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1 Introduction

Let X0(N) be the modular curve parameterizing isomorphism classes of (generalized) el-
liptic curves together with a cyclic subgroup of order N . Let J0(N) be the Jacobian of
X0(N), and T the ring of Hecke operators acting on J0(N). It is well known that we can
associate to any maximal ideal m of the Hecke algebra a self-dual two-dimensional residual
Galois representation

ρm : Gal(Q/Q)→ GL2(T/m)

that arises from the natural action of Galois on the division points of J0(N) (see, e.g.,
[9]). Assume that the representation ρm is reducible, in which case one says that m is an
Eisenstein prime. Mazur’s analysis [3] of the “Eisenstein ideal” when N is prime allows
for a thorough understanding of the arithmetic of the m-adic Tate module of J0(N), and
through this the “Eisenstein quotients” of J0(N) that can naturally be associated to m.
For example, when N is prime Mazur proved (see [3, II]) for Eisenstein primes m that:

1. The maximal ideal m satisfies multiplicity one; namely, J0(N)[m] = Z/pZ ⊕ µp if
p > 2, and J0(N)[m] = D/Z if p = 2, where D/Z is the unique nontrivial group
scheme extension of Z/2Z by µ2 killed by 2.

2. Tm is a Gorenstein ring.

3. The m-adic Tate module
J (m) := Tm ⊗T lim

←−
J [pn]

is free of rank two as a Tm-module.

There is a strong synergy between these results, and indeed their proofs. A notable conse-
quence is the following theorem ([3, Thm. 12 p. 38 or Cor. 3.5, Prop. 3.6, p. 150]):

Theorem 1.1 (Mazur). Assume that N is prime, and let m be an Eisenstein prime of T.
If M is the Mordell-Weil group of J0(N) over Q then M ⊗Tp Tm is finite; equivalently, the
m-Eisenstein quotient J has finite Mordell-Weil group. Suppose moreover that the residue
characteristic of m is odd. Then X(J)⊗Tp Tm = 0; equivalently, X(J)[m] = 0.
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If one tries to extend these results to non-prime level one quickly finds that the situation
is more complicated (see, e.g., the list at [3, p. 39]). For example, there exist modular
elliptic curves E/Q with nontrivial torsion and positive rank. Such curves are examples
of Eisenstein quotients of nonzero rank. On the other hand, many of Mazur’s arguments
continue to apply in a more general situation. In this note, we concentrate on a particular
Eisenstein quotient of non-prime level, namely a 15 dimensional quotient A of J0(559)
(defined more precisely below), and an associated Eisenstein maximal ideal m of residue
characteristic 7. This example is particularly interesting in several respects. First, we
already start to see pathologies not present in the case of prime conductor, namely, the
failure of multiplicity one. On the other hand, we are still able to prove the following
analogue of Theorem 1.1:

Theorem 1.2. The Mordell–Weil group of A over Q is finite. Furthermore X(A)[m] = 0.

In this paper, we do not strive for generality, but rather instead try by example to
highlight the issues and difficulties one might expect in this more general context. A
guiding and motivating problem for us is the following:

Question 1.3. Let A be a modular abelian variety attached to a newform fA ∈ S2(Γ0(N)).
Can one practically determine the following invariants of A?

1. The rational torsion subgroup,

2. The endomorphism ring,

3. The minimal degree of a polarization A→ A∨,

A positive answer to this question is relevant to computing some of the invariants of A
that appear in the BSD conjecture, and to the problem of systematically enumerating up
to isomorphism all simple abelian variety quotients of J0(N). Although there exist various
algorithms for computing the torsion subgroup of an abelian variety, they usually require
a concrete description of A in terms of equations. Our hold on the abelian varieties A is
decidedly more fleeting: we have, concretely, a q-expansion fA that is canonically associated
to A. However, the form fA only determines A up to isogeny, which is not enough to
determine the torsion subgroup. In practise one can often use fA to determine a multiple of
the order of the torsion subgroup, and then hope to physically realize this subgroup by some
geometric construction, say by considering the cuspidal subgroup (see [AS05, §3.5–3.6]).
We have not yet found a way to make this approach effective in general, however. Initial
computations performed by Tseno Tselkov using the algorithm of Section 4.7 suggested
that there always existed a polarization A→ A∨ of degree some power of 2. We produce an
explicit example to show that this is false. Namely, suppose that A is the 15 dimensional
quotient of J0(559) mentioned above. Then we have the following:

Theorem 1.4. Any polarization A → A∨ has degree divisible by 7. [[Todo: Where exactly

do we prove this?]]

