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1 Introduction

Let X0(N) be the modular curve parameterizing isomorphism classes of (generalized) el-
liptic curves together with a cyclic subgroup of order N . Let J0(N) be the Jacobian of
X0(N), and T the ring of Hecke operators acting on J0(N). It is well known that we can
associate to any maximal ideal m of the Hecke algebra a self-dual two-dimensional residual
Galois representation

ρm : Gal(Q/Q)→ GL2(T/m)

that arises from the natural action of Galois on the division points of J0(N) (see, e.g.,
[9]). Assume that the representation ρm is reducible, in which case one says that m is
an Eisenstein prime. Mazur’s analysis [3] of the Eisenstein ideal when N is prime allows
for a thorough understanding of the arithmetic of the m-adic Tate module of J0(N), and
through this the “Eisenstein quotients” of J0(N) that can naturally be associated to m.
For example, when N is prime Mazur proved for Eisenstein primes m that:

1. The maximal ideal m satisfies multiplicity one; namely, J0(N)[m] = Z/pZ ⊕ µp if
p > 2, and J0(N)[m] = D/Z if p = 2, where D/Z is the unique nontrivial group
scheme extension of Z/2Z by µ2 killed by 2. [Todo: give precise ref]

2. Tm is a Gorenstein ring.

3. The m-adic Tate module
J (m) := Tm ⊗T lim

←−
J [pn]

is free of rank two as a Tm-module.

There is a strong synergy between these results, and indeed their proofs. A notable conse-
quence is the following theorem ([3, Cor. 3.5, Prop. 3.6, p. 150]):

Theorem 1.1 (Mazur). Assume that N is prime, and let m be an Eisenstein prime of T.
If M is the Mordell-Weil group of J0(N) over Q then M ⊗Tp Tm is finite; equivalently, the
m-Eisenstein quotient J has finite Mordell-Weil group. Suppose moreover that the residue
characteristic of m is odd. Then X(J)⊗Tp Tm = 0; equivalently, X(J)[m] = 0.
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If one tries to extend these results to non-prime level one quickly finds that the situation
is more complicated. For example, there exist modular elliptic curves E/Q with nontrivial
torsion and positive rank. Such curves are examples of Eisenstein quotients of nonzero
rank. On the other hand, many of Mazur’s arguments continue to apply in a more general
situation. In this note, we concentrate on a particular Eisenstein quotient of non-prime
level, namely a 15 dimensional quotient A of J0(559) (defined more precisely below), and
an associated Eisenstein maximal ideal m of residue characteristic 7. This example is
particularly interesting in several respects. First, we already start to see pathologies not
present in the case of prime conductor, namely, the failure of multiplicity one. On the
other hand, we are still able to prove the following analogue of Theorem 1.1:

Theorem 1.2. The Mordell–Weil group of A over Q is finite. Furthermore X(A)[m] = 0.

We do not strive for generality, but rather instead try by example to highlight the
issues and difficulties one might expect in this more general context. Another guiding and
motivating problem for us is the following:

Question 1.1. Let A be a modular abelian variety. Can one practically determine the
following invariants of A?

1. The rational torsion subgroup,

2. The endomorphism ring,

3. The minimal degree of a polarization A→ A∨.

A positive answer to this question would give a way of computing some of the invariants
of A that appear in the BSD conjecture. Although there exist various algorithms for
computing the torsion subgroup of an abelian variety, they usually require a concrete
description of A in terms of equations. Our hold on the abelian varieties A is decidedly
more fleeting: we have, concretely, a q-expansion fA that is canonically associated to A.
However, the form fA only determinesA up to isogeny, which is not enough to determine the
torsion subgroup. In practise one can often use fA to determine a multiple of the order of
the torsion subgroup, and then hope to physically realize this subgroup by some geometric
construction, say by considering the cuspidal subgroup (see [AS05, §3.5–3.6]). This is not
always effective, however. 1 Initial computations[Todo: reference paper in progress that 1
explains how to do such computations.] performed by Tseno Tselkov suggested that there
always existed a polarization A→ A∨ of degree some power of 2. We produce an explicit
example to show that this is false. Namely, suppose that A is the 15 dimensional quotient
of J0(559) mentioned above. Then we have the following:

Theorem 1.3. Any polarization A→ A∨ has degree divisible by 7.

