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Abstract

Let E be an elliptic curve over Q and let K be a quadratic imaginary field
that satisfies the Heegner hypothesis. We study the arithmetic of E over
ring class extensions of K, with particular focus on the case when E has
analytic rank at least 2 over Q. We also point out an issue in the literature
regarding generalizing the Gross-Zagier formula, and offer a conjecturally
correct formula.
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1. Introduction

Let E be an elliptic curve over Q. By [Wil95, BCDT01], L(E, s) extends
to an entire function on C, so ran(E/Q) = ords=1 L(E, s) is defined. Let
ralg(E/Q) = rank(E(Q)).

Conjecture 1 (Birch and Swinnerton-Dyer (see [Wil00])). We have

ran(E/Q) = ralg(E/Q).

Let K be a quadratic imaginary field such that all primes dividing the
conductor N of E split in K, and let u = #O×K/2, which is 1 unless K =
Q(
√
−1) or Q(

√
−3). For each squarefree product c of primes that are inert

1To appear in Journal of Number Theory.
2This work was supported by NSF grants DMS-0757627, DMS-0653968 and the Math-

ematical Sciences Research Institute.

Preprint submitted to Journal of Number Theory March 28, 2012



in K, let Kc denote the ring class field of conductor c, which is an abelian
extension of K ramified exactly at primes dividing c. Moroever, K1 is the
Hilbert class field of K, and (see [Gro91, §3])

Gal(Kc/K1) ∼= (OK/cOK)×/(Z/cZ)×.

Heegner points are certain points in E(Kc) that are constructed using com-
plex multiplication and a fixed choice of modular parametrization φE : X0(N)→
E of minimal degree. In this paper, we study the subgroup of E(Kc) gener-
ated by Galois conjugates of Heegner points, and relate it to #X(E/Kc).

Our motivation for this paper is that the subgroup W of any Mordell-
Weil group generated by Heegner points typically fits into an analogue of the
BSD conjecture, but with the “difficult” factors such as the Shafarevich-Tate
group and Tamagawa numbers removed (see [Ste10b]). Thus according to
the BSD formula (see Conjecture 12 below), we expect that the index of W
in its saturation (or the closely related index of E(K) +W in E(Kc)) in the
Mordell-Weil group is related to the order of X and Tamagawa numbers.
In Theorem 13 below, which is conditional on the BSD formula (see Con-
jecture 12 below), we compute this index in terms of other invariants of E.
Intriguingly, in order for our result to satisfy certain consistency checks, we
discover that the previously published explicit generalizations of the Gross-
Zagier formula to ring class fields appear to be wrong, e.g., they do not
properly take into account either the conductor of the ring class character or
the degree of the ring class field.

Our hypothesis that every prime dividing N splits in K implies that there
is a factorization of the ideal NOK as NN̄ with OK/N ∼= Z/NZ. Fix an
embedding K ↪→ C and view OK as a lattice in C, so C/OK is a CM elliptic
curve, and N−1/OK defines a cyclic subgroup of order N . Let X0(N) be the
standard modular curve whose affine points over C parameterize isomorphism
classes of pairs (F,C), where F is an elliptic curve over C and C is a cyclic
subgroup of F of order N . Let x1 be the point in X0(N)(K1) defined by the
isomorphism class of (C/OK ,N−1/OK). Using the modular parameterization
φE : X0(N) → E, we obtain a point y1 = φE(x1) ∈ E(K1). Let yK =
TrK1/K(y1) be the trace of y1. After fixing our choice of φE, the point yK is
well defined up to sign, since making a different choice of N replaces yK by
its image under an Atkin-Lehner involution, as explained in [Wat06, §2] or
[Coh07, Thm. 8.7.7], and Atkin-Lehner acts as ±1 on E.

In addition to their central importance to explicit computation of rational
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points on elliptic curves, Heegner points play an essential role in results
toward Conjecture 1 (see, e.g., [Gro91]):

Theorem 2 (Gross-Zagier, Kolyvagin, et al.). Let E/Q be an elliptic curve
with ran(E/Q) ≤ 1. Then ran(E/Q) = ralg(E/Q) and X(E/Q) is finite.

