
Computing modular curves via quaternionsDavid R. KohelNational University of SingaporeJanuary 1997Based on a talk given at the Fourth CANT ConferenceNumber Theory and CryptographyUniversity of Sydney, 3-5 December 1997.x1: Introduction.Modular curves are of central interest for both the theoretical and compu-tational investigation of elliptic curves. In the course of proving Fermat's \LastTheorem", Wiles [18] and Taylor{Wiles [17] established that a large class ofelliptic curves are parameterized by a modular curve. Cremona has developede�ective algorithms and performed extensive computations of these parametriza-tions [3]. In a di�erent direction, Elkies [7] has used explicit models for modularcurves to make signi�cant practical improvements to a theoretical polynomialtime algorithm of Schoof [15] for computing the trace of Frobenius on an ellipticcurve over a �nite �eld. This has made it possible to compute the number ofpoints on elliptic curves over �nite �elds whose cardinality measures hundredsof decimal digits [10]. In order to apply this algorithm, one must precompute alarge number of explicit models for modular curves.One approach to the problem of computing models for modular curves is toproduce a basis for the space of weight two cusp forms. Such forms correspondto di�erentials on the curve, by which one can construct the canonical mor-phism to projective space. When a curve is of genus greater than two and nothyperelliptic, the canonical morphism is an embedding and gives a nonsingularmodel for the curve.For the purposes of computation, it serves to have the additional informa-tion of the Hecke module structure on di�erentials. This gives informationon the decomposition of the Jacobian and on curves covered by the modularcurve. In particular, we exploit the explicit action of the canonical involutionto decompose the cusp forms into invariant and anti-invariant eigenspaces. Theinvestigation of parametrizations of curves of higher genus is aided by a Heckemodule decomposition of the space of di�erentials.It will be the purpose of this article to discuss certain isomorphisms of Heckemodules, de�ned in very di�erent contexts, and to describe isomorphisms amongthem. The relation between supersingular elliptic curves and the ideal theoryin a quaternion algebra appears in the classical work of Deuring [4], which inthe modern theory is properly stated as an equivalence of categories. The basisproblem of Eichler [5] provides the means of relating the ideal theory to mod-ular forms. Using this theory Pizer [12] describes an algorithm for computing1



modular forms. The method of graphs of Oesterl�e and Mestre [9] rephrases thetheory of quaternion ideals in terms of supersingular elliptic curves. This givesan intuitive method for relating the Hecke module, de�ned as a subgroup of thedivisor group of a modular curve, with the space of modular forms of weight two.In this work they express the Hecke operator T (n) in terms of the adjacencyoperator of a graph of supersingular elliptic curves. Via the above mentionedequivalence of categories, the ideas of Oesterl�e and Mestre translate into thecomputationally simpler world of the ideal theory of a quaternion algebra. Us-ing a method which is in essence that of Pizer [12], one can compute an arrayof quadratic forms determining the Brandt morphism. For any n, the Heckeoperator T (n) can be extracted as the Brandt matrix of n-th representationnumbers of these quadratic forms.In section two, we discuss quaternion algebras and their ideal theory, andfollow in section three with a discussion of the equivalence between supersingularelliptic curves and certain ideals over a maximal order. In section four we recallthe main ideas of the method of graphs of Mestre and Oesterl�e. Section �veintroduces the Brandt morphism, given in terms of the Brandt matrix of thetafunctions for quadratic forms associated to the module of homomorphisms of abasis of ideals. We conclude with a discussion in section six of the computationalaspects of computing modular curves using the ideal theory of quaternions.As an appendix to this article we give a table of characteristic polynomi-als of the Hecke operators, which su�ce to determine the decomposition of theJacobian of corresponding modular curve. We further give examples of com-putations of the ring of modular functions, combining several ideas from thearticle of Elkies [7]. For any given level, one can make improvements to thisapproach. A signi�cant advantage, however, is that this approach is systematic,thus suitable for implementation or for proving bounds for the computationalcomplexity. x2: Quaternion algebras over Q .A quaternion algebra A over Q is a central simple algebra of dimension fourover Q. The number theory of these algebras is analogous to that of number�elds. In particular we have an noncommutative theory for each of the followingobjects and concepts from commutative number theory.1. Maximal orders. There exist in�nitely many maximal orders of any quater-nion algebra, however they fall in �nitely many isomorphism classes.2. Ideal theory. We can study the one-sided and two-sided ideals of a givenmaximal order in a quaternion algebra. Again, these fall into �nitely manyclasses.3. Rami�cation and splitting. The quaternion algebra A is said to split atthe rational prime l if Al = A 
 Ql is isomorphic to M 2 (Ql ). Otherwise2