We suspect[[Todo: have?]] that A is the newform abelian variety of smallest level that
exhibits this phenomenon (see Section 4.8).
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2 The Abelian Variety A

Let T be the Hecke algebra of level N = 559 = 13 · 43 associated to J = J0(559), and
let I be the ideal generated by T` − 1− ` for all ` 6= 13, 43, and by U13 + 1 and U43 − 1.
We call I the Eisenstein ideal, but note that a choice has been made, and that there are
two “Eisenstein ideals” of this level; the other choice is to replace U13 + 1 and U43− 1 with
U13 − 1 and U43 + 1. (The two other choices of sign corresponds to factors of J where the
L-function is forced to vanish because the sign in the functional equation is −1.) We find
(see Section 4.1) that T/I ' Z/(2 · 7)Z. Let m = (7) + I , and note that m is maximal
since T/((7) + I) ∼= Z/7Z. Let

I =
⋂
k≥0

(7,mk)

and let T7 = T⊗Z Z7 be the 7-adic completion of T.
Let A be the new simple abelian subvariety at J such that A[m] is nontrivial. This

determines A uniquely. It is a 15 dimensional geometrically simple abelian variety, and is
associated to a normalized Hecke eigenform f =

∑
anq

n ∈ S2(Γ0(559),Q) (see Section 4.2).
There are two natural degeneracy maps α, β : J0(43) → J . Since X0(p`) → X0(p) is

totally ramified [7], it follows that both maps are injections.[[Todo: I couldn’t find the totally

ramified assertion in [7]; if it is there we should give a precise reference. Also, why this implies

injective is a general fact, but I still think we should give a reference for that. If [7] doesn’t

work out as a reference, Ribet’s level raising paper discusses this sort of thing and certainly has

enough to get injectivity (since he proves that the kernel of the sum of both maps is the anti-

diagonal Shimura subgroup).]] Let Jold be the sum of the images of α and β. The kernel of
J0(43)×J0(43)→ Jold is isomorphic to the Shimura subgroup Σ anti-diagonally embedded
in the product (see [8, Thm. 4.3]).

Let O be the ring generated over Z by the coefficients an of f . The surjection T→ O
gives rise to a map Tm → Om. The ring Om has index 7 inside its integral closure (see
Section 4.3). One usually says in this situation that 7 is a prime of “self-fusion”, since it
implies the existence of a congruence between f and a Galois conjugate fσ, modulo some
prime ideal above 7. Congruences f ≡ g between non-conjugate eigenforms give rise to
primes of fusion. The prime 7 is also a prime of fusion for A, since f is congruent modulo m
to g, where g is one of the two old forms associated to the unique cusp form of level 43.
These simultaneous pathologies (Eisenstein, fusion, self-fusion) occur for levels less than
559 only at the prime 2 (see Section 4.6). We shall also see that 7 divides the degree of
the modular polarization A→ A∨ (see Section 4.4). We start by proving the following:

Theorem 2.1. We have the following equalities and identifications, where all dimensions
are over F7

∼= T/m:

(1) dimA[m] = 3.

(2) IT7 = (mk, 7)T7 for k ≥ 2.

(3) dimA[(mk, 7)] = 4, for k ≥ 2.
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(4) If Aold := A ∩ Jold, then

(a) dimAold[m] = 2,

(b) Z/7Z ⊂ Aold[m], where Z/7Z is the intersection of A with the image of the
cuspidal subgroup of Jold.

Proof. The identification of I in part (2.1) follows by a consideration of q-expansions.
All the other results can essentially be proved by computations over the complex num-
bers.[[Todo: as William explains]] The only arithmetic input is to understand the cuspidal
subgroup of Jold, but this is completely described by [3]. For part (2.1) it suffices to consider
finitely many Hecke operators, by the Sturm bound (see [2, App.]).

Part (2.1) of Theorem 2.1 shows that A does not satisfy “multiplicity one” at the
Eisenstein prime m. Calculation (2.1) reflects the fact that Om has rank two over Z7.
Calculation (2.1) uses exact “intersection” algorithms inside J (see Section 4.5).

Let us consider further the Hecke algebra structure of T on A.

Definition 2.2. Let O be the image of T in End(A). Let Om denote the localization of O
at the image of m.

Lemma 2.3. The ring Om is the unique index 7 ring inside the Witt vectors W (F49).
There is an isomorphism

Om/(7) ' F7[ε]/ε2.

Proof. The Hecke algebra is finitely generated, and an explicit list of generators may be
found from [2, App.]. The lemma follows by calculation.[[Todo: A calc.]]

These rings are explicitly computable, i.e., one may find a Hecke operator ε ∈ T that
gives rise to the isomorphism of Lemma 2.3. This will be important below. One way to
construct an element ε is to consider the Hecke operators

η` = 1 + `− T`

for various primes ` 6= 13, 43. They will a priori land in m, but by the Cebotarev density
theorem will land in I infinitely often. If Om/7 is generated by η` over F7 then we say that
` is a good prime. Note that mOm is equal to (7, η`) for a good prime `, but mOm is not
generated by η`; indeed, the maximal ideal mOm cannot be generated by a single element
since Om is not a discrete valuation ring.

Definition 2.4. Consider the Jordan–Hölder factors of a Galois module G. Let δ(G)
denote the number of times Z/7Z occurs as a factor minus the number of occurrences of
µ7. For an abelian variety B, let δB(n) denote δ(B[7n]).

