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Abstract

Suppose π : J → A is an optimal quotient of abelian varieties over a p-adic field,
optimal in the sense that ker(π) is connected. Assume that J is equipped with a sym-
metric principal polarization θ (e.g., any Jacobian of a curve has such a polarization),
that J has semistable reduction, and that A has purely toric reduction. In this pa-
per, we express the group of connected components of the Néron model of A in terms
of the monodromy pairing on the character group of the torus associated to J . We
apply our results in the case when A is an optimal quotient of the modular Jacobian
J0(N). For each prime p that exactly divides N , we obtain an algorithm to compute
the component group of A at p.

1 Introduction

Let A be an abelian variety over the rational numbers Q. Birch and Swinnerton-Dyer found
a conjectural formula for the order of the Shafarevich-Tate group of A. The Tamagawa
numbers cp of A are among the quantities that appear in this formula. We now recall the
definition of the Tamagawa numbers of an abelian variety (the definition of Néron model
and component groups is given in Section 2).

Definition 1.1 (Tamagawa number). Let p be a prime, let A be the Néron model of A
over the p-adic integers Zp, and let ΦA,p be the component group of A at p. Then the
Tamagawa number cp of A at p is the order of the subgroup ΦA,p(Fp) of Fp-rational points
in ΦA,p(Fp).

Remark 1.2. The Tamagawa number is defined in a different way in some other papers, but
the definitions are equivalent.

When A has dimension one, A is called an elliptic curve, and A can be defined by a
Weierstrass equation y2 = x3 + ax+ b. Using that elliptic curves (and their related integral
models) can be described by simple equations, Tate found an efficient algorithm to compute
all of the Tamagawa numbers of A (see [18]). In the case when A is the Jacobian of a genus 2
curve, [7] discusses a method for computing the Tamagawa numbers of A. In this paper,
we consider the situation in which A has purely toric reduction at p, with no constraint on
the dimension of A. For such A we give an explicit description of the order of the group of
connected components of the closed fiber of the Néron model of A. In the case when A = Af

is a quotient of J0(N) attached to a newform f ∈ S2(Γ0(N)) and p || N , our method is
completely explicit, and yields an algorithm to compute the Tamagawa number cp of A (up
to a bounded power of 2).

This paper is structured as follows. In Sections 2–6 we state and prove an explicit
formula involving component groups of fairly general abelian varieties. Then in Section 7
we turn to quotients of modular Jacobians J0(N). We give some tables and discussed the
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arithmetic of quotients of J0(N) when N is prime. In Section 8 we prove a couple of facts
about toric reduction that are used in the proof of Theorem 6.1.

Acknowledgement: This paper was inspired by lectures of R. Coleman and K. Ribet,
and a letter from Ribet to Mestre (see [17]), which contains some of the results of the
present paper in the case when A has dimension 1. The second author would like to thank
A. Abbes, A. Agashe, D. Kohel, and D. Lorenzini, for helpful conversations. Both authors
were partially supported by the NSF and the Clay Mathematics Institute during work on
this paper.

2 The Main Results

In this section, we summarize the main contributions of this paper. First we recall the
precise definition of the component group of an abelian variety, then we state our main
theorem.

Let R be a discrete valuation ring with field of fractions K and maximal ideal m, and
let k = R/m be the residue class field. Let A be an abelian variety over K.

Definition 2.1 (Néron model). A Néron model of A is a smooth commutative group
scheme A over R such that A is its generic fiber and A satisfies the Néron mapping property:
the restriction map

HomR(S,A) −→ HomK(SK , A)

is bijective for all smooth schemes S over R.

The Néron mapping property implies that A is unique up to a unique isomorphism, so
we will refer without hesitation to “the” Néron model of A. Néron models are separated and
of finite type as opposed to just locally of finite type, even though their universal property
is on the category of arbitrary smooth R-schemes. For more about Néron models see [2].

The closed fiber Ak of A is a group scheme over k, which need not be connected. Denote
by A0

k the connected component of Ak that contains the identity. We have an exact sequence

0 −→ A0
k −→ Ak −→ ΦA −→ 0,

where ΦA is a finite étale group scheme over k. Equivalently, ΦA is a commutative finite
group equipped with a continuous action of Gal(k/k).

Definition 2.2 (Component group). The component group of an abelian variety A
over K is the group scheme ΦA = Ak/A

0
k.

2.1 Statement of the Theorem

We now state our main result, supressing some of the definitions of the terms used until
later (see Section 6 below for a more complete statement and the proof). Let K be as
above, and suppose π : J → A is an optimal quotient. Assume that J is equipped with
a symmetric principal polarization λ, in the sense of Definition 5.1. For example, the θ
polarization of the Jacobian of a curve is a symmetric principal polarization. Also assume
that J has semistable reduction, and that A has purely toric reduction.

We express the component group of A in terms of the monodromy pairing associated
to J . Let mA =

√
deg(θA), where θA : A∨ → A is induced by the canonical principal

polarization of J arising from the θ-divisor. Let XJ be the character group of the toric part
of the closed fiber of the Néron model of J . Let L be the saturation of the image of XA in
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XJ . The monodromy pairing induces a map α : XJ → Hom(L,Z). Let ΦX be the cokernel
of α and mX = [α(XJ ) : α(L)] be the order of the finite group α(XJ )/α(L). The main
result of this paper is that

#ΦA

mA
=

#ΦX

mX
,

and this is recorded as Theorem 6.1 below.
Using the snake lemma, one sees that ΦX is isomorphic to the image of the natural map

ΦJ → ΦA, and the above formula implies that the cokernel of the map ΦJ → ΦA has order
mA/mX . A non-obvious consequence of this is that mX | mA.

In the context of modular forms, if the optimal quotient J → A arises from a newform
on Γ0(N), then the quantities mA, mX and ΦX can be explicitly computed, hence we can
compute #ΦA. Note that the authors have not computed the structure of ΦA as a group.

3 Optimal Quotients

Let K be as in Section 2, let J be an abelian variety equipped with a symmetric principal
polarization θJ (see Definition 5.1). For example, J could be the Jacobian of a curve
equipped with the canonical principal polarization arising from the θ-divisor.

Definition 3.1 (Optimal quotient). An optimal quotient of J is an abelian variety A
and a smooth surjective morphism π : J → A whose kernel is connected (i.e., an abelian
variety).