We suspect that A might be the modular abelian variety of lowest level that exhibits
this phenomenon.2 2

1Frank: William says something about 2 and 3.
2William: William, is there any better way to search Tseno’s data to determine how difficult this

computation should be?
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2 The Abelian Variety A

Let T be the Hecke algebra of level N = 559 = 13 · 43 associated to J = J0(559), and
let I be the ideal generated by T` − 1− ` for all ` 6= 13, 43, and by U13 + 1 and U43 − 1.
We call I the Eisenstein ideal, but note that a choice has been made, and that there are
two “Eisenstein ideals” of this level; the other choice is to replace U13 + 1 and U43− 1 with
U13 − 1 and U43 + 1. (The two other choices of sign corresponds to factors of J where the
L-function is forced to vanish because the sign in the functional equation is −1.) We find
(see Section 4.1) that T/I ' Z/(2 · 72)Z. Let m = (7) + I , and note that m is maximal
since T/((7) + I) ∼= Z/7Z. Let

I =
⋂
k≥0

(7,mk)

and let T7 = T⊗Z Z7 be the 7-adic completion of T.
Let A be the new simple abelian subvariety at J such that A[m] is nontrivial. This

determines A uniquely.3 It is a fifteen-dimensional geometrically-simple abelian variety, 3
and is associated to a normalized Hecke eigenform f =

∑
anq

n ∈ S2(Γ0(559),Q). There
are two natural degeneracy maps α, β : J0(43) → J . Since X0(p`) → X0(p) is totally
ramified [7], it follows that both maps are injections.4 Let Jold be the sum of the images 4
of α and β. The kernel of J0(43) × J0(43) → Jold is isomorphic to the Shimura subgroup
Σ anti-diagonally embedded in the product (see [8, Thm. 4.3]).

Let O be the ring generated over Z by the coefficients an of f . The surjection T→ O
gives rise to a map Tm → Om. The ring Om has index 7 inside its integral closure.5 5
One usually says in this situation that 7 is a prime of “self-fusion”, since it implies the
existence of a congruence between f and a Galois conjugate fσ, modulo some prime above 7.
Congruences f ≡ g between non-conjugate eigenforms give rise to primes of fusion. The
prime 7 is also a prime of fusion for A, since f is congruent modulo m to g, where g is one
of the two old forms associated to the unique cusp form of level 43. These simultaneous
pathologies (Eisenstein, fusion, self-fusion) occur for levels less than 559 only at the prime
two.6 We shall also see that 7 divides the degree of the modular polarization A→ A∨. We 6
start by proving the following:

Theorem 2.1. We have the following equalities and identifications, where all dimensions
are over F7

∼= T/m:

(1) dimA[m] = 3.

(2) IT7 = (mk, 7)T7 for k ≥ 2.

3William: A computation.
4William: I couldn’t find the totally ramified assertion in [7]; if it is there we should give a precise

reference. Also, why this implies injective is a general fact, but I still think we should give a reference
for that. If [7] doesn’t work out as a reference, Ribet’s level raising paper discusses this sort of thing and
certainly has enough to get injectivity (since he proves that the kernel of the sum of both maps is the
anti-diagonal Shimura subgroup).

5William: A calculation.
6William: A computation that requires justification.
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(3) dimA[(mk, 7)] = 4, for k ≥ 2.

(4) If Aold := A ∩ Jold, then

(a) dimAold[m] = 2,

(b) Z/7Z ⊂ Aold[m], where Z/7Z is the intersection of A with the image of the
cuspidal subgroup of Jold.

Proof. The identification of I follows by a consideration of q-expansions. All the other
results can essentially be proved by computations over the complex numbers.7 The only 7
arithmetic input is to understand the cuspidal subgroup of Jold, but this is completely
described by [3]. For part (1) it suffices to consider finitely many Hecke operators, by the
Sturm bound (see the appendix to [2]).

Part (1) of Theorem 2.1 shows that A does not satisfy “multiplicity one” at the Eisen-
stein prime m. Calculation (2) reflects the fact that Om has rank two over Z7. Calcula-
tion (3) uses William’s exact “intersection” routine inside J .8 8

Let us consider further the Hecke algebra structure of T on A.

Definition 2.2. Let O be the image of T in End(A). Let Om denote the localization of O
at the image of m.

Lemma 2.3. The ring Om is the unique index 7 ring inside the Witt vectors W (F49).
There is an isomorphism

Om/(7) ' F7[ε]/ε2.