Lemma 2.5. We have δA(n) = δA∨(n) = 0, and δ(A[I]) = δ(A[m2, 7]) = 0.
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Proof. Note that δ is additive in exact sequences. Since A[7n] has a filtration by copies of
A[7] is follows that δA(n) = nδA(1). Since A∨ is dual to A it follows that δA∨(n) = −δA(n).
Thus

δA(n)− δA∨(n) = 2nδA(1).

Yet A is isogenous to A∨, and thus δA(n) − δA∨(n) = O(1). Thus δA(1) = 0, so δA(n) =
δA∨(n); but δA(n) = −δA∨(n), so this proves the first part of the lemma. For the second
it suffices to note that m is the unique Eisenstein prime (of A) with residue characteris-
tic 7.[[Todo: Why? I do not see this.]]

It follows[[Todo: I do not see this.]] from Lemma 2.5 that A[I] has a filtration by two
copies of Z/7 and two copies of µ7. We may also control the constant and multiplicative
submodules of A[I]:

Lemma 2.6. The maximal constant Galois submodule of A[I] is contained in A[m]. The
maximal µ-type subgroup of A[I] is also contained in A[m].

Proof. It suffices to prove that both constant Galois modules and µ-type Galois modules
are killed by the Eisenstein ideal. Let M be a constant Galois module, and suppose that
that M ⊆ A[I]. Let ` 6= 7, 13, 43. By the Eichler–Shimura relations the Frobenius element
σ` acting on M satisfies the polynomial x2 − T`x+ ` = 0. Thus if M is constant it follows
that η` = 1 + `− T` kills M . Choosing ` to be a good prime it follows that M is killed by
(7, η`) = m, since 7 ∈ I. Yet for good primes ` we have that (7, η`)Om = mOm, and thus
M is killed by m, and M ⊆ A[m]. An identical argument works for µ-type subgroups.

2.1 Determining the Jordan–Hölder factors of A[m]

As in [3] (§14, p.114), we see that the Galois module A[m] has a filtration by modules
of the form Z/7Z and µ7, and correspondingly A[m] considered as a group scheme over
Spec(Z7) or Spec(F7) also has such a filtration (as one sees from [5]). By Theorem 2.1, we
see that there is at least one copy of Z/7Z that includes into A[m]. A general argument of
Mazur [3] shows that all the other filtered pieces of µ7 must be isomorphic to µ7.

Lemma 2.7. Let N be an integer, let p - 2N be a prime, and let m be a maximal ideal
of the Hecke algebra of residue characteristic p. Let J [m]ét

/Fp
be the étale part of the group

scheme J0(N)[m]/Fp. Then J [m]ét
/Fp

is one dimensional.

Proof. The argument of Mazur ([3], Cor 14.8, p.119) applies mutatis mutandis.

Note that this result does not imply that the p-torsion subgroup of J0(N) is cyclic,
for p - N , since different rational cyclic subgroups may be killed by different maximal
Eisenstein ideals. The point is that the argument requires the q-expansion principal, which
is only valid if one works with the full Hecke algebra (i.e. specifying the action of U` for
bad primes `). Thus we infer that A[m]/(Z/7Z) has a filtration by two copies of µ7. We
show that this second piece is a direct summand.
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Lemma 2.8. Let N be an integer, let p - 2N , and let m be a maximal ideal of the Hecke
algebra of residue characteristic p. Let V be a Galois module subquotient of J [m] whose
filtration consists either entirely of (Z/pZ)’s or µp’s. Then V is a direct summand.

Proof. We apply the same argument as in the proof of [3], Lemma 16.7, p. 126. Since V is
a subquotient of J [m], by the Eichler-Shimura relations any Frobenius element σ` satisfies
the minimal polynomial (x− 1) · (x− `) = 0. Choose a prime ` 6≡ 1 mod p, possible since
p 6= 2. Suppose that V has a filtration by constant pieces. Then (σ`− `) is an isomorphism
on each filtered piece and thus has no kernel on V . It follows that σ` = 1 on V . By
the Cebotarev density theorem it follows that V is constant, so it is clearly a direct sum
of constant modules. If V has a filtration by µp’s, then the same argument applied to
V ∨ shows that V ∨ is also a direct summand of constant modules and thus V is a direct
summand of multiplicative Galois modules.

Thus we have the following:

Lemma 2.9. 1. δ(A[m]) = −1, and A[m] sits inside an exact sequence of the form:

0→ Z/7Z→ A[m]→ µ7 ⊕ µ7 → 0.

2. A[I]/A[m] ' Z/7Z.

Proof. The second claim follows from Lemma 2.5 which implies that

0 = δ(A[I]) = δ(A[I]/A[m]) + δ(A[m]).

2.2 Determining A[m]

We show now that the extension (1) of Lemma 2.9 is nontrivial.

Lemma 2.10. Suppose that A[m] ' Z/7Z⊕ (µ7)2. Then

η` = T` − 1− ` /∈ I

(equivalently, ` is a good prime) if and only if both conditions are satisfied:

1. ` 6≡ 1 mod 7

2. ` is not a 7th power modulo 43.