The proof that X(E/Q) is finite also yields an explicit computable up-
per bound on the p-part of #X(E/Q) (see [GJP+09, Thm. 3.4]) at primes
p where ρE,p : GQ → Aut(E[p]) has sufficiently large image (see [Cha05,
GJP+09, Jet08, SW11]). The bound is in terms of [E(K) : ZyK ], for any
choice of K. This bound plays an essential role in verifying the full BSD for-
mula (Conjecture 12) for specific elliptic curves, as in [GJP+09, Mil10, MS10].

If M is any number field, let ĥM denote the Néron-Tate canonical height
on E(M) over M . If S is an extension of M and P ∈ E(M), then ĥS(P ) =
[S : M ] · ĥM(P ) (see [Sil92, Prop. VIII.5.4]). Following [GZ86, §I.6 and §V.2],
we have

‖ωE‖2 =
8π2 · (f, f) · c2

E

deg(φE)
, (1)

where ωE is a minimal differential on E, cE is the Manin constant, deg(φE)
is the modular degree, f is the newform corresponding to E, and (f, f) is
the Petersson inner product of f with itself (see also [GJP+09, §3]).

Remark 3. We assume that cE = 1 in the rest of this paper. As
explained in [ARS06] this should be a harmless assumption, and conjecturally
holds when working with the optimal elliptic curve isogenous to E.

The following theorem is in [GZ86, §V.2, pg. 311]:

Theorem 4 (Gross-Zagier). We have

L′(E/K, 1) =
‖ωE‖2

u2 ·
√
|DK |

· ĥK(yK).

Let E be an elliptic curve over Q and assume that ran(E/K) = 1. The
subgroup of E(K) generated by the Heegner point plays an essential role in
the proof of Theorem 2. One uses the nontorsion point yK = TrK1/K(y1) to
bound the rank of E(K) from below. There are also higher Heegner points
yc = φE(xc) (see Section 2) that are used to construct elements of various
Selmer groups associated to E, which one then uses to bound the rank of
E(K) from above.
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Assume L′(E/K, 1) 6= 0. Then, as explained in [Ste10b, §2], the Gross-
Zagier formula and the BSD formula for L′(E/K, 1) together imply that

[E(K) : ZyK ]2 = #X(E/K) ·
∏

cv,K ,

where the cv,K are the Tamagawa numbers of E/K. Note that since each
prime divisor p | N splits in K, the product of the Tamagawa numbers
of E/K is the square of

∏
p|N cp, where the cp are the Tamagawa numbers

of E/Q. See the proof of Proposition 14 for related remarks, and [Ste10b,
Prop. 2.4] for a discussion of what happens when E has rank ≥ 2.

In Section 2, we recall the definition of Heegner points over ring class
fields, set up some notation involving characters and corresponding idem-
potent projectors, and discuss generalization of the Gross-Zagier formula to
higher Heegner points. In Section 3, we introduce the subgroup W of E(Kc)
generated by Galois conjugates of Heegner points and describe a theorem of
Bertolini-Darmon that allows us to deduce conditions under which W+E(K)
has finite index in E(Kc). In Section 4, we use a generalization of the Gross-
Zagier formula to derive a formula for Reg(W ), then use the BSD formula
to compute the index of W +E(K) in E(Kc). We also compute the index of
W in its saturation. Section 5 gives an example that illustrates the results of
Section 4. Finally, Section 6 suggests some avenues for future investigation.

2. Higher Heegner Points

Fix a positive squarefree integer c whose prime divisors are inert in K
and coprime to N . Let Oc = Z + cOK and Nc = N ∩ Oc. Then the pair
(C/Oc,N−1

c /Oc) defines a CM elliptic curve equipped with a cyclic subgroup
of order N , and the isomorphism class of this pair defines a point xc ∈
X0(N)(Kc). We use the modular parameterization φE to map xc to a point
yc = φE(xc) ∈ E(Kc).

Let G = Gal(Kc/K) and let

hc = [Kc : K] = # Cl(Oc) = #G

be the class number of the order Oc. For any character χ : G → C×, let eχ
be the idempotent

eχ =
1

hc

∑
σ∈G

χ−1(σ)σ ∈ C[G],
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which projects to the χ-isotypical component of any G-module. Note that if
σ ∈ G, then σeχ = χ(σ)eχ; also, 1 =

∑
χ:G→C× eχ.