Remark 3.2. Any connected scheme of finite type over a field is geometrically connected if
it contains a rational point (e.g., if it is a group scheme). See [8, IV2, §4.5.13].

Let π : J → A be an optimal quotient. Denote by J∨ and A∨ the abelian varieties dual
to J and A, respectively. Upon composing the dual of π with θ∨J = θJ , we obtain a map

A∨
π∨
−−→ J∨

θJ−→ J.

Proposition 3.3. The map θJ ◦ π
∨ : A∨ → J is a closed immersion.

Proof. Since θJ is an isomorphism, we want to prove that π∨ is a closed immersion. It
is a general fact that duals to surjections of abelian varieties with abelian variety kernel
are closed immersions, but for lack of an adequate reference we recall the proof. Since
a monomorphism between smooth finite type group schemes over a field is necessarily a
closed immersion, it suffices to show that the commutative proper group scheme ker(π∨)
vanishes. Since a non-zero commutative proper group scheme G over a field F necessarily
has a non-zero finite subgroup scheme G[n] for some n (since either (G/F )

0
red is an abelian

variety or else G is finite and non-zero), it suffices to show that ker(π∨)[n] vanishes for all
positive integers n. In other words, it suffices to show that the induced map A∨[n]→ J∨[n]
is a closed immersion for all n.

Since Cartier duality interchanges faithfully flat maps and closed immersions, and the
scheme-theoretic Weil pairing identifies the Cartier dual of the map induced by π∨ on n-
torsion with π : J [n]→ A[n], we just have to show that these latter maps are faithfully flat
for all integers n. Using the short exact sequence

0→ ker(π)→ J → A→ 0

in the abelian category of fppf abelian sheaves over Spec(K), the snake lemma gives an
exact sequence

0→ ker(π)[n]→ J [n]→ A[n]→ 0
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because n : ker(π) → ker(π) is a faithfully flat map (hence fppf surjective), as ker(π) is an
abelian variety. This gives an isomorphism of group schemes

J [n]/ ker(π)[n] ' A[n]

compatible with the maps from J [n], whence J [n]→ A[n] is faithfully flat.

Henceforth we will abuse notation and denote the injection A∨ → J by π∨. We define
θA to be the composite π ◦ π∨, so the kernel of θA equals the scheme-theoretic intersection
of A∨ and B = ker(π), as depicted in the following diagram:

A∨ ∩B //

²²

B

²²
A∨

Â

Ä π∨ //

θA ##H

H

H

H

H

H

H

H

H

J

π

²²
A.

Since θA is a polarization (due to how its definition uses the polarization θJ) the degree of
θA is a perfect square (see [16, §16, p. 150]).

Definition 3.4 (Degree). Define the degree of A as a quotient of J to be the integer

mA =
√

#ker(θA).

4 The Closed Fiber of the Néron Model

In this section we recall some terminology associated with closed fibers of Néron models.
Let K, R, and k be as in Section 2, and let ΦA = Ak/A

0
k be the group scheme of connected

components of the closed fiber Ak. By Chevalley’s structure theorem (see [3], or [4] for a
modern account), if K is a perfect extension field of k (e.g., K = k) then there is a unique
short exact sequence

0→ C → A0
K → B → 0

with C a smooth affine algebraic K-group and B an abelian variety. Moreover, there is a
unique exact sequence

0→ T → C → U → 0

with T a torus and U unipotent.
Using the rigidity of tori, one can show that T is induced by a unique torus in A0

k. In
particular, the condition that B = U = 0 is equivalent to the condition that A0

k be a torus,
and the condition that U = 0 is equivalent to the condition that A0

k be the extension of an
abelian variety by a torus (i.e., be a semi-abelian variety). These conditions can be checked
on a geometric closed fiber.

Definition 4.1. The abelian variety A is said to have purely toric reduction if A0
k is torus,

and to have semistable reduction if A0
k is a semi-abelian variety (i.e., A0

k
has vanishing

unipotent part).
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4.1 The Monodromy Pairing on the Character Group

Definition 4.2 (Character group of torus). The character group

XA = Homk(Tk,Gmk)

is a free abelian group of rank t contravariantly associated to A.

As discussed in [9], if A is semistable there is a monodromy pairing XA×XA∨ → Z and
an exact sequence

0→ XA∨ → Hom(XA,Z)→ ΦA → 0.

Also, the canonical isomorphism (A∨)∨ ∼= A induces an isomorphism

XA∨ ×X(A∨)∨
∼= XA ×XA∨ ,

which identifies the monodromy pairing associated to A∨ with that associated to A.

Example 4.3 (Tate curve). Suppose E = Gm/q
Z is a Tate curve over Qur

p . The monodromy

pairing on XE = qZ is
〈q, q〉 = ordp(q) = − ordp(j).

Thus ΦE is cyclic of order − ordp(j).

Suppose J is an abelian variety equipped with a symmetric principal polarization.
Since J is self dual via the given symmetric principal polarization, we can view the mon-
odromy pairing on J as a pairing XJ ×XJ → Z. Because the principal polarization on J is
symmetric the resulting pairing XJ ×XJ → Z is symmetric, so there is no ambiguity about
left versus right definitions of XJ → Hom(XJ ,Z). The above exact sequence then becomes

0→ XJ → Hom(XJ ,Z)→ ΦJ → 0.

5 The Degree of a Symmetric Isogeny

We next relate the degree of the isogeny A∨ → A defined at the end of Section 3 to the order
of the cokernel of the induced map on the character groups of tori defined in Section 4.1.
Let K be as in Section 2, and let A be an abelian variety over K.

Definition 5.1 (Symmetric isogeny). A symmetric isogeny ϕ : A∨ → A is an isogeny
such that the map

ϕ∨ : A∨ → (A∨)∨ = A

is equal to ϕ.

If J and A are as in Section 3 then the principal polarization θJ of J is symmetric, so
the natural map A∨ → A is a symmetric isogeny.

Lemma 5.2. Suppose that A is a purely toric abelian variety over K and that ϕ : A∨ → A
is a symmetric isogeny. Let ϕa : XA → XA∨ denote the induced map on character groups.
Then

deg(ϕ) = #coker(ϕa)
2.

