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FINITENESS OF E(Q) AND LI(E,Q)
FOR A SUBCLASS OF WEIL CURVES
UDC 519.4

V. A. KOLYVAGIN

ABSTRACT. Let E be an elliptic curve over Q, admitting a Weil parametnization y: Xn
— E, L(E,Q,1) # 0. Let KX be an imaginary quadratic extension of Q with dis-
criminant A = square (mod 4N), and let yp» € E(K) be a Heegner point. We show
that if yp has infinite order (K must not belong to a hinile set of ficlds that can be
described in terms of 7), then the Mordell-Weil group E(Q) and the Tate-Shafarevich
group HI(E, Q) of the curve E (over Q) are finite. For example, HI{.X,;,0Q) 1s hnite.
In particular, E(Q) and (£, Q) are hnite if (A, 2N) =1 and L}{E.H. 1) # 0, where

f = oo or [ is a rational prime such that {{} = | and (f,Nay) = |, where ay 1s the
cocfficient of /=7 in the L-series of E over Q. We indicate in terms of E, K, and yyg
a number annthilating £(Q) and (£, Q).

Bibliography: 11 titles.

Introduction

Let E be an elliptic curve defined over the field of rational numbers Q, and let
L(E,Q,s) = Y.°°,a,n*, a, € Z, be the canonical L-function of E over Q. The
Birch-Swinnerton-Dyer conjecture asserts that the rank of E over Q is equal to the
order of the zero at s = 1 of the function L(E,Q,s). In particular, £(Q) 1s finite
& L(E,Q,1) # 0. If E has complex multiplication, Coates and Wiles [1] showed
that E(Q) is finite if L(E,Q, 1) # 0. If E is a Weil curve (by Weil's conjecture, every
elliptic curve defined over Q is such a curve) and E(Q) is finite, then according to a
result of Gross and Zagier [2] either L(E.Q, 1) # 0 or L'(£,Q, 1) = 0.

There also exists a conjecture on the finiteness of the Tate-Shafarevich group of
E: II(E,Q) = ker(H'(Q, E) — [], H'(Qy, E)), where v runs over all rational prime
numbers and oo.

Let N be a natural number, and X'y a modular curve over Q parametrizing 1Soge-
nies of elliptic curves E' — E’ with a cyclic kernel of order N'. We assume that E is
a Weil curve, i.e., for some N there exists a (weak) Weil parametrization y: Xy — E
(see [2] or [3]). Let K be an imaginary quadratic extension of Q with discriminant
A (A < 0) such that A = square (mod4N); O = Ok denotes the ring of integers
of K. and i is an ideal of O such that Q/i ~ Z/N; i exists as a consequence of 2
condition on A (see [2]) and is assumed to be fixed. Let H denote the Hilbert class
field of K; z; = zy x4 € Xn(H) is a point corresponding in compiex notation to the
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514 V. A, KOLYVAGIN

isogeny C/O — C/i~ ', where i~' D O is invertible in the group of proper O-ideals.
By v, € E(H) we denote a Heegner point y(z;), and we set yx = Nyx (1),

In this paper we shall prove that if L(E,Q, 1) # 0 and yx has infinite order, then
£(Q) and UI(E, Q) are finite. A prion, (K, i) in this criterion should not belong to
a finite set Z of pairs (K’, ') described in terms of the Weil parametrization of E.
For example, III(X'y7,Q) is finite. In terms of K, £, and yx we indicate the number
annthilating E(Q) and (£, Q). Actually, the picture that arises 15 reminiscent of
the Stickelberger relations 1n cyclotomic theory.

Let (A,2N) = 1. We denote by yx the quadratic character
we sel

L(E,Q,xk.5) = ) xx(ma,n~,
n=|

associated with XK, and

L(E,K,s)= L(E,Q,s)L(E,Q, xx,s).

Then L(E,K,1) = 0. It follows from [2] that yx is a point of infinite order
L'(E,K,1)#0. Hence, for a Weil curve E with L(E,Q, 1) # 0, E(Q) and [HI(E, Q)
are fintte 1f 3(K, i) € Z such that (A,2N) = | and L'(E,Q, xx,1) #0. Let f be a
rational prime splitting in X and such that (f,N) = | and (f,a,) = 1; [4] allows us
lo replace the Archimedean L-function in the last criterion by an [-adic one,

We introduce some common notation: N = {1,2,3,...} is the set of natural
numbers, and Z, is the set of nonnegative numbers. If A4 is an abelian group and
De L., !rhf:n Ap and A/D denote the kernel and cokernel of the endomorphism
of multiplication by D. If M is a field. then M is an algebraic closure of M. If
L/M 1s a Galois extension, then G(L /M) denotes the Galois group of L over M. We
shall use the abbreviations H'(M, A) = H'(G(M /M), A), where A is a G(M/M)-
quuie. and H'(M,E) = !-r'r,tf,Er‘Tﬁj;. “For almost all” means “for all, except a
finite number”. If O is a commutative ring with identity, then O* denotes the group
of invertible elements of 0. The field Q is assumed to be imbedded in the field of

complex numbers C, ¢ denotes the automorphism of complex conjugation, and M
denotes the end of a prnnf

81. Norm relations for Heegner points

Throughout this paper p denotes a rational prime number relatively prime to M.
Weset U, = Z+pOand i, = in0,; K, denotes the ray class held of K with conductor
Dz .r. € Xn(K,) is a point corresponding in complex notation to the 1sogeny C/0, —
(/10 where i ' 5 0, is invertible in the group of proper O, -uimh Yp € E(K))
denotes y(z,): I’ {x denotes the ideal class group of K; and 0: Cly — G(H/K) is thL
Artin 1somorphism., We set U, equal to the order of the image of O* in H’),f,r;u [(Z/p)*

=1 1f K # Q(+/-1) and F # Q(v/=3). If 6 is an ideal of O, then 0(4) dumlu
l'h[' value of 4 on the image of 4 in Cly.

ProrosiTiON |. The following norm relations hold:

“F"rﬂ.rﬁr,ﬂrf.’(,}.ﬁ} = ﬂp'lr - f{rfﬂ — ﬂ_lrl{aj - H lféij}’] 1 fﬂljr ” I[",.-}J:'HI! '

if rr:*i,-'}a:*rn'u’f} (p/K) = , p remains prime in K; (p/K) = 1, iLe,
K:(p)=dd; or (p/K) = f} L.e., p is ramified in K:(p) = 62,

Proor. Let

p splits in

=1 ={(2 ) e rstaic=0moam).
T ={1eC, Im(t) > 0}, T (C/[z, 1] — C/[1, I /N]),

Y ACROLY VAT e —

Proros;
TION 3 L{’f e =
at =
fndex" fﬂ'ull’ﬂfﬂn! = I an-...-.-!..- _* b d] ad ” Thfn f;.h” ey ﬂfluhlnu:__ ot Sk il
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where [1,,73) = Z1, + Z1; is the standard mapping of I'\7T nto Ay(C). Let @
be a nonzero invariant differential form on E. and let ¢ = exp(Z2av—I1t). By
the definition of y, f(z) = ¥ .- a,q" is a cusp form of weight 2 n?lalwe to I
that is an ecigenform for the Hecke operator 7,, 7'(w) = E‘_.-'—{'T]l'_dq,fq],'f # 0.
In complex notation the parametrization ¥’ can be represenied as 2 mapping 1

J";,_ i 7" (w) (mod(the lattice of periods of 7*(®))). Using the fact that f(7) is an
eigenform for 7,:

p—} ~

| Kk .

pf(p)+ ~f(T - ) = a, f (1),
o b P

we obtain the relation

“l’ﬁf}+z (T = k) = a,7(7). (1)

Here y: Xy — E’ is a Well parametrlzatmn (see [3]) and y = oy, where n: E' — E
is an isogeny. Applying (1) to the t corresponding to z;, we will obtain the desired
norm relations, since in this case the terms in the left-hand side with residue 2 or |
in the cases (p/K) =1 and (p/K) = 0 will form the orbit of y, relative to G(K, /1)
with multiplicity up.
Let x = (E' & E") € Xy. The expression (1) can be written in the following
equivalent way: ¥ y(x;) = a,y(x), where the summation 1s over the subgroups S C £'
of order p, x, = (E'/S — E”/(¢(S))). If E' = C/T, then S has the form (1 L)/T,

where L ¢ T is a sublattice of index p. In our case x = z; and we have

oo ((c/() ¢/ (or))-am @

where the sum is over the sublattices L € O of index p. We shall show that '_1?1[. -

71l =l (‘.’) It suffices 1o show that i, L + piyi~' = L, e, ip,L +p0O =

‘p

(i1 =i (0I5Y) =1, 0)1F ! = ). This is so if the index of i,L in L is
relatively prime to p. Since (N,p) = 1, then 34, B € Z such that pA + B =il
We shall show that L/(i,L) — O/i ~ Z/N is an imbedding, 1.e. LN1{ = [t
€ LNi. Then a = Apa+ BNa. Since N € i, and a € L, then Na € :',,L. Hence

1l 5ufﬁCLs to show that pa € i, L. For this in turn it suffices to show that pta € i,L.