A is said to ramify at l and Al is a division algebra. Likewise A is said tosplit or ramify at in�nity if A
R is a matrix algebra or a division algebra.Quaternion algebras are analogous to quadratic extensions of Q. In factthe analogy goes further: every element x of A not in the center generates aquadratic extension of Q.Example 1. The matrix algebra M 2 (Q) is a quaternion algebra, which we callthe split quaternion algebra over Q. Let x be the element� 1 00 0 � ;and set K = Q[x]. Then K is isomorphic to the ring Q[X ]=(X2 � X). Everymaximal order is conjugate to the order M 2 (Z).Example 2. Let A = Q + Qi + Qj + Qk be the quaternion algebra de�ned bythe relations i2 = j2 = �1; k = ij = �ji:Then A rami�es at 2 and at in�nity, and O = Z+ Zi+ Zj + Z!, where ! =(1 + i+ j + k)=2, is the unique maximal order up to isomorphism.x3: Supersingular elliptic curves.Let k be an algebraically closed �eld of characteristic l. An elliptic curve Eis supersingular if and only if its endomorphism ring O = End(E) is an orderin a quaternion algebra. Moreover, A = O 
 Q is rami�ed at l and at in�nity,and O is a maximal order in A.Let E be a �xed supersingular elliptic curves over k. Then the map F 7�!Hom(E;F ) determines a bijection of the set of isomorphism classes of supersin-gular elliptic curves with the isomorphism classes of locally free rank one rightO-modules. This is properly stated as an equivalence of categories as follows.Theorem 1 Let k be an algebraic closure of a �nite �eld, let S be the categoryof supersingular elliptic curves over k, and let E be an object in S. Then thefunctor HomS(E;�) to the category of locally free rank one right modules overO = End(E) is an equivalence of categories.Consequences. We note a few consequences of the theorem.1. Under the equivalence, isogenies of elliptic curves correspond to nonzeroO-module homomorphisms. Isomorphism of objects is functorial, thusthe �nite set of isomorphism classes in each category are in bijective cor-respondence. 3



2. Given any right O-module of the form Hom(E;F ) we can choose anyelement '. Then the dual determines an embeddingb' : Hom(E;F ) �! O = End(E);as an ideal of O. By the equivalence of categories every locally free rankone right module over O is isomorphic to one of the form Hom(E;F ) andall of its embeddings in O are determined in this way.3. The degree of a morphism ' : I �! J of right O-modules is de�ned, whichwe refer to as the norm N(') in the category I. The norm may be de�nedlocally or as the squareroot of jJ='I j.4. For �nite extensions k=Fl the functor F 7�! (Hom(E;F ); ��), where �is the Frobenius morphism, gives an equivalence of supersingular ellipticcurves over k with an appropriately de�ned category of pairs.5. One can de�ne the j-invariant of an ideal I . To make the latter well-de�ned, we must specify an orientation O �! k as described in Ribet [13].An orientation is a homorphism to k, with the kernel equal to the uniqueprime ideal containing p. The image is a quadratic extension over theprime �eld, in which the j-invariant of I lies.6. In its full generality, we take a category of supersingular elliptic curveswith level N -structure and ideals of an Eichler order of index N in themaximal order.In terms of computations, the two categories are quite di�erent. The j-invariant of an elliptic curve is trivial to compute, while the endomorphism ringand isogenies are generally di�cult. In contrast, determining homomorphismsand the endomorphism ring is easy for ideals, and determining the j-invariantof an O-ideal is presumably of comparable di�culty to that of determining thej-invariant modulo l of a binary quadratic lattice.x4: Method of graphs.Following Mestre [9] we associate a graph to a set S of representatives of theisomorphism classes of S. Fix an integer n. Let S be the set of vertices and letthe edges E be the isogenies ' : E �! F of degree n with cyclic kernel, up toisomophism of F . De�neE i� t - S � S' - (i('); t(')) = (E;F )This de�nes a directed multigraph. For an edge ' : E �! F the curve E = i(')is called the initial vertex, and F = t(') is called the terminal vertex.4