Proof. By Corollary 8.7 applied to our isogeny ϕ (so what we are presently calling A∨ and A
are respectively called A and B in the discussion surrounding Theorem 8.6), we deduce that

deg(ϕ) = #ker(ϕ) = #ker(ϕt) ·#ker(ϕ∨t )

where ϕt and ϕ∨t are the maps induced by ϕ and ϕ∨ on closed fiber tori.
Since the character group XA is, by definition, Homk(Tk,Gmk), where T is the toric

part of the closed fiber of A, it follows that #ker(ϕt) = #coker(ϕa). Since ϕ = ϕ∨, this
proves the lemma.
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6 Statement and Proof of the Main Theorem

Let K be as in Section 2, and let π : J → A be an optimal quotient. Assume that J is
equipped with a symmetric principal polarization λ, that J has semistable reduction, and
that A has purely toric reduction. Let XA, XA∨ , and XJ denote the character groups of
the toric parts of the closed fibers of the abelian varieties A, A∨, and J , respectively.

Let π : J → A be an optimal quotient, and let θ : A∨ → A denote the induced
polarization. Let π∗, π

∗, θ∗, and θ∗ be the maps induced on character groups by the various
functorialities, as indicated in the following two key diagrams:

A∨
Â

Ä π∨ //

θ

ÃÃA
A

A

A

A

A

A

A

A

A

A

J

π

²²²²
A

XA
Â

Ä π∗ //

θ∗

""E

E

E

E

E

E

E

E

E

E

E

E

XJ

π∗

²²²²
XA∨ .

θ∗

SS

The surjectivity of π∗ is proved in Theorem 8.2. The injectivity of π∗ follows because

θ∗π∗π
∗ = θ∗θ

∗ = deg(θ) 6= 0,

and multiplication by a nonzero integer on a free abelian group is injective.
Let L be the saturation of π∗XA in XJ ; thus π

∗XA is a finite-index subgroup of L and
the quotient XJ/L is torsion free. Let

α : XJ → Hom(π∗XA,Z)

be the map defined by the monodromy pairing restricted to XJ × π∗XA. For L of finite
index in L, define the degree of L to be

mL = [α(XJ ) : α(L)],

and the component group of L to be

ΦL = coker(XJ → Hom(L,Z)).

When L = L and A is fixed, for simplicity we write mX = mL and ΦX = ΦL.
Recall that ΦA is the component group of A and mA is the square root of the degree of

the induced map A∨ → A.

Theorem 6.1. For any subgroup L of finite index in L, the following relation holds:

#ΦA

mA
=

#ΦL

mL
.

6.1 Proof of the Main Theorem

The notation in this section is as in previous section.

Lemma 6.2. Let π∗ : XJ → XA∨ and α : XJ → Hom(π∗XA,Z) be as in previous section.
Then

ker(π∗) = ker(α).
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Proof. Suppose x ∈ ker(π∗), and let y = π∗z with z ∈ XA. Then

〈x, y〉 = 〈x, π∗z〉 = 〈π∗x, z〉 = 0,

so x ∈ ker(α). Next let x ∈ ker(α). Then for all z ∈ XA,

0 = 〈x, π∗z〉 = 〈π∗x, z〉,

so π∗x is in the kernel of the monodromy map

XA∨ → Hom(XA,Z).

Since XA∨ and Hom(XA,Z) are free of the same finite rank and the cokernel is torsion, the
monodromy map is injective. Thus π∗x = 0 and x ∈ ker(π∗).

Let π∗ : XA → XJ be as in previous section.

Lemma 6.3. The monodromy-pairing map XJ → Hom(XJ ,Z) composed with restriction
Hom(XJ ,Z)→ Hom(π∗XA,Z) gives rise to an exact sequence

XJ → Hom(π∗XA,Z)→ ΦA → 0.

Proof. Lemma 6.2 gives the following commutative diagram with exact rows

0 // XJ/ ker(α)

∼=

²²

// Hom(π∗XA,Z) //

∼=

²²

coker(α) //

²²

0

0 // XA∨
// Hom(XA,Z) // ΦA

// 0.

By Lemma 6.2, the first vertical map is an isomorphism. The second is an isomorphism
because it is induced by the isomorphism π∗ : XA → π∗XA. It follows that coker(α) ∼= ΦA,
as claimed.

Recall that L denotes the saturation of π∗XA in XJ , and that L ⊂ L denotes a subgroup
of finite index.

Lemma 6.4. The rational number
#ΦL

mL
is independent of the choice of L.

Proof. Suppose L′ is another finite index subgroup of L, and let n = [L : L′]. Here n is a
rational number, the lattice index of L′ in L. Since α is injective when restricted to L, it
follows that

mL′ = [α(XJ ) : α(L
′)] = [α(XJ ) : α(L)] · [α(L) : α(L

′)] = mL · n.

Similarly, #ΦL′ = #ΦL · n.

Recall that mA =
√

deg(θ) and

ΦA
∼= coker(XA∨ → Hom(XA,Z)),

where mA is the degree of A and ΦA is the component group of A.
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Proof of Theorem 6.1. By Lemma 6.4 we may assume that L = π∗XA. With this choice
of L, Lemma 6.3 asserts that ΦL

∼= ΦA. By Lemma 6.2, properties of the index, and
Lemma 5.2 we have

mL = [α(XJ ) : α(L)]

= [π∗(XJ ) : π∗(L)]

= [XA∨ : π∗(π
∗XA)]

= [XA∨ : θ∗XA]

= #coker(θ∗)

=
√

deg(θ) = mA.

Recall that ΦL denotes the cokernel of the natural map XJ → Hom(L,Z) induced
by composing the monodromy map XJ → Hom(XJ ,Z) with the natural restriction map
Hom(XJ ,Z)→ Hom(L,Z).

Proposition 6.5. The group ΦL is canonically isomorphic to the image of the map from
ΦJ to ΦA induced by π : J → A. Thus

image(ΦJ → ΦA) ∼= ΦL.

Proof. Since π∗XA ⊂ L ⊂ XJ , an application of Lemma 6.3 gives the following commutative
diagram with exact rows:

XJ
// Hom(XJ ,Z) //

²²

ΦJ
//

²²

0

XJ
// Hom(L,Z) //

²²

ΦL //

²²

0

XJ
// Hom(π∗XA,Z) // ΦA

// 0.