Following [Gro84, (10.1)], we extend the Néron-Tate height pairing 〈 , 〉Kc

on E(Kc) defined by hKc to a Hermitian inner product on the complex vector
space V = E(Kc)⊗Z C by letting

〈αP, βQ〉 = αβ〈P, Q〉Kc (2)

and extending linearly. We also view V as a C[G]-module by making σ ∈ G
act by σ(P ⊗α) = σ(P )⊗α. Since E is defined over Q, the height pairing on
V is Gal(Kc/Q)-equivariant (see [Sil92, Lem. VIII.5.10]), in the sense that
for any σ ∈ Gal(Kc/Q) and P,Q ∈ E(Kc), we have 〈σ(P ), σ(Q)〉 = 〈P,Q〉.

Lemma 5. The χ eigenspaces of V are orthogonal with respect to the height
pairing.

Proof. This is standard, but for the convenience of the reader we give a proof.
If χ, χ′ are two characters of G, then for any P,Q ∈ E(Kc) and σ ∈ G, we
have

〈eχP, eχ′Q〉 = 〈σ(eχP ), σ(eχ′Q)〉
= 〈χ(σ)eχP, χ

′(σ)eχ′Q〉
= χ(σ)χ′(σ)−1〈eχP, eχ′Q〉.

Thus if 〈eχP, eχ′Q〉 6= 0 for some P,Q, then χ(σ)χ′(σ)−1 = 1 for all σ, hence
χ = χ′.

We next explain how the heights ĥKc(eχyc) are related to the special
values of certain L-functions. Let f =

∑
anq

n ∈ S2(Γ0(N)) be the newform
corresponding to E, let χ be a character of G, and let L(f, χ, s) be the
Rankin-Selberg L-series L(f⊗gχ, s), as described in [Gro84, §III]. According
to [Gro84, Prop. 21.2], the sign in the functional equation for L(f, χ, s) is −1,
so L(f, χ, s) vanishes to odd order at s = 1. In [Zha01a, Thm. 1.2.1], Zhang
proves a generalization of the Gross-Zagier formula (Theorem 4 above) that
relates the height of eχyc to L′(f, χ, 1). Unfortunately, the literature on this
formula is inconsistent. For nontrivial χ, [JLS09, §A.2] asserts that Zhang’s
theorem implies that

L′(f, χ, 1) =
4(f, f)

u2
√
|DK |

· ĥKc(eχyc). (3)
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The earlier paper [Hay95, Thm. 2] conjectures that the formula is

L′(f, χ, 1) =
8π2(f, f)

u2
√
|DK |

· ĥKc(eχyc). (4)

However, somewhat bizarrely, immediately after stating the above, [Hay95]
then states that the formula is instead

L′(f, χ, 1) =
hc · 8π2(f, f)

u2
√
|DK |

· ĥKc(eχyc). (5)

which is closer to what we expect (see Conjecture 6).
Consistency checks with the BSD formula (see Proposition 14 and the

discussion on page 15 right after the proof of Theorem 13) very strongly
suggest that Equations (3), (4) and (5) are all incorrect. Zhang remarks at
the end of Section 1 of [Zha04], “I would like to thank N. Vatsal and H. Xue
for pointing out many inaccuracies in our previous paper [Zha01a],” and in
an email to the authors: “You are right that my formula cited in your paper
is not accurate. A correct version is in my paper [Zha04].”

Instead, we propose the following closely related formula, which also fea-
tures the conductor of the character χ : Gal(Kc/K) → C×, which is the
smallest integer divisor c′ | c such that χ factors through the natural quo-
tient map Gal(Kc/K)→ Gal(Kc′/K).

Conjecture 6. If χ is a nontrivial character of G, then

L′(f, χ, 1) =
hc · 8π2(f, f)

cond(χ) · u2 ·
√
|DK |

· ĥKc(eχyc).

Remark 7. Zhang has explained to us that one can deduce the above con-
jecture from his [Zha04, Thm 6.1]. Zhang and his students intend to give the
details in a future paper, by using the following facts:3

1. Zhang’s L-series is the full L-series, including Γ-functions, so some
factors should be removed.

2. Zhang’s D includes both the the conductor of the cyclotomic character,
and the discriminant of the imaginary quadratic extension.

3. Zhang’s CM point are not averaged.
4. Zhang’s height pairings are averaged over the base field F .
5. Zhang does not use the factor of 2 that others use.

3This list was removed from the published version of this paper as demanded by the
referee.
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3. The Heegner Point Subgroup

In this section we state a theorem of Bertolini-Darmon, and use it to
understand when W +E(K) generates a finite index subgroup of E(Kc). We
also give equivalent conditions under which W and E(K) are orthogonal.