For a prime n = p, the number of edges with initial vertex E are p + 1 innumber, in bijection with the p + 1 cyclic subgroups of E[p] = Z=pZ� Z=pZ.Due to automorphisms of E, fewer edges may terminate at E.Example. Let l = 37. There are three supersingular elliptic curves over thealgebraic closure of F37 . Since none of these curves has automorphisms grouplarger than f�1g, we can view the graph as undirected. For p = 2, we have thegraph:
rr r

Up to isomorphism there is exactly one supersingular elliptic curve de�ned overthe prime �eld, and two curves, one conjugate to the other, de�ned over aquadratic extension. The necessary 3-regularity of the graph and the auto-morphism induced by the Frobenius morphism completely determine the abovegraph of 2-isogenies. The adjacency matrix of the graph is the matrixT (2) = 0@ 1 1 11 0 21 2 0 1A ;with characteristic polynomial (X � 3)(X + 2)X . We will see that T (2) can beinterpretted as a Hecke operator on the space M2(�0(37);Q) of modular formsof weight two for �0(37). The rational roots of the characteristic polynomial forT (2) imply that the Jacobian of the modular curve X0(37) splits as a productof elliptic curves over Q.We construct a Hecke module associated to a graph of n-isogenies as follows.Let M be the free abelian group with basis S. De�ne T (n) : M �! M to bethe adjacency operator on M:T (n)E = X'2i�1(E)t('):We de�ne T (n) to be the n-th Hecke operator on M. De�ne an inner producton M by hE;F i = � jAut(E)j if E = F;0 otherwise;extending by linearity. Then T (n) is self-adjoint with respect to the inner prod-uct: hE; T (n)F i = hT (n)E;F i;5



and this number equals the count of cyclic isogenies of degree p from E to F .De�ne an operator A(n) by A(n) = Xr2m=nT (m);the adjacency operator of the graph of all n-isogenies.In terms of the basis S = fEig for M, the operators T (n) and A(n) havematrix representations where jAut(Ej)jA(n)[i; j] is the number of isogenies ofdegree n from Ei to Ej .For all relatively prime integers n and m, we obtain T (n)T (m) = T (nm),and T (n)D is a symmetric matrix, where D is the diagonal matrix with entriesD[i; i] = jAut(Ei)j. The operators A(n) satisfy the relationsA(np2) = A(p)A(np) � pA(n):The Hecke algebra T is de�ned to be the algebra over Q generated by theoperators T (n). x5: Brandt morphism.Let MQ =M
 Q. We de�ne the Brandt morphism� :MQ �MQ �!M2(�0(l);Q)by �(E;F ) = P qdeg' = PhA(n)E;F iqn, where the �rst sum is over all ele-ments ' of Hom(E;F ), then extending � linearly to MQ. That the images liesin M2(�0(l);Q) is a well-known result for theta functions [14]. Eichler proved,as part of his work on the basis problem [5], that MQ and M2(�0(l);Q) areisomorphic as Hecke modules. We state this result in the form of the followingtheorem.Theorem 2 The map T (n) 7�! T2(n) of Hecke operators de�nes an isomor-phism of Hecke algebras onMQ and M 2 (�0(l);Q) such that the Brandt morphism� is a nondegenerate Hecke bilinear map:�(T (n)E;F ) = �(E; T (n)F ) = T2(n)�(E;F );and such that the traces of T (n) on MQ and T2(n) on M2(�0(l);Q) agree.We compute the Brandt morphism as follows. The degree mapdeg : HomS(F1; F2) �! Zis a quadratic map: deg(n') = n2 deg('), and by means of a choice of ba-sis, gives a quadratic form. By the equivalence of categories of Theorem 1,6