Proof. Choosing an appropriate basis for A[I] as a four dimensional F7 vector space we
may write the action of Gal(Q/Q) as

ρ =


1 0 0 a
0 χ 0 b
0 0 χ c
0 0 0 1

 ,
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where χ is the cyclotomic character, and a, b and c are functions on Gal(Q/Q). We
compute that

(ρ(σ)− 1)(ρ(σ)− χ(σ)) = (χ(σ)− 1)


0 0 0 a(σ)
0 0 0 0
0 0 0 0
0 0 0 0


Since I 6= m it follows that a is nontrivial. Moreover, we see that a prime ` is good if
and only if ` 6≡ 1 mod 7 and a(Frob`) is nontrivial. The function a defines an extension
class inside Ext1(Z/7Z,Z/7Z). These extensions are taking place inside the category of
finite flat group schemes over Z[1/559]. Such extensions are étale, and thus the generic
fibre defines a degree 7 field unramified over Q outside 559. The only such extension is the
degree 7 extension inside Q(ζ43), since 7 - 13− 1. Thus if σ = Frob`, then a(σ) = 0 if and
only if ` splits completely in this degree 7 field. This is equivalent to ` being a 7th power
modulo 43. This proves one implication. Now assume that either ` ≡ 1 mod 7 or ` is a
7th power modulo 43. Then if σ = Frob` and x = ρ(σ), then (x− 1)(x− `) = 0. Thus

0 = x2 − T`x+ ` = (x− 1)(x− `) + (T` − 1− `)x = η`x.

Since x = ρ(σ) is invertible, this implies that η` = 0, and thus ` is not a good prime. This
proves the lemma.

It is easy to compute that η2 ∈ I and thus 2 is not a good prime. By the previous
lemma this implies that A[m] 6= Z/7Z⊕ µ7 ⊕ µ7.

To sum up what we know so far, the action of Galois on A[I] = A[7,m2] can be written
as follows:

ρ(σ) =


1 x y a
0 χ 0 b
0 0 χ c
0 0 0 1

 ,

Where x, y, a, b and c are all continuous functions of Gal(Q/Q), and x and y are not both
zero. We may also assume that the first 2 × 2 matrix represents the action of Galois on
Aold[m]. Since A∨[I] is the Cartier dual to A[I] we also understand the Galois action on
A∨[I]. Explicitly, it is given by χρ−1 which is

ρ∨(σ) =


χ −c −b a′

0 1 0 −y
0 0 1 −x
0 0 0 χ

 ,

Lemma 2.11. At least one of b and c is nonzero, and thus there is no surjection A[I]→
µ7 ⊕ µ7 and no inclusion Z/7Z⊕ Z/7Z→ A∨[I].
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Proof. If both b and c are zero then one finds that any ` ≡ 1 mod 7 cannot be a good
prime (that is, η` must kill A[I]). Yet this contradicts the fact that 29 is a good prime (as
one can compute).[[Todo: A calc.]]

It follows that the torsion subgroup of A∨[I] has order at most 7.

Lemma 2.12. We have c 6= 0, and b = 0.

Proof. There is an injective map A[I]/Aold[m]→ A∨[m].[[Todo: This is this a calculation for

William.]] If c = 0 then the image contains a rational 7-torsion point. Yet the intersection
of the image with the cuspidal torsion group of A∨ is zero,[[Todo: A calc.]] and thus A∨[I]
would contain two linearly disjoint rational subgroups of order 7, contradicting Lemma 2.11.
Thus c 6= 0. On the other hand, there is a rational torsion point of order 7 in A∨[m],[[Todo:

a calc.]] and thus (changing bases slightly if necessary) we have that b = 0.

Let us now determine the extensions c and x.

Lemma 2.13. The extensions c and x are unramified at 13, and the class y is nontrivial.

Proof. The claim for x follows from the fact that Aold[m] is unramified at 13, by the criterion
of Néron–Ogg–Shafarevich applied to J0(43). This determines the class of x uniquely. The
class c corresponds to an extension of the form Q(ζ7,

7
√
D), where D = 43 · 13k for some

k or D = 13. To determine it explicitly we prove the following Sub-lemma, which is a
variation on Lemma 2.10:

Sub-lemma 2.14. Fix a D whose only prime divisors lie in the set {13, 43}. Let K =
Q(ζ7,

7
√
D). Suppose that the class c becomes trivial over K. Let ` ≡ 1 mod 7 and suppose

that ` splits completely in K. Then η` is not a good prime. Equivalently,

η` = T` − 1− ` ≡ 0 mod I.

Proof. Choosing an appropriate basis for A[I] as a four dimensional F7 vector space we
may write the action of σ ∈ Gal(Q/Q) as

ρ(σ) =


1 x y a
0 χ 0 0
0 0 χ c
0 0 0 1

 ,

where χ is the cyclotomic character, and a, c, x, y are functions on Gal(Q/Q). Suppose
that σ = Frob`, and that ` ≡ 1 mod 7 so χ(σ) = 1. We compute that

(ρ(σ)− 1)2 =


0 0 0 c(σ)y(σ)
0 0 0 0
0 0 0 0
0 0 0 0


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If ` splits completely in K then c(Frob`) = 0. Now letting x = ρ(σ), and remembering
that ` ≡ 1 mod 7, we find that

0 = x2 − T`x+ 1 = (x− 1)2 + η`x = η`x.