Let E and K be as above. We continue to fix an integer c whose prime
divisors are inert in K and coprime to N , and let ac be the cth Fourier
coefficient of the newform attached to the elliptic curve E. Consider the
subgroup W = Z[G]yc of E(Kc) spanned by the G-conjugates of yc.

Recall from Section 2 the vector space V = E(Kc)⊗ZC, which is a finite-
dimensional C[G]-module equipped with a G-invariant bilinear Hermitian
height pairing (2). For any character χ of G, let V χ = eχV be the subspace
of V on which G acts via χ. Because 1 =

∑
χ eχ, we have

V =
⊕

χ:G→C×
V χ,

and Lemma 5 asserts that the V χ are mutually orthogonal. Let yc,χ =
eχ(yc) ∈ V χ.

Theorem 8 (Bertolini-Darmon [BD90]). If yc,χ 6= 0 then V χ = Cyc,χ.

Remark 9. The converse of Theorem 8 is the assertion that if yc,χ = 0 then
V χ 6= Cyc,χ = 0. As explained in [BD90], this is consistent with a natural
refinement of the BSD rank conjecture (Conjecture 1), which asserts that V χ

has odd rank (see also [YZZ10, Conj. 1.4.1]). It is a difficult open problem
to come up with any way to construct points in V χ when Cyc,χ = 0.

Proposition 10. If for all nontrivial characters χ of G we have L′(f, χ, 1) 6=
0, then the index [E(Kc) : W + E(K)] is finite.

Proof. By tensoring with C, we see that the claim is equivalent to showing
that the C span of W +E(K) is V . Let χ1 denote the trivial character. Then

V =
⊕

χ:G→C×
V χ = V χ1 ⊕

⊕
χ 6=χ1

V χ.

We have V χ1 = E(K)⊗C. Theorem 8 and our hypothesis that L′(f, χ, 1) 6= 0
for all nontrivial χ imply that W ⊗ C = ⊕χ 6=χ1V

χ,

As explained in [Gro84, §6] and [Gro91, Prop. 3.7], we have TrKc/K(yc) =
acyK , which motivates the appearance of acyK in the following proposition.
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Proposition 11. The following are equivalent:

1. The two subgroups W and E(K) of E(Kc) are mutually orthogonal.

2. The point acyK is torsion.

3. ac = 0 or ran(E/K) > 1.

Proof. To prove that 1 implies 2, suppose that W is orthogonal to E(K).
The height pairing on E(Kc) is 0 only on torsion points, so W ∩ E(K) is a
torsion group. But acyK = TrKc/K(yc) ∈ W ∩ E(K), so acyK is torsion, as
claimed.

To prove that 2 implies 1, assume that acyK is torsion. Choose P ∈ E(K)
and Q ∈ W . For any σ ∈ G, we have

TrKc/K(σ(yc)) = σ(TrKc/K(yc)) = σ(acyK) = acyK ∈ E(K)tor. (6)

Since Q is a linear combination of σ(yc) for various σ, Equation (6) implies
that TrKc/K(Q) is torsion. The height pairing is Galois equivariant, so for all
σ ∈ G, we have 〈P,Q〉 = 〈σP, σQ〉 = 〈P, σQ〉. Thus

〈P,Q〉 =
1

hc

∑
σ∈G

〈P, σQ〉 =
1

hc
〈P,TrKc/K Q〉 = 0.

Finally we observe that 2 and 3 are equivalent. If ac = 0 then acyK = 0.
If ran(E/K) > 1, then Theorem 4 implies that yK is torsion. Conversely,
suppose acyK is torsion. If ac 6= 0, then yK is also torsion, so Theorem 4
implies that ran(E/K) > 1.

4. Regulators and Indexes

In this section we study the index [E(Kc) : W +E(K)], and under certain
hypotheses, conjecturally relate it to various arithmetic invariants of E. In
particular, we prove Theorem 13, which is a conjectural formula for the
index [E(Kc)/tor : (E(K) + W )/tor] under any of the equivalent hypotheses
of Proposition 11.

If H is any subgroup of a Mordell-Weil group E(M), let RegM(H) be
the absolute value of the determinant of the height pairing 〈 , 〉M on a basis
of H. We emphasize here that we use the height relative to M and not the
absolute height on E(Q).