But this is so because pa € i, and pel. B 0 _
Let O = [t,1]. It is well known that every sublattice L of O of finite index admits

a representation in the form [at + b,d], where a,b,d € Z and a,d > 0. The index
of L in O is equal to ad. We shall prove some simple general facts about sublattices
of O and their conductors. The conductor of a lattice L is the conductor of its ring
of multipliers, i.e., the minimal ¢ € N such that {x e K|xL C L} = Z + c0.

PROPOSITION 2. Let L be a sublattice of O of index n. Suppose L = [at + b.d].
The conductor of L is the minimal ¢ € N such that c¢d is divisible by a, ¢b is divisible
by a, and cNyolat + b) is divisible by ad.

Proor. It suflices 1o prove that ctL € L & c satisfies the given hypotheses; ctd €
L ¢ Jde,s € Z such that cdt = e(at + b) + sd ¢« cd is divisible by a and 3s € Z such
that (¢d /a)b+5d = 0 < a divides ¢d and a divides ¢b. Further, let 7 = Ny olar +H)
then ct(at + &) € L & Je,s € Z such that ct{at + b) = e(at + b) + sd & 3e.s € Z
such that (¢t — e)r = sd(—at + aR + b), where R = Try,q(7), <> ad divides ¢r and
de € Z such that —er = ¢r(—~R — b/a) ¢« ad divides cr and a divides cb6. B

e - i
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PROPOSITION 3. Let L = [at + b,d), ad = n. Then the set of sublattices of O of
index n equivalent to L consists of lattices of the form (v/d )L, where v is an arbitrary
integer of K such that Ny,o(v) = d* and v is divisible by d /((at + D), d).

PROOF. Obviously, the desired set consists of lattices of the form (v/d)L, where
v € K such that (v/d)L € O and the index of (v/d)L in O is equal to n. Obviously,
(v/d)L C O < v € Oand v is divisible by d/((at + b),d). We shall show that in this
case the index of (v/d)L in O is equal to n & Nxo(v) = d*. We have the inclusions
vLCcdOcC Oand vL Cc vO c O. Hence

[O/(v/d)L| = |dO/vL| = |O/vL|/|0/dO| = |vO/vL]|/|0O/vO|/d* = r:ﬁ’h-ﬂ‘,(u},’d;’. )

PROPOSITION 4. Let L be the same as in Proposition 3. Then L has conductor
n< (d,r) =1, wherer = Nxolat + b). Multiplication by units belonging to O*
represents such lattices, and Ly ~ L, & L, = gL, for some. ¢ € O*. Further, if the
conductor of L is equal to n, then LO = O.

PROOF. Let ¢ be the conductor of L. From Proposition 2 it follows that
¢ | (a(d/(d,r))) | n. Hence (d,r) = 1 if ¢ = n. Conversely, if (d,r) = 1, then
it follows from Proposition 2 that n | ¢. Since ¢ always divides n, ¢ = n. Further,
if (d,r) =1, then (d,(at + b)) = 1. Therefore the second assertion of Proposition
4 follows from Proposition 3. We shall show that LO = O if (d,at + b) = 1. In
fact, LO c O is an O-ideal and contains the relatively prime numbers 4 and art + b.
Hence LO=0. B

In particular, the sublattices L ¢ O of index p have the form [pz, 1] = 0, and
[t+k,p), where k =0,1,...,p—1. It follows from Proposition 2 that the conductor
of [t + k,p] is equal to p Yk if (£) = —1, or is equal to p if (£)=1and k # k;, k,
such that 7+ k; = 0 (modd) and 7+ k; = 0 (modd). In these last two cases. we
obviously have that [t + k,p] =6 and ¢ respectively. Analogously, for (£) = 0 the
conductor of L is equal to p if 14+ k # 0 (mod §), and [T+ k,p] = o for the unique k
for which 1+ k = 0 (mod d). It follows from Proposition 4 that the image of the set
of lattices L ¢ O of index p and conductor p under mapping into the group Clg,
of proper O,-ideal classes consists of (p — (£)) /u, elements and in each element of
the image there are u, lattices.

If E' is an elliptic curve, then J(E’) is the value of the modular invariant of E’
(see [5], p. 107). For E’ = C/L we set J(L) = J(E'). There is the classical fact
that J(O,) generates K, over K and G(K,/K) is isomorphic to Cly , relative to the
correspondence g — the class of b, under which J(0,)% = J(b ~!). There is a natural
homomorphism of the idele group K of the field K into the group of proper 0p-
ideals: a — a0, (for the definition of the action of an idele on a lattice see [5], p. 116),
whose factorization through Clk , under the identification of Clg, with G(K,/K)
given above coincides with the global reciprocity map 0: K% — G(K,/K) (see [5),
pp. 122, 123). Moreover, there is a natural exact sequence | — ¥, — Clg, —
Clx — 1, where ¥, denotes the factor-group of (O/p)*/(Z/p)* by the image of O*
corresponding to the exact sequence

| = G(K,/H) — G(K,/K) — G(H/K) — I.
Both to finish the proof of Proposition | and for later use we need the following

PROPOSITION 5. G(K,/H) is a cyclic group of order (p — (£)) Ju,. The extension
K,/ H is totally ramified at prime divisors of p in H. :
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Proor, If (£) = —1, then (O/p)* is a cyclic group of order P — 1, (Z/p)* i
subgroup of order p — 1, and Up 15 by definition the order of the imz‘ig;u? 0 in
(O/p)*/(Z/p)*. Hence, G(K,/H) ~ Y, is a cyclic group of order (p + 1)/u,. If
(£) =1, then (O/p)* ~ (Z/p)* x(Z/p)* is the subgroup of diagonal clements {: a)
Hence, G(K,/H) is a cyclic group of order (P —1)/u,. Finally, in the case (£) = [}‘
(Ofp)* [(Z/p)* =~ (1 + p)&P ~ Z/p, where pe O, 6 | p,and 62 § p ({p) = 6%). Agair:
G(K,/H) is a cyclic group of order equal to Pl/up. Let F be a completion of K
with respect to the prime divisor & dividing p. The assertion about the ramification
follows from the explicit form of the reciprocity map: the group of units of .7 is
mapped epimorphically onto G(K,/H). W

We finish the proof of Proposition 1. The hield of functions on Xn over
Q 1s generated by functions J;, and J, such that Ji((E" — E")) = J(E') and
L((E" — E")) = J(E"). A point x € Xy can be identified with (Jy(x), J2(x)). When
we take the above into account, formula (2) has the form Uy ) (7(z,))% = (a, —e)y,,
where £ = 0, -'(0) + 67'(5), 6" (6) respectively when (£) = —1,1,0, and g runs
through the set of elements of Clk , that consists of the elements invertible 1o ele-
ments of the image in Cly , of the set of lattices L ¢ O of index and conductor p.
As was shown above, there will be (p — (£)) /u, such elements. Since LO = O by
Proposition 4, the class of L in Cly, is contained in ‘¥',. From Proposition § it then
follows that g runs through exactly all the elements of G(K,/H). &

§2. Canonical homogeneous spaces

A key for what follows is the fact that the norm relations of Proposition | allow
us to construct a lot of homogeneous spaces over E whose orthogonality relative to a
sum of local Tate symbols to elements of the Selmer groups for E (reciprocity law)
leads eventually to the desired results.

Let D be a natural number. Let p be a rational prime number such that (£) =-1.
D|((p+1)/u,), and D | a,. By L, we denote the subextension of K, of degree D over
H. We set

Rp € E(LS), Ry = u, NK,-H;, (vp) — (a,/D)y;.
From Proposition I it follows that N;_,4(R,) = 0. Let ¢ be the generator of G(L,/H).

We define the element r, € H'(G(L,/H),E(L,)) as the class of the cocyle ¢/
(/=' + .-+ 1)R,. The corestriction gives us an element

¢, € H'(G(L,/Q),E(L,))p C H'(Q, E)p.