Proof. The Hecke algebra is finitely generated, and an explicit list of generators may be
found from [2, App.]. The lemma follows by calculation.9 9

These rings are explicitly computable, i.e., one may find a Hecke operator ε ∈ T that
gives rise to this isomorphism. This will be important below. One way to construct an
element ε is to consider the Hecke operators

η` = 1 + `− T`

for various primes ` 6= 13, 43. They will a priori land in m, but by the Cebotarev density
theorem will land in I infinitely often. If Om/7 is generated by η` over F7 then we say that
` is a good prime. Note that mOm is equal to (7, η`) for a good prime `, but mOm is not
generated by η`; indeed, the maximal ideal mOm cannot be generated by a single element
since Om is not a discrete valuation ring.

7Frank: as William explains
8William: I’ll rewrite.
9William: A calc.
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Definition 2.4. Consider its Jordan–Hölder factors of a Galois module G. Let δ(G) denote
the number of times Z/7Z occurs as a factor minus the number of occurrences of µ7. For
an abelian variety B, let δB(n) denote δ(B[7n]).

Lemma 2.5. We have δA(n) = δA∨(n) = 0, and δ(A[I]) = δ(A[m2, 7]) = 0.

Proof. Note that δ is additive in exact sequences. Since A[7n] has a filtration by copies of
A[7] is follows that δA(n) = nδA(1). Since A∨ is dual to A it follows that δA∨(n) = −δA(n).
Thus

δA(n)− δA∨(n) = 2nδA(1).

Yet A is isogenous to A∨, and thus δA(n) − δA∨(n) = O(1). Hence δA(n) = δA∨(n); but
δA(n) = −δA∨(n), so this proves the first part of the lemma. For the second it suffices to
note that m is the unique Eisenstein prime (of A) with residue characteristic 7.

It follows from Lemma 2.5 that A[I] has a filtration by two copies of Z/7 and two copies
of µ7. We may also control the constant and multiplicative submodules of A[I]:

Lemma 2.6. The maximal constant Galois submodule of A[I] is contained in A[m]. The
maximal µ-type subgroup of A[I] is also contained in A[m].

Proof. It suffices to prove that both constant Galois modules and µ-type Galois modules
are killed by the Eisenstein ideal. Let M be a constant Galois module, and suppose that
that M ⊆ A[I]. Let ` 6= 7, 13, 43. By the Eichler–Shimura relations the Frobenius element
σ` acting on M satisfies the polynomial x2 − T`x+ ` = 0. Thus if M is constant it follows
that η` = 1 + `− T` kills M . Choosing ` to be a good prime it follows that M is killed by
(7, η`) = m, since 7 ∈ I. Yet for good primes ` we have that (7, η`)Om = mOm, and thus
M is killed by m, and M ⊆ A[m]. An identical argument works for µ-type subgroups.

2.1 Determining the Jordan–Hölder factors of A[m]

As in [3] (§14, p.114), we see that the Galois module A[m] has a filtration by modules
of the form Z/7Z and µ7, and correspondingly A[m] considered as a group scheme over
Spec(Z7) or Spec(F7) also has such a filtration (as one sees from [5]). By Theorem 2.1, we
see that there is at least one copy of Z/7Z that includes into A[m]. A general argument of
Mazur [3] shows that all the other filtered pieces of µ7 must be isomorphic to µ7.

Lemma 2.7. Let N be an integer, let p - 2N be a prime, and let m be a maximal ideal
of the Hecke algebra of residue characteristic p. Let J [m]ét

/Fp
be the étale part of the group

scheme J0(N)[m]/Fp. Then J [m]ét
/Fp

is one dimensional.

Proof. The argument of Mazur ([3], Cor 14.8, p.119) applies mutatis mutandis.

Note that this result does not imply that the p-torsion subgroup of J0(N) is cyclic,
for p - N , since different rational cyclic subgroups may be killed by different maximal
Eisenstein ideals. The point is that the argument requires the q-expansion principal, which

5

wstein
Cross-Out

wstein
Replacement Text
the

wstein
Inserted Text
Thus delta_A(1) = 0, so 

wstein
Inserted Text
don't see the second at all yet.

wstein
Inserted Text
need something more than just 2.5, right?

wstein
Sticky Note
Marked set by wstein

wstein
Sticky Note
Marked set by wstein

wstein
Sticky Note
Marked set by wstein

wstein
Sticky Note
Marked set by wstein



is only valid if one works with the full Hecke algebra (i.e. specifying the action of U` for
bad primes `). Thus we infer that A[m]/(Z/7Z) has a filtration by two copies of µ7. We
show that this second piece is a direct summand.