Since x is invertible, it follows that η` annihilates A[I] and thus η` ∈ I.

The following table gives the smallest prime that splits completely in Q(ζ7,
7
√
D) for

various D:[[Todo: Explain how computed.]]

D 43 43 · 13 43 · 132 43 · 133 43 · 134 43 · 135 43 · 136 13
` 631 211 29 337 281 197 239 421

T` ∈ I Yes No No No No No No No

Thus the only possibility for c is that it becomes trivial in Q(ζ7,
7
√

43). As a double
check of our computations, we find the next few primes that split completely in Q(ζ7,

7
√

43).
They are 659, 1009, 1289 and 1933. We check in all of these cases that T` ∈ I. Thus D = 43
and c is unramified at 13. We also conclude from these calculations that y 6= 0, completing
the proof of Lemma 2.13.

2.3 The torsion subgroup of A and A∨

We may write the action of Galois on A[I] = A[7,m2] as follows:

ρ(σ) =


1 x y a
0 χ 0 b
0 0 χ c
0 0 0 1

 ,

Where x, y, a, b and c are all continuous functions of Gal(Q/Q). We may also assume
that the first 2× 2 matrix represents the action of Galois on Aold[m].

Theorem 2.15. The rational 7-torsion subgroups of A and A∨ are exactly Z/7.

Proof. The cuspidal torsion subgroup of A∨[7] is Z/7, as can be computed.[[Todo: A calc.]]

Suppose that there was an inclusion π : Z/7⊕ Z/7 ⊆ A∨[7]. Then considering the Cartier
dual there would be a section

π∨ : A[I]→ µ7 ⊕ µ7

which contradicts lemma 2.11.

Note, that this just proves that the rational 7-torsion of A∨ has rank one. We prove
now that there are no points of order 49.

Theorem 2.16. The 7-Sylow subgroups of Ators(Q) and A∨tors(Q) have degree 7.
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Proof. Since all rational torsion of A is contained in A[m] by Lemma 2.6, the first claim
has already been proved. For the second, consider the variety A′ = A∨/µ7. Then from
our explicit description of the Galois action on 7-torsion we find that Z/7 ⊕ Z/7 ⊂ A′[7].
Suppose that Z/49Z ⊂ A∨tors(Q). Then since the torsion of A∨ injects into the torsion of A′

the torsion subgroup of A′ must have order divisible by 343. This contradicts the multiple
of torsion computed earlier.[[Todo: Ref to the calc.]]

2.4 Conjectural Computations with the BSD conjecture

[[Todo: Here William writes down BSD and shows how in this case it implies that the odd part

of X(A) is trivial.]]

2.5 Remarks on the Structure of the Tate Module

An important ingredient in our calculations was explicitly working with the action of the
completed Hecke algebra Tm on the Tate module A(m). What is the structure of this
module? We know that as a Tm module, it is torsion free, and has “rank two” in the sense
that A(m) ⊗Q is a free Tm ⊗Q of rank two. In general the structure of finite rank torsion
free modules over a local domain can be quite difficult (except in the case of a discrete
valuation ring, of course!). However, certain special rings admit a nice description of their
finite rank modules.

Definition 2.17. Let R be a local domain of dimension one with maximal ideal m. Let
R̃ denote the integral closure of R. Suppose that every ring R′ such that R ⊆ R′ ⊆ R̃ is
Gorenstein. Then R is a Bass ring.

For example, let R̃ be the Witt vectors W (Fq) for q = pf , let π be the reduction map

π : R̃→ Fq, and let R = π−1(Fp). Then R is a Bass ring. Taking the example q = 49 and
f = 2 we find that R = Tm is a Bass ring.

The following theorem answers our questions about modules for Bass rings.

Theorem 2.18. Let R be a Bass ring. Then any torsion free module of rank n is a direct
sum of rank one modules M isomorphic to a subring R′ satisfying

R ⊆ R′ ⊆ R̃.

In our examples, this implies that the only rank one modules of Om are either Om or
Õm. Since dim(Om/m) = 1 and dim(Õm/m) = 2 we conclude the following:

Lemma 2.19. There is an isomorphism of Hecke modules

A(m) ' Om ⊕ Õm.
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3 The Descent

The goal of this section is to prove that X(A)[m] is trivial and that A(Q) has rank 0.
It turns out to be easier to compute the descent on A∨ rather than A. Let S = Spec(Z).