If ({%) = 1, (p) = 84, J is a principal ideal of O, D|((p — 1)/u,), and D|(a, — 2),
then one analogously defines an element rp corresponding to R, = Up Ny, s, (Vp) —
((ap = 2)/D)y,, and an element ¢, € H'(Q, E)p. In an analogous way we inlrm':iucc
homogeneous spaces for the other cases (D = p, pl(a, — 1), (p) = 6%, & is principal,
u, =1, R, =y, = ((a, — 1)/D)y,, etc.), but for our purposes even the homogeneous

spaces for (£) = —1 suffice.
We denote the Tate pairing E(Q,)/D x H'(Qq.{f)u — Z/D (see §3) by (., )p.e:
Sp = Sp(Q) 1s the Dth Selmer group for £ over Q, i.c.,

Sp = ker (H‘(Q. Ep) — |1 H'{Qu.h‘)n) ;

where Ep = E(Q)p is the group of points of period D on H‘. In Ihe_prpduct ¥ runs
over all rational prime numbers ¢ and co; S) is finite, and D is a periodic group (sce

g S p—
- :
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[6]). There are the standard exact sequences

0— E(Q)/D — Sp — II(E,Q)p — 0,
0— E(Q,)/D — H'(Qq, Ep) — H'(Qq,E)p — 0.

By definition, the localization of 5 € Sp in H'(Qg, Ep) lies in E(Q,)/D, so that the
symbol {s,¢p)p.g 1S dt::ﬁnr.:::L and )~ _(5,6p)p.g = 0 as a consequence of global -:.:!ama field
theory. The summation is taken over all rational prime numbers (the Archimedean
component {(5,¢)p.co = 0, since ¢, is the corestriction from /H'(K, E)), for almost
all g, {.T.fp}ﬂ_q =

Let yp+ajxy +ayy = X7 + ng_rz +aix +ag, a, € Z, be a Weierstrass equation for
E, and let A; be the discriminant of this equation. Supposc¢

yoy= Pi(/i,h)/Ci(/1,)2), xoy= Py(Jy,J2)/Q:(/1,/2),

where P, and @ are integer polynomials and the coefficients of P; and @, are all
relatively prime to each other; analogously for P, and Q,. We denote by Z the finite
set of those (K, i) for which Q,(J,,/2)Q2(/y,/2) 1s equal 10 zero on z; k ;-

The following congruence for y, plays an important role in what follows. If w is a
prime divisor of K, lying over a prime divisor v of H, v|p, then we denote by F;, the
residue field of the v-completion of H, and by red,: E(K,) — E(F,) the reduction
homomorphism (see [6]). By Fr we denote the Frobenius automorphism of Z/p over
Z/p. We have

PROPOSITION 6. Assume that p is relatively prime to A&y, Qi(Ji(z,),52(21)),
0:(Ji(z1),2(21)), (&) # 0, and the prime divisor ¢ dividing p in K Is principal.
Then we have the congruence

red,,(y,) = Fr(red, (1)) (3)

Proor. We have the equality

p—1
T 'ﬁ: ) / 1"
ﬂpr}-+-Zi( )zﬂ;.f”.’u ooy,
TP S
where at’,-.-, a’ , € Z (see [5], p. 109). Further, there is the g = exp(2n V—11)-

Com-
0 (modp) for

expansion (see [5], p. 108) for J(z): J(t) =q~ ' (V4> _ 1 bmq™), bm € L.
paring g-expansions, we will obtain that n = p, a; =
m > 1. Hence,

|, and 4, =

p—1 .

+ k

J(pt) + E J (r ; ) = JP(7) (mod(pZ|/(1)])).
k=0

In equivalent notation,
Y _J(L)=J(T) (mod(pZ{J(T)])),
LeT

where the summation is over all sublattices of 7 of index p. We denote by 4 the
product of all prime divisors of K, that divide p. As we know, J(0) and J(0,) are
?l_gthn?": integers (see [5], p. 108). Let 7" = O. If (p/K) = —1 then (see §1) J(L)
sEomugate 1o J(0,) relative to G(K,/H). Since by Proposition 5 K,/H is totally

i (ﬁ') ke b and as

red(e,(y,)) —
so : pfyﬁ ) = 2((p + 1 — o) [ D)red(vet . (1.

e
[}

L
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ramified at the prime divisors of / that divide p, then ), -, J(L) = (p+ 1)J(0,) =
J(0,) (mod ). Hence, J(0,) = J(O)? (mod4). If (£) =1, then, considering that by
hypothesis the prime divisor d|p in K is principal, we have

S J(L)=(p—1)J(0p) +2J(0) (mod2).
LCO

Since p splits in /1, then J(O) = J(O)" (mod 4), and hence we also have J(O,) =
J(0) (mod ). Further, J(0,)% = (J(O)?)” (mod4), where g € G(K,/K) corre-
sponds to the class of the ideal i,. Hence Jy(z,) = J(0,) = Jy(z1)” (mod4) and
(zp) = J(i;') = J(0,)% = Jo(2z;)P (mod 4). Therefore

x(z,) = P2(Ji(2p),J2(2p)) A Py(Ji(21)",J2(z1)7)
; f QE(JI{EpLJﬂEPH & QI{JIIEI}F.-II[.E';}F')

= (PI(JI'[EI)J:{EJ)
— \Qa(Ji(z1),J2(241))

g
) = x(z;)’ (modA).

Analogously,

y(zp) = y(z,)? (modA)

(by hypothesis Q) (J1(z21),72(21)),02(J1(z1),J2(21)),and hence also Q1 (J/i(z,), J2(Zp))
01(Ji(z,),J2(z,)) are algebraic integers relatively prime to p). H

§3. Computation of (s,¢p)p .,

In what follows we assume that wx(y*(w)) = —y"(w), where wy: Xy — Xy 1s the
principal involution: wy(7) = — '-:lT This is equivalent to the fact that the function
L(E,Q,s) has a zero of even order at s = 1. 1t is easy to see that then p(wy(Xx)) =
—y(x) + 7(0), where y(0) is the image under Y of a cusp on Xx corresponding to
r = 0. It is known that y(0) € E(Q) is a point of finite order. As will be shown, 1t
follows from this condition that y% = —yx + hy(0), where h is the class number of
K.

The congruence (3) is used in order 1o express (s,¢p)pp by means of invariants
of s and yx. If W € N, then by uy we denote the group of Wth roots of 1 in Q;
[, lp: Epx Ep — jtp 1s the Weil pairing (see [5], pp. 100-101). We fix an imbedding
K: Q — ﬁ,,; x determines the prime divisor d of K dividing p. We assume that d 1S
a principal ideal. In what follows we assume that (£) #0. Let D € N be such that
D|((p+1)/u,), Dlap if (£) = —1, and D|((p—1)/u,) and D|(a,—2)if (£) = 1. Recall
that ¢ denotes the generator of G(L,/H). From ¢ we define a generator (pp € p In
the following way. Let # denote the completion of K 1n GF; Z coincides with the
completion of H, since o splits in H; 0:.7° — G(L,/H) is the local reciprocity map;
I denotes the residue field of 27 and ¢ 1s a generator of st -1y such that 6(C) = &
Then we set {pp = &2, where a = (|F| - 1)/D. For s € Sp we define an clement
e,(s) € Ep as follows. Let P € E(Q,) be such that P represents s in £(Q,)/D. Let
0 € E(Z]p) and DQ = red(P). Then ¢;(s) € Ep is determined by the condition
red(e,(5)) = Fr(Q) — Q. We set e,(s) = (Fr + 1)e)(s) if (£) = —1 and &,(s) = e, (s)
if {f) — 1. Furthermore, we define an element e,(vx) € £p as

red(e,(yx)) = =((2 + 1+ ap)/D)red(vx) + ({2 + 1)/D)h(red(»(0)))

—— e
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(Op) relative 10 G(K,/H)

Bt Deovosition 5 Ko 15 totally
| ‘521-:(: by Proposition 5 K,/H 15 10

if (f,) — — ], and as

red(e,(vx)) =2((p+ 1 —ap)/D)red(yx) — ((p + 1 — a,)/D)h(red(y(0)))

if (£) = 1. The right-hand sides of the expressions for red(e,(yx)) actually belong

to (E(F))p since, for (£) = -1,
~((p+1+a,)/D)red(yx) + ((p + 1)/D)h(red(y(0)))
= ((p + 1)/D)red(yx) — (a,/D)red(yx)
= ((p + 1)/D)Fr(red(yt)) — (a,/D)red(yx),

and (p + 1)Fr(red(yx)) = a,red(yx), which follows from Proposition 1, (2), and the
fact that X,/H is totally ramified at prime divisors of p. And if (i’) =1, then

red(yx), red(y(0)) € E(Z/p), and the order of E(Z/p) isequal to p + | — a, (see §4).
We have

PROPOSITION 7. Let p be the same as in Proposition 6, and suppose that
DI((p + 1)/u,), DIA, if (&) = =1, and D|((p — 1)/u,), D|(a, - 2) if (£) = 1. Then

C}:";r}”f :[Pﬂ{j}-f)(,rh ””‘ (4)