Theorem 13 below is conditional on the BSD formula over number fields.
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Conjecture 12 (Birch and Swinnerton-Dyer Formula). If E is an elliptic
curve of rank r over a number field F then

L(r)(E/F, 1)

r!
=

ΩE/F · RegF (E(F )) ·#X(E/F ) ·
∏

v cv,F√
|DF | ·#E(F )2

tor

,

where DF ∈ Z is the discriminant of F , and the other quantities are as in
[Lan91, III, §5].

If E is defined over Q and F is totally imaginary, as it is in our application
in which F = K or F = Kc, we have ΩE/F = ‖ωE‖[F :Q], where ‖ωE‖ is as in
Equation (1) (see also [GZ86, §6]).

Much of the rest of this section is devoted to proving the following theo-
rem.

Theorem 13. Assume Conjectures 6 and 12 for E, that ords=1 L(E/K, χ, s) =
1 for each nontrivial ring class character χ of conductor dividing c, and that
acyK is torsion. Let r = ran(E/K) = ords=1 L(E/K, s) and assume that
r = rank(E(K)), as predicted by Conjecture 1. Then

[E(Kc)/tor : (E(K)+W )/tor]
2 =

#X(E/Kc)

#X(E/K)
·
∏

w cw,Kc∏
v cv,K

· #E(K)2
tor

#E(Kc)2
tor

·hr−1
c ·u2hc .

Because of the the Cassels-Tate pairing, we expect that #X(E/Kc) and
#X(E/K) are both perfect squares (see, e.g., [Ste04, Thm. 1.2]). The fol-
lowing proposition is thus an important consistency check for Theorem 13.

Proposition 14. Theorem 13 predicts that #X(E/Kc)

#X(E/K)
is a perfect square.

Proof. We check that each factor, except the quotient of Shafarevich-Tate
groups appearing in the theorem, is a perfect square, especially the Tama-
gawa number factors. Each prime of bad reduction for E splits in K, and for
the two primes v and v′ over a split prime p of Q, we have cv,K = cv′,K , so

∏
v

cv,K =

∏
p|N

cp,Q

2

.

The extension Kc/K is unramified at each prime of bad reduction for E, and
the formation of Néron models commutes with unramified base change (see
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[BLR90, §1.2, Prop. 2]), so for each prime v of K and each prime w of Kc

with w | v, we have cw,Kc = cv,K . Let gv be the number of primes of Kc over
the prime v of K. Then

∏
w of Kc

cw,Kc =
∏
v of K

cgvv,K =
∏
p|N

c2gv
p,Q =

∏
p|N

cgvp,Q

2

.

Finally, the factor hr−1
c is a perfect square since the sign of the functional

equation for L(E/K, s) is odd, so r is odd.

Lemma 15. With hypotheses as in Theorem 13, L(E/Kc, s) vanishes to
order exactly r + hc − 1 and

L(r+hc−1)(E/Kc, 1)

(r + hc − 1)!
=
L(r)(E/K, 1)

r!
·
∏
χ 6=χ1

L′(E/K, χ, 1). (7)

Proof. The L-function of E over Kc factors as

L(E/Kc, s) =
∏
χ

L(f, χ, s) = L(E/K, s) ·
∏
χ 6=χ1

L(f, χ, s),

where the first product is over characters χ : G → C×, and χ1 is the trivial
character. This implies the order of vanishing statement. The leading coeffi-
cient of the product of power series is the product of the leading coefficients
of those series, which gives the formula for the leading coefficient.

In using Conjecture 12 to deduce Theorem 13, we will make use of an
explicit formula for the discriminant DKc .

Lemma 16. We have

DKc = Dhc
K ·
∏
p|c

p
2·p·hc
p+1 .

Proof. Consider a prime divisor p | c, and write c = pc′. The prime pOK
above p splits completely in Kc′/K (as explained in [Ste10b, Lem. 5.3]).
Going from Kc′ to Kc, the primes above pOK are totally ramified, with
ramification index [Kc : Kc′ ] = [Kp : K1] = p+1. Combining this information
for all p | c and applying [FT93, Thm. 26, Ch. III], implies that the different
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δKc/K is
∏

p|c
∏

p|p p
p. Let p be any prime of Kc over p. As explained above,

since p is inert in K/Q, the prime pOK splits completely in Kc′/K, then
totally and tamely ramifies in Kc/K

′
c, so normKc/Q(p) = p2, and the number

of primes p over a given p is hc/(p+ 1). The different ideal is multiplicative
in towers, and the discriminant is the norm of the different, so

DKc = normKc/Q(δKc/Q)

= normKc/Q(δK/Q · δKc/K)

= normKc/Q(δK/Q) ·
∏
p|c

∏
p|p

normKc/Q(p)p

= Dhc
K ·
∏
p|c

p
2hcp
p+1 .

