FINITENESS OF E(Q) AND $\coprod(E,Q)$ FOR A SUBCLASS OF WEIL CURVES

UDC 519.4

V. A. KOLYVAGIN

ABSTRACT. Let E be an elliptic curve over Q, admitting a Weil parametrization $\gamma: X_N \to E$, $L(E,Q,1) \neq 0$. Let K be an imaginary quadratic extension of Q with discriminant $\Delta \equiv \text{square } (\text{mod } 4N)$, and let $y_K \in E(K)$ be a Heegner point. We show that if y_K has infinite order $(K \text{ must not belong to a finite set of fields that can be described in terms of <math>\gamma$), then the Mordell-Weil group E(Q) and the Tate-Shafarevich group III(E,Q) of the curve E (over Q) are finite. For example, $III(X_{17},Q)$ is finite. In particular, E(Q) and III(E,Q) are finite if $(\Delta,2N)=1$ and $L'_f(E,K,1)\neq 0$, where

 $f = \infty$ or f is a rational prime such that $(\frac{f}{K}) = 1$ and $(f, Na_f) = 1$, where a_f is the coefficient of f^{-s} in the L-series of E over Q. We indicate in terms of E, K, and y_K a number annihilating E(Q) and III(E,Q).

Bibliography: 11 titles.

Introduction

Let E be an elliptic curve defined over the field of rational numbers Q, and let $L(E,Q,s) = \sum_{n=1}^{\infty} a_n n^{-s}$, $a_n \in Z$, be the canonical L-function of E over Q. The Birch-Swinnerton-Dyer conjecture asserts that the rank of E over Q is equal to the order of the zero at s=1 of the function L(E,Q,s). In particular, E(Q) is finite $\Leftrightarrow L(E,Q,1) \neq 0$. If E has complex multiplication, Coates and Wiles [1] showed that E(Q) is finite if $L(E,Q,1) \neq 0$. If E is a Weil curve (by Weil's conjecture, every elliptic curve defined over Q is such a curve) and E(Q) is finite, then according to a result of Gross and Zagier [2] either $L(E,Q,1) \neq 0$ or L'(E,Q,1) = 0.

There also exists a conjecture on the finiteness of the Tate-Shafarevich group of $E: \coprod (E, \mathbb{Q}) = \ker(H^1(\mathbb{Q}, E) \to \prod_v H^1(\mathbb{Q}_v, E))$, where v runs over all rational prime numbers and ∞ .

Let N be a natural number, and X_N a modular curve over Q parametrizing isogenies of elliptic curves $E' \to E''$ with a cyclic kernel of order N. We assume that E is a Weil curve, i.e., for some N there exists a (weak) Weil parametrization $\gamma: X_N \to E$ (see [2] or [3]). Let K be an imaginary quadratic extension of Q with discriminant Δ ($\Delta < 0$) such that $\Delta \equiv \text{square } (\text{mod } 4N)$; $O = O_K$ denotes the ring of integers of K, and i is an ideal of O such that $O/i \simeq \mathbb{Z}/N$; i exists as a consequence of a condition on Δ (see [2]) and is assumed to be fixed. Let H denote the Hilbert class field of K; $z_1 = z_{1,K,i} \in X_N(H)$ is a point corresponding in complex notation to the

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 11G40, 11G05, 11F67; Secondary 14K07, 11D25, 14G10, 11R23.

isogeny $C/O \to C/i^{-1}$, where $i^{-1} \supset O$ is invertible in the group of proper O-ideals. By $y_1 \in E(H)$ we denote a Heegner point $\gamma(z_1)$, and we set $y_K = N_{H/K}(y_1)$.

In this paper we shall prove that if $L(E, Q, 1) \neq 0$ and y_K has infinite order, then E(Q) and $\coprod(E,Q)$ are finite. A priori, (K,i) in this criterion should not belong to a finite set Z of pairs (K', i') described in terms of the Weil parametrization of E. For example, $\coprod(X_{17}, \mathbb{Q})$ is finite. In terms of K, E, and y_K we indicate the number annihilating E(Q) and III(E,Q). Actually, the picture that arises is reminiscent of the Stickelberger relations in cyclotomic theory.

Let $(\Delta, 2N) = 1$. We denote by χ_K the quadratic character associated with K, and we set

$$L(E, Q, \chi_K, s) = \sum_{n=1}^{\infty} \chi_K(n) a_n n^{-s}, \qquad L(E, K, s) = L(E, Q, s) L(E, Q, \chi_K, s).$$

Then L(E, K, 1) = 0. It follows from [2] that y_K is a point of infinite order \Leftrightarrow $L'(E,K,1)\neq 0$. Hence, for a Weil curve E with $L(E,Q,1)\neq 0$, E(Q) and III(E,Q)are finite if $\exists (K,i) \notin Z$ such that $(\Delta,2N)=1$ and $L'(E,Q,\chi_K,1)\neq 0$. Let f be a rational prime splitting in K and such that (f, N) = 1 and $(f, a_f) = 1$; [4] allows us to replace the Archimedean L-function in the last criterion by an f-adic one.

We introduce some common notation: $N = \{1, 2, 3, ...\}$ is the set of natural numbers, and Z₊ is the set of nonnegative numbers. If A is an abelian group and $D \in \mathbb{Z}_+$, then A_D and A/D denote the kernel and cokernel of the endomorphism of multiplication by D. If M is a field, then \overline{M} is an algebraic closure of M. If L/M is a Galois extension, then G(L/M) denotes the Galois group of L over M. We shall use the abbreviations $H^1(M,A) = H^1(G(\overline{M}/M),A)$, where A is a $G(\overline{M}/M)$ module, and $H^1(M, E) = H^1(M, E(\overline{M}))$. "For almost all" means "for all, except a finite number". If O is a commutative ring with identity, then O' denotes the group of invertible elements of O. The field $\overline{\mathbb{Q}}$ is assumed to be imbedded in the field of complex numbers C, σ denotes the automorphism of complex conjugation, and mdenotes the end of a proof.

§1. Norm relations for Heegner points

Throughout this paper p denotes a rational prime number relatively prime to N. We set $O_p = \mathbb{Z} + pO$ and $i_p = i \cap O_p$; K_p denotes the ray class field of K with conductor $p; z_p \in X_N(K_p)$ is a point corresponding in complex notation to the isogeny $C/O_p \to$ C/i_p^{-1} , where $i_p^{-1} \supset O_p$ is invertible in the group of proper O_p -ideals; $y_p \in E(K_p)$ denotes $\gamma(z_p)$; Cl_K denotes the ideal class group of K; and $\theta: Cl_K \xrightarrow{\sim} G(H/K)$ is the Artin isomorphism. We set u_p equal to the order of the image of O^* in $(O/p)^*/(\mathbb{Z}/p)^*$; $u_p = 1$ if $K \neq \mathbb{Q}(\sqrt{-1})$ and $K \neq \mathbb{Q}(\sqrt{-3})$. If δ is an ideal of O, then $\theta(\delta)$ denotes the value of θ on the image of δ in Cl_K .

PROPOSITION 1. The following norm relations hold:

$$u_p N_{K_p/H}(y_p) = a_p y_1, \qquad (a_p - \theta^{-1}(\delta) - \theta^{-1}(\overline{\delta})) y_1, \qquad (a_p - \theta^{-1}(\delta)) y_1,$$

if respectively (p/K) = -1, i.e., p remains prime in K; (p/K) = 1, i.e., p splits in $K:(p)=\delta\delta$; or (p/K)=0, i.e., p is ramified in $K:(p)=\delta^2$.

PROOF. Let

index n equivalent to L of

$$\Gamma = \Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in PSL_2(\mathbf{Z}) \mid c \equiv 0 \pmod{N} \right\},$$

$$T = \left\{ \tau \in \mathbf{C}, \operatorname{Im}(\tau) > 0 \right\}, \qquad \tau \mapsto (\mathbf{C}/[\tau, 1] \to \mathbf{C}/[\tau, 1/N]),$$

where $[\tau_1, \tau_2] = Z\tau_1 + Z\tau_2$ is the standard mapping of $\Gamma \setminus T$ into $X_N(C)$. Let ω be a nonzero invariant differential form on E, and let $q = \exp(2\pi\sqrt{-1}\tau)$. By the definition of γ , $f(\tau) = \sum_{n=1}^{\infty} a_n q^n$ is a cusp form of weight 2 relative to Γ that is an eigenform for the Hecke operator T_p , $\gamma^*(\omega) = c f(\tau)(dq/q)$, $c \neq 0$. In complex notation the parametrization y' can be represented as a mapping $\tau \mapsto$ $\int_{\sqrt{-1}\infty}^{\tau} \gamma^*(\omega)$ (mod(the lattice of periods of $\gamma^*(\omega)$)). Using the fact that $f(\tau)$ is an eigenform for T_p :

 $pf(p\tau) + \sum_{k=0}^{p-1} \frac{1}{p} f\left(\frac{\tau+k}{p}\right) = a_p f(\tau),$

we obtain the relation

$$\gamma(p\tau) + \sum_{k=0}^{p-1} \gamma\left(\frac{\tau+k}{p}\right) = a_p \gamma(\tau). \tag{1}$$

Here $\gamma': X_N \to E'$ is a Weil parametrization (see [3]) and $\gamma = \eta \circ \gamma'$, where $\eta: E' \to E$ is an isogeny. Applying (1) to the τ corresponding to z_1 , we will obtain the desired norm relations, since in this case the terms in the left-hand side with residue 2 or 1 in the cases (p/K) = 1 and (p/K) = 0 will form the orbit of y_p relative to $G(K_p/H)$ with multiplicity u_p .

Let $x = (E' \xrightarrow{\varphi} E'') \in X_N$. The expression (1) can be written in the following equivalent way: $\sum \gamma(x_s) = a_p \gamma(x)$, where the summation is over the subgroups $S \subset E'$ of order p, $x_s = (E'/S \to E''/(\varphi(S)))$. If E' = C/T, then S has the form $(\frac{1}{p}L)/T$, where $L \subset T$ is a sublattice of index p. In our case $x = z_1$ and we have

$$\sum \gamma \left(\left(C / \left(\frac{1}{p} L \right) \to C / \left(\frac{1}{p} L + i^{-1} \right) \right) \right) = a_p y_1, \tag{2}$$

where the sum is over the sublattices $L \subset O$ of index p. We shall show that $\frac{1}{p}L +$ $i^{-1} = i_p^{-1} \left(\frac{1}{p} L \right)$. It suffices to show that $i_p L + p i_p i^{-1} = L$, i.e., $i_p L + pO = L$ $(i_p i^{-1} = i_p (O i^{-1}) = (i_p O) i^{-1} = i i^{-1} = O)$. This is so if the index of $i_p L$ in L is relatively prime to p. Since (N,p) = 1, then $\exists A, B \in \mathbb{Z}$ such that pA + NB = 1. We shall show that $L/(i_pL) \to O/i \simeq \mathbb{Z}/N$ is an imbedding, i.e. $L \cap i = i_pL$. Let $a \in L \cap i$. Then a = Apa + BNa. Since $N \in i_p$ and $a \in L$, then $Na \in i_pL$. Hence it suffices to show that $pa \in i_p L$. For this in turn it suffices to show that $p^2 a \in i_p L$. But this is so because $pa \in i_p$ and $p \in L$.

Let $O = [\tau, 1]$. It is well known that every sublattice L of O of finite index admits a representation in the form $[a\tau + b, d]$, where $a, b, d \in \mathbb{Z}$ and a, d > 0. The index of L in O is equal to ad. We shall prove some simple general facts about sublattices of O and their conductors. The conductor of a lattice L is the conductor of its ring of multipliers, i.e., the minimal $c \in \mathbb{N}$ such that $\{x \in K | xL \subset L\} = \mathbb{Z} + cO$.

PROPOSITION 2. Let L be a sublattice of O of index n. Suppose $L = [a\tau + b, d]$. The conductor of L is the minimal $c \in \mathbb{N}$ such that cd is divisible by a, cb is divisible by a, and $cN_{K/O}(a\tau + b)$ is divisible by ad.