PROOF. Let 2 denote the completion of L, in Q,; T = G(L,/H) is identified with
G(Z /7). First we compute the value of the Tate symbol for arbitrary s € E(#)/D
and r € H'(T, E(%/)), where here % is permitted to be an arbitrary finite extension
of Q, with residue field F and % is a cyclic totally ramified extension of .7 with
Galois group 7" = (#/® of order D, where (D,p) = 1 and D | (|F|~1). Let R € E(Z)
be such that N,y »(R) = 0. We denote by rp = rz, an element of H (T, E(¥))
-::urrcspnnging to the cocycle ¢ = pp itk — (5! 4 ... 4 )R (every element of
H'(T,E(Z)) is obtained in this way). Let £ be a finite extension of % with residue
held F. Since p + Ay, E has good reduction at p and the reduction homomorphism
Ted:ELf? — E(F)) is defined. Here red is surjective, multiplication by D is an
tSDH‘!DTphIEI‘ﬂ onto its kernel Eo(A), and red: E;, — E(F)p is an iIsomorphism. In
particular, Ej s unramified as a G(Q,/Q,)-module. All these are standard properties
of g:t_}nd E:Edi:iclu}n (see [6],56). Since 7 is lotally ramified over .7 , the residue field
of £ coincides with F. Since N 1#(R) =0, we have D red(R) = 0. We denote by
€p an elem?nt nfﬁE{.?‘f’}n such that red(eg) = red(R). Let P e E(Z') and let s be the
class of P in E(%)/D. We denote by Fry the Frobenius aumrimrphism of F over
F.__WE define e(s) € Ep by the condition red(e(s)) = Fr#(Q) — O, where 0 e E(F)
DQ = red(P); a = (|F| - 1)/D, and ¢, = &9, where € is a gﬁcncraﬁlur of i r 5ur:h1
that 0(¢) = 1, where 0: %* — T is the reciprocity ma ll s

p.

ProrosITION 8§,
(5.0}

C,r; V= le(s), er]p. (5)
Ip:Ep x Ep — up induces a nondegenerate pair-

ing 1'(F , F (T, Ep ;
8 A Ep) x H\(Z , Ep) — HA(Z , up) = Z[D. The canonical isomorphism

- H(# = : ' it
(Z , up) Z/D is obtained as 2 composition of the isomorphism

PROOF. The Weil pairing [ |

I w1

HYT o) = HAZ )y = 742 2, 7/

. D
where inv is the mappin :
g defined in local ¢ > *
we have the exact sequence class field theory (see [7), p. 131). Further,

0= E(Z)/D — H'(Z ,Ep) — HUZ E)p — 0,

LI = T T . s § o ——

——

—— - T - e —— ““
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where E(Z)/D is an isotropic subgroup of H'(Z , Ep) relative 10 the pairing
H'(Z ,Ep) x H'(Z ,Ep) —» Z/D
and the induced nondegenerate pairing E(Z)/D x H'(Z ,E)p — Z/D is the Tate

symbol (see [8]).
We sct

C={D=1)+(D=214+---F+125)R;
(t-1D)C=D-1)+D-)>+---+1°' —(D-
= ({1 +t+:-+1”"'—D)R=-DR.

1) = (D=2 (==

If g € G(Z | ), then by g we denote the image of g in G(Z/.% ). Let C € E(Z)
be such that DC = C. The mapping v: g »:-_ga(f) + (g — 1)C 1s a cocycle in Ep. In
fact, it is obvious that v is a cocycle in E(% ), and if 2 = (%, then

Dw(g)=D(*'+---+ DR+ (t* - 1)C
=D(t*"'+:--+ DR+ (* ' +---+ (I - 1)C
=(*"'+.--4+ 1)DR— (t*' +---+ 1)DR = 0.

The class b of the cocycle v in H'(% ,Ep) is mapped onto rg in H'(Z ,E)p.
Hence, we can use it in the computation of the Tate symbol. We have R = eg + Ry,
where Ry € Ey(L), where Eg(L) is the kernel of red. Since Eo(-Z) is D-divisible,
there is an Ry € Eo(.%) such that DRy = Ry and

C=((D- 1)+{D—2)r+~--+r”;3)eﬂ+ﬂ{w- 1Y+ (D =2}t +--- F (232 R

We set i :
C=ér +((D=1)F (D=2 R

where Dég = (D= 1)+ (D — 2)t + -- - 4+ {”~?)eg. Since we are interested in the value
of the pairing of the cohomology class in H'(.# , Ep) corresponding to s € E(F )/ D
with the class b, then because E(%)/D is isotropic, we can simply replace C by
(D—=1)4+(D—=2)t+---+tP~?)Ry. Thus,

C = ((D =)+ (D=2) 42 2)YRo:
Suppose Z = (*. Then
@) =0""4+- + DR+ "+ D= DD =1)+---+1° DR,
= ("' + DR= (' 4+ 1)DRo= ("' + - .- + 1)eg = ke

That is, the corresponding cohomology class b € H'(%Z , Ep) is simply the homomor-
phism G(# /# ) — Ep induced by the homomorphism of G(# /%) into Ep under
which t* — keg. Let n be the uniformizing parameter of % which is a norm from #;
we have 7 * |7 P = nZIPEZIP We denote by Gp the Galois group of the maximal
abelian D-periodic extension of .7; 0.7 * /.7 *P — Gp is an isomorphism, and we
identify Gp with .7 * /% *?. The cocycle ¢,: Gp — Ep corresponding to s € E(F)/D
15 determined by the values ¢(¢) = 0 and ¢,(n) = e(s), since .7 (Q) is an unramified
extension of %, where DQ = P and s is the class of P in E(#)/D. The cocycle ¢
corresponding 1o rg is determined by the values ¢3(¢) = ¢x, ¢2(n) = 0. The cohomol-
ogy class ¢ — @, € H*(Gp, up) is defined by a bilinear mapping B,:Gp x Gp — #p
such that Bi(n,n) = 1, By(n,¢) = [e(s),er]p. Bi(&,n) = 1, and B,({, &) = 1. Since
ftp C & *, the Hilbert symbol ( , )p: 7 fF P x F* /7P — pup is defined. If