The map Hom(L,Z)→ Hom(π∗XA,Z) is an isomorphism, so the map ΦL → ΦA is injective.
Thus

image(ΦJ → ΦA) ∼= image(ΦJ → ΦL).

The cokernel of Hom(XJ ,Z) → Hom(L,Z) surjects onto the cokernel of ΦJ → ΦL. Using
the exact sequence

0→ L → XJ → XJ/L → 0,

we find that
coker(Hom(XJ ,Z)→ Hom(L,Z)) ⊂ Ext1(XJ/L,Z).

Because L is saturated, the quotient XJ/L is torsion free, so the indicated Ext1 group
vanishes. Thus the map ΦJ → ΦL is surjective, from which the proposition follows.

Corollary 6.6. The cokernel of the map from ΦJ to ΦA induced by π : J → A has order
mA/mL. Thus

#coker(ΦJ → ΦA) =
mA

mL
.

Proof. Combine Theorem 6.1 and Proposition 6.5.
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7 Optimal Quotients of J0(N)

In this section we specialize the general results of the rest of this paper to the concrete case
in which J = J0(N) is the Jacobian of a modular curve, and A = Af is an optimal quotient
of J attached to a modular forms. The paper [12] contains more computations like these.

7.1 Modular Curves and Semistable Reduction

Let X0(N) be the modular curve associated to the subgroup Γ0(N) of SL2(Z) that consists
of those matrices which are upper triangular modulo N . The algebraic curve X0(N)C can
be constructed as a Riemann surface as the quotient

Γ0(N)\
(
{z : z ∈ C, Im(z) > 0} ∪P1(Q)

)
,

and X0(N) has a canonical structure of algebraic curve over Q.
It is well known that the p-new part of the Jacobian J0(N) of X0(N) has purely toric

reduction at p when p || N . Let us briefly recall the reason, writing N = Mp. Using the
description of closed fibers of modular curves [10, Ch. 13] and Raynaud’s result relating
Néron models and Picard functors (as summarized in [2, Ch. 9]), the standard finite flat
degeneracy maps X0(Mp)→ X0(M) over Z(p) induce a “pushfoward” map on Néron model
connected components

Pic0X0(Mp)/Z(p)
−→ Pic0X0(M)/Z(p)

×Pic0X0(M)/Z(p)

which on the closed fiber is the map induced by pullback to the two components X0(M)/Fp

in X0(Mp)/Fp
. The kernel of this latter map is a torus [2, Ex. 9.2.8], yet this kernel is

visibly isogenous to the semistable mod p fiber of the dual of J0(Mp)new, whence the purely
toric conclusion.

7.2 Newforms and Optimal Quotients

The Hecke algebra
T = Z[. . . Tn . . .] ⊂ End(J0(N))

is a commutative ring of endomorphisms of J0(N) of Z-rank equal to the dimension of
J0(N). The character group XJ,p of J0(N) at p is equipped with a functorial action of T.
The Hecke algebra T also acts on the complex vector space S = S2(Γ0(N),C) of cusp forms.

Let f be a newform, and associate to f the ideal If of the Hecke algebra T of elements
which annihilate f . Then Of = T/If is an order in the ring of integers of the totally real
number field Kf obtained by adjoining the Fourier coefficients of f to Q. The quotient

Af = J0(N)/IfJ0(N)

is an optimal quotient of J0(N) of dimension equal to [Kf : Q]. As discussed in the previous
section, Af is purely toric at p.

7.3 Tamagawa Numbers

Let Frobp : XJ → XJ denote the map induced by the Frobenius automorphism. We have
Frobp = −Wp, where Wp is the map induced by the Atkin-Lehner involution on J0(p).
Let f be a newform, A = Af the corresponding optimal quotient, and wp the sign of the
eigenvalue of Wp on f .
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Proposition 7.1.

ΦA(Fp) =

{
ΦA(Fp) if wp = −1,

ΦA(Fp)[2] if wp = 1.

Proof. If wp = −1, then Frobp = 1 and the Gal(Fp/Fp)-action of ΦA(Fp) is trivial. In this
case Φ(Fp) = Φ(Fp). Next suppose wp = 1. Recall that we have an exact sequence

0→ XA∨ → Hom(XA,Z)→ ΦA → 0.

Since Wp acts as +1 on f , it also acts as +1 on each of the modules A, XA, Hom(XA,Z),
and ΦA. Thus Frobp = −Wp acts as −1 on ΦA. Since the subgroup of 2-torsion elements
of a finite abelian group equals the subgroup of elements fixed under −1, it follows that
ΦA(Fp) = ΦA(Fp)[2].

Warning: When extending this result to the whole of J0(N), be careful. The action of
Frobp = Tp need not be by ±1, even though it must be by an involution of order 2. For
example, the component group of J0(65) at 5 is cyclic of order 42. The action of Frob5 is by
multiplication by −13. Note that (−13)2 = 1 (mod 42). The fixed points of multiplication
by −13 is the order 14 subgroup of Z/42Z.

7.4 Computing Component Groups

Using modular symbols, we can enumerate the optimal quotients Af of J0(N) (see, e.g., [1])
and compute the degreemA (see [12, §3.1]). Suppose p is a prime that exactly divides N . As
explained in [12], the method of graphs (see [14]) or the ideal theory of quaternion algebras
(see [11]) can be used to compute X = XJ0(N),p with its T-action and the monodromy
pairing. We can then compute the following three modules:

1. the saturated submodule L =
⋂
t∈If

ker(t) of X,

2. the character group degree mX = mL, and

3. ΦX = ΦL.

By Theorem 6.1 we obtain

#ΦA,p = #ΦX ·
mA

mX
.

7.5 The Eisenstein Nature of Component Groups

The theorem below, which generalizes some of the results of [13] and [15], was conjectured
by the second author after computing many component groups of quotients of J0(p) using
the results of this paper. M. Emerton read an early version of this paper and subsequently
announced a proof of the theorem below (see [6]).

Theorem 7.2 (Emerton). Let p be a prime and let f1, . . . , fn be a set of representatives
for the Galois-conjugacy classes of newforms in S2(Γ0(p)). Let A1, . . . , An be the optimal
quotients associated to f1, . . . , fn, respectively. Then for each i, i = 1, . . . , n, we have

#Ai(Q)tor = #ΦAi
(Fp) = #ΦAi

(Fp).