PROOF. It suffices to prove that $c\tau L \subset L \Leftrightarrow c$ satisfies the given hypotheses; $c\tau d \in$ $L \Leftrightarrow \exists e, s \in \mathbb{Z}$ such that $cd\tau = e(a\tau + b) + sd \Leftrightarrow cd$ is divisible by a and $\exists s \in \mathbb{Z}$ such that $(cd/a)b+sd=0 \Leftrightarrow a$ divides cd and a divides cb. Further, let $r=N_{K/Q}(a\tau+b)$; then $c\tau(a\tau + b) \in L \Leftrightarrow \exists e, s \in \mathbb{Z}$ such that $c\tau(a\tau + b) = e(a\tau + b) + sd \Leftrightarrow \exists e, s \in \mathbb{Z}$ such that $(c\tau - e)r = sd(-a\tau + aR + b)$, where $R = \text{Tr}_{K/O}(\tau)$, \Leftrightarrow ad divides cr and $\exists e \in \mathbb{Z}$ such that $-er = cr(-R - b/a) \Leftrightarrow ad$ divides cr and a divides cb.

PROPOSITION 3. Let $L = [a\tau + b, d]$, ad = n. Then the set of sublatti

PROPOSITION 3. Let $L = [a\tau + b, d]$, ad = n. Then the set of sublattices of O of index n equivalent to L consists of lattices of the form (v/d)L, where v is an arbitrary integer of K such that $N_{K/Q}(v) = d^2$ and v is divisible by $d/((a\tau + b), d)$.

PROOF. Obviously, the desired set consists of lattices of the form (v/d)L, where $v \in K$ such that $(v/d)L \subset O$ and the index of (v/d)L in O is equal to n. Obviously, $(v/d)L \subset O \Leftrightarrow v \in O$ and v is divisible by $d/((a\tau+b),d)$. We shall show that in this case the index of (v/d)L in O is equal to $n \Leftrightarrow N_{K/Q}(v) = d^2$. We have the inclusions $vL \subset dO \subset O$ and $vL \subset vO \subset O$. Hence

$$|O/(v/d)L| = |dO/vL| = |O/vL|/|O/dO| = |vO/vL|/|O/vO|/d^2 = nN_{K/\mathbb{Q}}(v)/d^2. \blacksquare$$

PROPOSITION 4. Let L be the same as in Proposition 3. Then L has conductor $n \Leftrightarrow (d,r) = 1$, where $r = N_{K/Q}(a\tau + b)$. Multiplication by units belonging to O^* represents such lattices, and $L_1 \sim L_2 \Leftrightarrow L_1 = \varepsilon L_2$ for some $\varepsilon \in O^*$. Further, if the conductor of L is equal to n, then LO = O.

PROOF. Let c be the conductor of L. From Proposition 2 it follows that $c \mid (a(d/(d,r))) \mid n$. Hence (d,r) = 1 if c = n. Conversely, if (d,r) = 1, then it follows from Proposition 2 that $n \mid c$. Since c always divides n, c = n. Further, if (d,r) = 1, then $(d,(a\tau + b)) = 1$. Therefore the second assertion of Proposition 4 follows from Proposition 3. We shall show that LO = O if $(d,a\tau + b) = 1$. In fact, $LO \subset O$ is an O-ideal and contains the relatively prime numbers d and $a\tau + b$. Hence LO = O.

In particular, the sublattices $L \subset O$ of index p have the form $[p\tau, 1] = O_p$ and $[\tau + k, p]$, where $k = 0, 1, \ldots, p-1$. It follows from Proposition 2 that the conductor of $[\tau + k, p]$ is equal to $p \ \forall k \ \text{if} \ \binom{p}{K} = -1$, or is equal to $p \ \text{if} \ \binom{p}{K} = 1$ and $k \neq k_1, k_2$ such that $\tau + k_1 \equiv 0 \pmod{\delta}$ and $\tau + k_2 \equiv 0 \pmod{\delta}$. In these last two cases, we obviously have that $[\tau + k, p] = \delta$ and $\overline{\delta}$ respectively. Analogously, for $\binom{p}{K} = 0$ the conductor of L is equal to p if $\tau + k \not\equiv 0 \pmod{\delta}$, and $[\tau + k, p] = \delta$ for the unique k for which $\tau + k \equiv 0 \pmod{\delta}$. It follows from Proposition 4 that the image of the set of lattices $L \subset O$ of index p and conductor p under mapping into the group $Cl_{K,p}$ of proper O_p -ideal classes consists of $(p - \binom{p}{K})/u_p$ elements and in each element of the image there are u_p lattices.

If E' is an elliptic curve, then J(E') is the value of the modular invariant of E' (see [5], p. 107). For $E' = \mathbb{C}/L$ we set J(L) = J(E'). There is the classical fact that $J(O_p)$ generates K_p over K and $G(K_p/K)$ is isomorphic to $Cl_{K,p}$ relative to the correspondence $g \mapsto$ the class of b, under which $J(O_p)^g = J(b^{-1})$. There is a natural homomorphism of the idele group K_A^* of the field K into the group of proper O_p -ideals: $a \mapsto aO_p$ (for the definition of the action of an idele on a lattice see [5], p. 116), whose factorization through $Cl_{K,p}$ under the identification of $Cl_{K,p}$ with $G(K_p/K)$ given above coincides with the global reciprocity map $\theta: K_A^* \to G(K_p/K)$ (see [5], pp. 122, 123). Moreover, there is a natural exact sequence $1 \to \Psi_p \to Cl_{K,p} \to Cl_K \to 1$, where Ψ_p denotes the factor-group of $(O/p)^*/(\mathbb{Z}/p)^*$ by the image of O^* corresponding to the exact sequence

$$1 \to G(K_p/H) \to G(K_p/K) \to G(H/K) \to 1.$$

Both to finish the proof of Proposition 1 and for later use we need the following

PROPOSITION 5. $G(K_p/H)$ is a cyclic group of order $(p-(\frac{p}{K}))/u_p$. The extension K_p/H is totally ramified at prime divisors of p in H.

PROOF. If $\binom{p}{K} = -1$, then $(O/p)^*$ is a cyclic group of order $p^2 - 1$, $(\mathbb{Z}/p)^*$ is a subgroup of order p - 1, and u_p is by definition the order of the image of O^* in $(O/p)^*/(\mathbb{Z}/p)^*$. Hence, $G(K_p/H) \simeq \Psi_p$ is a cyclic group of order $(p+1)/u_p$. If $\binom{p}{K} = 1$, then $(O/p)^* \simeq (\mathbb{Z}/p)^* \times (\mathbb{Z}/p)^*$ is the subgroup of diagonal elements (a,a). Hence, $G(K_p/H)$ is a cyclic group of order $(p-1)/u_p$. Finally, in the case $\binom{p}{K} = 0$, $(O/p)^*/(\mathbb{Z}/p)^* \simeq (1+\rho)^{\mathbb{Z}/p} \simeq \mathbb{Z}/p$, where $p \in O$, $\delta \mid p$, and $\delta^2 \nmid p$ $((p) = \delta^2)$. Again with respect to the prime divisor δ dividing p. The assertion about the ramification follows from the explicit form of the reciprocity map: the group of units of \mathcal{H} is mapped epimorphically onto $G(K_p/H)$.

We finish the proof of Proposition 1. The field of functions on X_N over Q is generated by functions J_1 and J_2 such that $J_1((E' \to E'')) = J(E')$ and $J_2((E' \to E'')) = J(E'')$. A point $x \in X_N$ can be identified with $(J_1(x), J_2(x))$. When we take the above into account, formula (2) has the form $u_p \sum (\gamma(z_p))^g = (a_p - \varepsilon)y_1$, where $\varepsilon = 0$, $\theta^{-1}(\delta) + \theta^{-1}(\overline{\delta})$, $\theta^{-1}(\delta)$ respectively when $(\frac{p}{K}) = -1$, 1, 0, and g runs through the set of elements of $Cl_{K,p}$ that consists of the elements invertible to elements of the image in $Cl_{K,p}$ of the set of lattices $L \subset O$ of index and conductor p. As was shown above, there will be $(p - (\frac{p}{K}))/u_p$ such elements. Since LO = O by Proposition 4, the class of L in $Cl_{K,p}$ is contained in Ψ_p . From Proposition 5 it then

follows that g runs through exactly all the elements of $G(K_p/H)$.

§2. Canonical homogeneous spaces

A key for what follows is the fact that the norm relations of Proposition 1 allow us to construct a lot of homogeneous spaces over E whose orthogonality relative to a sum of local Tate symbols to elements of the Selmer groups for E (reciprocity law) leads eventually to the desired results.

Let D be a natural number. Let p be a rational prime number such that $\binom{p}{k} = -1$. $D|((p+1)/u_p)$, and $D|a_p$. By L_p we denote the subextension of K_p of degree D over H. We set

$$R_p \in E(L_p), \qquad R_p = u_p N_{K_p/L_p}(y_p) - (a_p/D)y_1.$$

From Proposition 1 it follows that $N_{L_p/H}(R_p) = 0$. Let t be the generator of $G(L_p/H)$. We define the element $r_p \in H^1(G(L_p/H), E(L_p))$ as the class of the cocyle $t^j \mapsto (t^{j-1} + \dots + 1)R_p$. The corestriction gives us an element

$$c_p \in H^1(G(L_p/Q), E(L_p))_D \subset H^1(Q, E)_D.$$

If $\binom{p}{K} = 1$, $(p) = \delta \overline{\delta}$, δ is a principal ideal of O, $D|((p-1)/u_p)$, and $D|(a_p-2)$, then one analogously defines an element r_p corresponding to $R_p = u_p N_{K_p/L_p}(y_p) - ((a_p-2)/D)y_1$, and an element $c_p \in H^1(\mathbf{Q}, E)_D$. In an analogous way we introduce homogeneous spaces for the other cases $(D=p, p|(a_p-1), (p)=\delta^2, \delta$ is principal, $u_p=1$, $R_p=y_p-((a_p-1)/D)y_1$, etc.), but for our purposes even the homogeneous spaces for $(\frac{p}{K})=-1$ suffice.

We denote the Tate pairing $E(Q_q)/D \times H^1(Q_q, E)_D \to \mathbb{Z}/D$ (see §3) by $\langle , \rangle_{D,q}$; $S_D = S_D(\mathbb{Q})$ is the Dth Selmer group for E over \mathbb{Q} , i.e.,

$$S_D = \ker \left(H^1(\mathbf{Q}, E_D) \to \prod_v H^1(\mathbf{Q}_v, E)_D \right),$$

where $E_D = E(\overline{\mathbf{Q}})_D$ is the group of points of period D on E. In the product v runs over all rational prime numbers q and ∞ ; S_D is finite, and D is a periodic group (see

[6]). There are the standard exact sequences

$$0 \to E(\mathbf{Q})/D \to S_D \to \coprod (E, \mathbf{Q})_D \to 0,$$

$$0 \to E(\mathbf{Q}_q)/D \to H^1(\mathbf{Q}_q, E_D) \to H^1(\mathbf{Q}_q, E)_D \to 0.$$

By definition, the localization of $s \in S_D$ in $H^1(Q_q, E_D)$ lies in $E(Q_q)/D$, so that the symbol $\langle s, c_p \rangle_{D,q}$ is defined, and $\sum_q \langle s, c_p \rangle_{D,q} = 0$ as a consequence of global class field theory. The summation is taken over all rational prime numbers (the Archimedean component $\langle s, c_p \rangle_{D,\infty} = 0$, since c_p is the corestriction from $H^1(K, E)$), for almost all q, $\langle s, c_p \rangle_{D,q} = 0$.

Let $y_2 + a_1'xy + a_3'y = x^3 + a_2'x^2 + a_4'x + a_6'$, $a_k' \in \mathbb{Z}$, be a Weierstrass equation for E, and let Δ_1 be the discriminant of this equation. Suppose

$$y \circ y = P_1(J_1, J_2)/Q_1(J_1, J_2), \quad x \circ y = P_2(J_1, J_2)/Q_2(J_1, J_2),$$

where P_k and Q_k are integer polynomials and the coefficients of P_1 and Q_1 are all relatively prime to each other; analogously for P_2 and Q_2 . We denote by Z the finite set of those (K, i) for which $Q_1(J_1, J_2)Q_2(J_1, J_2)$ is equal to zero on $Z_{1,K,i}$.