e —— A p—
;
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'*J B € F*, then B is associated to a @5 € H'(Gp, up) such that ¢p(g) = 8(P)/B, and (@, n,)? = (a?,n%). The principal involution wy: Xy — Xy maps (a,n,) into
iy where (8)? = B; (tt.ﬁ)ﬂdgww(“))* An equivalent definition (see [9], §8.11) 1s the (a[n,),ng). Here [n,] is the image of n, in Clg, (see [2]). Further, yowy = —y+7(0).
following. We define homomorphisms ¢,,: Gp — Z/D and §5:Gp — Z./ D by the con- We have - o8 ag ! }
A i = et (o s =
s ditions {7®) = ¢.(g) and {3 = ps(g). We define an element of H*(Gp, up) by | y((a, np))” = y((@; 1p)") I?((ﬂ ) »’((: 17, ﬁg:f:pls" )
G = A% : T 00 39— ek ird r .
the bilincar form B, z(g1,£) = ,:;""‘”""-‘*”. Then (a, f)p = }f‘“”’--“. (Dinv B, 4 *-lf{'-“-w{(ﬂ (n,'),n,))) = —7((a _np}} + 7(0).
ic defined as an element of Z/D.) In particular, we have In particular, yg = _ygtrri + 7(0). Analogously, ¥ = _J,fm + 7(0). Passing 1o the
M3 _ : : ' ‘ = — 3 h is the
i1 e n) = (n. il norm from H to K in the last equality, we will obtain yg vy + hy(0) (
Y gl (- f)_”l _?{( ”_, R0 class number of K): (3) is equivalent 1o the congruence red(g(y)) = Fr(red(2(y1)))
':I‘:_ - {P—q(‘:) = (f:_q)ﬂ — {—??u‘f)ﬂ - (qié]ﬂ = {:ﬂ ' W—ﬂ(”} = (”1 _'”]” = 1], \;{g = G{Kp/Q)- chcc
: Therefore Bz _,(n,n) = 1, Bs _p(n,8) = .;'511. Bs _n(¢, 1) = I, and Bg.,_;,(lf,'ﬁ) =1, red ((Zﬁf) Rp) =((p—1)/D—(ap — 2)/D)red(yx)
H, s Let [E(I}vERID — 5, x € Z/D. Then By = B{_iq. Hence, D iny B, = (—x)D inv B{,_q- ((p + | —a }/D)I’Ed(j’l{)
s inv = s : e = % P ’
ol But \>"™ %= — (£ n)p = {;'. Hence Dinv B, = x, which proves Proposition
3. W . red (7 (3 8)) Ro) = ((p +1 — ap)/D)red ()
S If G is a finite group, B is a subgroup of G, and 4 is a G-module, then the mapping = —((p + 1 — a,)/D)(red(yx)((p + 1 = a,)/D)h(red(y(0)))).
o cor: H'(B,A) — H'(G, A) is defined in the following way. Let ¢ € H'(B,A) be the ) ;
€5 class of a cocycle 9:B — A. Let {a;} be a system of representatives for G/B: Therelore,
F_;_f{-‘ G = |JaxB. We define a mapping ¢':G — A by setting ¢'(a b)) = apo(b). | In red (((E ﬁj) — o (Z ﬂj)) RF)
i E""_‘)G =r Asuchithaty(g) =2, ¢'(2ay); Then.y lsa _ 2((p + 1 — a,)/D)red(yx) — ((p + 1 = a,)/ D)h(red(z(0))),
e cocycle of G in A, and ¥ = cor(9). it | - W
(i Let G = G(L,/Q) and B = T = t%/P. We recall that we have assumed that Q is which proves (4) forithejcast (%) =&i' No :ﬂ mn}'d;r tl:: Eziﬁpgglgnn 0[1 LTI;::
,_ embedded in C and that o denotes the automorphism of complex conjugation. We d_ecnmpnsumn group of p, i.e., G(Z/Qp), wherc = e ur;_ i
1:, choose a system of representatives {f;} of G(L,/K)/T in G(L,/K). Then {fi,0B;} 0 is a subgroup of G, generated by T and 7. L Cip el mm{ﬂ-}w::
will be a system of representatives of G/7. We recall that the cohomology class under cor: H\(T, E(L,)) — H'(G(L,/K), E(Lp))- AS above, “5‘;151 Ens’izlar J{I‘l g
3 r, € H\(T, E(L,)) is defined by the cocycle @: % — (t*~' +--- + 1)R,, where R, = choose a cocycle w: G(Ly/K) — E(:'le) corresponding “:1 Clp- : ) Eznlﬂfc " :‘;‘T If
 Ne o 00) = (@D if (B) = 1 and R, = u,Nx,y1, (%) — (@5 - /Dy if | (TA)p(s) and yale=") = (S B)plt~"). Let cp Genefe B Sl e triction
S (£) = 1;¢, € H'(G,E(L,)), ¢, = cor(ry); and ¢, is given by 2 cocycle w: G — E(L,), we take {1,0} to beasysiem of rgprasentalwe?ﬂ 3 ( b th‘;l. U}E”. — y'(1) + ¥i(to) =
B constructed as above from ¢ and {f;,0f;}. In particular, of ¢y to G(Z /IQF) 1S d*;‘”?’"_‘:{d ;7'3' g c:::y){:f 3,;:';:_ 0 Thatiis -;':r e 'chﬂ__]
wi(t) + oy (t~") = (1) and w(a) = ¥, N h T 10.GCZ[Qs):
(i) = ZW’(fﬁj} " Ziﬂ'(!ﬁﬂj} i (Z }3;) o(f) + o (Z ﬂ,‘) o(t=") é the restriction 3, of ¢, 10 G(Z/Qy) 1s the corestriction of ¢z, from T to G(Z'/Qp)
ik j Further, we shall use the fact that o
Con 5. | | FY).E(X)), S E -
- (58) #t0-0 (S) 900 = () o0~ 10 () o0 ncorg, = euldox w6 e U on o (1) e sove
Sy This general property of { , ) Tollows 1TO : ive diagram
2 (o acts by inversion on G(L,/K)). Further, seneral properties of the —-product (see [7], p. 107), and the tﬂmmula;twc;tl_:?fjm
.t (0) Z "(0h)+) ¢'(B)=0 (ol 0 : connecting the mapping inv in a tower of local fields (see [7], p- 139). lnp ,
wla)=) ¢'(af))+ ) 9'(B) = ¢(1) =0). :
E: J J J ; {S:fp}n.ndg{stfln}ﬂ.(?p = (s\C2pdp.7
First we consider the case (£) = 1. Taking (5) into account, in order to prove (4) (4) will follow from (5) if we show tha )
it suffices to show that red ((Z ﬁ,) R,-,.) — —((p + 1 + ap)/D)red(yx) + (P = 1)/ D)h(red(y(0)))-

red Zﬁi) Rp—fﬂ' Zﬁ; RF
J J

= 2((p + 1 —a,)/Djred(yx) — ((p + 1 — a,)/D)h(red(7(0))).

In fact. from (3) it follows that

red (3 4) Re) = ((p+ D)/D)Fr(redlr) = (ap/D)red(vx)
= ((p + 1)/D)red(vx) — (@p /D)red(vx)
— —((p + 1)/D)red(yx) + (P + 1)/D)h(red(7(0)))

We first show that y% = —yk + hy(0). Let a be a proper O,-ideal, a the image of a

~ in Clg,. Let n be an ideal of O such that O/n = Z/N. We set n, = n 0,. Let ~ (ap/D)red(yx) (0 + ! )/ DYh(red(r(0)):
o il note a point of Xy defined over K,, corresponding to the isogeny (C/a — = —((p+ 1 +ap)/ D)red(yx) + ((p + 1)/ <458 PRI
. Clnz'a)); 2 € Clx, acts on (a,n,) in the following way: (a,n,)'*" = (ad™', np) | L e |
—-':-*-._ bl . : L] ] | L] P : - Bl . i it ol .:.._ .. 5 ﬂ?i-_f. :..,-p f_..'..'-.-t:-—" .
S ELOPCSIIOH -{_5 - E(Q) AND II(£,Q) FOR A SUBULAS e —T AR
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§4. The finiteness theorem the finite set of pairs (K, 1) described in §2. We have

We introduce the notation needed for the statement of the theorem. Let K’ denote THeOREM 1. Suppose (K, 1) ¢ L. Then, for all n, I"=“""%™ annihilates Sie (the 1" th I-i A
the compositum of K and the field kK = End(£) ® Q. For a rational prime number Selmer group of E over Q). If yx is a point of infinite order, then I™s*™ annihilates V7%
| we denote by Gy the group G(K'(E;=)/K'), where Eje = | Ej-, and by Gy the |} e VN =
group G(K'(E;.)/K'). It End(E) = ¢ is an order 1n an imaginary quadratic exten- 4 : |
cion k of Q, then & has one class (since E 1s defined over Q) and the choice of a The sccond asscriion of the theorem follows from the first one, since if yy is a
projective system of generators €, € E;. such that Ej. = (@/1")en, lens1 = Cn, defines point of infinite order, then by definition n — /(7)< M.
embeddings pn: G — (£/1")* and p: G — A+ where & is the [-completion of &. ; : AT . : ;1 Sl 3
| il dDEﬁgnt::r:Hhaw:rc cninp{cx}mullirflicaiinn. ie.. End(E) = Z, then lhf.!: choice of a ('?RULLM” ],' Suppose (K, 1)  Z. Ifyk isa pmnf‘r;fmﬁnue ﬂ",'df?r' then E(Q) and

HI(E, Q) are finite groups, and the natural number C(E,K) annihilates Sp ¥D € N,

projective system of generators €; »,€2.n € E;. such that £;» = (Z/1M)ey n +(Z]17)ea n, ; g
lej ns1 = €jn defines embeddings pn: G- — GL,(Z/I™) and p: Gjeo = GLy(Zy). | E(Q), and (£, Q).
Suppose End(E) = Z. If p(Gj=) = GL2(Z;), then we sel my = 0. If p(Gi=) #
GL-(Z;). then we dehne m,; as the least m € N such that p(Gje) 2 I + " M-(Z 4
(:'d;_:{{Z:; is the ring of 2 x EI:"l‘IH'IFiCES over Z;, and [ is the id{:nti;l}-' ]malri:c). Su;pu::l.}: 0— E(Q)/D — Sp — i(E,Q)p — O.
End(E) = &. We denote by A(¢) the discriminant of &. If p(Glee) = @* . then we set If yx is a point of . finite order, then it follows from Theorem | that C annihilates
my=0if [ #2,and my = 0 if / = 2 and either 2|A(#Z) or 2 remains prime in k. If y SpVD. In particular, C annihilates E(Q)/D. Hence, E(Q) 1s finite, since by the
2 + A{) and 2 splits in k. weset mj; = 1. If p(Gjee ) # ©* then we define m; as the Mordell-Weil theorem E(Q) = A X 7% . where A is a finite group and g € Z, 1s the
ank of E over Q. Further, C annihilates 11, for all D, and hence 11 = iI,. But

least m € N such that p(Gj=) D 1 + Im#& Further. we denote by m5, the least m € L, | _ . _ j | : : :
[l is finite, since S¢ 1S finite (as is well known, Sp is finite ¥D, which follows from

PrOOF OF COROLLARY 1. We have the exact sequence

such that I™ annihilates H'(Gj, Ej). From classical results in case E has complex _ a3
multiplication and from the results of Serre in the case End(E) = Z (see [8], §5.1) it the finiteness of the group of divisor classes of the field Q(£p)). ®
follows that m,; and m5, exist for all ! and are zero for almost all /. By m5, < n, | COROLLARY 2. Suppose (K,i) ¢ Z, and (A,2N) = 1. Then the groups E(Q) and

we denote the least m € Z, such that /™ annihilates H*(Gi-, E;r) NS (K') ¥n. Here I(E, Q) are finite if L(E,Q, NL'(E,Q, xx, 1) #0.