Furthermore,

#ΦJ0(p)(Fp) =

n∏

i=1

#ΦAi
(Fp).
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Before Emerton proved the above assertion, the second author verified it using the
algorithm of this paper for all p ≤ 757, and, up to a power of 2, for all p < 2000.

Remark 7.3. It is tempting to guess that, e.g., the natural map

ΦJ0(113)(F113)→
4∏

i=1

ΦAi
(F113)

is an isomorphism, but this is incorrect. Two of the ΦAi
(F113) have order 2, so the product∏4

i=1 ΦAi
(F113) is not a cyclic group. However, Mazur proved that the groups ΦJ0(p)(Fp)

are cyclic for all primes p.

7.6 Examples

In this section we give some examples of the numbers involved in computing component
groups of quotients of J0(N). For more examples, see [12]. We use the notation for abelian
varieties that is described in [1]. For example 65A is the “first” abelian variety quotient of
J0(65) attached to a newform.

7.6.1 Quotients of J0(N)

Table 1 contains many of the quantities involved in the computation of component groups
for each of the newform optimal quotients for N ∈ {65, 66, 68, 69}.

7.6.2 Quotients of J0(p)
−

We computed the quantities mA, mX , and ΦX for each abelian variety Af associated to a
newform of prime level p with p ≤ 631. Table 2 lists those Af for which wp = −1, along
with the order of the corresponding component group. The first column, which is labeled
“A” contains a description of Af , the second column, labeled “d”, contains the dimension of
Af , and the third column, labeled “#ΦA”, contains the order #ΦAf ,p(Fp) of the component
group.

Remark 7.4. Theorem 7.2 together with [13, Prop. II.17.10] imply that the component
groups of the Af for which wp = +1 are trivial, so we do not list them. An optimal
quotient Af of J0(p) with nonzero component group has nonzero rational torsion (by The-
orem 7.2), so it factors through the Eisenstein quotient of J0(p). Also wp acts as −1 on
the Eisenstein quotient of J0(p), which is [13, Prop. II.17.10], and which is a deep result
because of subtleties at the prime 2 (see the discussion in [13, III.1]).
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Table 1: Component groups of quotients of J0(N)

A dim p wp #ΦX mX mA #ΦA

65A 1 5 + 1 2 2 1
13 + 1 2 1

65B 2 5 + 3 22 22 3
13 − 3 22 3

65C 2 5 − 7 22 22 7
13 + 1 22 1

66A 1 2 + 1 2 22 2
3 − 3 22 3
11 + 1 22 1

66B 1 2 − 2 2 22 22

3 + 1 22 1
11 + 1 22 1

66C 1 2 − 1 2 22 · 5 2 · 5
3 − 1 22 5
11 − 1 22 · 5 1

68A 2 17 + 2 2 · 3 2 · 3 2

69A 1 3 − 2 2 2 2
23 + 1 2 1

69B 2 3 + 2 2 2 · 11 2 · 11
23 − 2 2 · 11 2
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Table 2: Component groups of quotients of J0(p)
−

A d #ΦA

11A 1 5
17A 1 22

19A 1 3
23A 2 11

29A 2 7
31A 2 5
37B 1 3
41A 3 2 · 5

43B 2 7
47A 4 23
53B 3 13
59A 5 29

61B 3 5
67A 1 1
67C 2 11
71A 3 5

71B 3 7
73A 1 2
73C 2 3
79B 5 13

83B 6 41
89B 1 2
89C 5 11
97B 4 23

101B 7 52

103B 6 17
107B 7 53
109A 1 1

109C 4 32

113A 1 2
113B 2 2
113D 3 7

127B 7 3 · 7
131B 10 5 · 13
137B 7 2 · 17
139A 1 1

139C 7 23
149B 9 37
151B 3 1
151C 6 52

A d #ΦA

157B 7 13
163C 7 33

167B 12 83
173B 10 43

179A 1 1
179C 11 89
181B 9 3 · 5
191B 14 5 · 19

193C 8 24

197C 10 72

199A 2 1
199C 10 3 · 11

211A 2 5
211D 9 7
223C 12 37
227B 2 1

227C 2 1
227E 10 113
229C 11 19
233A 1 2

233C 11 29
239B 17 7 · 17
241B 12 22 · 5
251B 17 53

257B 14 26

263B 17 131
269C 16 67
271B 16 32 · 5

277B 3 1
277D 9 23
281B 16 2 · 5 · 7
283B 14 47

293B 16 73
307A 1 1
307B 1 1
307C 1 1

307D 1 1
307E 2 3
307F 9 17
311B 22 5 · 31

A d #ΦA

313A 2 1
313C 12 2 · 13
317B 15 79
331D 16 5 · 11

337B 15 22 · 7
347D 19 173
349B 17 29
353A 1 2

353B 3 2
353D 14 2 · 11
359D 24 179
367B 19 61

373C 17 31
379B 18 32 · 7
383C 24 191
389A 1 1

389E 20 97
397B 2 1
397C 5 11
397D 10 3

401B 21 22 · 52

409B 20 2 · 17
419B 26 11 · 19
421B 19 5 · 7

431B 1 1
431D 3 1
431F 24 5 · 43
433A 1 1

433B 3 1
433D 16 22 · 32

439C 25 73
443C 1 1

443E 22 13 · 17
449B 23 24 · 7
457C 20 2 · 19
461D 26 5 · 23

463B 22 7 · 11
467C 26 233
479B 32 239
487A 2 1

A d #ΦA

487B 2 3
487C 3 1
487D 16 33

491C 29 5 · 72

499C 23 83
503B 1 1
503C 1 1
503D 3 1

503F 26 251
509B 28 127
521B 29 2 · 5 · 13
523C 26 3 · 29

541B 24 32 · 5
547C 25 7 · 13
557B 1 1
557D 26 139

563A 1 1
563E 31 281
569B 31 2 · 71
571A 1 1

571B 1 1
571C 2 1
571D 2 1
571F 4 1

571I 18 5 · 19
577A 2 3
577B 2 1
577C 3 1

577D 18 24

587C 31 293
593B 1 2
593C 2 1

593E 27 2 · 37
599C 37 13 · 23
601B 29 2 · 52

607D 31 101

613C 27 3 · 17
617B 28 2 · 7 · 11
619B 30 103
631B 32 3 · 5 · 7
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8 Appendix: Some Facts Concerning Toric Reduction

Let R be a discrete valuation ring with fraction field K and residue field k. For any abelian
variety A over K, with Néron model A over R, we denote by XA the character group of
the toric part of A0

k (the connected component of the closed fiber of A). All group schemes
below are understood to be commutative.