The following congruence for y_p plays an important role in what follows. If w is a prime divisor of K_p lying over a prime divisor v of H, v|p, then we denote by F_v the residue field of the v-completion of H, and by $\operatorname{red}_w: E(K_p) \to E(F_v)$ the reduction homomorphism (see [6]). By Fr we denote the Frobenius automorphism of $\overline{Z/p}$ over Z/p. We have

PROPOSITION 6. Assume that p is relatively prime to Δ_1 , $Q_1(J_1(z_1), J_2(z_1))$, $Q_2(J_1(z_1), J_2(z_1))$, $\binom{p}{K} \neq 0$, and the prime divisor δ dividing p in K is principal. Then we have the congruence

$$red_w(y_p) = Fr(red_v(y_1)). \tag{3}$$

PROOF. We have the equality

$$J(p\tau) + \sum_{k=0}^{p-1} J\left(\frac{\tau + k}{p}\right) = a_1'' J^n(\tau) + \dots + a_{n+1}'',$$

where $a_1'', \ldots, a_{n+1}'' \in \mathbb{Z}$ (see [5], p. 109). Further, there is the $q = \exp(2\pi\sqrt{-1}\tau)$ -expansion (see [5], p. 108) for $J(\tau)$: $J(\tau) = q^{-1}\left(1 + \sum_{m=1}^{\infty} b_m q^m\right)$, $b_m \in \mathbb{Z}$. Comparing q-expansions, we will obtain that n = p, $a_1 = 1$, and $a_m \equiv 0 \pmod{p}$ for m > 1. Hence,

$$J(p\tau) + \sum_{k=0}^{p-1} J\left(\frac{\tau+k}{p}\right) \equiv J^p(\tau) \pmod{(p\mathbb{Z}[J(\tau)])}.$$

In equivalent notation,

$$\sum_{L \subset T} J(L) \equiv J^p(T) \pmod{(p\mathbb{Z}[J(T)])},$$

where the summation is over all sublattices of T of index p. We denote by λ the product of all prime divisors of K_p that divide p. As we know, J(O) and $J(O_p)$ are algebraic integers (see [5], p. 108). Let T=O. If (p/K)=-1 then (see §1) J(L) conjugate to $J(O_p)$ relative to $G(K_p/H)$. Since by Proposition 5 K_p/H is totally

if
$$\binom{p}{K} = -1$$
, and as
$$red(e_p(y_K)) = 2((p+1-a_p)/D)red(y_K) - ((p+1-a_p)/D)red(y_K) = ((p+1-a_p)/D)red(y_K) - ((p+1-a_p$$

ramified at the prime divisors of H that divide p, then $\sum_{L\subset O} J(L) \equiv (p+1)J(O_p) \equiv J(O_p) \pmod{\lambda}$. Hence, $J(O_p) \equiv J(O)^p \pmod{\lambda}$. If $\binom{p}{K} = 1$, then, considering that by hypothesis the prime divisor $\delta|p$ in K is principal, we have

$$\sum_{L\subset O}J(L)\equiv (p-1)J(O_p)+2J(O)\pmod{\lambda}.$$

Since p splits in H, then $J(O) \equiv J(O)^p \pmod{\lambda}$, and hence we also have $J(O_p) \equiv J(O)^p \pmod{\lambda}$. Further, $J(O_p)^g \equiv (J(O)^g)^p \pmod{\lambda}$, where $g \in G(K_p/K)$ corresponds to the class of the ideal i_p . Hence $J_1(z_p) = J(O_p) \equiv J_1(z_1)^p \pmod{\lambda}$ and $J_2(z_p) = J(i_p^{-1}) = J(O_p)^g \equiv J_2(z_1)^p \pmod{\lambda}$. Therefore

$$x(z_p) = \frac{P_2(J_1(z_p), J_2(z_p))}{Q_2(J_1(z_p), J_2(z_p))} \equiv \frac{P_2(J_1(z_1)^p, J_2(z_1)^p)}{Q_2(J_1(z_1)^p, J_2(z_1)^p)}$$
$$\equiv \left(\frac{P_2(J_1(z_1), J_2(z_1))}{Q_2(J_1(z_1), J_2(z_1))}\right)^p = x(z_1)^p \pmod{\lambda}.$$

Analogously,

where F(%)/n

$$y(z_p) \equiv y(z_1)^p \pmod{\lambda}$$

(by hypothesis $Q_1(J_1(z_1), J_2(z_1)), Q_2(J_1(z_1), J_2(z_1))$, and hence also $Q_1(J_1(z_p), J_2(z_p)), Q_2(J_1(z_p), J_2(z_p))$ are algebraic integers relatively prime to p).

§3. Computation of $\langle s, c_p \rangle_{D,p}$

In what follows we assume that $w_N(\gamma^*(w)) = -\gamma^*(w)$, where $w_N: X_N \to X_N$ is the principal involution: $w_N(\tau) = -\frac{1}{N\tau}$. This is equivalent to the fact that the function L(E, Q, s) has a zero of even order at s = 1. It is easy to see that then $\gamma(w_N(x)) = -\gamma(x) + \gamma(0)$, where $\gamma(0)$ is the image under γ of a cusp on X_N corresponding to $\tau = 0$. It is known that $\gamma(0) \in E(Q)$ is a point of finite order. As will be shown, it follows from this condition that $y_K^\sigma = -y_K + h\gamma(0)$, where h is the class number of

The congruence (3) is used in order to express $(s, c_p)_{D,p}$ by means of invariants of s and y_K . If $W \in \mathbb{N}$, then by μ_W we denote the group of Wth roots of 1 in $\overline{\mathbb{Q}}$; $[\cdot, \cdot]_D : E_D \times E_D \to \mu_D$ is the Weil pairing (see [5], pp. 100–101). We fix an imbedding $\kappa : \overline{\mathbb{Q}} \to \overline{\mathbb{Q}}_p$; κ determines the prime divisor δ of K dividing p. We assume that δ is a principal ideal. In what follows we assume that $(\frac{p}{K}) \neq 0$. Let $D \in \mathbb{N}$ be such that $D|((p+1)/u_p), D|a_p$ if $(\frac{p}{K}) = -1$, and $D|((p-1)/u_p)$ and $D|(a_p-2)$ if $(\frac{p}{K}) = 1$. Recall that t denotes the generator of $G(L_p/H)$. From t we define a generator $\zeta_{D,p} \in \mu_D$ in the following way. Let \mathscr{H} denote the completion of K in $\overline{\mathbb{Q}}_p$; \mathscr{H} coincides with the completion of H, since δ splits in H; $\theta : \mathscr{H}^* \to G(L_p/H)$ is the local reciprocity map; F denotes the residue field of \mathscr{H} ; and ξ is a generator of $\mu_{(|F|-1)}$ such that $\theta(\xi) = t$. Then we set $\zeta_{D,p} = \xi^a$, where a = (|F|-1)/D. For $s \in S_D$ we define an element $e_p(s) \in E_D$ as follows. Let $P \in E(\mathbb{Q}_p)$ be such that P represents s in $E(\mathbb{Q}_p)/D$. Let $\overline{\mathbb{Q}} \in E(\overline{\mathbb{Z}/p})$ and $D\overline{\mathbb{Q}} = \operatorname{red}(P)$. Then $e'_p(s) \in E_D$ is determined by the condition $\operatorname{red}(e'_p(s)) = \operatorname{Fr}(\overline{\mathbb{Q}}) - \overline{\mathbb{Q}}$. We set $e_p(s) = (\operatorname{Fr} + 1)e'_p(s)$ if $(\frac{p}{K}) = -1$ and $e_p(s) = e'_p(s)$ if $(\frac{p}{K}) = 1$. Furthermore, we define an element $e_p(y_K) \in E_D$ as

$$red(e_p(y_K)) = -((p+1+a_p)/D)red(y_K) + ((p+1)/D)h(red(y(0)))$$

FINITENESS OF E(Q) AND $\coprod(E,Q)$ FOR A SUBCLASS OF WEIL CURVES

FINITENESS OF
$$E(Q)$$
 AND $\coprod(E,Q)$ FOR A SUBCLASS OF WEIL CURVES

if $\left(\frac{p}{K}\right) = -1$, and as

 $red(e_p(y_K)) = 2((p+1-a_p)/D)red(y_K) - ((p+1-a_p)/D)h(red(y(0)))$

if $(\frac{p}{K}) = 1$. The right-hand sides of the expressions for $red(e_p(y_K))$ actually belong to $(E(F))_D$ since, for $(\frac{p}{K}) = -1$,

$$-((p+1+a_p)/D)\operatorname{red}(y_K) + ((p+1)/D)h(\operatorname{red}(y(0)))$$

$$= ((p+1)/D)\operatorname{red}(y_K^{\sigma}) - (a_p/D)\operatorname{red}(y_K)$$

$$= ((p+1)/D)\operatorname{Fr}(\operatorname{red}(y_k)) - (a_p/D)\operatorname{red}(y_K),$$

and (p+1)Fr $(\text{red}(y_K)) = a_p \text{red}(y_K)$, which follows from Proposition 1, (2), and the fact that K_p/H is totally ramified at prime divisors of p. And if $\binom{p}{K} = 1$, then $\text{red}(y_K)$, $\text{red}(\gamma(0)) \in E(\mathbb{Z}/p)$, and the order of $E(\mathbb{Z}/p)$ is equal to $p+1-a_p$ (see §4). We have

PROPOSITION 7. Let p be the same as in Proposition 6, and suppose that $D|((p+1)/u_p)$, $D|A_p$ if $\binom{p}{K} = -1$, and $D|((p-1)/u_p)$, $D|(a_p-2)$ if $\binom{p}{K} = 1$. Then

$$\zeta_{D,p}^{\langle s,c_p\rangle_{D,p}} = [e_p(s),e(y_K)]_D. \tag{4}$$

PROOF. Let \mathcal{L} denote the completion of L_p in $\overline{\mathbb{Q}_p}$; $T = G(L_p/H)$ is identified with $G(\mathcal{L}/\mathcal{K})$. First we compute the value of the Tate symbol for arbitrary $s \in E(\mathcal{K})/D$ and $r \in H^1(T, E(\mathcal{L}))$, where here \mathcal{K} is permitted to be an arbitrary finite extension of Q_p with residue field F and $\mathcal L$ is a cyclic totally ramified extension of $\mathcal K$ with Galois group $T = t^{\mathbb{Z}/D}$ of order D, where (D, p) = 1 and $D \mid (|F| - 1)$. Let $R \in E(\mathcal{L})$ be such that $N_{\mathcal{L}/\mathcal{X}}(R) = 0$. We denote by $r_R = r_{R,l}$ an element of $H^1(T, E(\mathcal{L}))$ corresponding to the cocycle $\varphi = \varphi_{R,l}: t^k \mapsto (t^{k-1} + \cdots + 1)R$ (every element of $H^1(T, E(\mathcal{L}))$ is obtained in this way). Let \mathcal{M} be a finite extension of \mathcal{H} with residue field F_1 . Since $p \nmid \Delta_1$, E has good reduction at p and the reduction homomorphism red: $E(\mathcal{M}) \to E(F_1)$ is defined. Here red is surjective, multiplication by D is an isomorphism onto its kernel $E_0(\mathcal{M})$, and red: $E_D \to E(\overline{F})_D$ is an isomorphism. In particular, E_D is unramified as a $G(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ -module. All these are standard properties of good reduction (see [6],§6). Since $\mathcal L$ is totally ramified over $\mathcal H$, the residue field of \mathcal{L} coincides with F. Since $N_{\mathcal{L}/\mathcal{R}}(R) = 0$, we have $D \operatorname{red}(R) = 0$. We denote by e_R an element of $E(\mathcal{K})_D$ such that $red(e_R) = red(R)$. Let $P \in E(\mathcal{K})$ and let s be the class of P in $E(\mathcal{K})/D$. We denote by $Fr_{\mathcal{K}}$ the Frobenius automorphism of \overline{F} over F. We define $e(s) \in E_D$ by the condition $\operatorname{red}(e(s)) = \operatorname{Fr}_{\mathscr{R}}(\overline{Q}) - \overline{Q}$, where $\overline{Q} \in E(\overline{F})$, $D\overline{Q} = \operatorname{red}(P)$; a = (|F| - 1)/D, and $\zeta_D = \xi^a$, where ξ is a generator of $\mu_{(|F|-1)}$ such that $\theta(\xi) = t$, where $\theta: \mathcal{K}^* \to T$ is the reciprocity map.