Let A be the Néron model of A∨ over S, and note that A [I] equals A [7] ⊗T7 Tm. For
a group scheme G/S and a finite set of primes Σ let G[(Σ) denote the quasi-finite group
scheme over S obtained from G by removing the special fibres at primes in Σ. We have
the following exact diagram of quasi-finite group schemes over S:

0

��
0 // µ7

//M //

��

(Z/7Z)[(43) // 0

0 // A [m] //

��

OO

A [I] // (µ7)[(Σ) // 0

Z/7Z

��

OO

0

Where the up and down arrows correspond to the fact that there exists sections, and Σ is
a subset of {13, 43}. The inclusions µ7,Z/7Z→ A [m] exist because of the corresponding
inclusions of Galois modules and the Néron mapping property applied to A . The identity
M /µ7 = (Z/7Z)[(43) similarly follows from the fact that the Galois module underlying M
is ramified at 43 and unramified at 13 (the corresponding extension class is c, which we
identified by Lemma 2.13) and the Néron mapping property. We note that 43 ∈ Σ because
the extension class x is ramified at 43, by Lemma 2.13. Now we make the following
observations on fppf cohomology for S = Spec(Z) (see for example [3], p.48):

Lemma 3.1. The following hold.

1. Hi(S,Z/7Z) = Hi(S, µ7) = 0 for i = 1, 2.

2. H1(S, (Z/7Z)[(43)) = 0, and H2(S, (Z/7Z)[(43)) is one dimensional.

3. H1(S,M ) = 0, and H2(S,M ) = H2(S, (Z/7Z)[(43)).
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4. H1(S,A [m]) = 0, and H2(S,A [m]) = H2(S, (Z/7Z)[(43)).

5. H1(S,A [I]) = 0.

6. If Φ is the component group of A then H0(S,Φ)⊗ Z7 = Z/7Z.

7. The map H0(A )→ H0(Φ) is surjective.

Proof. We prove each item in turn.

1. This follows from the discussion in [3], p.48, p.49.

2. Again we follow [3], p.48, p.49. There is an exact sequence

0→ (Z/7Z)[(43) → Z/7Z→ φ→ 0

for some skyscraper sheaf φ supported in characteristic 43. Taking global sections
we see that H0(S,Z/7Z) surjects onto H0(S, φ) = Z/7Z and thus H1(S, (Z/7Z)[(43))
injects into H1(S,Z/7Z) = 0. On the other hand, from part one we also conclude
that H2(S, (Z/7Z)[(43)) = H1(S, φ) is one dimensional.

3. This follows from the long exact sequence of cohomology, and parts one and two.

4. Since A [m] = M ⊕ Z/7Z, we have Hi(S,A [m]) = Hi(S,M )⊕ Hi(S,Z/7Z).

5. The long exact sequence of cohomology gives an exact sequence

0→ H1(S,A [I])→ H1(S, (µ7)[(Σ))→ H2(S,A [m])

Now the exact sequence

0→ (µ7)[(Σ) → µ7 → ψ → 0

shows that H0(S, ψ) = H1(S, (µ7)[(Σ)). Since

H0(S, ψ) =
⊕
p∈Σ

µ7(Fp)

and since F13 has no 7th roots of unity we see that the dimension of H1(S, (µ7)[(Σ))
is the dimension of µ7(F43), which is one. On the other hand, the target of the
coboundary map H2(S,A [m]) ' H1(S, (Z/7Z)[(43)) is one dimensional also. Thus it
suffices to show that the coboundary map

µ7(F43) ' H1(S, (µ7)[(Σ)) −→ H1(S, (Z/7Z)[(43)) ' H1(S, φ)

is nontrivial. Perhaps more helpfully, this boundary map is the same as the one
coming from the associated long exact sequence of the following long exact sequence:

0→ (Z/7Z)[(43) → N → (µ7)[(Σ) → 0,

Where N = A [I]/(Z/7Z⊕ µ7). The Galois extension corresponding to the generic
fibre of N is given by extension class y.[[Todo: To myself, this is what needs to be

completed.]]
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6. This follows from the [3], Appendix, Thm. A.1.

7. This follows from the identification of Φ above and a computation...[[Todo: Is this

right? Or is it obvious]]

Let us consider the usual descent sequence:

0 // A 0 // A // Φ // 0

0 // A [I] // A //

OO

7

>>

A 0

OO

// 0

Let M be the Mordell–Weil group of A. By the Néron mapping property M = A (S).
Let M0 = A 0(S). Taking cohomology and using parts 5 & 7 of Lemma 3.1, we get the
following exact diagram[[Todo: William, make the map M → Z/7Z a surjective arrow]], where
by abuse of notation we consider everything (as in [3] p.150) in the category of T-modules
modulo the category of T-modules whose support lies in some finite set ∆ containing all
primes of characteristic seven besides m.

0 //M0 //M // Z/7Z // H1(A 0) // H1(A )

0 // Z/7Z //M //

OO

7

>>

M0

OO

// 0 // H1(A )

OO

7

::

// H1(A 0)

OO

From this diagram we easily conclude that M ' Z/7Z. It also follows that the mul-
tiplication by 7 map on H1(A ) is injective (modulo T-modules with support outside m),
and thus that that H1(A )[m] = 0. By [4], Prop, p.263, the Tate–Shafarevich group X(A)
injects into H1(A ), and thus it follows that X(A)[m] = 0.