The product of prime divisors of c in Lemma 16 can be expressed in terms
of conductors as follows:

Lemma 17. We have

DKc = Dhc
K ·

∏
χ 6=χ1

cond(χ)2. (8)

Proof. Consider the set of characters χ : G → C×. A character χ has
conductor not divisible by p precisely if it factors through Gal(Kc′/K), so
the number of characters χ with conductor not divisible by p is the number
of characters of Gal(Kc′/K), which is # Gal(Kc′/K) = hc/(p+ 1). Thus the
number of characters with conductor divisible by p is hc − hc/(p + 1). As
cond(χ) | c we have∏

χ 6=χ1

cond(χ) =
∏
p|c

phc−hc/(p+1) =
∏
p|c

phcp/(p+1),

which, combined with Lemma 16, implies the claimed formula.

We will use the following lemma in computing a certain regulator in the
proof of Proposition 19 below.

Lemma 18. Let Mm(a, b) be the m×m matrix with a+ b along the diagonal
and all other entries equal to b. Then detMm(a, b) = (a+mb)am−1.
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Proof. The case for m = 1, 2 is clear. For m > 2, first consider the deter-
minant of the matrix M ′

m(a, b) of size m ×m whose entries are all b except
for the first upper off diagonal whose entries are all a + b (see Equation (9)
below). We claim that detM ′

m(a, b) = (−a)m−1b. For m = 1, 2 this is clear.
For larger m we perform a row operation (subtract row 2 from row 1) and
expand by minors, as follows:

detM ′
m(a, b) =

∣∣∣∣∣∣∣∣∣
b a+ b · · · b

b b
. . .

...
...

. . . a+ b
b · · · b b

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
0 a · · · 0

b b
. . .

...
...

. . . a+ b
b · · · b b

∣∣∣∣∣∣∣∣∣ (9)

= −a · detM ′
m−1(a, b) = −a(−a)m−2b = (−a)m−1 · b. (10)

Using this formula for detM ′
m(a, b) allows us to compute detMm(a, b) as

follows, where in the first step we subtract the last row from the first row:

detMm(a, b) =

∣∣∣∣∣∣∣∣∣
a+ b b · · · b

b a+ b
...

...
. . . b

b · · · b a+ b

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
a 0 · · · −a
b a+ b

...
...

. . . b
b · · · b a+ b

∣∣∣∣∣∣∣∣∣
= a · detMm−1(a, b) + (−1)m(−a) detM ′

m−1(a, b)

= (a+mb) · am−1.

Proposition 19. With hypotheses as in Theorem 13 (but without assuming
any conjectures!), we have

RegKc
(W ) = hhc−2

c ·
∏
χ 6=χ1

ĥKc(yc,χ).

Proof. In this proof we will work everywhere with the images of points in
V = E(Kc)⊗ C, which should not cause confusion.

The hypotheses imply that for each nontrivial character χ, the point yc,χ
has infinite order. Lemma 5 asserts that the yc,χ are mutually orthogonal,
so there is a lattice Λ in W ⊗ C with basis the yc,χ, which has rank hc − 1
(the number of nontrivial characters χ). Because the yc,χ are all nonzero and
orthogonal, we have

RegKc
(Λ) =

∏
χ 6=χ1

ĥKc(yc,χ).