Lemma 2.8. Let N be an integer, let p - 2N , and let m be a maximal ideal of the Hecke
algebra of residue characteristic p. Let V be a Galois module subquotient of J [m] whose
filtration consists either entirely of (Z/pZ)’s or µp’s. Then V is a direct summand.

Proof. We apply the same argument as in the proof of [3], Lemma 16.7, p. 126. Since V is
a subquotient of J [m], by the Eichler-Shimura relations any Frobenius element σ` satisfies
the minimal polynomial (x− 1) · (x− `) = 0. Choose a prime ` 6≡ 1 mod p, possible since
p 6= 2. Suppose that V has a filtration by constant pieces. Then (σ`− `) is an isomorphism
on each filtered piece and thus has no kernel on V . It follows that σ` = 1 on V . By
the Cebotarev density theorem it follows that V is constant, so it is clearly a direct sum
of constant modules. If V has a filtration by µp’s, then the same argument applied to
V ∨ shows that V ∨ is also a direct summand of constant modules and thus V is a direct
summand of multiplicative Galois modules.

Thus we have the following:

Lemma 2.9. 1. δ(A[m]) = −1, and A[m] sits inside an exact sequence of the form:

0→ Z/7Z→ A[m]→ µ7 ⊕ µ7 → 0.

2. A[I]/A[m] ' Z/7Z.

Proof. The second claim follows from Lemma 2.5 which implies that

0 = δ(A[I]) = δ(A[I]/A[m]) + δ(A[m]).

2.2 Determining A[m]

We show now that the extension (1) of Lemma 2.9 is nontrivial.

Lemma 2.10. Suppose that A[m] ' Z/7Z⊕ (µ7)2. Then

η` = T` − 1− ` /∈ I

(equivalently, ` is a good prime) if and only if both conditions are satisfied:

1. ` 6≡ 1 mod 7

2. ` is not a 7th power modulo 43.

6



Proof. Choosing an appropriate basis for A[I] as a four dimensional F7 vector space we
may write the action of Gal(Q/Q) as

ρ =


1 0 0 a
0 χ 0 b
0 0 χ c
0 0 0 1

 ,

where χ is the cyclotomic character, and a, b and c are functions on Gal(Q/Q). We
compute that

(ρ(σ)− 1)(ρ(σ)− χ(σ)) = (χ(σ)− 1)


0 0 0 a(σ)
0 0 0 0
0 0 0 0
0 0 0 0


Since I 6= m it follows that a is nontrivial. Moreover, we see that a prime ` is good if
and only if ` 6≡ 1 mod 7 and a(Frob`) is nontrivial. The function a defines an extension
class inside Ext1(Z/7Z,Z/7Z). These extensions are taking place inside the category of
finite flat group schemes over Z[1/559]. Such extensions are étale, and thus the generic
fibre defines a degree 7 field unramified over Q outside 559. The only such extension is the
degree 7 extension inside Q(ζ43), since 7 - 13− 1. Thus if σ = Frob`, then a(σ) = 0 if and
only if ` splits completely in this degree 7 field. This is equivalent to ` being a 7th power
modulo 43. This proves one implication. Now assume that either ` ≡ 1 mod 7 or ` is a
7th power modulo 43. Then if σ = Frob` and x = ρ(σ), then (x− 1)(x− `) = 0. Thus

0 = x2 − T`x+ ` = (x− 1)(x− `) + (T` − 1− `)x = η`x.

Since x = ρ(σ) is invertible, this implies that η` = 0, and thus ` is not a good prime. This
proves the lemma.

It is easy to compute that η2 ∈ I and thus 2 is not a good prime. By the previous
lemma this implies that A[m] 6= Z/7Z⊕ µ7 ⊕ µ7.

