225b 0 40 0 (1)

225e −− 1 (−5, 22) 48 225a 1 8 0 (1)

225e −− 1 (−5, 22) 48 225b 0 40 0 (1)

228b −+− 1 (3, 6) 24 228a 0 18 0

232a ++ 1 (2,−4) 16 232b 0 16 0

234c + + + 1 (1,−2), (−2, 1)2 16 234b 0 48 0 (1)

234c + + + 1 (1,−2), (−2, 1)2 16 234e 0 20 0 (1)

235a −− 1 (−2, 3) 12 235c 0 18 0 (1)

236a −− 1 (1,−1) 6 236b 0 14 0

238a −−+ 1 (24, 100), (−8, 4)2 112 238b 1 8 0 (1)

238a −−+ 1 (24, 100), (−8, 4)2 112 238c 0 16 0 (1)

238a −−+ 1 (24, 100), (−8, 4)2 112 238d 0 16 0 (1)

238b + + + 1 (1, 1), (0, 0)2 8 238a 1 112 12P1 (1)

238b + + + 1 (1, 1), (0, 0)2 8 238c 0 16 −4P1 (1)

238b + + + 1 (1, 1), (0, 0)2 8 238d 0 16 4P1 (1)

240c + + + 1 (1, 2), (0, 0)2 16 240a 0 16 0

240c + + + 1 (1, 2), (0, 0)2 16 240d 0 16 0 (1)

243a + 1 (1, 0) 6 243b 0 9 0 (1)

245a −− 1 (7, 17) 48 245c 1 32 0

246d + + + 1 (3,−6), (4,−2)2 48 246a 0 84 24P1 (1)

446a ++ 1 (4,−6) 24 446d 2 88 0 (2)

446b −− 1 (5,−10) 56 446d 2 88 0 (2)

681a ++ 1 (4, 4) 32 681c 2 96 −24P1 (2)

446d +− 2 - 88 446a 1 12 0 (1)

446d +− 2 - 88 446b 1 56 0 (1)

Notes:

(1) We used y = 10−5, d = 1500, which typically takes about 4 minutes.

(2) We used y = 10−5/2, d = 3000, which takes up to 2 hours.
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I, available at http://math.univ-lyon1.fr/~delaunay/.

[Dok04] Tim Dokchitser, Computing special values of motivic L-functions,
Experiment. Math. 13 (2004), no. 2, 137–149, http://arxiv.org/
abs/math/0207280. MR 2068888 (2005f:11128)

[DRS11] Henri Darmon, Victor Rotger, and Ignacio Sols, Iterated integrals, di-
agonal cycles and rational points on elliptic curves, Preprint (2011),
http://www-ma2.upc.edu/vrotger/docs/DRS1.pdf.

[GJP+09] G. Grigorov, A. Jorza, S. Patrikis, C. Tarnita, and W. Stein, Com-
putational verification of the Birch and Swinnerton-Dyer conjecture
for individual elliptic curves, Math. Comp. 78 (2009), 2397–2425,
http://wstein.org/papers/bsdalg/.

[GK92] Benedict H. Gross and Stephen S. Kudla, Heights and the central
critical values of triple product L-functions, Compositio Math. 81
(1992), no. 2, 143–209, http://www.numdam.org.offcampus.lib.
washington.edu/item?id=CM_1992__81_2_143_0. MR 1145805
(93g:11047)

[MSD74] B. Mazur and P. Swinnerton-Dyer, Arithmetic of Weil curves, In-
vent. Math. 25 (1974), 1–61. MR 50 #7152

[S+11] W. A. Stein et al., Sage Mathematics Software (Version 4.6.2), The
Sage Development Team, 2011, http://www.sagemath.org.

[Wat02] M. Watkins, Computing the modular degree of an elliptic curve, Ex-
periment. Math. 11 (2002), no. 4, 487–502 (2003). MR 1 969 641

[YZZ11] X. Yuan, S. Zhang, and W. Zhang, Triple product L-series and
Gross-Schoen cycles I: split case, Preprint (2011), http://www.

math.columbia.edu/~yxy/preprints/triple.pdf.

13

http://www.warwick.ac.uk/~masgaj/ftp/data/
http://www.warwick.ac.uk/~masgaj/ftp/data/
http://www.warwick.ac.uk/~masgaj/book/fulltext/
http://www.warwick.ac.uk/~masgaj/book/fulltext/
http://math.univ-lyon1.fr/~delaunay/
http://arxiv.org/abs/math/0207280
http://arxiv.org/abs/math/0207280
http://www-ma2.upc.edu/vrotger/docs/DRS1.pdf
http://wstein.org/papers/bsdalg/
http://www.numdam.org.offcampus.lib.washington.edu/item?id=CM_1992__81_2_143_0
http://www.numdam.org.offcampus.lib.washington.edu/item?id=CM_1992__81_2_143_0
http://www.sagemath.org
http://www.math.columbia.edu/~yxy/preprints/triple.pdf
http://www.math.columbia.edu/~yxy/preprints/triple.pdf

	Introduction: Zhang's Construction
	Outline

	Example: N=37
	The Formula of Yuan-Zhang-Zhang
	Iterated Complex Path Integrals
	A Numerical Approach to Computing PE,F
	Determining 0(N) equivalency

	Data
	Discussion