PROPOSITION 8.

$$\zeta_D^{(s,r_R)_D} = [e(s), e_R]_D. \tag{5}$$

PROOF. The Weil pairing $[\ ,\]_D: E_D \times E_D \to \mu_D$ induces a nondegenerate pairing $H^1(\mathcal{K}, E_D) \times H^1(\mathcal{K}, E_D) \to H^2(\mathcal{K}, \mu_D) \xrightarrow{\sim} \mathbf{Z}/D$. The canonical isomorphism $I: H^2(\mathcal{K}, \mu_D) \xrightarrow{\sim} \mathbf{Z}/D$ is obtained as a composition of the isomorphism

$$H^2(\mathcal{H}, \mu_D) \xrightarrow{\sim} H^2(\mathcal{H}, \overline{\mathcal{H}^*})_D \xrightarrow{\stackrel{\text{\tiny INV}}{\sim}} \frac{1}{D} \mathbf{Z}/\mathbf{Z} \xrightarrow{\stackrel{\times D}{\sim}} \mathbf{Z}/D,$$

where inv is the mapping defined in local class field theory (see [7], p. 131). Further, we have the exact sequence

$$0 \to E(\mathcal{K})/D \to H^1(\mathcal{K}, E_D) \to H^1(\mathcal{K}, E)_D \to 0,$$

where $E(\mathcal{K})/D$ is an isotropic subgroup of $H^1(\mathcal{K}, E_D)$ relative to the pairing

$$H^1(\mathcal{K}, E_D) \times H^1(\mathcal{K}, E_D) \to \mathbb{Z}/D$$

531

and the induced nondegenerate pairing $E(\mathcal{K})/D \times H^1(\mathcal{K}, E)_D \to \mathbf{Z}/D$ is the Tate symbol (see [8]).

We set

$$C = ((D-1) + (D-2)t + \dots + t^{D-2})R;$$

$$(t-1)C = (D-1)t + (D-2)t^2 + \dots + t^{D-1} - (D-1) - (D-2)t - \dots - t^{D-2}$$

$$= (1+t+\dots+t^{D-1}-D)R = -DR.$$

If $g \in G(\overline{\mathcal{H}}/\mathcal{H})$, then by \overline{g} we denote the image of g in $G(\mathcal{L}/\mathcal{H})$. Let $C \in E(\overline{\mathcal{H}})$ be such that $D\tilde{C} = C$. The mapping $\psi: g \mapsto \varphi(\overline{g}) + (g-1)\tilde{C}$ is a cocycle in E_D . In fact, it is obvious that ψ is a cocycle in $E(\overline{\mathcal{H}})$, and if $\overline{g} = t^k$, then

$$D\psi(g) = D(t^{k-1} + \dots + 1)R + (t^k - 1)C$$

$$= D(t^{k-1} + \dots + 1)R + (t^{k-1} + \dots + 1)(t - 1)C$$

$$= (t^{k-1} + \dots + 1)DR - (t^{k-1} + \dots + 1)DR = 0.$$

The class b of the cocycle ψ in $H^1(\mathcal{K}, E_D)$ is mapped onto r_R in $H^1(\mathcal{K}, E)_D$. Hence, we can use it in the computation of the Tate symbol. We have $R = e_R + R_0$, where $R_0 \in E_0(\mathcal{L})$, where $E_0(\mathcal{L})$ is the kernel of red. Since $E_0(\mathcal{L})$ is D-divisible, there is an $\tilde{R}_0 \in E_0(\mathcal{L})$ such that $D\tilde{R}_0 = R_0$ and

$$C = ((D-1) + (D-2)t + \cdots + t^{D-2})e_R + D((D-1) + (D-2)t + \cdots + t^{D-2})\tilde{R}_0.$$

We set

$$\tilde{C} = \tilde{e}_R + ((D-1) + (D-2)t + \cdots + t^{D-2})\tilde{R}_0,$$

where $D\tilde{e}_R = ((D-1) + (D-2)t + \cdots + t^{D-2})e_R$. Since we are interested in the value of the pairing of the cohomology class in $H^1(\mathcal{K}, E_D)$ corresponding to $s \in E(\mathcal{K})/D$ with the class b, then because $E(\mathcal{K})/D$ is isotropic, we can simply replace \tilde{C} by $((D-1)+(D-2)t+\cdots+t^{D-2})\tilde{R}_0$. Thus,

$$\tilde{C} = ((D-1) + (D-2)t + \cdots + t^{D-2})\tilde{R}_0.$$

Suppose $\overline{g} = t^k$. Then

$$\psi(g) = (t^{k-1} + \dots + 1)R + (t^{k-1} + \dots + 1)(t-1)((D-1) + \dots + t^{D-2})\tilde{R}_0$$

= $(t^{k-1} + \dots + 1)R - (t^{k-1} + \dots + 1)D\tilde{R}_0 = (t^{k-1} + \dots + 1)e_R = ke_R.$

That is, the corresponding cohomology class $b \in H^1(\mathcal{R}, E_D)$ is simply the homomorphism $G(\overline{\mathcal{R}}/\mathcal{R}) \to E_D$ induced by the homomorphism of $G(\mathcal{L}/\mathcal{R})$ into E_D under which $t^k \mapsto ke_R$. Let η be the uniformizing parameter of \mathcal{R} which is a norm from \mathcal{L} ; we have $\mathcal{R}^*/\mathcal{R}^{*D} = \eta^{\mathbb{Z}/D} \xi^{\mathbb{Z}/D}$. We denote by G_D the Galois group of the maximal abelian D-periodic extension of \mathcal{R} ; $\theta \colon \mathcal{R}^*/\mathcal{R}^{*D} \to G_D$ is an isomorphism, and we identify G_D with $\mathcal{R}^*/\mathcal{R}^{*D}$. The cocycle $\varphi_1 \colon G_D \to E_D$ corresponding to $s \in E(\mathcal{R})/D$ is determined by the values $\varphi_1(\xi) = 0$ and $\varphi_1(\eta) = e(s)$, since $\mathcal{R}(Q)$ is an unramified extension of \mathcal{R} , where DQ = P and s is the class of P in $E(\mathcal{R})/D$. The cocycle φ_2 corresponding to r_R is determined by the values $\varphi_2(\xi) = e_R$, $\varphi_2(\eta) = 0$. The cohomology class $\varphi_1 \smile \varphi_2 \in H^2(G_D, \mu_D)$ is defined by a bilinear mapping $B_1 \colon G_D \times G_D \to \mu_D$ such that $B_1(\eta, \eta) = 1$, $B_1(\eta, \xi) = [e(s), e_R]_D$, $B_1(\xi, \eta) = 1$, and $B_1(\xi, \xi) = 1$. Since $\mu_D \subset \mathcal{R}^*$, the Hilbert symbol $(\cdot,\cdot)_D \colon \mathcal{R}^*/\mathcal{R}^{*D} \times \mathcal{R}^*/\mathcal{R}^{*D} \to \mu_D$ is defined. If

 $\beta \in \mathcal{K}^*$, then β is associated to a $\varphi_{\beta} \in H^1(G_D, \mu_D)$ such that $\varphi_{\beta}(g) = g(\tilde{\beta})/\tilde{\beta}$, where $(\tilde{\beta})^D = \beta$; $(\alpha, \beta)_D \stackrel{\text{def}}{=} \varphi_{\beta}(\theta(\alpha))$. An equivalent definition (see [9], §8.11) is the following. We define homomorphisms $\overline{\varphi}_{\alpha} : G_D \to \mathbb{Z}/D$ and $\overline{\varphi}_{\beta} : G_D \to \mathbb{Z}/D$ by the conditions $\zeta_D^{\overline{\varphi}_{\alpha}(g)} = \varphi_{\alpha}(g)$ and $\zeta_D^{\overline{\varphi}_{\beta}(g)} = \varphi_{\beta}(g)$. We define an element of $H^2(G_D, \mu_D)$ by the bilinear form $B_{\alpha,\beta}(g_1,g_2) = \zeta_D^{\overline{\varphi}_{\alpha}(g_1)\overline{\varphi}_{\beta}(g_2)}$. Then $(\alpha,\beta)_D = \zeta_D^{(D \text{ inv } B_{\alpha,\beta})}$. (Dinv $B_{\alpha,\beta}$ is defined as an element of \mathbb{Z}/D .) In particular, we have

$$\varphi_{\xi}(\xi) = (\xi, \xi)_{D} = 1, \qquad \varphi_{\xi}(\eta) = (\eta, \xi)_{D} = \zeta_{D},$$

$$\varphi_{-\eta}(\xi) = (\xi, -\eta)_{D} = (-\eta, \xi)_{D}^{-1} = (\eta, \xi)_{D}^{-1} = \zeta_{D}^{-1}, \qquad \varphi_{-\eta}(\eta) = (\eta, -\eta)_{D} = 1.$$

Therefore $B_{\xi,-\eta}(\eta,\eta) = 1$, $B_{\xi,-\eta}(\eta,\xi) = \zeta_D^{-1}$, $B_{\xi,-\eta}(\xi,\eta) = 1$, and $B_{\xi,-\eta}(\xi,\xi) = 1$. Let $[e(s),e_R]_D = \zeta_D^x$, $x \in \mathbb{Z}/D$. Then $B_1 = B_{\xi,-\eta}^{-x}$. Hence, D inv $B_1 = (-x)D$ inv $B_{\xi,-\eta}$. But $\zeta_D^{(D)}(B_{\xi,-\eta}) = (\xi,\eta)_D = \zeta_D^{-1}$. Hence D inv $B_1 = x$, which proves Proposition 8.

If G is a finite group, B is a subgroup of G, and A is a G-module, then the mapping cor: $H^1(B,A) \to H^1(G,A)$ is defined in the following way. Let $\overline{\varphi} \in H^1(B,A)$ be the class of a cocycle $\varphi: B \to A$. Let $\{\alpha_k\}$ be a system of representatives for G/B: $G = \bigcup \alpha_k B$. We define a mapping $\varphi': G \to A$ by setting $\varphi'(\alpha_k b) = \alpha_k \varphi(b)$. In addition, we define a mapping $\psi: G \to A$ such that $\psi(g) = \sum_j \varphi'(g\alpha_j)$. Then ψ is a cocycle of G in A, and $\overline{\psi} = \text{cor}(\overline{\varphi})$.

Let $G = G(L_p/\mathbb{Q})$ and $B = T = t^{\mathbb{Z}/D}$. We recall that we have assumed that \mathbb{Q} is embedded in \mathbb{C} and that σ denotes the automorphism of complex conjugation. We choose a system of representatives $\{\beta_j\}$ of $G(L_p/K)/T$ in $G(L_p/K)$. Then $\{\beta_j, \sigma\beta_j\}$ will be a system of representatives of G/T. We recall that the cohomology class $r_p \in H^1(T, E(L_p))$ is defined by the cocycle $\varphi: t^k \mapsto (t^{k-1} + \dots + 1)R_p$, where $R_p = u_p N_{K_p/L_p}(y_p) - (a_p/D)y_1$ if $(\frac{p}{K}) = -1$ and $R_p = u_p N_{K_p/L_p}(y_p) - ((a_p - 2)/D)y_1$ if $(\frac{p}{K}) = 1$; $c_p \in H^1(G, E(L_p))$, $c_p = \text{cor}(r_p)$; and c_p is given by a cocycle $\psi: G \to E(L_p)$, constructed as above from φ and $\{\beta_j, \sigma\beta_j\}$. In particular,

$$\begin{split} \psi(t) &= \sum_{j} \varphi'(t\beta_{j}) + \sum_{j} \varphi'(t\sigma\beta_{j}) = \left(\sum_{j} \beta_{j}\right) \varphi(t) + \sigma\left(\sum_{j} \beta_{j}\right) \varphi(t^{-1}) \\ &= \left(\sum_{j} \beta_{j}\right) \varphi(t) - \sigma\left(\sum_{j} \beta_{j}\right) t^{-1} \varphi(t) = \left(\sum_{j} \beta_{j}\right) \varphi(t) - t\sigma\left(\sum_{j} \beta_{j}\right) \varphi(t) \end{split}$$

(σ acts by inversion on $G(L_p/K)$). Further,

$$\psi(\sigma) = \sum_{j} \varphi'(\sigma\beta_{j}) + \sum_{j} \varphi'(\beta_{j}) = 0 \qquad (\varphi(1) = 0).$$

First we consider the case $(\frac{p}{K}) = 1$. Taking (5) into account, in order to prove (4) it suffices to show that

$$\operatorname{red}\left(\left(\sum_{j}\beta_{j}\right)R_{p}-t\sigma\left(\sum_{j}\beta_{j}\right)R_{p}\right)$$

$$=2((p+1-a_{p})/D)\operatorname{red}(y_{K})-((p+1-a_{p})/D)h(\operatorname{red}(\gamma(0))).$$

We first show that $y_K^{\sigma} = -y_K + h\gamma(0)$. Let a be a proper O_p -ideal, α the image of a in $Cl_{K,p}$. Let n be an ideal of O such that $O/n \simeq \mathbb{Z}/N$. We set $n_p = n \cap O_p$. Let (α, n_p) denote a point of X_N defined over K_p , corresponding to the isogeny $(\mathbb{C}/a \to \mathbb{C}/(n_p^{-1}a))$; $\lambda \in Cl_{K,p}$ acts on (α, n_p) in the following way: $(\alpha, n_p)^{\theta(\lambda)} = (\alpha \lambda^{-1}, n_p)$,