S;«(K") is the ["th Selmer group of the field K’ and the intersection is in H'(K’, Epn). : . ;
We set i — ”’_'E'; +1if K = Q(v=T) and I = 2; or if K = Q(v=3) and [ = 3; PROOF OF COROLLARY 2. In [2] Gross and Zagier obtained the formula
weds?t rzif =!:er%r iml;lhedljem_a[qing cas:_:t}; ]Fnr Etcll"l arbllgar};;alih{}nal q 5(;1{:}; tt}:atfq!_N b(K)L(E,Q, )L'(E,Q, Xk, 1) = height(yx), b(K) # 0,

and (g.A) = is the discriminant of K), we denote by M, the¢ period O the finite : ; ‘ ; : ]

group H'(Qg, E)ar (the subgroup of H'(Q, E) of homogeneous spaces that split over where hﬂ.'gh{(}”}') lsrthcrca_nnmca] height. Hence, if L(E.Q. DL (E.Q,xx, 1) # 0,
+he maximal unramified extension of Q, (see [10], §2, Appendix 2, no. 1)). If g|N then yx 1s a pmfn © :n+1n|h: ordes, . (

and gl|A, then we denote by M, the period of the finite group HYH', E)nr, Wwhere Z' ) Let f be a rational prime number, (f,N) =1, (f,a7) = 1, (E) = 1,and (A,2N) =

1S lht": completion of K with respect 10 a prime divisor d|g; M is the least common |. Suppose Q is embedded in 6} According to [4], there 1s an f-adic analogue of
mu&m]e of all thchq* the Gross-Zagier formula

eset xx = M(yx —Y3) = M(2yx — hy(0)) if [ # 2 or | = 2 and Mhy(0) is a /i 2 :
pﬂir_u (in E(Q)) of even period, and xx = Myg if | = 2 and Mhy(0) is a point of odd bf(K}L-I[E'Q‘ I)LJ"(IL’Q"{"‘" 1) = height(yx)
pf:r_ind. _‘W’e denote by ¢,(n) the least £ € Z, such that Itxy € I"E(K). If yg is a point with explicit b/ (K) # 0. If L(F,Q, I}L}[E,Q,xg, 1) # 0, we set
of infinite Grd_er, then we denote by m’, the greatest m € 7., such that x} € ["E(K)', - ' '
where E(KY is the factor group of E(K) by the subgroup of elements of finite order, ve(K) = j!g(ﬂ"d_f(bf(g” + 0rd;{L;(If1Q‘ ”L}[E*Q'x“' 1)))-
so that E(K) ~ Z*, wh ] 2 ] & ’ . . : . .

(K) where gx is the rank of E over K. Obviously, n — & < ny;. If Since height , is quadratic, we obviously have

yx is a point of infinite order, then we denote max,(n —z/(n)) < m’, by my; my = 0 |
for almost all [. We set 6, = 0 if [ # 2, and J; = 1. We set o =01f [ #2,0;=0
if E has complex multiplication or the automorphism of complex conjugation g acls

COROLLARY 3. Suppose (K, 1) ¢ Z.(A,2N) = 1, and f is a rational prime number
such that (f,N) = 1, (f,ay) = 1, and {{;] = 1. If LyE,Q, WL'AE,Q, xx, 1) ()

nuntrwlallyfn E;, and 6, = 1 otherwise. L (hen E(Q) and WI(E, Q) are finite. Here mys < ord (M) + v (K) if [ # 2 or [ =2

We ?ct 0 =_D if | #2,0) =01f HYMG(K/Q), E(K) N Ezn) N Syn are trivial for and Mhy(0) € E(Q)or 15 G point of odd period. and myy < ord (M) + ve(K) + 1 if

all n (intersection in H'(Q, E;-)), and 0; = | otherwise. Let 9" = ord;([k/Q)). f=2and Mhy(0) is a point of even period. B -8
We set my = 26, + 28] + 6/ + 26,”. Finally, we set mg 10 be the exponent of the ) . = iy . . A
power of [ in the expansion of the discriminant of the endomorphism ring of L. CoroLLARY 4. The group W(X17,Q) is Jais e
In particular, mg = 0 if E does not have complex multiplication. We set m; = PROOF OF COROLLARY 4. For a rational prime g. g€ = 3 (mod 4). (%) = 1.t 1S =
2my; + 2my + my + 2ms;; mp € Ly, and my = 0 for almost all /. If yy is a point of \, known (Mazur [11], p. 237) that yo(/=5 has a point of infinite order on the elliptic

infinite order, then we denote by C = C(E, K) the natural number [], [Tt 7 18 curve X;;. H BT
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‘Where K'(Ep/), and DY is defined in the following
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We proceed to the proof of Theorem |I. First we outline it. We bound from below
those p that remain prime in K. Let D) = ", D|((p + 1)/u,), and Dl|a,. Replacing
cp by Mcp reduces the equality Zq(s,c,,)n‘q =0 to (s,Mc,)p,p, = 0. We shall prove
this. Assume first that (¢,A) = I, i.e., that g does not ramify in K (in K only the
divisors of A are ramified). If ¢g|N, then (s, Mcy)po = 0, since by definition M
annihilates H'(Qg, E)ar, and the g-localization of ¢, belongs to H'(Qq, E)nr, Since
g is not ramified in K, (in X, only divisors of A and p, (p, N) = 1, arc ramified).
Analogously, (5,¢p)pg = 0 if (g.N) =1, g # p, since H'(Qg,E)nr = 0 In this case
(see [10], §2, Appendix 2, no 1), since outside of N the curve £ has good reduction.
For g|A, g # p, as before we have (s, Mc,)p g = 0, since (s, Mcp)pq = (5, Mc,)p s,
where ¢, is the corestriction of r, In HY(G(L,/K),E(L,)) and 0 is a prime divisor
of X dividing ¢ (this is verified in the same way as above: secc the end of §3).
Further, ¢, € HUF'.E)q, where Z' is the d-completion of K, and M annihilates

HUZ',E)s. Thus (s,Mc,)pp = 0. Using the explicit formula (4), we shall prove

PROPOSITION 9. 3a,, B, € Z, such that ap + B, < n + pp, Where p, = 01 I # 2,
pp=1ifl =2 and E(Z/p); = Z/2, and p, =2 ifl =2 and E(Z/p); = Z[2 + Z]2,
such that 1°rs = 1Prxy = 0 in E(Z)/D, where s € Sp.

Then, using the Chebotarev density theorem and information about the structure
of G(K'(E;-)/K") (see above), from these estimates for the sums of the exponents
of the local periods of s and xx we derive an analogous estimate for the sum of the
exponents of the periods of s and xx in 5;-(K).

PrROOF OF PROPOSITION 9. We denote by Ta the Tate module of E corresponding
to the number /, i.e., Ta = lim E;. (the reduction homomorphism identifies E;. with

E(Z/p);-; we consider here points of E over Z/p); Ta = Z; + Z;, and in a chosen
basis the action of Fr (the Frobenius automorphism of Z/p over Z/p) is given by the

matrix
(a,, ﬂ”) e My(Z,),
a an 4y

where a,; + a», = a, and ay,ay; — az a;; = p. We denote by F a quadratic extension
of Z/p which is the residue field of .#7 (% is the p-completion of K). Let A denote
E(F)=, 1.¢e., the /[-component of E(F). Since a;; + a;; = 0 (mod D) and a,a;3; -
azay; = —1 (mod D), we have Fr* = I (mod D), where I = (). Hence, Ep C A.
We denote by A, the kernel of Fr— 1 on A4, i.e., the /[-component of E(Z/p), and by

A_ the kernel of Fr+ 1 on A,

A, ~Ta/(Fr-1)Ta, A~Ta/(Fr’ - I)Ta.

Let p + l'+ a, = [°r, where (r,l) = 1, and p + | — a, = [°v, where (v,[) = 1. By the
hypothesis (D|((p + 1)/u,), Dla,) a,b > n; |A,| = [? and |A| = [*". We have the
exact sequence

V21— A= (Fr =1)A = 0,

?;nce Frx/ are nondegenerate matrices, we have A_ ~ (Fr—1)A and A, = (Fr+1)4.
ence

4| = |Al/|4,] = I°.