Our aim in this appendix is to prove a couple of facts (Theorem 8.2 and Theorem 8.6)
which are no doubt well-known to experts but for which published proofs do not appear to
be readily available. We begin with a simple and basic lemma.

Lemma 8.1. Let f : G→ G′ be a map between multiplicative (resp. étale) finite flat group
schemes over R. The map f is a closed immersion (resp. faithfully flat) if and only if the
generic fiber map fK is a closed immersion (resp. faithfully flat).

Proof. Cartier duality interchanges étaleness and multiplicativeness, as well as closed im-
mersions and faithfully flat maps (as the latter two properties may be checked on the closed
fiber, for which one is reduced to the standard case of finite commutative group schemes
over a field). Thus, it suffices to consider the étale case. By faithfully flat base change to
a strict henselization of R, we are reduced to the case where our finite étale group schemes
are constant. Since faithful flatness is equivalent to surjectivity (for maps between étale
schemes over a base), the lemma is now physically clear.

Now we turn to the first of the two main results we want to prove. Let π : J → A be an
optimal quotient of abelian varieties over K (i.e., we assume that kerπ is an abelian variety
over K), and assume that J has semistable reduction over R (so A does too). We do not
yet make any hypotheses of purely toric reduction. The dual abelian varieties A∨ and J∨

again have semistable reduction, as they are isogenous to A and J respectively.

Theorem 8.2. With notation as above, the map XJ∨ → XA∨ induced by π is surjective.

Proof. The underlying idea comes down to two facts: Lemma 8.1 and the fact that we can
lift tori on the level of `-divisible groups for any prime `. More precisely, we argue as follows.
By Proposition 3.3, the map π∨ : A∨ → J∨ is a closed immersion of abelian varieties. We
will use this to prove that the induced map π∨t on closed fiber tori of Néron models is
a closed immersion. Since the “character group” functor sets up an anti-equivalence of
categories between tori over a field F and finite free Z-modules with continuous action
of Gal(Fs/F ), identifying closed immersions of tori with surjections of character groups
and surjections of tori with “saturated injections” of character groups (i.e., injections with
torsion-free cokernel), the closed immersion property for π∨t on the closed fiber tori will
yield the desired surjection of character groups.

In general the “Néron model” functor doesn’t behave well for closed immersions. That
is, just because π∨ is a closed immersion, it does not follow purely formally that π∨ induces
a closed immersion on Néron models. Nevertheless, we claim quite generally that if B → B ′

is a closed immersion of abelian varieties over K with semistable Néron models, then the
induced map T → T ′ on closed fiber tori is a closed immersion. For this it is sufficient to
prove that the induced map on `-divisible groups T [`∞] → T ′[`∞] is a closed immersion
for all primes ` (i.e., all maps T [`n] → T ′[`n] are closed immersions). Indeed, suppose we
verify this closed immersion property on torsion, and let H be the kernel of T → T ′, so
H[`n] = 0 for all primes ` and positive integers n. The torus (H0

/k
)red must vanish (as it has

no non-trivial torsion) and hence H is finite. If N is the order of H, then H = H[N ] = 0.
The map T → T ′ is then a monomorphism between algebraic groups over a field and hence
is a closed immersion, as desired.
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In order to verify that the `-divisible group maps T [`∞]→ T ′[`∞] are closed immersions
for all `, we can make the faithfully flat base change to the henselization of R (which
commutes with formation of Néron models) to reduce to the case where R is henselian.
Now we recall the following basic result of Grothendieck:

Lemma 8.3. Let R be a henselian local ring, G a quasi-finite separated R-scheme of finite
presentation. There is a unique decomposition

G = Gf

∐
G′

into disjoint clopen pieces with Gf finite over R (called the “finite part”of G) and G′ having
empty closed fiber. The formation of Gf is functorial in G and is compatible with henselian
local base change and formation of fiber products over R.

If moreover G is a group scheme over R, then Gf is a clopen subgroup scheme and there
exists a unique multiplicative closed R-subgroup scheme Gµ inside of G whose closed fiber
is the multiplicative part of the closed fiber of G (Gµ is called the “multiplicative part” of
G). The formation of Gµ is functorial in G.

Proof. For the first part, see [8, IV4, 18.5.11(c)] (aside from the functorial properties, which
are obvious). The second part, concerning group schemes, is a mechanical consequence of
the first part (including the functoriality of the finite part). For example, the existence of
Gµ follows from considering the connected-étale sequence of the Cartier dual of Gf over the
henselian local base R, and the uniqueness and functoriality follows from the functoriality
of GÃ Gf and the functoriality of the connected-étale sequence.

Remark 8.4. Assuming R in Lemma 8.3 is a discrete valuation ring (with fraction field K
and residue field k), let us make some observations concerning the behavior of Lemma 8.3
with respect to primary components, as this will be useful later. Let’s suppose that N
and M are relatively prime integers with NM divisible by the order of GK , and hence
killing G. Thus, by functoriality we have G = G[N ] ×R G[M ] where G[N ] and G[M ] are
quasi-finite separated R-group schemes. We claim that G[N ] and G[M ] are also flat over R,
whence it follows that the formation of Gf and Gµ is compatible with passage to “primary
components”.

In other words, if ` is a prime and `n is divisible by the `-part of the order of GK , then
we claim that G[`n] is R-flat. From the clopen decomposition G = Gf

∐
G′, it is easy to

see that G[`n] = Gf [`
n]

∐
Xn for some finite K-scheme Xn, so for the issue of R-flatness

we can replace G with Gf . We are thereby reduced to the finite flat case, so we can use the
proof of [10, 1.7.2].

The significance of Lemma 8.3 for our purposes is the following standard consequence.