FINITENESS OF $E(\mathbf{Q})$ AND $\mathrm{III}(E,\mathbf{Q})$ FOR A SUBCLASS OF WEIL CURVES

and $(\alpha, n_p)^{\sigma} = (\alpha^{\sigma}, n_p^{\sigma})$. The principal involution $w_N: X_N \to X_N$ maps (α, n_p) into $(\alpha[n_p], n_p^{\sigma})$. Here $[n_p]$ is the image of n_p in $Cl_{K,p}$ (see [2]). Further, $\gamma \circ w_N = -\gamma + \gamma(0)$. We have

$$\gamma((\alpha, n_p))^{\sigma} = \gamma((\alpha, n_p)^{\sigma}) = \gamma((\alpha^{\sigma}, n_p^{\sigma})) = \gamma((\alpha^{\sigma}[n_p^{-1}][n_p], n_p^{\sigma}))$$

$$= \gamma(w_N((\alpha^{\sigma}[n_p^{-1}], n_p))) = -\gamma((\alpha^{\sigma}, n_p))^{\theta(n_p)} + \gamma(0).$$

In particular, $y_p^{\sigma} = -y_p^{\theta(i_p)} + \gamma(0)$. Analogously, $y_1^{\sigma} = -y_1^{\theta(i)} + \gamma(0)$. Passing to the norm from H to K in the last equality, we will obtain $y_K^{\sigma} = -y_K + h\gamma(0)$ (h is the class number of K); (3) is equivalent to the congruence $\operatorname{red}(g(y_p)) = \operatorname{Fr}(\operatorname{red}(g(y_1)))$ $\forall g \in G(K_p/\mathbb{Q})$. Hence

$$\operatorname{red}\left(\left(\sum \beta_{j}\right) R_{p}\right) = ((p-1)/D - (a_{p}-2)/D)\operatorname{red}(y_{K})$$

$$= ((p+1-a_{p})/D)\operatorname{red}(y_{K}),$$

$$\operatorname{red}\left(\sigma\left(\sum \beta_{j}\right) R_{p}\right) = ((p+1-a_{p})/D)\operatorname{red}(y_{K}^{\sigma})$$

$$= -((p+1-a_{p})/D)(\operatorname{red}(y_{K})((p+1-a_{p})/D)h(\operatorname{red}(y(0)))).$$

Therefore,

$$\operatorname{red}\left(\left(\left(\sum \beta_{j}\right) - t\sigma\left(\sum \beta_{j}\right)\right)R_{p}\right)$$

$$= 2((p+1-a_{p})/D)\operatorname{red}(y_{K}) - ((p+1-a_{p})/D)h(\operatorname{red}(y(0))),$$

which proves (4) for the case $\binom{p}{K} = 1$. Now we consider the case $\binom{p}{K} = -1$. The decomposition group of p, i.e., $G(\mathcal{L}/Q_p)$, where \mathcal{L} is the completion of L_p in \overline{Q}_p , is a subgroup of G, generated by T and σ . Let c_{1p} denote the image of r_p under cor: $H^1(T, E(L_p)) \to H^1(G(L_p/K), E(L_p))$. As above, using the system $\{\beta_j\}$ we choose a cocycle $\psi_1 \colon G(L_p/K) \to E(L_p)$ corresponding to c_{1p} . In particular, $\psi_1(t) = (\sum \beta_j) \varphi(t)$ and $\psi_1(t^{-1}) = (\sum \beta_j) \varphi(t^{-1})$. Let c_{2p} denote the restriction of c_{1p} to T. If we take $\{1, \sigma\}$ to be a system of representatives of $G(\mathcal{L}/Q_p)/T$, then the corestriction of c_{2p} to $G(\mathcal{L}/Q_p)$ is determined by a cocycle $\tilde{\psi}$ such that $\tilde{\psi}(t) = \psi_1'(t) + \psi_1'(t\sigma) = \psi_1(t) + \sigma \psi_1(t^{-1}) = \psi(t)$ and $\tilde{\psi}(\sigma) = \psi_1'(\sigma) + \psi_1'(1) = 0$. That is, $\tilde{\psi} = \psi$. Hence, the restriction c_{3p} of c_p to $G(\mathcal{L}/Q_p)$ is the corestriction of c_{2p} from T to $G(\mathcal{L}/Q_p)$. Further, we shall use the fact that

$$\langle s, \operatorname{cor}(x) \rangle_{D,Q_p} = \langle s, x \rangle_{D,\mathcal{R}} \quad \forall x \in H^1(G(\mathcal{L}/\mathcal{K}), E(\mathcal{L})), \quad s \in E(Q_p)/D.$$

This general property of \langle , \rangle follows from the definition of \langle , \rangle (see above), the general properties of the \sim -product (see [7], p. 107), and the commutative diagram connecting the mapping inv in a tower of local fields (see [7], p. 139). In particular,

$$\langle s, c_p \rangle_{D,p} \stackrel{\text{def}}{=} \langle s, c_{3p} \rangle_{D,Q_p} = \langle s, c_{2p} \rangle_{D,\mathcal{H}};$$

(4) will follow from (5) if we show that

red
$$\left(\left(\sum \beta_j\right) R_p\right) = -\left((p+1+a_p)/D\right) \operatorname{red}(y_K) + \left((p-1)/D\right) h(\operatorname{red}(\gamma(0))).$$

In fact, from (3) it follows that

red
$$(\sum \beta_j) R_p) = ((p+1)/D) \operatorname{Fr}(\operatorname{red}(y_K)) - (a_p/D) \operatorname{red}(y_K)$$

 $= ((p+1)/D) \operatorname{red}(y_K^{\sigma}) - (a_p/D) \operatorname{red}(y_K)$
 $= -((p+1)/D) \operatorname{red}(y_K) + ((p+1)/D) h(\operatorname{red}(y(0)))$
 $= -(a_p/D) \operatorname{red}(y_K)$
 $= -((p+1+a_p)/D) \operatorname{red}(y_K) + ((p+1)/D) h(\operatorname{red}(y(0))).$

Proposition 7 is proved.

Proposition 7 is proved.

Proposition 7 is proved.

84 The finiteness theorem

 $C/(n_p^{-1}a)$); $\lambda \in Cl_{K,p}$ acts on (α, n_p) in the following

§4. The finiteness theorem

We introduce the notation needed for the statement of the theorem. Let K' denote the compositum of K and the field $k = \operatorname{End}(E) \otimes Q$. For a rational prime number l we denote by $G_{l^{\infty}}$ the group $G(K'(E_{l^{\infty}})/K')$, where $E_{l^{\infty}} = \bigcup E_{l^n}$, and by G_{l^n} the group $G(K'(E_{l^n})/K')$. If $\operatorname{End}(E) = \mathscr{O}$ is an order in an imaginary quadratic extension k of Q, then \mathscr{O} has one class (since E is defined over Q) and the choice of a projective system of generators $e_n \in E_{l^n}$ such that $E_{l^n} = (\mathscr{O}/l^n)e_n$, $le_{n+1} = e_n$, defines embeddings $\rho_n : G_{l^n} \hookrightarrow (\mathscr{O}/l^n)^*$ and $\rho : G_{l^{\infty}} \hookrightarrow \widehat{\mathscr{O}}^*$, where $\widehat{\mathscr{O}}$ is the l-completion of \mathscr{O} . If E does not have complex multiplication, i.e., $\operatorname{End}(E) = Z$, then the choice of a projective system of generators $e_{1,n}, e_{2,n} \in E_{l^n}$ such that $E_{l^n} = (Z/l^n)e_{1,n} + (Z/l^n)e_{2,n}$, $le_{j,n+1} = e_{j,n}$ defines embeddings $\rho_n : G_{l^n} \hookrightarrow \operatorname{GL}_2(Z/l^n)$ and $\rho : G_{l^{\infty}} \hookrightarrow \operatorname{GL}_2(Z_l)$.

Suppose $\operatorname{End}(E) = \mathbb{Z}$. If $\rho(G_{l^{\infty}}) = \operatorname{GL}_2(\mathbb{Z}_l)$, then we set $m_{1l} = 0$. If $\rho(G_{l^{\infty}}) \neq \operatorname{GL}_2(\mathbb{Z}_l)$, then we define m_{1l} as the least $m \in \mathbb{N}$ such that $\rho(G_{l^{\infty}}) \supset I + l^m M_2(\mathbb{Z}_l)$ ($M_2(\mathbb{Z}_l)$ is the ring of 2×2 matrices over \mathbb{Z}_l , and I is the identity matrix). Suppose $\operatorname{End}(E) = \mathscr{O}$. We denote by $\Delta(\mathscr{O})$ the discriminant of \mathscr{O} . If $\rho(G_{l^{\infty}}) = \hat{\mathscr{O}}^*$, then we set $m_{1l} = 0$ if $l \neq 2$, and $m_{1l} = 0$ if l = 2 and either $2|\Delta(\mathscr{O})$ or 2 remains prime in k. If $2 \nmid \Delta(\mathscr{O})$ and 2 splits in k, we set $m_{12} = 1$. If $\rho(G_{l^{\infty}}) \neq \hat{\mathscr{O}}^*$, then we define m_{1l} as the least $m \in \mathbb{N}$ such that $\rho(G_{l^{\infty}}) \supset 1 + l^m \hat{\mathscr{O}}$. Further, we denote by m'_{2l} the least $m \in \mathbb{Z}_+$ such that l^m annihilates $H^1(G_{l^{\infty}}, E_{l^{\infty}})$. From classical results in case E has complex multiplication and from the results of Serre in the case $\operatorname{End}(E) = \mathbb{Z}$ (see $[8], \S 5.1$) it follows that m_{1l} and m'_{2l} exist for all l and are zero for almost all l. By $m''_{2l} \leq m'_{2l}$ we denote the least $m \in \mathbb{Z}_+$ such that l^m annihilates $H^2(G_{l^n}, E_{l^n}) \cap S_{l^n}(K') \ \forall n$. Here $S_{l^n}(K')$ is the l^n th Selmer group of the field K' and the intersection is in $H^1(K', E_{l^n})$.

We set $m_{2l} = m_{2l}'' + 1$ if $K = \mathbb{Q}(\sqrt{-1})$ and l = 2; or if $K = \mathbb{Q}(\sqrt{-3})$ and l = 3; we set $m_{2l} = m_{2l}''$ in the remaining cases. For an arbitrary rational q such that q|N and $(q, \Delta) = 1$ (Δ is the discriminant of K), we denote by M_q the period of the finite group $H^1(\mathbb{Q}_q, E)_{nr}$ (the subgroup of $H^1(\mathbb{Q}, E)$ of homogeneous spaces that split over the maximal unramified extension of \mathbb{Q}_q (see [10], §2, Appendix 2, no. 1)). If q|N and $q|\Delta$, then we denote by M_q the period of the finite group $H^1(\mathcal{R}', E)_{nr}$, where \mathcal{R}' is the completion of K with respect to a prime divisor $\delta|q$; M is the least common multiple of all the M_q .

We set $x_K = M(y_K - y_K^{\sigma}) = M(2y_K - h\gamma(0))$ if $l \neq 2$ or l = 2 and $Mh\gamma(0)$ is a point (in E(Q)) of even period, and $x_K = My_K$ if l = 2 and $Mh\gamma(0)$ is a point of odd period. We denote by $\varepsilon_l(n)$ the least $\varepsilon \in \mathbb{Z}_+$ such that $l^{\varepsilon}x_K \in l^nE(K)$. If y_K is a point of infinite order, then we denote by m'_{3l} the greatest $m \in \mathbb{Z}_+$ such that $x'_K \in l^mE(K)'$, where E(K)' is the factor group of E(K) by the subgroup of elements of finite order, so that $E(K)' \simeq \mathbb{Z}^{g_K}$, where g_K is the rank of E over K. Obviously, $n - \varepsilon_l \leq m'_{3l}$. If y_K is a point of infinite order, then we denote $\max_n (n - \varepsilon_l(n)) \leq m'_{3l}$ by m_{3l} ; $m_{3l} = 0$ for almost all l. We set $\delta_l = 0$ if $l \neq 2$, and $\delta_2 = 1$. We set $\delta'_l = 0$ if $l \neq 2$, $\delta'_2 = 0$ if E has complex multiplication or the automorphism of complex conjugation σ acts nontrivially on E_2 , and $\delta'_2 = 1$ otherwise.