E{mm_the fact that (s.fdcp)ﬂ.p = 0 and (4) 1t follows that [e,e_]p = |, where e =
| $) = (Fr+ 1)e'(s), e'(s) € Ep, and e = ((p + | + a,)/D)red(vxx) € Ep—, since
VXx)) = red(x}) = —red(vxk). Let 4 € Z, be such that I*£j,_ C [e-], the

f s

where V =

i
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subgroup of Ep_. generated by e—. Then /e is orthogonal to £p_ relative to the Weil
pairing [ , ]p. In particular,

(e,(1 — Fr)élp = [(1 + Fr)l’e,é]p =1 Veé € Ep.

Here we used the fact that [Fr(e), Fr(é)]p = Fr([e,é]p) (see [5], p. 101), and Fr({) =
=' Y¢ € up. Since the pairing [ , ]p is nondegenerate, we have (1 + Fr)l‘e = 0,
i.e.. I*e € Ep_. On the other hand, /*e € Ep,. Thus, if "Ep- C [e-], then e €
Ep.NEp_.

We denote r(red(vxy)) € A- by e;. Suppose [ # 2. Then A is the direct sum of 4,
and A_, and hence A, ~ Z/[% and A_ ~ Z[I” (since A is a factor of Z; +Z;). Let 0 <
f < n be the least integer such that [Pey € 1" A_. We shall show that I""PE,_ C [e-]
(Ep- = EpnNA_; Ep, = EpnAy). If f =0, the assertion is obvious. Suppose § > 0.
Then e; = ["#u (mod (?), where (u,l) = 1, and e = [°~"¢; = [""?u (mod 12y
The generator of Ep_ is [P=" (mod[?). Therefore (" ?Ep_ C [e-]. Consequently,
I"-Pe € Ep, N Ep—. But Ep, N Ep_ = 0. Hence ["~#e = 0. Since the mapping
red induces an isomorphism E(%)/D — A/D, we have 1Pxy =0 in E(Z)/D. By
definition e = e(s) is (Fr? — 1)Q, where DQ = red(P) and P € E(Q,) represents
s in E(Q,)/D. The condition /"~#e¢ = 0 means that ["-Fs = 0 in E(F)/D, since
the mapping (class of P) — (Fr* — 1)Q, where DO = red(P), gives an imbedding of
E(%)/D into Ep. Thus, Proposition 9 is proved for | # 2.

Now we consider the case [ = 2. Obviously, Ep: 0 Ep_ = B> AT =" Fym
Therefore. if 0 < A < n is such that /*Ep_ C [e-], then [’*'¢ = 0. There are
two possible cases: Eyy, ~ Z/2 and Ey; =~ Z/2 + Z/2. Suppose E;. ~ Z[2. Then
A_ ~ Z/2% and A, ~ Z/2°. Let 0 < B < n be the minimal integer such that
2e, € 2"A_. Analogously, as above, we will obtain that n+l=Bg = 2Pxx = 0 in
E(Z)/D. Now we consider the case E,, = E; ~Z[2 + Z[2. If n = 1, then we
can take a + f# = | in Proposition 9. Suppose n 2 2 and b = n. In this case
A_ = Ep_ ~ Z/2""' + Z/2, since for any other structure of A_ we would have
Es = E4, which is impossible since Fr + 1 # 0 (mod 4), which follows from the
fact that det(Fr) = —1 # 1 (mod 4). We note that ¢, = e— for b = n. Let 2Pe, = 0,
0< B <n-1. Then 2"~ Ep_ C [2¢]. Therefore we again have =5 = 28xx =0
in E(%)/D. Suppose b > n. Then 4_ = 7/2b-' + Z/2 and Ep- = Z/2" + Z/2. Lel
0 < B < n be such that 2%¢; € 2"A4_. If # =0, then we can take a = n and 8 =0
in Proposition 9. Suppose f > 0. Then the condition 2%¢, € 2"A_ 1s equivalenﬁl 10
the fact that 2, = 2"~ #u (mod 261), (u,l) = 1, where €, is the projection of e; into
7/20-1: e_ = 2'=Pu e Z/2°~"; Ep_ is generated by 2b-1-n ¢ 2/2°~!, and | € Z/2.
Hence, 2"*'-PEp_ € [e~]. Consequently, we can set a = A + 2 = f# in Proposituion
9. W

We consider the tower of helds
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From the fact that {.l:,,-"-h‘_{.}‘,,_f,‘ :
e(s) = (Fr+ 1)e'(s), e'(s) € Ep, and e :
Fr(red(vxy)) = red(vx}) _red(vxy). Let A € Z,

A
- _—
e
'_._.._'_._-

he such that [*Ep

where 1 = K*(Ep-), and D’ is defined in the following way: D' = 2D if K = Q(v/—1)
andil =2 D IDIfK =Q(V-3)and !/ = 3, and D’ = D in the rcn'-mining
cases; W, and W, HfEi)-[)EriDdiE abelian extensions of V. corresponding to 5,57 €
HY(V,Ep) = Hom(G(V /V), Ep), where s, is the image (restriction) of s in H'(V, Ep)
and‘,s; corresponds to xg; W is the compositum of W, and W5. We have imbeddings
51:G(W/V) <= Ep and 553: G(WA V) — Ep. We denote G(W/V) by H and G(W;/V)
by H,. The image of H; in Ep relative to the imbeddings sitH;j — Ep will be
denoted by A,. We recall that we assume Q to be embedded into C. and ¢ to be
the a‘umnmrphism of complex conjugation. Since s, and 5y generate the eigenspaces
relative to the action of G(V/Q) in H'(V,Ep) (sf = s 55 =5 if g =id on K, and
53 = —$2), then W, /Q and W;/Q are Galois extensions; ¢ acts in a natural way on
H,H,, and Hy:n° = ono~"' = ano (6% = 1). We have

ProposiTiON 10. Vn € H 3a, f € Z. such that a + P<nifl#2, a+pf<n+2if
{=2, and (n7m)* =1, (nim)? = 1, where nj IS the restriction of n to W,

‘PRDDF. B'_?f the Chebotarev density theorem there exist infinitely many rational
primes p which are unramified in W and for some prime divisor v of the field W
dividing p we have g = on = Fr,, 1.e., g is continuous relative to the v-metric, and
the automorphism of W, over Q, induced from it by continuity is the Frobenius
au_mmarphism. Thrnxving away a finite sct of prime numbers, we may assume that
p 1s relatively prime to 2A, and Qi(Ni(z1),/2(2y)), j = 1,2 (see Proposition 6). Let
viw and y![p, w a prime divisor of the field V. Since g = ¢ on V. then Vo IS
a QUHdI‘EIIE‘EIlL‘n?iDH of Q, and is also a completion of K. From this it full;}ws
that p remains prime in K, and E(F) D Ep, where F is the residue field of Vw (@
quadratic extension of Z/p). Hence D?|(p + 1 —a,)(p + 1 + a,). Let D" = Duy,
“'h?re ug = |Og/Z*|. We have an inclusion up» C V. In fact, up ¢ Q(Ep)
wf}lthff{}”DWS from the nondegeneracy of the Weil pairing [ , |p and the prnpértj,;
le; . &3 ]_.ﬂ = [e;,e;) Y[ € G(Q/Q), and y,,, C K. Since {7 = (! and, on the other
handr* $? =P ({ € up~), it follows that uxD|(p + 1). Granting that u,|uyx, we will
obtain that D|((p + 1)/u,) and Diay,. iy

I_:ct #) and #; denote completions of W) and W5; V,, coincides with % . the com-
pletion of K, and G(?’;{/ﬁ?} C H, is generated by gZ, where g, is the restriction of g
1o H} We note that gf = onion = n?n,. Analogously, G(#,/% ) € H; is generated
.b:i 3 M2- But #; = Z(Q,), where DOy = P E(Z) and s = P (mod DE(%)): also
#; =F (D), u-:h::re :?Q;._ = Xg. Therefore G(%#;/.%) is isomorphic to the subgroup
gf:ncral_r:d by s in E(Z)/D, and G(#3/.%) is isomorphic to the subgroup generated
by xx m.E{.ﬁ?’;/D. According to Proposition 9, Sar, ff such that o + f satisfies the
hypntheals of Proposition 10, /* annihilates G(#1 /%), and [P annihilates G(#3|.7)
This completes the proof of Proposition 10. W | ot

—

LEM_M;. |. Let A, B, and C be groups, and let ¢: A
morphisms, where vi{A) and p,(A) are abelian groups. Assume that Ya €A3a,fe