To sum up what we know so far, the action of Galois on A[I] = A[7,m2] can be written
as follows:

ρ(σ) =


1 x y a
0 χ 0 b
0 0 χ c
0 0 0 1

 ,

Where x, y, a, b and c are all continuous functions of Gal(Q/Q), and x and y are not both
zero. We may also assume that the first 2 × 2 matrix represents the action of Galois on
Aold[m]. Since A∨[I] is the Cartier dual to A[I] we also understand the Galois action on

7



A∨[I]. Explicitly, it is given by χρ−1 which is

ρ∨(σ) =


χ −c −b a′

0 1 0 −y
0 0 1 −x
0 0 0 χ

 ,

Lemma 2.11. At least one of b and c is nonzero, and thus there is no surjection A[I]→
µ7 ⊕ µ7 and no inclusion Z/7Z⊕ Z/7Z→ A∨[I].

Proof. If both b and c are zero then one finds that any ` ≡ 1 mod 7 cannot be a good
prime (that is, η` must kill A[I]). Yet this contradicts the fact that 29 is a good prime (as
one can compute).10 10

It follows that the torsion subgroup of A∨[I] has order at most 7.

Lemma 2.12. We have c 6= 0, and b = 0.

Proof. There is an injective map A[I]/Aold[m]→ A∨[m].11 If c = 0 then the image contains 11
a rational 7-torsion point. Yet the intersection of the image with the cuspidal torsion group
of A∨ is zero,12 and thus A∨[I] would contain two linearly disjoint rational subgroups of 12
order 7, contradicting Lemma 2.11. Thus c 6= 0. On the other hand, there is a rational
torsion point of order 7 in A∨[m],13 and thus (changing bases slightly if necessary) we have 13
that b = 0.

Let us now determine the extensions c and x.

Lemma 2.13. The extensions c and x are unramified at 13, and the class y is nontrivial.

Proof. The claim for x follows from the fact that Aold[m] is unramified at 13, by the criterion
of Néron–Ogg–Shafarevich applied to J0(43). This determines the class of x uniquely. The
class c corresponds to an extension of the form Q(ζ7,

7
√
D), where D = 43 · 13k for some

k or D = 13. To determine it explicitly we prove the following Sub-lemma, which is a
variation on Lemma 2.10:

Sub-lemma 1. Fix a D whose only prime divisors lie in the set {13, 43}. Let K =
Q(ζ7,

7
√
D). Suppose that the class c becomes trivial over K. Let ` ≡ 1 mod 7 and suppose

that ` splits completely in K. Then η` is not a good prime. Equivalently,

η` = T` − 1− ` ≡ 0 mod I.

10William: A calc.
11Frank: This is this a calculation for William.
12William: A calc.
13William: a calc.
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Proof. Choosing an appropriate basis for A[I] as a four dimensional F7 vector space we
may write the action of σ ∈ Gal(Q/Q) as

ρ(σ) =


1 x y a
0 χ 0 0
0 0 χ c
0 0 0 1

 ,

where χ is the cyclotomic character, and a, c, x, y are functions on Gal(Q/Q). Suppose
that σ = Frob`, and that ` ≡ 1 mod 7 so χ(σ) = 1. We compute that

(ρ(σ)− 1)2 =


0 0 0 c(σ)y(σ)
0 0 0 0
0 0 0 0
0 0 0 0


If ` splits completely in K then c(Frob`) = 0. Now letting x = ρ(σ), and remembering
that ` ≡ 1 mod 7, we find that

0 = x2 − T`x+ 1 = (x− 1)2 + η`x = η`x.

Since x is invertible, it follows that η` annihilates A[I] and thus η` ∈ I.

The following table gives the smallest prime that splits completely in Q(ζ7,
7
√
D) for

various D:14 14

D 43 43 · 13 43 · 132 43 · 133 43 · 134 43 · 135 43 · 136 13
` 631 211 29 337 281 197 239 421

T` ∈ I Yes No No No No No No No

Thus the only possibility for c is that it becomes trivial in Q(ζ7,
7
√

43). As a double
check of our computations, we find the next few primes that split completely in Q(ζ7,

7
√

43).
They are 659, 1009, 1289 and 1933. We check in all of these cases that T` ∈ I. Thus D = 43
and c is unramified at 13. We also conclude from these calculations that y 6= 0, completing
the proof of Lemma 2.13.

2.3 The torsion subgroup of A and A∨

We may write the action of Galois on A[I] = A[7,m2] as follows:

ρ(σ) =


1 x y a
0 χ 0 b
0 0 χ c
0 0 0 1

 ,

14William: Explain how computed.
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Where x, y, a, b and c are all continuous functions of Gal(Q/Q). We may also assume
that the first 2× 2 matrix represents the action of Galois on Aold[m].