We set $\delta_l'' = 0$ if $l \neq 2$, $\delta_2'' = 0$ if $H^1(G(K/Q), E(K) \cap E_{2^n}) \cap S_{2^n}$ are trivial for all n (intersection in $H^1(Q, E_{2^n})$), and $\delta_2'' = 1$ otherwise. Let $\delta_l''' = \operatorname{ord}_l([k/Q])$. We set $m_{4l} = 2\delta_l + 2\delta_l' + \delta_l'' + 2\delta_l'''$. Finally, we set m_{5l} to be the exponent of the power of l in the expansion of the discriminant of the endomorphism ring of E. In particular, $m_{5l} = 0$ if E does not have complex multiplication. We set $m_l = 2m_{1l} + 2m_{2l} + m_{4l} + 2m_{5l}$; $m_l \in \mathbb{Z}_+$, and $m_l = 0$ for almost all l. If y_K is a point of infinite order, then we denote by C = C(E, K) the natural number $\prod_l l^{m_{3l} + m_l}$; Z is

the finite set of pairs (K, i) described in §2. We have

THEOREM 1. Suppose $(K, i) \notin Z$. Then, for all $n, l^{n-\epsilon_l(n)+m_l}$ annihilates S_{l^n} (the l^n th Selmer group of E over Q). If y_K is a point of infinite order, then $l^{m_{y_l}+m_l}$ annihilates $S_{l^n} \forall n$.

THE TENESS OF E(Q) AND III(E,Q) FOR A SUBCLASS OF WEIL CORP

The second assertion of the theorem follows from the first one, since if y_k is a point of infinite order, then by definition $n - \varepsilon_l(n) \le m_{3l}$.

COROLLARY 1. Suppose $(K, i) \notin Z$. If y_K is a point of infinite order, then E(Q) and $\coprod(E, Q)$ are finite groups, and the natural number C(E, K) annihilates $S_D \forall D \in \mathbb{N}$, E(Q), and $\coprod(E, Q)$.

PROOF OF COROLLARY 1. We have the exact sequence

$$0 \to E(\mathbf{Q})/D \to S_D \to \coprod (E, \mathbf{Q})_D \to 0.$$

If y_K is a point of infinite order, then it follows from Theorem 1 that C annihilates $S_D \ \forall D$. In particular, C annihilates E(Q)/D. Hence, E(Q) is finite, since by the Mordell-Weil theorem $E(Q) \simeq A \times Z^g$, where A is a finite group and $g \in Z_+$ is the rank of E over Q. Further, C annihilates \coprod_D for all D, and hence \coprod_C . But \coprod_C is finite, since S_C is finite (as is well known, S_D is finite $\forall D$, which follows from the finiteness of the group of divisor classes of the field $Q(E_D)$).

COROLLARY 2. Suppose $(K, i) \notin Z$, and $(\Delta, 2N) = 1$. Then the groups $E(\mathbf{Q})$ and $\coprod (E, \mathbf{Q})$ are finite if $L(E, \mathbf{Q}, 1)L'(E, \mathbf{Q}, \chi_K, 1) \neq 0$.

PROOF OF COROLLARY 2. In [2] Gross and Zagier obtained the formula

$$b(K)L(E,Q,1)L'(E,Q,\chi_K,1) = \text{height}(y_K), \quad b(K) \neq 0,$$

where height(y_K) is the canonical height. Hence, if $L(E,Q,1)L'(E,Q,\chi_K,1) \neq 0$, then y_K is a point of infinite order.

Let f be a rational prime number, (f, N) = 1, $(f, a_f) = 1$, $(f, a_f) = 1$, and $(\Delta, 2N) = 1$. Suppose \overline{Q} is embedded in $\overline{Q_f}$. According to [4], there is an f-adic analogue of the Gross-Zagier formula

$$b_f(K)L_f(E, \mathbf{Q}, 1)L'_f(E, \mathbf{Q}, \chi_K, 1) = \text{height}_f(y_K)$$

with explicit $b_f(K) \neq 0$. If $L_f(E, Q, 1)L'_f(E, Q, \chi_K, 1) \neq 0$, we set

$$\nu_f(K) = \frac{1}{2}(\operatorname{ord}_f(b_f(K)) + \operatorname{ord}_f(L_f(E, Q, 1)L'_f(E, Q, \chi_K, 1))).$$

Since height, is quadratic, we obviously have

COROLLARY 3. Suppose $(K,i) \notin Z$, $(\Delta,2N)=1$, and f is a rational prime number such that (f,N)=1, $(f,a_f)=1$, and $(\frac{f}{K})=1$. If $L_f(E,Q,1)L'_f(E,Q,\chi_K,1)\neq 0$, then E(Q) and $\coprod(E,Q)$ are finite. Here $m_{3f}\leq \operatorname{ord}_f(M)+\nu_f(K)$ if $f\neq 2$ or f=2 and $Mhy(0)\in E(Q)_{tor}$ is a point of odd period, and $m_{3f}\leq \operatorname{ord}_f(M)+\nu_f(K)+1$ if f=2 and f=2 a

COROLLARY 4. The group $III(X_{17}, \mathbb{Q})$ is finite.

PROOF OF COROLLARY 4. For a rational prime g, $g \equiv 3 \pmod{4}$, $\binom{-g}{17} = 1$, it is known (Mazur [11], p. 237) that $y_{Q(\sqrt{-g})}$ has a point of infinite order on the elliptic curve X_{17} .

We proceed to the proof of Theorem 1. First we outline it. We bound from below those p that remain prime in K. Let $D=l^n$, $D|((p+1)/u_p)$, and $D|a_p$. Replacing c_p by Mc_p reduces the equality $\sum_q \langle s, c_p \rangle_{D,q} = 0$ to $\langle s, Mc_p \rangle_{D,p} = 0$. We shall prove this. Assume first that $(q, \Delta) = 1$, i.e., that q does not ramify in K (in K only the divisors of Δ are ramified). If q|N, then $\langle s, Mc_p \rangle_{D,q} = 0$, since by definition M annihilates $H^1(Q_q, E)_{nr}$, and the q-localization of c_p belongs to $H^1(Q_q, E)_{nr}$, since q is not ramified in K_p (in K_p only divisors of Δ and p, (p,N) = 1, are ramified). Analogously, $\langle s, c_p \rangle_{D,q} = 0$ if (q,N) = 1, $q \neq p$, since $H^1(Q_q, E)_{nr} = 0$ in this case (see [10], §2, Appendix 2, no 1), since outside of N the curve E has good reduction. For $q|\Delta$, $q \neq p$, as before we have $\langle s, Mc_p \rangle_{D,q} = 0$, since $\langle s, Mc_p \rangle_{D,q} = \langle s, Mc_p' \rangle_{D,\delta}$, where c_p' is the corestriction of c_p in c_p' in c_p' in c_p' is the same way as above: see the end of §3). Further, $c_p' \in H^1(\mathcal{H}', E)_{nr}$, where c_p' is the c_p' is the c_p' is the same way as above: see the end of §3). Further, $c_p' \in H^1(\mathcal{H}', E)_{nr}$, where c_p' is the explicit formula (4), we shall prove

PROPOSITION 9. $\exists \alpha_p, \beta_p \in \mathbb{Z}_+$ such that $\alpha_p + \beta_p \le n + \rho_p$, where $\rho_p = 0$ if $l \ne 2$, $\rho_p = 1$ if l = 2 and $E(\mathbb{Z}/p)_2 \simeq \mathbb{Z}/2$, and $\rho_p = 2$ if l = 2 and $E(\mathbb{Z}/p)_2 \simeq \mathbb{Z}/2 + \mathbb{Z}/2$, such that $l^{\alpha_p} s = l^{\beta_p} x_K = 0$ in $E(\mathcal{K})/D$, where $s \in S_D$.

Then, using the Chebotarev density theorem and information about the structure of $G(K'(E_{l^n})/K')$ (see above), from these estimates for the sums of the exponents of the local periods of s and x_K we derive an analogous estimate for the sum of the exponents of the periods of s and x_K in $S_{l^n}(K)$.

PROOF OF PROPOSITION 9. We denote by Ta the Tate module of E corresponding to the number l, i.e., Ta = $\varprojlim E_{l^n}$ (the reduction homomorphism identifies E_{l^n} with $E(\overline{\mathbb{Z}/p})_{l^n}$; we consider here points of E over $\overline{\mathbb{Z}/p}$); Ta $\cong \mathbb{Z}_l \oplus \mathbb{Z}_l$, and in a chosen basis the action of Fr (the Frobenius automorphism of $\overline{\mathbb{Z}/p}$ over \mathbb{Z}/p) is given by the matrix

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in M_2(\mathbb{Z}_l),$$

where $a_{11} + a_{22} = a_p$ and $a_{11}a_{22} - a_{21}a_{12} = p$. We denote by F a quadratic extension of \mathbb{Z}/p which is the residue field of \mathcal{H} (\mathcal{H} is the p-completion of K). Let A denote $E(F)_{l\infty}$, i.e., the l-component of E(F). Since $a_{11} + a_{22} \equiv 0 \pmod{D}$ and $a_{11}a_{22} - a_{21}a_{12} \equiv -1 \pmod{D}$, we have $\operatorname{Fr}^2 \equiv I \pmod{D}$, where $I = \binom{1 \ 0}{0 \ 1}$. Hence, $E_D \subset A$. We denote by A_+ the kernel of $\operatorname{Fr} - 1$ on A, i.e., the l-component of $E(\mathbb{Z}/p)$, and by A_- the kernel of $\operatorname{Fr} + 1$ on A,

$$A_+ \simeq \text{Ta}/(\text{Fr} - 1)\text{Ta}, \qquad A \simeq \text{Ta}/(\text{Fr}^2 - 1)\text{Ta}.$$

Let $p+1+a_p=l^br$, where (r,l)=1, and $p+1-a_p=l^av$, where (v,l)=1. By the hypothesis $(D|((p+1)/u_p),D|a_p)$ $a,b\geq n$; $|A_+|=l^a$ and $|A|=l^{a+b}$. We have the exact sequence

$$0 \rightarrow A_+ \rightarrow A \rightarrow (Fr - 1)A \rightarrow 0.$$

Since $Fr \pm I$ are nondegenerate matrices, we have $A_- \simeq (Fr - 1)A$ and $A_+ = (Fr + 1)A$. Hence

$$|A_{-}| = |A|/|A_{+}| = l^{b}$$
.

From the fact that $\langle s, Mc_p \rangle_{D,p} = 0$ and (4) it follows that $[e, e_-]_D = 1$, where $e = e(s) = (\operatorname{Fr} + 1)e'(s)$, $e'(s) \in E_D$, and $e_- = ((p+1+a_p)/D)\operatorname{red}(vx_K) \in E_{D-}$, since $\operatorname{Fr}(\operatorname{red}(vx_K)) = \operatorname{red}(vx_K^{\sigma}) = -\operatorname{red}(vx_K)$. Let $\lambda \in \mathbb{Z}_+$ be such that $l^{\lambda}E_{D-} \subset [e_-]$, the

subgroup of E_{D-} generated by e_{-} . Then $l^{\lambda}e$ is orthogonal to E_{D-} relative to the Weil pairing $[\ ,\]_{D}$. In particular,

ALIMON ACC OF WELL CURVES

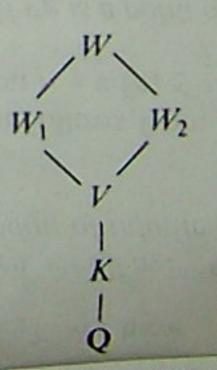
$$[l^{\lambda}e,(1-\operatorname{Fr})\tilde{e}]_{D}=[(1+\operatorname{Fr})l^{\lambda}e,\tilde{e}]_{D}=1 \quad \forall \tilde{e}\in E_{D}.$$

Here we used the fact that $[Fr(e), Fr(\tilde{e})]_D = Fr([e, \tilde{e}]_D)$ (see [5], p. 101), and $Fr(\zeta) = \zeta^{-1} \ \forall \zeta \in \mu_D$. Since the pairing $[\ ,\]_D$ is nondegenerate, we have $(1 + Fr)l^{\lambda}e = 0$, i.e., $l^{\lambda}e \in E_{D-}$. On the other hand, $l^{\lambda}e \in E_{D+}$. Thus, if $l^{\lambda}E_{D-} \subset [e_{-}]$, then $l^{\lambda}e \in E_{D+} \cap E_{D-}$.