12



By Proposition 10, the elements (yσc )1 6=σ∈G are independent and nonzero, so
they form a basis for their Z-span W/tor in V . Let M be the (hc−1)×(hc−1)
change of basis matrix with respect to these two bases. More precisely, if for
any fixed basis of V , we let BΛ be the matrix with rows our chosen basis for
Λ and BW the matrix with rows our basis for W , then BΛ = M · BW . We
have RegKc

(Λ) = det(M)2 · RegKc
(W ), so to compute RegKc

(W ), it suffices
to compute det(M)2. By definition of eχ and using that TrKc/K(yc) = 0 (in
V ) we have

yc,χ =
1

hc

∑
σ∈G

χ−1(σ)yσc =
1

hc

∑
1 6=σ∈G

(χ−1(σ)− 1)yσc ,

from which we read off the rows of the matrix M . For any two rows Mχi
,Mχj

of M ,

Mχi
·Mχj

=
1

h2
c

∑
16=σ∈G

(χ−1
i (σ)− 1)(χ−1

j (σ)− 1)

=
1

h2
c

∑
σ∈G

(χ−1
i (σ)− 1)(χ−1

j (σ)− 1)

=
1

h2
c

∑
σ∈G

(χiχj)
−1(σ)− χ−1

i (σ)− χ−1
j (σ) + 1 =

{
2
hc

if χi = χ−1
j ,

1
hc

otherwise.

Thus

(detM)2 = detMMT = det(Mχi
·Mχj

)i,j = ±

∣∣∣∣∣∣∣∣∣∣

2
hc

1
hc
· · · 1

hc

1
hc

2
hc

...
...

. . . 1
hc

1
hc
· · · 1

hc
2
hc

∣∣∣∣∣∣∣∣∣∣
,

where the columns in the final matrix have been permuted so we have 2/hc
down the diagonal and 1/hc everywhere else, which only affects the deter-
minant up to sign. To evaluate this determinant we use Lemma 18 with
a = b = 1/hc and m = hc − 1 and obtain

det(M)2 =

(
1

hc
+ (hc − 1) · 1

hc

)
·
(

1

hc

)hc−2

= 1/hhc−2
c .

13



Thus

RegKc
(W ) = (detM)−2 · RegKc

(Λ) = hhc−2
c ·

∏
χ 6=χ1

ĥKc(yc,χ).

Proof of Theorem 13. Apply Conjecture 12 to the left-hand side of Equa-
tion (7), and to the first factor on the right-hand side, and Conjecture 6 to
the remaining factors on the right hand side, to get

‖ωf‖2hc · RegKc
(E(Kc)) ·#X(E/Kc) ·

∏
cw,Kc√

|DKc| ·#E(Kc)2
tor

=
‖ωf‖2 · RegK(E(K)) ·#X(E/K) ·

∏
cv,K√

|DK | ·#E(K)2
tor

·
∏
χ 6=χ1

hc · ‖ωf‖2

cond(χ) · u2 ·
√
|DK |

·ĥKc(yc,χ).

Cancelling ‖ωf‖2hc from both sides, and rearranging factors gives

u2hc ·
√
|DK |hc ·

∏
χ 6=χ1

cond(χ)√
|DKc |

·
∏
cw,Kc∏
cv,K

· #X(E/Kc)

#X(E/K)

(11)

=
RegK(E(K)) · hhc−1

c ·
∏

χ 6=χ1
ĥKc(yc,χ)

RegKc
(E(Kc))

· #E(Kc)
2
tor

#E(K)2
tor

.

We have r = rank(E(K)), because we are assuming Conjecture 1 for
E/K, and Proposition 11 implies that W and E(K) are orthogonal, so

RegKc
(E(K)+W ) = RegKc

(E(K))·RegKc
(W ) = hrc·RegK(E(K))·RegKc

(W ).
(12)

Combining Equation (12) with Proposition 19 yields

RegK(E(K)) · hhc−1
c ·

∏
χ 6=χ1

ĥKc(yc,χ) = RegK(E(K)) · hc · RegKc
(W )

= h1−r
c · RegKc

(E(K) +W ).

Taking square roots of the absolute value of both sides of the formula in
Lemma 17 and simplify Equation (11) using the above, we obtain

u2hc ·
∏
cw,Kc∏
cv,K

· #X(E/Kc)

#X(E/K)
= h1−r

c ·
RegKc

(E(K) +W )

RegKc
(E(Kc))

· #E(Kc)
2
tor

#E(K)2
tor

= h1−r
c · [E(Kc)/tor : (E(K) +W )/tor]

2 · #E(Kc)
2
tor

#E(K)2
tor

.

14



Solving for [E(Kc)/tor : (E(K) +W )/tor]
2 then yields the claimed formula in

Theorem 13.