Theorem 2.14. The rational 7-torsion subgroups of A and A∨ are exactly Z/7.

Proof. The cuspidal torsion subgroup of A∨[7] is Z/7, as can be computed.15 Suppose that 15
there was an inclusion π : Z/7 ⊕ Z/7 ⊆ A∨[7]. Then considering the Cartier dual there
would be a section

π∨ : A[I]→ µ7 ⊕ µ7

which contradicts lemma 2.11.

Note, that this just proves that the rational 7-torsion of A∨ has rank one. We prove
now that there are no points of order 49.

Theorem 2.15. The 7-Sylow subgroups of Ators(Q) and A∨tors(Q) have degree 7.

Proof. Since all rational torsion of A is contained in A[m] by Lemma 2.6, the first claim
has already been proved. For the second, consider the variety A′ = A∨/µ7. Then from
our explicit description of the Galois action on 7-torsion we find that Z/7 ⊕ Z/7 ⊂ A′[7].
Suppose that Z/49Z ⊂ A∨tors(Q). Then since the torsion of A∨ injects into the torsion of A′

the torsion subgroup of A′ must have order divisible by 343. This contradicts the multiple
of torsion computed earlier.16 16

2.4 Conjectural Computations with the BSD conjecture
17 17

2.5 Remarks on the Structure of the Tate Module

An important ingredient in our calculations was explicitly working with the action of the
completed Hecke algebra Tm on the Tate module A(m). What is the structure of this
module? We know that as a Tm module, it is torsion free, and has “rank two” in the sense
that A(m) ⊗Q is a free Tm ⊗Q of rank two. In general the structure of finite rank torsion
free modules over a local domain can be quite difficult (except in the case of a discrete
valuation ring, of course!). However, certain special rings admit a nice description of their
finite rank modules.

Definition 2.16. Let R be a local domain of dimension one with maximal ideal m. Let
R̃ denote the integral closure of R. Suppose that every ring R′ such that R ⊆ R′ ⊆ R̃ is
Gorenstein. Then R is a Bass ring.

15William: A calc.
16William: Ref to the calc.
17Frank: Here William writes down BSD and shows how in this case it implies that the odd part of

X(A) is trivial.
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For example, let R̃ be the Witt vectors W (Fq) for q = pf , let π be the reduction map

π : R̃→ Fq, and let R = π−1(Fp). Then R is a Bass ring. Taking the example q = 49 and
f = 2 we find that R = Tm is a Bass ring.

The following theorem answers our questions about modules for Bass rings.

Theorem 2.17. Let R be a Bass ring. Then any torsion free module of rank n is a direct
sum of rank one modules M isomorphic to a subring R′ satisfying

R ⊆ R′ ⊆ R̃.

In our examples, this implies that the only rank one modules of Om are either Om or
Õm. Since dim(Om/m) = 1 and dim(Õm/m) = 2 we conclude the following:

Lemma 2.18. There is an isomorphism of Hecke modules

A(m) ' Om ⊕ Õm.

3 The Descent

The goal of this section is to prove that X(A)[m] is trivial and that A(Q) has rank 0.
It turns out to be easier to compute the descent on A∨ rather than A. Let S = Spec(Z).

Let A be the Néron model of A∨ over S, and note that A [I] equals A [7] ⊗T7 Tm. For
a group scheme G/S and a finite set of primes Σ let G[(Σ) denote the quasi-finite group
scheme over S obtained from G by removing the special fibres at primes in Σ. We have
the following exact diagram of quasi-finite group schemes over S:

0

��
0 // µ7

//M //

��

(Z/7Z)[(43) // 0

0 // A [m] //

��

OO

A [I] // (µ7)[(Σ) // 0

Z/7Z

��

OO

0
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Where the up and down arrows correspond to the fact that there exists sections, and Σ is
a subset of {13, 43}. The inclusions µ7,Z/7Z→ A [m] exist because of the corresponding
inclusions of Galois modules and the Néron mapping property applied to A . The identity
M /µ7 = (Z/7Z)[(43) similarly follows from the fact that the Galois module underlying M
is ramified at 43 and unramified at 13 (the corresponding extension class is c, which we
identified by Lemma 2.13) and the Néron mapping property. We note that 43 ∈ Σ because
the extension class x is ramified at 43, by Lemma 2.13. Now we make the following
observations on fppf cohomology for S = Spec(Z) (see for example [3], p.48):

Lemma 3.1. The following hold.