we can identify the module HomS(F1; F2) with a module HomO(I1; I2) of O-homomorphisms of ideals. For a choice of basis we call the associated quadraticform the norm form.Example. Let O = Z+ Zi+ Zj + Z!, de�ned above. O is a right principalideal ring, thus any right ideal I is isomorphic to O itself, and the ring of O-endomorphisms of I is isomorphic to O, acting by left multiplication. In theabove basis, the norm form is given byN(x1 + x2i+ x3j + x4!) = f(x1; x2; x3; x4)= x21 + x22 + x23 + (x1 + x2 + x3 + x4)x4:We represent a quadratic form f by its Gram matrix M . In this case we writef as the product:f(x1; x2; x3; x4) = 12XMXt = 12X 264 2 0 0 10 2 0 10 0 2 11 1 1 2 375Xt;where X = (x1; x2; x3; x4). Therefore the series P'2O qN(') is equal to thetheta series Xx1;:::;x4 qf(x1;x2;x3;x4) =Xn anqn;where an is the n-th representation number of f . For the above example, weobtain the Eisenstein series�(q) = 1 + 24(q + q2 + 4q3 + q4 + 6q5 + 4q6 + 8q7 + q8 + 13q9 + 6q10 + � � � )which generates the module M2(�0(2);Q).In the previous example the Hecke operator T (2) acted on M2(�0(37);Z)with characteristic polynomial (X � 3)(X + 2)X . The eigenspace of 3 is thatgenerated by the Eisenstein series, and the eigenspaces of the eigenvalues �2and 0 are rational cusp forms, each de�ning an isogeny class of modular ellipticcurves over Q.x6: Computational aspects of modular curves.The modular curveX0(l) has a singular model �l(j; jl) = 0 based on the mapX0(l) �! X(1)�X(1) taking a moduli point for the isogeny ' : E �! F to thepair (j(E); j(F )). There exists a Fricke or canonical involution wl : X0(l) �!X0(l) which takes ' to its dual, b', determining the involution (j; jl) 7�! (jl; j)on the singular model.It is often convenient to compute �rst X+0 (l) = X0(l)=wl, a curve of genusat most one half that of X0(l). The modular functions on X+0 (l) are just thosefunctions on X0(l) invariant under wl. Moreover, by means of a decomposition7