Z.. such Fﬁaf x + ﬂ < n and |7« — 1P ’ - -
< pi(a) = Ppy(a) = 0. Then 30,8 € Z.. such i}
n+ﬂ£nand,fﬂraﬂge,;’ff.mf{a}:fﬂw{ﬂ}:& Y, [ such that

PROOF. We shall prove the lemma by

— B and ¢py3: A — C be homo-

—

induction on n., Su se n =

ker(p;) and A, = ker(p;). By hypothesis A — Ay U A,. Wz riﬁzltsl:i:aw lll;n:{:f; A:j A

31' ASE' A. We assume tha} this is not so. Then A4, and Ay are proper suhgmulr.ls of

Hl:n mc; A = Ay U Ay, neither of the groups A, and A, is contained in the other.
6 31 € Ay,ay & Ay, and 3a; € Ay, a; ¢ A,. Then a, a; ¢ Ay U A, is a

B
_

—
S

— (0 and (4) it follows that [e,e—]p = 1% *-*_-'Iu:rt: e
((p + 1 + a,)/D)red(vxy) € Ep-, since
C [e_], the

N

K

|
0
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contradiction. Let n = m > 1. For ¢} = "= ¢y and ¢4 = I, we can S
lemma for n = 1. For example, let [~ 'p,(A) = 0. Wn: consider the homomorphisms
¢! = ¢, and ¢; = lp;. We shall show that the conditions of the lemma hold with

n =m~— 1. In fact, if ¢z(a) = 0, then we can set a(a) = m — 1 and f(a) = 0,
since ("~ 'p,(a) = 0. If p2(a) # 0, then by the hypothesis 3o/(a), f(a) > 1 such that
2@, (a) = [P @ g,(a) = 0. Then we set a(a) :,"’(5} and {f{a] = f'(a) — 1. By
induction 3o, f#’ such that o’ + ' < m — 1 and [ p(A) = [P lp;(A) = 0. Then we
seta=a’'and f=f"+1. B

From Lemma | and Proposition 10 we gel

PropPOSITION 11. 3a, B € Z, suchthata+ B <nifl #2, a+pf <n+21ifl=2,
and, for all n € H, (n?m)* = 1 and (n3 n:)? = 1, where n; is the restriction of 3 (o
Hj‘* . -

Since 57 = 5y and 5§ = —s3, we have s5;(n7) = a(si(m)) and s;(n9) = —a(s2(m2))-
Therefore we have

COROLLARY 5. Ja, B €Z, suchthata+f <nifl #2, a+pf <n+2ifl =2, and
[* annihilates (o + 1)A, and 1P annihilates (1 —o)A;. B

PROPOSITION 12. 3o, f € Z, such that a+ f < n+2my; + 20; + 26, + 2ms; and (*
annihilates Ay, while I® annihilates A;.

ProoF. Let o’ and f’ be the same as in Corollary 5. Obviously we may assume
that o' < nand p’ < n. Let A} C E,.-. be the image of A; under the homomorphism
of multiplication by /2", and let A% C E;._, be the image of A; under the homomor-
phism of multiplication by /#". We consider G;» = G(K’(E;.)/K’) as a subgroup of
GL,(Z/1") or (Z/1")* if End(E) = Z or & respectively. Here & is an order in an
imaginary quadratic extension k/Q. If A4 is a o-module, then by 4, and 4_ we
denote the kernel of ¢ — | and o + 1, respectively. From Corollary 5 it follows that
Ay C (Eja-wr)- and A} C (E;.-5)4+. Moreover, A| and A} are Gp.-invariant (since
W,/K' and W, /K’ are Galois extensions).

LEMMA 2. Let e € E;= be such that the Giw-orbit of e belongs to (Ej=)- or (Ei=)s.
Then l*e = 0, where A = my; + mg; + 9;.

ProoF oF LEMMA 2. If m < m,;, then the assertion is trivial. Suppose nt > my;.
We consider first the case when m;; = 0. Then, by definition, G;» = GLy(Z/I™) or
(¢ /1™)* and if | = 2, then either End(E) = Z or End(E) = & and 2 divides the
discriminant A(¢) of the order & or remains prime in k. We shall show that in all
these cases the linear hull of G- is M2(Z/I™) or & /I™ respectively. It suffices to
verify this for m = 1. Suppose End(E) = Z. We have

GLy(Z/1) = ME[ZH)\{(H b) | (ad — bc) = 0};

(¢ Dles-sa-a}={(2 D12 e o

—
——

a
C

4 e ),a#ﬂ}

and has order 212 — [ 4 (I = 1)1? = 3 + [ - I. Hence GL,(Z/!) contains /* LRSI LEY

clements. Since 14 — 13 —12 41 > 12 for I > 2, the lincar hull of GLx(Z/!) is M(Z/1)

for [ > 2, If | = 2, this is verified dircctly.
Suppose End(E) = @ = Z + ¢O;, where U

Suppose / t+ A(Z). Then |[(€/D)*| =12 =1>1

: D)‘(o d (be)/a

[1,7] is the ring of integers of X.
f) —1. Hence, the linear hull

n—

1f

————
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of (Z/1) s €JI. If ({) = 1. then |(€€/0)*| = (I = 1) > [ since [ > 2 In this case
by hypothesis. Hence, the linear hull of (€/1)* is @ /1. Suppose [ | A(). Then
@/ l=03-1>1if1>2. If / = 2. then (¢©/2)* consists of the classes | and
| + ct or 1. which are linearly independent in /2. Hence, again the lincar hull of
(?/2)* is equal to /2. Since, by the definition of my,, for m;; > 0

Gi= D | +!m”ﬂﬁ(ZHm}. Gi=-D1+ fm”{ﬂgﬂm):

when End(E) = Zor &, the linecar hull of G- obviously always contains /™ My (Z/I™)
or I™u( /I™), respectively. Therefore Lemma 2 will follow from Lemma 3.

LEMMA 3. Let e € Ej- be such that the My(Z/I™)(¢ ]1™)-orbit of e belongs to
[Ef-).. or (Er=)s. Then l'e = 0, where A = Mgy + J:

ProoF OF LEMMA 3. First we consider the case when End(E) = Z. Then
My(Z/I™)e = E;, where A € Z, is the least such that [*¢e = 0. Hence, either
Ey = (Ep)- or Ep = (Ep)y. Since o is represented in GL,(Z/l*) by a matrix
with determinant —1, then (=1) = 1 (mod/{*). Hence A = 0if [ # 2. If [ = 2,
then obviously A = 0 if ¢ acts nontrivially on E; (i.e., Ey. = E;_ # E3), and 4 < |
otherwise. Thus, Lemmas 2 and 3 are proved in the case End(E) = Z. We now con-
sider the case End(E) =@ =Z +cOy, O, =[1,1]; Ej» = (@ [I™)e, where ey, is the
generator of E;- as an & /I™-module; a(en) = ae,,, where aa” = | in @ /I™. Suppose
¢ = be,,. By hypothesis (¢ &+ 1)e = 0 and (o £ 1)(cte) = 0. Hence, b’a + b = 0 and
c(t?b’a £ th) = 0. From this, b%a = Fb and bc(1? — 1) = 0. If b, is a representative
of b in #, then we have bc(1° — 1) = [y, where y € &. Hence,

by = I"(1/(c(r® — 1))y = I™(c(x? — 1)y)/(c* (2 — 1)*) = (I"/A(F))z,

where z € @. Here A(#) = c*A(0;) is the discriminant of the ring #. In fact, if
24+ At + B =0, then

(° -1 =(°) -2t°t+ 12 =-A1" —-B-2B- At- B
= A(-t1—1°)-4B = A’ — 4B = A(Q,).

Since by definition A(#) = [™¥r, (r,]) = |, obviously [™¥e = 0. This proves Lemmas
2and 3. B

Applying Lemma 2, we obtain that I"'H*"‘H*"FA‘; = 0 and !""”*"‘"*‘*51\’: = 0. We
scldu =a' +my+mg+d;and f = f'+my+mgy+6]. Then [A) =0, [PA; =0,
an

at+f=a +pf +2my+2mg+ 26 < n+2my + 2ms + 20, + 26,

Proposition 12 is proved. B

We complete the proof of the theorem. From the definition of my,, i and 4/ it
follows that if [* annihilates s in H'(V, Ep), then [**mu49" 44" annihilates s in Sp =
Sp(Q). Analogously, if I” annihilates xy in H'(V,Ep), then [#*mu*4" annihilates
Xx in 5p(K). By the definition of £/(n), f + my + 0" 2 g/(n). Since a + fi <
n+2my + 20; + 26; + 2mg;, we have

o+ My + J;‘ + (5;" <n-(p+ my; + J;") + Zm” + 2my + 20,
: ZJ; 2 ts;' 1 p M;" + 2mys
<n-—egln)+m,

- which completes the proof of Theorem |. ®
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