4 Algorithmic Computations

In this section we explain how to use explicit computations to verify several key assertions
that appear elsewhere in this paper. All computations below were done using Sage (see
[S+11]).
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4.1 The quotient by the Eisenstein ideal

This section is about the quotient T/I that arises in Section 2. Our strategy is useful
more generally for computing T/I for any Hecke algebra T and ideal I. The main ideas are
(1) the Sturm bound, (2) embedding T in a Q vector space V of dimension dimS2(Γ0(N)),
which replaces linear algebra in a space of dimension n2 by linear algebra in a space of
dimension n, and (3) a method for computing the T-ideal generated by given elements of
T in terms of the representation (2). The entire computation involves only linear algebra,
and makes no use of Groebner basis, so the complexity is easy to understand, and there is
a natural mod p analogue of the algorithm.

Using modular symbols, we compute a T-module S that is isomorphic to S2(Γ0(N); Q),
and for the purposes of our computations we work instead with S:

sage: S = ModularSymbols (559, sign =1). cuspidal_subspace (); S

Modular Symbols subspace of dimension 49 of Modular Symbols space of dimension 52 for

Gamma_0 (559) of weight 2 with sign 1 over Rational Field

We view the Hecke operators as matrices acting from the right on row vectors in V = Q49.
We choose a vector v such that the map T→ V given by t 7→ v.t is injective. With respect
to our chosen basis, the vector v = (1, 0, 0, . . . , 0, 0) works; moreover, vT1, vT2, . . . , vT49 are
linearly independent elements of V :

sage: def hecke_image(v, B): return [ v * S.hecke_matrix(i) for i in [1..B] ]

sage: v = vector(QQ, 49); v[0] = 1

sage: span(hecke_image(v, 49)). dimension ()

49

To obtain an isomorphic copy of the exact Hecke algebra T as a Z-submodule L ⊂ V , we
use the Sturm bound:

sage: S.sturm_bound ()

103

sage: L = span(ZZ , hecke_image(v ,103))

Now that we know L we can try a smaller bound in place of 103; we find that 52 works,
which means that T1, . . . , T52 generate T as a Z-module (no smaller number works).

sage: L2 = span(ZZ, hecke_image(v, 52))

sage: L2.index_in(L)

1

sage: span(ZZ,hecke_image(v ,51)). index_in(L)

2

Thus the Tn, for n ≤ 52, are generators for T as a Z-module, hence generate T as a ring.
Each Tn can be written as a polynomial over Z in the Tp for primes p < 52. Thus I is the
ideal generated by T` − (1 + `) for primes ` 6= 13, 43 with ` < 52 and T13 + 1 and T43 − 1.
We let M be the Z-module (not ideal) generated by these elements:

sage: gens = [(S.hecke_matrix(ell) - (ell +1)) for ell in primes (52) if 559% ell != 0]

sage: gens.extend ([S.hecke_matrix (13) + 1, S.hecke_matrix (43) - 1])

14



sage: M = span(ZZ , [v*g for g in gens])

We now enlarge M by multiplying by all Hecke operators T` for ` < 52. Note that we
compute (vT`)g instead of v(T`g), since the former involves only vector-matrix multiplca-
tion, whereas the later involves matrix-matrix multiplication.

sage: for p in primes (53): M += span(ZZ , [(v*S.hecke_matrix(p))*g for g in gens])

sage: M.index_in(L)

14

We enlarge again and find that M does not get any bigger, which proves that M is now
T-invariant, hence for this enlarged M we have M = I , so T/I ∼= Z/14Z, as claimed:

sage: for p in primes (53): M += span(ZZ , [(v*S.hecke_matrix(p))*g for g in gens])

sage: M.index_in(L)

14

4.2 The 15-dimensional abelian variety A

Let F be the characteristic polynomial of T2 acting on S2(Γ0(559))new, which we compute
as follows using modular symbols:

sage: N = ModularSymbols (559, sign =1). cuspidal_subspace (). new_subspace ()

sage: F = N.T(2). charpoly ()

We find that exactly one of the irreducible factor h of F has 3 as a root modulo 7, and
that factor occurs with multiplicity one:

sage: v = [Z for Z in factor(F) if Z[0]. change_ring(GF (7))(3) == 0]; v

[(x^15 - 2*x^14 - 22*x^13 + 43*x^12 + 187*x^11 - 354*x^10 - 769*x^9 + 1395*x^8 + 1553*x^7

- 2684*x^6 - 1328*x^5 + 2265*x^4 + 241*x^3 - 606*x^2 + 33*x + 13, 1)]

sage: h = v[0][0]

Let A = ker(h(T2))0 ⊂ J0(559) be the identity component of the kernel of h(T2), which
is a 15-dimensional abelian variety. The above calculation shows that this is the only
simple abelian subvariety of J0(559)new with A[(7, T2− 3)] 6= 0. Since there is some simple
B with B[m] 6= 0 and (7, T2 − 3) ⊂ m, this A must be it.