of modular functions into invariant and anti-invariant spaces under wl, the orderof the poles at each cusp coincide, so relations between functions can be reducedto linear algebra on the Fourier expansions around the single cusp at 1.The morphism X0(l) �! X+0 (l) has degree 2 and is rami�ed precisely atthe points of complex multiplication by an order of discriminant �l, �2l, or�4l. Thus there are precisely R = h(�l)+h(�2l)+h(�4l) rami�cation points,where h(D) is the class number of an order of discriminant D, when such anorder exists, or zero otherwise. By the Riemann-Hurwitz formula, we obtaing+0 (l) = g0(l) + 1�R=22 ;where g0(l) is the genus of X0(l) and g+0 (l) is the genus of X+0 (l). Moreover,R=2 is the number of supersingular elliptic curves which can be de�ned over Fland dimM2(�0(l);Q) = g0(l) + 1 is the total number.For the �nitely many curves for which g+0 (l) equals 0, we can compute aHauptmodul for X+0 (l), then obtain the function �eld of X0(l) as a quadraticextension by a function anti-invariant under wl. We will thus focus on methodsapplicable as g+0 (l) and g0(l) grow large.Let ff1; : : : ; fgg be a basis for the space S2(�0(l);Q) of cusp forms. Thenwe de�ne the canonical morphism to projective space byX0(l) - Pg�1:Q - (f1(Q) : � � � : fg(Q))When X0(l) is nonhyperelliptic of genus greater than two, the canonical mor-phism is an embedding. In practice we will take a special subset of a basis forS2(�0(l);Q), consisting of forms with prescribed zeros at 1. We treat somespeci�c examples in Appendix II.In order to e�ciently compute S2(�0(l);Q) and its subspaces of invariant andanti-invariant forms, we will make a detailed study of the Brandt morphism andthe decomposition ofMQ. We begin with the following corollaries of Theorem 2.Corollary 3 Let U be a Hecke submodule of MQ. Then the orthogonal decom-position MQ = U � V is a decomposition of Hecke modules. Moreover, v lies inV if and only if �(u; v) = 0 for all u in U .Proof. Let u 2 U and v 2 V , and let T lie in T. Since Tu 2 U , we havehu; Tvi = hTu; vi = 0, so Tv lies in V . Since the T (n) span T as a Q vector space,the latter statement is clear from examination of the coe�cients of �(u; v) =PnhT (n)u; viqn. �Corollary 4 �(�; v) :MQ �!M2(�0(l);Q) is an isomorphism of Hecke mod-ules if and only if v is not contained in any proper T-submodule of MQ.8



Proof. By Theorem 2 the map �(�; v) is a homomorphism of Hecke modules,and by the last statement of Corollary 3 it follows that �(�; v) is injective ifand only if v lies in no proper Hecke submodule. It remains only to show that�(�; v) is surjective when Tv =MQ. By the trace condition of Theorem 2,dimMQ = Tr(T (1)) = Tr(T2(1)) = dimM2(�0(l);Q);so � is surjective. Let u and w lie in MQ, and write w = Tv. Then �(u;w) =�(u; Tv) = �(Tu; v), so the image of �(�; v) is all of M2(�0(l);Q). �MQ has a decomposition as EQ � SQ, where EQ is the Eisenstein space gen-erated by E = XE2S jAut(E)j�1E;and the cusp space SQ is the orthogonal complement fPaEE :P aE = 0g.From Pizer [11] we know that the canonical involution wl acts as �T (l) onM, thus we also have a decompositionMQ =M+Q�M�Q , where dimM+Q = g+0 (l)and dimM�Q = g0(l)� g+0 (l)+1. The canonical involution acts by sending E to�E�, where � is the Frobenius automorphism, and E� is the representative inS of the curve �-conjugate to E. Thus the spacesM+Q andM�Q are spanned byfE �E� : E 2 Sg and fE +E� : E 2 Sg, respectively.By taking the intersection with the previous decomposition, we obtain anorthogonal decomposition MQ = EQ � S+Q � S�Q , where S+Q = M+Q . Note thatS+Q is the kernel of T (l) + 1 and S�Q is the kernel of T (l)� 1 on SQ. MoreoverT (p) has eigenvalue p+ 1 on EQ for all primes p 6= l and eigenvalue 1 for p = l.Since each such space is de�ned as the kernel of certain Hecke operators, so isthe image. We thus have the following corollary.Corollary 5 Let v 2 MQ. Then �(EQ; v), �(S+Q ; v), and �(S�Q ; v), are con-tained in the space of Eisenstein series, invariant cusp forms, and anti-invariantcusp forms, respectively.It is clear from Corollary 4 that for general v, equality will hold with therespective image space. We can thus exploit the structure ofMQ to decomposethe Hecke module before mapping to the respective submodules ofM2(�0(l);Q).Remark. A supersingular elliptic curve E is S lies in M�Q whenever E can bede�ned over the prime �eld. This is the basis of the observation of Pizer [12,Remark 2:16] that in the matrix of � with respect to the basis S, not every rowor column can span M2(�0(l);Q).Using the equivalence of categories of Theorem 1 we �nd a basis for M interms of right ideal classes for a �xed maximal orderO in the quaternion algebrarami�ed at l and 1. For each pair (I; J), we determine the reduced quadraticnorm form of the module HomO(I; J) = JI�1. For the resulting positive de�nitequaternary quadratic forms overZ there exits a unique reduced form. Beginning9