We denote $r(\operatorname{red}(vx_K)) \in A_-$ by e_1 . Suppose $l \neq 2$. Then A is the direct sum of A_+ and A_- , and hence $A_+ \simeq \mathbb{Z}/l^a$ and $A_- \simeq \mathbb{Z}/l^b$ (since A is a factor of $\mathbb{Z}_l + \mathbb{Z}_l$). Let $0 \leq \beta \leq n$ be the least integer such that $l^\beta e_1 \in l^n A_-$. We shall show that $l^{n-\beta} E_{D-} \subset [e_-]$ ($E_{D-} = E_D \cap A_-$; $E_{D+} = E_D \cap A_+$). If $\beta = 0$, the assertion is obvious. Suppose $\beta > 0$. Then $e_1 = l^{n-\beta} u \pmod{l^b}$, where (u,l) = 1, and $e_- = l^{b-n} e_1 = l^{b-\beta} u \pmod{l^b}$. The generator of E_{D-} is $l^{b-n} \pmod{l^b}$. Therefore $l^{n-\beta} E_{D-} \subset [e_-]$. Consequently, $l^{n-\beta} e \in E_{D+} \cap E_{D-}$. But $E_{D+} \cap E_{D-} = 0$. Hence $l^{n-\beta} e = 0$. Since the mapping red induces an isomorphism $E(\mathcal{K})/D \to A/D$, we have $l^\beta x_K = 0$ in $E(\mathcal{K})/D$. By definition e = e(s) is $(\operatorname{Fr}^2 - 1)\overline{Q}$, where $D\overline{Q} = \operatorname{red}(P)$ and $P \in E(Q_p)$ represents $e(Q_p)/D$. The condition $e(Q_p)/D$ into $e(Q_p)/D$, where $e(Q_p)/D$ into $e(Q_p)/D$. Thus, Proposition 9 is proved for $e(Q_p)/D$ into $e(Q_p)/D$ into $e(Q_p)/D$. Thus, Proposition 9 is proved for $e(Q_p)/D$ into $e(Q_p)/D$

Now we consider the case l=2. Obviously, $E_{D+} \cap E_{D-} = E_2 \cap A_+ = E_{2+}$. Therefore, if $0 \le \lambda \le n$ is such that $l^{\lambda}E_{D-} \subset [e_{-}]$, then $l^{\lambda+1}e = 0$. There are two possible cases: $E_{2+} \simeq \mathbb{Z}/2$ and $E_{2+} \simeq \mathbb{Z}/2 + \mathbb{Z}/2$. Suppose $E_{2+} \simeq \mathbb{Z}/2$. Then $A_- \simeq \mathbb{Z}/2^b$ and $A_+ \simeq \mathbb{Z}/2^a$. Let $0 \le \beta \le n$ be the minimal integer such that $2^{\beta}e_1 \in 2^n A_-$. Analogously, as above, we will obtain that $2^{n+1-\beta}s = 2^{\beta}x_K = 0$ in $E(\mathcal{H})/D$. Now we consider the case $E_{2+}=E_2\simeq \mathbb{Z}/2+\mathbb{Z}/2$. If n=1, then we can take $\alpha + \beta = 1$ in Proposition 9. Suppose $n \ge 2$ and b = n. In this case $A_{-}=E_{D-}\simeq \mathbb{Z}/2^{n-1}+\mathbb{Z}/2$, since for any other structure of A_{-} we would have $E_{4-}=E_4$, which is impossible since $Fr+I\not\equiv 0\pmod 4$, which follows from the fact that $\det(\operatorname{Fr}) \equiv -1 \not\equiv 1 \pmod{4}$. We note that $e_1 = e_-$ for b = n. Let $2^{\beta}e_1 = 0$, $0 \le \beta \le n-1$. Then $2^{n-\beta}E_{D-} \subset [2e_1]$. Therefore we again have $2^{n+1-\beta}s = 2^{\beta}x_K = 0$ in $E(\mathcal{K})/D$. Suppose b > n. Then $A_- \simeq \mathbb{Z}/2^{b-1} + \mathbb{Z}/2$ and $E_{D-} \simeq \mathbb{Z}/2^n + \mathbb{Z}/2$. Let $0 \le \beta \le n$ be such that $2^{\beta}e_1 \in 2^n A_-$. If $\beta = 0$, then we can take $\alpha = n$ and $\beta = 0$ in Proposition 9. Suppose $\beta > 0$. Then the condition $2^{\beta}e_1 \in 2^n A_-$ is equivalent to the fact that $\overline{e}_1 = 2^{n-\beta}u \pmod{2^{b-1}}$, (u,l) = 1, where \overline{e}_1 is the projection of e_1 into $\mathbb{Z}/2^{b-1}$; $e_- = 2^{b-\beta}u \in \mathbb{Z}/2^{b-1}$; E_{D-} is generated by $2^{b-1-n} \in \mathbb{Z}/2^{b-1}$, and $1 \in \mathbb{Z}/2$. Hence, $2^{n+1-\beta}E_{D-} \in [e_-]$. Consequently, we can set $\alpha = n+2-\beta$ in Proposition

We consider the tower of fields



where $V = K'(E_{D'})$, and D' is defined in the following way: D' = 2D if $K = Q(\sqrt{-1})$ and I = 2, D' = 3D if $K = Q(\sqrt{-3})$ and I = 3, and D' = D in the remaining cases; W_1 and W_2 are D-periodic abelian extensions of V, corresponding to $s_1, s_2 \in H^1(V, E_D) = \text{Hom}(G(\overline{V}/V), E_D)$, where s_1 is the image (restriction) of s in $H^1(V, E_D)$ and s_2 corresponds to s_1 ; S_2 is the compositum of S_2 . We have imbeddings s_1 : S_2 : S_3 : S_3 : S_4 : S_4 : S_4 : S_4 : S_5 : S_5 : S_7 : S

PROPOSITION 10. $\forall \eta \in H \exists \alpha, \beta \in \mathbb{Z}_+$ such that $\alpha + \beta \leq n$ if $l \neq 2$, $\alpha + \beta \leq n + 2$ if l = 2, and $(\eta_1^{\sigma} \eta_1)^{\alpha} = 1$, $(\eta_2^{\sigma} \eta_2)^{\beta} = 1$, where η_j is the restriction of η to W_j .

PROOF. By the Chebotarev density theorem there exist infinitely many rational primes p which are unramified in W and for some prime divisor v of the field W dividing p we have $g = \sigma \eta = \operatorname{Fr}_v$, i.e., g is continuous relative to the v-metric, and the automorphism of W_v over Q_p induced from it by continuity is the Frobenius automorphism. Throwing away a finite set of prime numbers, we may assume that p is relatively prime to $2\Delta_1$ and $Q_j(J_1(z_1),J_2(z_1))$, j=1,2 (see Proposition 6). Let v|w and w|p, w a prime divisor of the field V. Since $g=\sigma$ on V, then V_w is a quadratic extension of Q_p and is also a completion of K. From this it follows that p remains prime in K, and $E(F) \supset E_D$, where F is the residue field of V_w (a quadratic extension of \mathbb{Z}/p). Hence $D^2|(p+1-a_p)(p+1+a_p)$. Let $D''=Du_K$, where $u_K=|O_K^*/\mathbb{Z}^*|$. We have an inclusion $\mu_{D''}\subset V$. In fact, $\mu_{D'}\subset \mathbb{Q}(E_{D'})$, which follows from the nondegeneracy of the Weil pairing $[\cdot,\cdot]_D$ and the property $[e_1^f,e_2^f]_D=[e_1,e_2]^f \ \forall f\in G(\overline{\mathbb{Q}}/\mathbb{Q})$, and $\mu_{2u_K}\subset K$. Since $\zeta^\sigma=\zeta^{-1}$, and, on the other hand, $\zeta^\sigma=\zeta^p$ ($\zeta\in\mu_{D''}$), it follows that $u_KD|(p+1)$. Granting that $u_p|u_K$, we will obtain that $D|((p+1)/u_p)$ and $D|a_p$.

Let W_1 and W_2 denote completions of W_1 and W_2 ; V_w coincides with \mathcal{K} , the completion of K, and $G(W_1/\mathcal{K}) \subset H_1$ is generated by g_1^2 , where g_1 is the restriction of g to W_1 . We note that $g_1^2 = \sigma \eta_1 \sigma \eta_1 = \eta_1^{\sigma} \eta_1$. Analogously, $G(W_2/\mathcal{K}) \subset H_2$ is generated by $\eta_2^{\sigma} \eta_2$. But $W_1 = \mathcal{K}(Q_1)$, where $DQ_1 = P \in E(\mathcal{K})$ and $s = P \pmod{DE(\mathcal{K})}$; also $W_2 = \mathcal{K}(Q_2)$, where $DQ_2 = x_K$. Therefore $G(W_1/\mathcal{K})$ is isomorphic to the subgroup generated by s in $E(\mathcal{K})/D$, and $G(W_2/\mathcal{K})$ is isomorphic to the subgroup generated by x_K in $E(\mathcal{K})/D$. According to Proposition 9, $\exists \alpha, \beta$ such that $\alpha + \beta$ satisfies the hypothesis of Proposition 10, l^{α} annihilates $G(W_1/\mathcal{K})$, and l^{β} annihilates $G(W_2/\mathcal{K})$. This completes the proof of Proposition 10.

Lemma 1. Let A, B, and C be groups, and let $\varphi_1: A \to B$ and $\varphi_2: A \to C$ be homomorphisms, where $\varphi_1(A)$ and $\varphi_2(A)$ are abelian groups. Assume that $\forall a \in A \exists \alpha, \beta \in \mathbb{Z}_+$ such that $\alpha + \beta \leq n$ and $l^{\alpha}\varphi_1(a) = l^{\beta}\varphi_2(a) = 0$. Then $\exists \alpha, \beta \in \mathbb{Z}_+$ such that $\alpha + \beta \leq n$ and, for all $a \in A$, $l^{\alpha}\varphi_1(a) = l^{\beta}\varphi_2(a) = 0$.

PROOF. We shall prove the lemma by induction on n. Suppose n=1. Let $A_1=\ker(\varphi_1)$ and $A_2=\ker(\varphi_2)$. By hypothesis $A=A_1\cup A_2$. We must show that $A_1=A$ or $A_2=A$. We assume that this is not so. Then A_1 and A_2 are proper subgroups of A. Since $A=A_1\cup A_2$, neither of the groups A_1 and A_2 is contained in the other. Hence, $\exists a_1\in A_1, a_1\notin A_2$, and $\exists a_2\in A_2, a_2\notin A_1$. Then $a_1=a_2\notin A_1\cup A_2$ is a

contradiction. Let n=m>1. For $\varphi_1'=l^{m-1}\varphi_1$ and $\varphi_2'=l^{m-1}\varphi_2$ we can apply the lemma for n=1. For example, let $l^{m-1}\varphi_1(A)=0$. We consider the homomorphisms $\varphi_1'=\varphi_1$ and $\varphi_2'=l\varphi_2$. We shall show that the conditions of the lemma hold with n=m-1. In fact, if $\varphi_2(a)=0$, then we can set $\alpha(a)=m-1$ and $\beta(a)=0$, since $l^{m-1}\varphi_1(a)=0$. If $\varphi_2(a)\neq 0$, then by the hypothesis $\exists \alpha'(a), \beta'(a)\geq 1$ such that $l^{\alpha'(a)}\varphi_1(a)=l^{\beta'(a)}\varphi_2(a)=0$. Then we set $\alpha(a)=\alpha'(a)$ and $\beta(a)=\beta'(a)-1$. By induction $\exists \alpha', \beta'$ such that $\alpha'+\beta'\leq m-1$ and $l^{\alpha'}\varphi_1(A)=l^{\beta'}l\varphi_2(A)=0$. Then we set $\alpha=\alpha'$ and $\beta=\beta'+1$.

From Lemma 1 and Proposition 10 we get

PROPOSITION 11. $\exists \alpha, \beta \in \mathbb{Z}_+$ such that $\alpha + \beta \leq n$ if $l \neq 2$, $\alpha + \beta \leq n + 2$ if l = 2, and, for all $\eta \in H$, $(\eta_1^{\sigma} \eta_1)^{\alpha} = 1$ and $(\eta_2^{\sigma} \eta_2)^{\beta} = 1$, where η_j is the restriction of η to H_j .

Since $s_1^{\sigma} = s_1$ and $s_2^{\sigma} = -s_2$, we have $s_1(\eta_1^{\sigma}) = \sigma(s_1(\eta_1))$ and $s_2(\eta_2^{\sigma}) = -\sigma(s_2(\eta_2))$. Therefore we have

COROLLARY 5. $\exists \alpha, \beta \in \mathbb{Z}_+$ such that $\alpha + \beta \leq n$ if $l \neq 2$, $\alpha + \beta \leq n + 2$ if l = 2, and l^{α} annihilates $(\sigma + 1)\Lambda_1$ and l^{β} annihilates $(1 - \sigma)\Lambda_2$.