4.3 The Index of Om in its integral closure

Let O be the ring generated by the Hecke algebra acting on A. This ring contains with
finite index the ring R = Z[a2], where a2 is a root of the polynomial h from Section 4.2
above. The integral closure of O is the integral closure OK of R, and R has index 72 · 499
in OK :

sage: K.<a> = NumberField(h)

sage: OK = K.maximal_order ()

sage: factor(K.order(a). index_in(OK))

7^2 * 499
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To compute the index of O in OK , we compute the index [O : R], which we do using
a similar trick to the one in Section 4.1 above. First we compute the simple factor of the
modular symbols space corresponding to our 15-dimensional A:

sage: M = ModularSymbols (559, sign =1)

sage: D = M.cuspidal_subspace (). new_subspace (). decomposition ()[ -1]; D

Modular Symbols subspace of dimension 15 of Modular Symbols space of dimension 52 for Gamma_0 (559) of weight 2 with sign 1 over Rational Field

Next, we find the “rational period mapping”, which is by definition some homomorphism
M → V = Q15 with kernel the largest T-stable complement of the T-module D. This
map is called a “period mapping”, because the kernel is the same as the kernel of the
period mapping got by integrating cuspidal modular symbols against the cusp form f and
its Galois conjugates. It is computed by using linear algebra over Q to find the subspace
of Hom(M,Q) on which h(T2) = 0, where h is as in Section 4.2, which amounts to finding
the kernel of h(T t2).

sage: phi = D.rational_period_mapping ()

We use ϕ to define a homomorphism T → Q15 by t 7→ ϕ(vt), where v is an element of
M so that this map is nonzero. We just choose the first basis vector v of M . Next we
compute the image of O in V via this map, using a function that efficiently computes the
action of Hecke operators on a specific basis vector of M .

sage: O = span(ZZ , [phi(M._hecke_image_of_ith_basis_vector(n, 0)) for n in [1..52]])

Now that we have O, we next compute the image of Z[a2], which is the Z-module spanned
by 1, a2, . . . , a

14
2 , which is the same as the images of 1, T2, . . . , T

14
2 under our above map.

To avoid matrix multiplication, we instead compute the iterates of v under the action of
T2, and take their image under ϕ.

sage: T2 = M.hecke_matrix (2)

sage: R = span(ZZ , [phi(v) for v in T2.iterates(M.0. element(), 15)])

Finally, we observe that the index of R in O is 7 · 499, hence the image of O in OK is 7.

sage: factor(R.index_in(O))

7 * 499

The ideal 7 factors in OK as a product p2p6p7 with pi of degree i:

sage: [P.residue_class_degree () for P, e in K.factor (7)]

[7, 6, 2]

Note that R is already maximal at the two primes over 7 of degrees 6 and 7, since the
degree 6 and degree 7 factors already appear with multiplicity 1 modulo 7:

sage: h.factor_mod (7)

(x + 4)^2 * (x^6 + 4*x^5 + 4*x^4 + 2*x^2 + x + 6) *

(x^7 + 3*x^5 + 2*x^4 + 4*x^3 + x^2 + 3*x + 4)

16



Thus the prime over 7 at which we maximize to go from O to OK is the one that contains
T2 − 3, i.e., the ideal m. We finally conclude that [(OK)p2 : Om] = 7.

Remark 4.1. In Sage, we could compute the q-expansion of a newform associated to
A by typing D.q eigenform(53,’a2’); however, the resulting coefficients would then be
expressed in terms of a power basis for Q(a2), which involves fairly large numbers, making
the rest of the calculation of the index much less efficient. This would not scale well to
bigger computations.

4.4 The modular degree of A

The modular degree of A is by definition the square root of the degree of the map A→ A∨

induced by A→ J0(N) ∼= J0(N)∨ → A∨. To compute the modular degree of A we use the
modular degree function in Sage, which is an implementation of the algorithm described
in [KS00, §3.1].

sage: M = ModularSymbols (559, sign =1)

sage: D = M.cuspidal_subspace (). new_subspace (). decomposition ()[ -1]; D

Modular Symbols subspace of dimension 15 of Modular Symbols space of dimension 52

for Gamma_0 (559) of weight 2 with sign 1 over Rational Field

sage: A = D.abelian_variety ()

sage: factor(A.modular_degree ()) # long time -- 3 minutes!

2^21 * 7 * 31

If we are just interested in the odd part of the modular degree, we can compute a quantity
that is equal to the modular degree up to a power of 2 much more quickly as follows:

sage: phi = D.integral_period_mapping ()

sage: factor(matrix ([phi(a) for a in D.integral_basis ()]). det())

-1 * 2^20 * 7 * 31

In any case, we conclude that 7 exactly divides deg(A→ A∨), as claimed.

4.5 The kernels of ideals acting on A

4.6 Simultaneous pathologies

Compute the Eisenstein maximal ideals of Hecke that are primes of fusion and self-fusion
for all levels up to 559? If this is even possible...
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4.7 Computing the minimal degree of an isogeny to the dual

4.8 Table of minimal isogeny degrees
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