with the ideal O, we construct a basis forM, by choosing neighboring ideals inthe graph of homormorphisms of small degree, in analogy with elliptic curves.For two ideals ideals I and J we test for identity via the reduced Gram matrixof HomO(I; J).By means of an implementation of the arithmetic of quaternion algebrasusing the computer algebra package Magma V 2.3 [1] we have computed theHecke module of modular forms of weight two and small level. For instance,for prime level 73, the array of reduced Gram matrices of the ideal forms is thefollowing.266666666666666666666666666666666666666666666666666664

2664 2 1 0 01 4 2 10 2 22 110 1 11 42 3775 2664 4 2 2 12 8 3 �22 3 12 51 �2 5 22 3775 2664 6 2 3 �12 8 3 43 3 12 4�1 4 4 16 3775 2664 6 2 3 �12 8 3 43 3 12 4�1 4 4 16 3775 2664 6 2 �1 02 10 4 3�1 4 10 40 3 4 14 3775 2664 6 2 �1 02 10 4 3�1 4 10 40 3 4 14 37752664 4 2 2 12 8 3 �22 3 12 51 �2 5 22 3775 2664 2 1 0 01 6 2 10 2 14 70 1 7 40 3775 2664 4 1 �1 01 8 4 3�1 4 12 40 3 4 20 3775 2664 4 1 �1 01 8 4 3�1 4 12 40 3 4 20 3775 2664 6 1 2 �21 8 0 �32 0 10 1�2 �3 1 14 3775 2664 6 1 2 �21 8 0 �32 0 10 1�2 �3 1 14 37752664 6 2 3 �12 8 3 43 3 12 4�1 4 4 16 3775 2664 4 1 �1 01 8 4 3�1 4 12 40 3 4 20 3775 2664 2 0 1 00 10 3 �11 3 16 70 �1 7 22 3775 2664 4 2 1 12 6 2 31 2 8 11 3 1 38 3775 2664 4 1 �1 11 10 2 3�1 2 12 61 3 6 16 3775 2664 6 3 1 �23 8 2 11 2 8 2�2 1 2 20 37752664 6 2 3 �12 8 3 43 3 12 4�1 4 4 16 3775 2664 4 1 �1 01 8 4 3�1 4 12 40 3 4 20 3775 2664 4 2 1 12 6 2 31 2 8 11 3 1 38 3775 2664 2 0 1 00 10 3 �11 3 16 70 �1 7 22 3775 2664 6 3 1 �23 8 2 11 2 8 2�2 1 2 20 3775 2664 4 1 �1 11 10 2 3�1 2 12 61 3 6 16 37752664 6 2 �1 02 10 4 3�1 4 10 40 3 4 14 3775 2664 6 1 2 �21 8 0 �32 0 10 1�2 �3 1 14 3775 2664 4 1 �1 11 10 2 3�1 2 12 61 3 6 16 3775 2664 6 3 1 �23 8 2 11 2 8 2�2 1 2 20 3775 2664 2 1 0 11 8 2 10 2 20 51 1 5 20 3775 2664 4 1 0 21 4 1 10 1 10 52 1 5 40 37752664 6 2 �1 02 10 4 3�1 4 10 40 3 4 14 3775 2664 6 1 2 �21 8 0 �32 0 10 1�2 �3 1 14 3775 2664 6 3 1 �23 8 2 11 2 8 2�2 1 2 20 3775 2664 4 1 �1 11 10 2 3�1 2 12 61 3 6 16 3775 2664 4 1 0 21 4 1 10 1 10 52 1 5 40 3775 2664 2 1 0 11 8 2 10 2 20 51 1 5 20 3775