PROPOSITION 12. $\exists \alpha, \beta \in \mathbb{Z}_+$ such that $\alpha + \beta \leq n + 2m_{1l} + 2\delta_l + 2\delta'_l + 2m_{5l}$ and l^{α} annihilates Λ_1 , while l^{β} annihilates Λ_2 .

PROOF. Let α' and β' be the same as in Corollary 5. Obviously we may assume that $\alpha' \leq n$ and $\beta' \leq n$. Let $\Lambda'_1 \subset E_{l^{n-n'}}$ be the image of Λ_1 under the homomorphism of multiplication by $l^{\alpha'}$, and let $\Lambda'_2 \subset E_{l^{n-\beta'}}$ be the image of Λ_2 under the homomorphism of multiplication by $l^{\beta'}$. We consider $G_{l^n} = G(K'(E_{l^n})/K')$ as a subgroup of $GL_2(\mathbf{Z}/l^n)$ or $(\mathscr{O}/l^n)^*$ if $End(E) = \mathbf{Z}$ or \mathscr{O} respectively. Here \mathscr{O} is an order in an imaginary quadratic extension k/Q. If A is a σ -module, then by A_+ and A_- we denote the kernel of $\sigma - 1$ and $\sigma + 1$, respectively. From Corollary 5 it follows that $\Lambda'_1 \subset (E_{l^{n-\alpha'}})_-$ and $\Lambda'_2 \subset (E_{l^{n-\beta'}})_+$. Moreover, Λ'_1 and Λ'_2 are G_{l^n} -invariant (since W_1/K' and W_2/K' are Galois extensions).

LEMMA 2. Let $e \in E_{l^m}$ be such that the G_{l^m} -orbit of e belongs to $(E_{l^m})_-$ or $(E_{l^m})_+$. Then $l^{\lambda}e = 0$, where $\lambda = m_{1l} + m_{5l} + \delta'_l$.

PROOF OF LEMMA 2. If $m \le m_{1l}$, then the assertion is trivial. Suppose $m > m_{1l}$. We consider first the case when $m_{1l} = 0$. Then, by definition, $G_{l^m} = \operatorname{GL}_2(\mathbb{Z}/l^m)$ or $(\mathscr{O}/l^m)^*$ and if l = 2, then either $\operatorname{End}(E) = \mathbb{Z}$ or $\operatorname{End}(E) = \mathscr{O}$ and 2 divides the discriminant $\Delta(\mathscr{O})$ of the order \mathscr{O} or remains prime in k. We shall show that in all these cases the linear hull of G_{l^m} is $M_2(\mathbb{Z}/l^m)$ or \mathscr{O}/l^m respectively. It suffices to verify this for m = 1. Suppose $\operatorname{End}(E) = \mathbb{Z}$. We have

$$GL_{2}(\mathbb{Z}/l) = M_{2}(\mathbb{Z}/l) \setminus \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| (ad - bc) = 0 \right\};$$

$$\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| (ad - bc) = 0 \right\} = \left\{ \begin{pmatrix} 0 & 0 \\ c & d \end{pmatrix}; \begin{pmatrix} 0 & b \\ 0 & d \end{pmatrix}; \begin{pmatrix} a & b \\ c & (bc)/a \end{pmatrix}, a \neq 0 \right\}$$

and has order $2l^2 - l + (l-1)l^2 = l^3 + l^2 - l$. Hence $GL_2(\mathbb{Z}/l)$ contains $l^4 - l^3 - l^2 + l$ elements. Since $l^4 - l^3 - l^2 + l > l^3$ for l > 2, the linear hull of $GL_2(\mathbb{Z}/l)$ is $M_2(\mathbb{Z}/l)$ for l > 2. If l = 2, this is verified directly.

Suppose End(E) = $\mathscr{O} = \mathbb{Z} + cO_k$, where $O_k = [1, \tau]$ is the ring of integers of k. Suppose $l \nmid \Delta(\mathscr{O})$. Then $|(\mathscr{O}/l)^*| = l^2 - 1 > l$ if $\left(\frac{l}{k}\right) = -1$. Hence, the linear hull

of $(\mathcal{O}/l)^*$ is \mathcal{O}/l . If $\binom{l}{k} = 1$, then $|(\mathcal{O}/l)^*| = (l-1)^2 > l$ since l > 2 in this case by hypothesis. Hence, the linear hull of $(\mathcal{O}/l)^*$ is \mathcal{O}/l . Suppose $l \mid \Delta(\mathcal{O})$. Then $|(\mathcal{O}/l)^*| = l^2 - 1 > l$ if l > 2. If l = 2, then $(\mathcal{O}/2)^*$ consists of the classes 1 and $1 + c\tau$ or τ , which are linearly independent in $\mathcal{O}/2$. Hence, again the linear hull of $(\mathcal{O}/2)^*$ is equal to $\mathcal{O}/2$. Since, by the definition of m_{1l} , for $m_{1l} > 0$

$$G_{l^m} \supset 1 + l^{m_{ll}} M_2(\mathbb{Z}/l^m), \quad G_{l^m} \supset 1 + l^{m_{ll}} (\mathcal{O}/l^m),$$

when $\operatorname{End}(E) = \operatorname{Z}$ or \mathscr{O} , the linear hull of G_{l^m} obviously always contains $l^{m_{ll}}M_2(\mathbb{Z}/l^m)$ or $l^{m_{ll}}(\mathscr{O}/l^m)$, respectively. Therefore Lemma 2 will follow from Lemma 3.

LEMMA 3. Let $e \in E_{l^m}$ be such that the $M_2(\mathbb{Z}/l^m)(\mathscr{O}/l^m)$ -orbit of e belongs to $(E_{l^m})_-$ or $(E_{l^m})_+$. Then $l^{\lambda}e=0$, where $\lambda=m_{5l}+\delta'_i$.

PROOF OF LEMMA 3. First we consider the case when $\operatorname{End}(E) = \mathbb{Z}$. Then $M_2(\mathbb{Z}/l^m)e = E_\mu$, where $\lambda \in \mathbb{Z}_+$ is the least such that $l^\lambda e = 0$. Hence, either $E_\mu = (E_\mu)_-$ or $E_\mu = (E_\mu)_+$. Since σ is represented in $\operatorname{GL}_2(\mathbb{Z}/l^\lambda)$ by a matrix with determinant -1, then $(-1) \equiv 1 \pmod{l^\lambda}$. Hence $\lambda = 0$ if $l \neq 2$. If l = 2, then obviously $\lambda = 0$ if σ acts nontrivially on E_2 (i.e., $E_{2+} = E_{2-} \neq E_2$), and $\lambda \leq 1$ otherwise. Thus, Lemmas 2 and 3 are proved in the case $\operatorname{End}(E) = \mathbb{Z}$. We now consider the case $\operatorname{End}(E) = \mathcal{O} = \mathbb{Z} + cO_k$, $O_k = [1,\tau]$; $E_{l^m} = (\mathcal{O}/l^m)e_m$, where e_m is the generator of E_{l^m} as an \mathcal{O}/l^m -module; $\sigma(e_m) = \alpha e_m$, where $\alpha \alpha^\sigma = 1$ in \mathcal{O}/l^m . Suppose $e = be_m$. By hypothesis $(\sigma \pm 1)e = 0$ and $(\sigma \pm 1)(c\tau e) = 0$. Hence, $b^\sigma \alpha \pm b = 0$ and $c(\tau^\sigma b^\sigma \alpha \pm \tau b) = 0$. From this, $b^\sigma \alpha = \mp b$ and $bc(\tau^\sigma - \tau) = 0$. If b_1 is a representative of b in \mathcal{O} , then we have $b_1 c(\tau^\sigma - \tau) = l^m y$, where $y \in \mathcal{O}$. Hence,

$$b_1 = l^m (1/(c(\tau^{\sigma} - \tau)))y = l^m (c(\tau^{\sigma} - \tau)y)/(c^2(\tau^{\sigma} - \tau)^2) = (l^m/\Delta(\mathcal{O}))z,$$

where $z \in \mathcal{O}$. Here $\Delta(\mathcal{O}) = c^2 \Delta(\mathcal{O}_k)$ is the discriminant of the ring \mathcal{O} . In fact, if $t^2 + At + B = 0$, then

$$(\tau^{\sigma} - \tau)^{2} = (\tau^{\sigma})^{2} - 2\tau^{\sigma}\tau + \tau^{2} = -A\tau^{\sigma} - B - 2B - A\tau - B$$
$$= A(-\tau - \tau^{\sigma}) - 4B = A^{2} - 4B = \Delta(O_{k}).$$

Since by definition $\Delta(\mathcal{O}) = l^{m_M} r$, (r, l) = 1, obviously $l^{m_M} e = 0$. This proves Lemmas 2 and 3.

Applying Lemma 2, we obtain that $l^{m_{1l}+m_{3l}+\delta'_l}\Lambda'_1=0$ and $l^{m_{1l}+m_{3l}+\delta'_l}\Lambda'_2=0$. We set $\alpha=\alpha'+m_{1l}+m_{5l}+\delta'_l$ and $\beta=\beta'+m_{1l}+m_{5l}+\delta'_l$. Then $l^{\alpha}\Lambda_1=0$, $l^{\beta}\Lambda_2=0$, and

$$\alpha + \beta = \alpha' + \beta' + 2m_{11} + 2m_{51} + 2\delta'_{1} \le n + 2m_{11} + 2m_{51} + 2\delta_{1} + 2\delta'_{1}.$$

Proposition 12 is proved.

We complete the proof of the theorem. From the definition of m_{2l} , δ_l'' , and δ_l''' it follows that if l^{α} annihilates s in $H^1(V, E_D)$, then $l^{\alpha+m_{2l}+\delta_l''+\delta_l'''}$ annihilates s in $S_D=S_D(Q)$. Analogously, if l^{β} annihilates x_K in $H^1(V, E_D)$, then $l^{\beta+m_{2l}+\delta_l'''}$ annihilates x_K in $S_D(K)$. By the definition of $\varepsilon_l(n)$, $\beta+m_{2l}+\delta_l'''\geq \varepsilon_l(n)$. Since $\alpha+\beta\leq n+2m_{1l}+2\delta_l+2\delta_l'+2m_{5l}$, we have

$$\alpha + m_{2l} + \delta_{l}'' + \delta_{l}''' \leq n - (\beta + m_{2l} + \delta_{l}''') + 2m_{1l} + 2m_{2l} + 2\delta_{l} + 2\delta_{l}'' + \delta_{l}'' + 2\delta_{l}''' + 2m_{5l}$$
$$\leq n - \varepsilon_{l}(n) + m_{l},$$

which completes the proof of Theorem 1.

BIBLIOGRAPHY

- 1. J. Coates and A. Wiles, On the conjecture of Birch and Swinnerton-Dyer, Invent. Math. 39 (1977), 223-251.
- 2. Benedict H. Gross and Don B. Zagier, Heegner points and derivatives of L-series, Invent. Math. 84 (1986), 225-320.
 - 3. B. Mazur and P. Swinnerton-Dyer, Arithmetic of Weil curves, Invent. Math. 25 (1974), 1-61.
- 4. Bernadette Perrin-Riou, Points de Heegner et dérivées de fonctions L p-adiques, C. R. Acad. Sci. Paris Sér. 1 Math. 303 (1986), 165-168.
- 5. Gorô Shimura, Introduction to the arithmetic theory of automorphic functions, Princeton Univ. Press, Princeton, N.J., and Univ. of Tokyo Press, Tokyo, 1971.
 - 6. John T. Tate, The arithmetic of elliptic curves, Invent Math. 23 (1974), 179-206.
- 7. J. W. S. Cassels and A. Fröhlich (editors), Algebraic number theory (Proc. Instructional Conf., Brighton, 1965), Academic Press, London, and Thompson, Washington, D.C., 1967.
- 8. M. I. Bashmakov, Cohomology of abelian varieties over a number field, Uspekhi Mat. Nauk 27 (1972), no. 6(168), 25-66; English transl, in Russian Math. Surveys 27 (1972).
 - 9. H. Koch, Galoissche Theorie der p-Erweiterungen, Springer-Verlag, 1970.
- 10. Yu. I. Manin, Cyclotomic fields and modular curves, Uspekhi Mat. Nauk 26 (1971), no. 6(162). 7-71; English transl. in Russian Math. Surveys 26 (1971).
 - 11. B. Mazur, On the arithmetic of special values of L-functions, Invent. Math. 55 (1979). 207-240.

Translated by J. S. JOEL