If we remove the cond(χ) factor from Conjecture 6, then rederive Theo-
rem 13 as in the proof above, the one change is that in Equation (11), instead
of having √

|DK |hc ·
∏

χ 6=χ1
cond(χ)√

|DKc|
= 1

we get an extra factor of √
|DK |hc√
|DKc |

next to u2hc . According to Lemma 16, we have√
|DKc |√
|DK |hc

=
∏
p|c

p
phc
p+1 .

In the special case when c = p is an odd prime and K has class number 1,
this simplifies to √

|DKc |√
|DK |hc

= p
p(p+1)
p+1 = pp,

which is never a perfect square, which leads to a contradiction (see Proposi-
tion 14).

5. An Example

Suppose E is the elliptic curve 389a given by y2 +y = x3 +x2−2x, which
has rank 2 and conductor 389. The field K = Q(

√
−7) satisfies the Heegner

hypothesis, c = 5 is inert in K, and u = 1. Since K has class number 1,
we have hc = c + 1 = 6. According to [JLS09], the field Kc is obtained by
adjoining a root of

z6 + 1750z5 − 26551875z4 − 570237500z3 + 202540106562500z2

− 292113275671875000z + 134537112978310546875

to K, and we find by computer calculation (or Lemma 16) that

DKc = 510 · 76 = (−7)65(2·5·6)/(5+1).

15



All of the p-adic Galois representations associated to E are surjective, so
E(Kc)tor = 0. The BSD conjecture and a computation using [S+11] implies
that X(E/K) = 1, and we find by computation that r = ran(E/K) = 3. The
Tamagawa numbers of E at 389 is 1. Assuming the hypotheses of Theorem 13
are satisfied, we have

[E(K5) : E(K) +W ]2 = #X(E/K5) · 62. (13)

Let σ be a choice of generator for G = Gal(K5/K). As explained in
[JLS09, Ste10a], the Kolyvagin class τ ∈ H1(K,E[3]) associated to y5 is
nonzero and X(E/K)[3] = 0, so there is some nonzero P ∈ E(K)/3E(K)
such that [P ] 7→ [P5] ∈ E(K5)/3E(K5), where P5 =

∑
iσi(y5) ∈ W . Thus

P − P5 = 3Q ∈ 3E(K5), where Q ∈ E(K5) but Q 6∈ E(K) + W . Hence
3 | [E(K5) : E(K) +W ], as predicted by Equation (13).

6. Ideas for Future Work

It would be of interest to compute the relevant L-functions in this pa-
per for several specific examples, using the methods of Dokchitser [Dok04]
or Rubinstein. In addition, one could explicitly compute the Mordell-Weil
group E(Kc) in some examples. It would also be of interest to find ex-
plicit examples that illustrate the situation discussed in Remark 9, in which
ords=1 L(E,χ, s) ≥ 3, since we are currently not aware of any such examples.

Regarding generalizations, it would be natural to fully treat the case when
r = 1, so that W has finite index in E(Kc). It would also be good to extend
the results of this paper to modular abelian varieties Af attached to new-
forms in S2(Γ0(N)). Another possible generalization would be to quadratic
imaginary fields that do not satisfy the Heegner hypothesis, so the modular
curve X0(N) is replaced by a Shimura curve (see, e.g., the extensive work of
Bertolini and Darmon). In another direction, one could likely generalize our
results to elliptic curves (or abelian varieties) over totally real fields, following
the program initiated by Zhang in [Zha01b].

Assume that for all nontrivial χ we have ords=1 L(E,χ, s) = 1. Under
this hypothesis, it would be of great interest to prove the divisibility

#X(E/Kc)

#X(E/K)

∣∣∣ [E(Kc) : E(K) +W ]2,

at least away from an explicit finite list of primes. This might make it possible
to compute X(E/Kc)/X(E/K) for a specific elliptic curve. This would be
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a generalization of the explicit upper bounds on #X(E/K) from [GJP+09,
Thm. 3.4]. The cryptic [Ber10, Remark 5.23(1)] is relevant, because it claims
one can prove at least finiteness of X(E/Kc)(χ), in the Shimura curve case,
though warns “The original methods of Kolyvagin, based on the Gross-Zagier
formula, allow to prove a similar statement only when χ is quadratic.” This
should be contrasted with [YZZ10, §1.6, Thm. C], where it is claimed that
under our hypothesis Tian-Zhang have in fact proved that X(E/Kc)(χ) is
finite, using the original method of Kolyvagin based on their generalization
of the Gross-Zagier formula.
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