Corollary 8.5. Let A be an abelian variety over the fraction field K of a henselian discrete
valuation ring R with residue field k. Let A be the Néron model of A, and assume that A
has semistable reduction. For every prime `, there exists a unique multiplicative `-divisible
group Γ` inside of A whose closed fiber is the `-divisible group of the torus T of A0

k. The
formation of Γ` is functorial in A.

Proof. Fix `. By the semistability hypothesis, the multiplication maps `n : A → A are
quasi-finite flat, so A[`n] is a quasi-finite flat separated R-group scheme. Let A[`n]µ de-
note its multiplicative part (as in Lemma 8.3), so the multiplicative T [`n] ↪→ A[`n]k lies
inside of (A[`n]µ)k. The “closed fiber” functor is an equivalence of categories between fi-
nite flat multiplicative group schemes over R and k (since Cartier duality reduces this to
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the étale case, and the “closed fiber” functor is an equivalence of categories between finite
étale R-schemes and finite étale k-schemes [8, IV4, 18.5.12]). Thus, there exists a unique
multiplicative closed R-subgroup scheme Γ(n) ↪→ A[`n]µ whose closed fiber is T [`n].

Moreover, using the equivalence of categories just mentioned, A[`n]µ lies inside ofA[`n+1]µ
and Γ(n) lies inside of Γ(n+1). The resulting system Γ` = {Γ

(n)} over R forms an `-divisible
group on the closed fiber and hence is an `-divisible group over R. This settles the desired
existence, as well as the desired uniqueness. The functoriality of Γ` in A follows from the
functoriality of toric parts on the closed fiber of Néron models.

Returning to the proof of Theorem 8.2, recall that we were studying the map of toric
parts jt : T → T ′ induced by a closed immersion j : B ↪→ B′ of semistable abelian varieties
over K, with R henselian. We wanted the map

jt[`
∞] : T [`∞]→ T ′[`∞]

to be a closed immersion for all primes ` (as we have seen that this forces T → T ′ to
be a closed immersion, which is what we really want to show). Fix `. By Corollary 8.5
there exist unique multiplicative `-divisible groups Γ and Γ′ over R in the respective Néron
models B and B′ such that Γ and Γ′ respectively lift the `-divisible groups of the tori of
the closed fibers. Hence, it suffices to show that the R-map γ : Γ → Γ′ induced by the
Néron functoriality map N(j) is a closed immersion. The generic fiber map γK is a closed
immersion since it “sits inside” the generic fiber `-divisible groups of B and B ′, the map
between which is a closed immersion since j : B → B ′ is a closed immersion. Now we use
Lemma 8.1 (applied at all finite torsion levels) to conclude that γ is a closed immersion.
This completes the proof of Theorem 8.2.

We now turn to a result which requires a stronger hypothesis on the closed fiber. Note
that we retain the hypothesis that R is henselian (this hypothesis arose in the proof of
Theorem 8.2, even though it wasn’t needed for the statement). Let A and B be abelian
varieties over K with purely toric reduction (i.e., their Néron models have closed fiber
connected components which are tori). Let ϕ : A→ B be an isogeny, and let ϕt : TA → TB
be the induced map on the closed fiber toric parts (i.e., connected components) of the Néron
models. We denote by ϕ∨t : TB∨ → TA∨ the analogous map induced by the dual isogeny ϕ∨.
Since the map ϕt is an isogeny (by functoriality), the kernel ker(ϕt) is a finite multiplicative
k-group scheme.

For any finite multiplicative k-group scheme G, we let G̃ denote the (unique) multiplica-

tive finite flat R-group scheme with closed fiber G. For example, k̃er(ϕt) is a multiplicative
R-group scheme which lies inside of

ker(N(ϕ))µ

(where N(ϕ) is the map induced by Néron functoriality). Thus, we have a natural closed
immersion

˜(kerϕt)K ↪→ kerϕ

and likewise we have a natural quotient map

ker(ϕ∨)∨ → ˜ker(ϕ∨t )
∨

K

dual to the natural closed immersion using the isogeny ϕ∨.
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By the duality theory for abelian varieties (particularly the adjointness of ϕ and ϕ∨ with
respect to the scheme-theoretic Weil pairing over K), there is a canonical perfect duality
K-group scheme duality between ker(ϕ) and ker(ϕ∨) over K, whence there is a natural
quotient map of K-group schemes

ker(ϕ) ' ker(ϕ∨)∨ → ˜ker(ϕ∨t )
∨

K .

Theorem 8.6. The diagram of K-group schemes

0→ k̃er(ϕt)K → ker(ϕ)→ ˜ker(ϕ∨t )
∨

K → 0

is exact.

The content of the proof is the Grothendieck Orthogonality Theorem. Moreover, Theo-
rem 8.6 is implicit in Grothendieck’s construction of the monodromy pairing for semiabelian
varieties.

Proof. The exact sequence of the theorem says that the finite flat K-group schemes p

ker(ϕ)/k̃er(ϕt)K and ˜ker(ϕ∨t )K

are canonically Cartier dual to each other compatibly with the perfect duality between
ker(ϕ) and ker(ϕ∨). More precisely, let A and B denote the Néron models of A and B,
respectively, let

G = ker(A → B), G∨ = ker(B∨ → A∨),

soG andG∨ are both quasi-finite flat separatedR-group schemes whose generic fibers are the
ker(ϕ) and ker(ϕ∨) in the theorem (the R-flatness of G and G∨ arises from the semiabelian
condition, since any quasi-finite morphism between semi-abelian schemes is necessarily flat,
as can be checked on geometric fibers). Being quasi-finite flat and separated, the R-group
schemes G and G∨ have canonical respective “finite parts” Gf and G∨f and “multiplicative
parts” Gµ and G∨µ (as in Lemma 8.3). Beware that we do not claim G∨f (resp. G∨µ) is the
Cartier dual to Gf (resp. Gµ); usually such duality does not hold.