1. Hi(S,Z/7Z) = Hi(S, µ7) = 0 for i = 1, 2.

2. H1(S, (Z/7Z)[(43)) = 0, and H2(S, (Z/7Z)[(43)) is one dimensional.

3. H1(S,M ) = 0, and H2(S,M ) = H2(S, (Z/7Z)[(43)).

4. H1(S,A [m]) = 0, and H2(S,A [m]) = H2(S, (Z/7Z)[(43)).

5. H1(S,A [I]) = 0.

6. If Φ is the component group of A then H0(S,Φ)⊗ Z7 = Z/7Z.

7. The map H0(A )→ H0(Φ) is surjective.

Proof. We prove each item in turn.

1. This follows from the discussion in [3], p.48, p.49.

2. Again we follow [3], p.48, p.49. There is an exact sequence

0→ (Z/7Z)[(43) → Z/7Z→ φ→ 0

for some skyscraper sheaf φ supported in characteristic 43. Taking global sections
we see that H0(S,Z/7Z) surjects onto H0(S, φ) = Z/7Z and thus H1(S, (Z/7Z)[(43))
injects into H1(S,Z/7Z) = 0. On the other hand, from part one we also conclude
that H2(S, (Z/7Z)[(43)) = H1(S, φ) is one dimensional.

3. This follows from the long exact sequence of cohomology, and parts one and two.

4. Since A [m] = M ⊕ Z/7Z, we have Hi(S,A [m]) = Hi(S,M )⊕ Hi(S,Z/7Z).

5. The long exact sequence of cohomology gives an exact sequence

0→ H1(S,A [I])→ H1(S, (µ7)[(Σ))→ H2(S,A [m])

Now the exact sequence

0→ (µ7)[(Σ) → µ7 → ψ → 0

12



shows that H0(S, ψ) = H1(S, (µ7)[(Σ)). Since

H0(S, ψ) =
⊕
p∈Σ

µ7(Fp)

and since F13 has no 7th roots of unity we see that the dimension of H1(S, (µ7)[(Σ))
is the dimension of µ7(F43), which is one. On the other hand, the target of the
coboundary map H2(S,A [m]) ' H1(S, (Z/7Z)[(43)) is one dimensional also. Thus it
suffices to show that the coboundary map

µ7(F43) ' H1(S, (µ7)[(Σ)) −→ H1(S, (Z/7Z)[(43)) ' H1(S, φ)

is nontrivial. Perhaps more helpfully, this boundary map is the same as the one
coming from the associated long exact sequence of the following long exact sequence:

0→ (Z/7Z)[(43) → N → (µ7)[(Σ) → 0,

Where N = A [I]/(Z/7Z⊕ µ7). The Galois extension corresponding to the generic
fibre of N is given by extension class y.18 18

6. This follows from the [3], Appendix, Thm. A.1.

7. This follows from the identification of Φ above and a computation...19 19

Let us consider the usual descent sequence:

0 // A 0 // A // Φ // 0

0 // A [I] // A //

OO

7

>>

A 0

OO

// 0

Let M be the Mordell–Weil group of A. By the Néron mapping property M = A (S).
Let M0 = A 0(S). Taking cohomology and using parts 5 & 7 of Lemma 3.1, we get the
following exact diagram20, where by abuse of notation we consider everything (as in [3]
p.150) in the category of T-modules modulo the category of T-modules whose support lies
in some finite set ∆ containing all primes of characteristic seven besides m.

18Frank: To myself, this is what needs to be completed.
19Frank: Is this right? Or is it obvious
20William,Make the map M → Z/7Z a surjective arrow
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0 //M0 //M // Z/7Z // H1(A 0) // H1(A )

0 // Z/7Z //M //

OO

7

>>

M0

OO

// 0 // H1(A )

OO

7

::

// H1(A 0)

OO

From this diagram we easily conclude that M ' Z/7Z. It also follows that the mul-
tiplication by 7 map on H1(A ) is injective (modulo T-modules with support outside m),
and thus that that H1(A )[m] = 0. By [4], Prop, p.263, the Tate–Shafarevich group X(A)
injects into H1(A ), and thus it follows that X(A)[m] = 0.

4 Algorithms

In this section we explain the algorithms we use to verify the computational assertions that
appear elsewhere in this paper.

4.1 The quotient by the Eisenstein ideal
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