Since Gµ and G∨µ are finite flat R-group schemes, the quotients G/Gµ and G∨/G∨µ make
sense as quasi-finite flat separated R-group schemes. The theorem almost says that there
is a canonical duality between (G/Gµ)K = GK/(Gµ)K and (G∨µ)K , induced by the duality
between GK = ker(ϕ) and G∨K = ker(ϕ∨), except for the mild problem that Gµ might be

larger than k̃er(ϕt) (i.e., possibly (Gµ)k is not entirely inside of A0
k) and likewise G∨µ might

be larger than ˜ker(ϕ∨t ).
We will work on `-primary components for each prime ` individually. In order to permit

this, we use Remark 8.4. We will first treat the more subtle case when ` is the residue
characteristic, and then we’ll handle the case when it isn’t. The advantage of working with
the case in which ` is the residue characteristic is that multiplicative finite k-group schemes

are automatically connected. Thus, in this case (Gµ)` = k̃er(ϕt)` and (G∨µ)` =
˜ker(ϕ∨t )`.

Since
0→ GK → A→ B → 0

is an exact sequence of abelian sheaves on the fppf site over Spec(K), by the usual snake
lemma argument (and the fact that the `-part (GK)` of GK is killed by a big power of `)
we obtain an exact sequence

0→ (GK)` → A[`∞]→ B[`∞]→ 0.
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Arguing as in Corollary 8.5, there is an exact sequence over Spec(R)

0→ (Gµ)` → A[`∞]t → B[`∞]t → 0

which lifts the exact sequence involving `-divisible groups of tori on the closed fiber (as (Gµ)`
must be in the relative connected component of A). Passing to the generic fiber over K
gives us a commutative diagram with exact rows and closed immersions along columns

0 // ((Gµ)K)` //

²²

A[`∞]t //

²²

B[`∞]t //

²²

0

0 // (GK)` // A[`∞] // B[`∞] // 0

where A[`∞]t denotes the K-fiber of the `-divisible group {A[`n]t}, and likewise for B[`∞]t.
Using the snake lemma in the category of fppf abelian sheaves over Spec(K), we get a

short exact sequence of cokernels

0→ ((G/Gµ)K)` → A[`∞]/(toric)→ B[`∞]/(toric)→ 0

where all maps are the natural ones, and right two terms are `-divisible groups over K.
The Grothendieck Orthogonality Theorem (see [9, Exp. IX, Prop 5.6]) asserts that the

perfect scheme-theoretic Weil pairing between A[`n] and A∨[`n] makes A[`n]t and A∨[`n]f
exact annhilators, where A[`n]f denotes theK-fiber of the finite part of theA0[`n] and A[`n]t
denotes the K-fiber of the unique R-subgroup scheme in A0[`n] lifting the `n-torsion on the
closed fiber torus. By the purely toric condition applied to A∨, we see A∨[`n]f = A∨[`n]t.
Thus, the orthogonality theorem says that A[`n]/A[`n]t and A∨[`n]t are in perfect duality
via the scheme-theoretic Weil pairing over K.

Passing to the limit, we get a canonical isomorphism of `-divisible groups

A[`∞]/(toric) = (A∨[`∞]t)
∨.

But ϕ and ϕ∨ are adjoint with respect to Weil pairing, so we conclude that the diagram

A[`∞]/(toric)

ϕ

²²

(A∨[`∞]t)
∨

(ϕ∨t )∨

²²
B[`∞]/(toric) (B∨[`∞]t)

∨

commutes. Thus, we get an isomorphism between the kernels of these vertical isogenies.
The kernel of the left column is ((G/Gµ)K)`, as we saw above. Meanwhile, the kernel of
the right is (by duality theory of `-divisible groups) exactly the dual of ker(ϕ∨t ) = (G∨µ)K .
This gives the desired perfect duality between (G/Gµ)K and (G∨µ)K on `-primary parts for
` equal to the residue characteristic.

Now we consider the case when ` is not equal to the residue characteristic. There is
no loss of generality in passing to the case of a strictly henselian base R. Thus, the closed
fiber tori have constant `-divisible groups. Also, we can work with Z`-modules of geometric
points (over K) via Tate’s construction. The “toric” part of the `-adic Tate module T`(A)
is exactly the (saturated) maximal submodule with trivial Galois action, since a compatible
system of `-power torsion points in A(K) = A(R) must lie entirely inside of A0(R) (thanks
to the finiteness of the component group) and we can identify A0(R)[`n] with the (constant)
`n-torsion on the split torus A0

k over the separably closed k.
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Using inverse limits, we see that T`(A) → T`(B) is injective with cokernel (GK)` (=
geometric points of `-part), and this cokernel is exactly ker(ϕ)`. Likewise, the cokernel of
the map

T`(A)t → T`(B)t

on “toric” parts (i.e., `-adic Tate module generic fibers of the lifts of the `-divisible groups

of closed fiber tori) is (k̃er(ϕt)K)`.
Thus, we get a commutative diagram with horizontal exact sequences

0 // T`(A)t //

²²

T`(B)t //

²²

( ˜ker(ϕt)K)`
//

²²

0

0 // T`(A) // T`(B) // ker(ϕ)` // 0

with columns given by the natural maps. These vertical maps are all injective, so by the
snake lemma we get a short exact sequence of cokernels. We can now use the exact same
Weil pairing arguments with the Grothendieck orthogonality theorem (now in the easier
“` 6= p” form of the orthogonality theorem [9, Exp IX, 2.4]), essentially just as we argued
in the previous case. One distinction is that the use of inverse limit Tate modules rather
than direct limits causes some maps to switch direction.

More specifically we have a commutative square with horizontal isomporphisms (thanks
to the orthogonality theorem)

T`(A)/T`(A)t

ϕ

²²

T`(A
∨)∨t

T`(ϕ
∨
t )∨

²²
T`(B)/T`(B)t T`(B

∨)∨t

This induces an isomorphism

((kerϕ)/k̃er(ϕt)K)` ' ((k̃erϕ∨t )K)∨`

between the vertical cokernels, and by construction this isomorphism is compatible with
Weil pairings, whence the desired perfect pairing has been shown.

Let R be an arbitrary dvr (not necessarily henselian), let ϕ : A→ B be an isogeny, and
let ϕt : TA → TB be the induced map on the closed fiber toric parts, as above.

Corollary 8.7. The order of ker(ϕ) is the product of the orders of kerϕt and kerϕ∨t .

Proof. Pass to the henselization of R and use Theorem 8.6.

19



References

[1] A. Agashe and W.A. Stein, Visibility of Shafarevich-Tate groups of abelian varieties:
Evidence for the Birch and Swinnerton-Dyer conjecture, (2001).

[2] S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron models, Springer-Verlag, Berlin,
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