377777777777777777777777777777777777777777777777777775From the representation numbers of the above quadratic forms, we �nd the �rstfew Hecke operators act on this basis by the matrices:T (2) = 26666664 2 1 0 0 0 01 0 1 1 0 00 1 0 1 1 00 1 1 0 0 10 0 1 0 0 20 0 0 1 2 0
37777775 ; T (3) = 26666664 0 0 1 1 1 10 2 0 0 1 11 0 0 2 0 11 0 2 0 1 01 1 0 1 0 11 1 1 0 1 0

37777775 ; T (5) = 26666664 0 0 1 1 2 20 2 1 1 1 11 1 1 2 1 01 1 2 1 0 12 1 1 0 0 22 1 0 1 2 0
37777775 ;which have respective characteristic polynomials:g2(t) = (t� 3)(t� 1)(t2 � t� 3)(t2 + 3t+ 1);g3(t) = (t� 4)(t)(t2 � t� 3)(t2 + 3t+ 1);g5(t) = (t� 6)(t� 2)(t2 + t� 3)(t2 + 3t+ 1):In each case, the eigenvalue p+ 1 of T (p) corresponds to the one dimensionalspace of Eisenstein series and the second linear factor to a one dimensional factorof J0(73). By calculating su�ciently many coe�cients of the correspondingnormalized eigenform,f = q + q2 � q4 + 2q5 + 2q7 � 3q8 � 3q9 + 2q10 � 2q11 � 6q13 + 2q14 � q16+ 2q17 � 3q18 + 8q19 � 2q20 � 2q22 + 4q23 � q25 � 6q26 � 2q28 + � � �10



we can verify that this corresponds to the single isogeny class of conductor 73of Cremona's tables [2]. Appendix IWe collect in the following tables the characteristic polynomials �+(T (p))and ��(T (p)) of the Hecke operator T (p) on S+Q and S�Q for p = 2, 3, and 5 andall primes l up to 139.
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Characteristic polynomials of Hecke operators on X0(l).l p g0(l) g+0 (l) ��(T (p)) �+(T (p))2 { {2 3 0 0 { {5 { {2 { {3 3 0 0 { {5 { {2 { {5 3 0 0 { {5 { {2 { {7 3 0 0 { {5 { {2 X + 2 {11 3 1 0 X + 1 {5 X � 1 {2 { {13 3 0 0 { {5 { {2 X + 1 {17 3 1 0 X {5 X + 2 {5 X {19 3 1 0 X + 2 {5 X � 3 {2 X2 +X + 1 {23 3 2 0 X2 � 5 {5 X2 + 2X � 4 {2 X2 + 2X � 1 {29 3 2 0 X2 � 2X � 1 {5 (X + 1)2 {
l p g0(l) g+0 (l) ��(T (p)) �+(T (p))2 X2 �X � 1 {31 3 2 0 X2 + 2X � 4 {5 (X � 1)2 {2 X X + 237 3 2 1 X � 1 X + 35 X X + 22 X3 +X2 � 5X � 1 {41 3 3 0 X3 � 4X + 2 {5 X3 + 2X2 � 4X � 4 {2 X2 � 2 X + 243 3 3 1 X2 � 2 X + 25 X2 � 4X + 2 X + 42 X4 �X3 � 5X2 + 5X � 1 {47 3 4 0 X4 � 7X2 + 4X + 1 {5 X4 + 2X3 � 16X2 � 16X + 48 {2 X3 +X2 � 3X � 1 X + 153 3 4 1 X3 � 3X2 �X + 1 X + 35 X3 + 2X2 � 4X � 4 X2 X5 � 9X3 + 2X2 + 16X � 8 {59 3 5 0 X5 + 2X4 � 8X3 � 11X2 + 13X � 1 {5 X5 � 2X4 � 14X3 + 23X2 + 19X + 1 {2 X3 �X2 � 3X + 1 X + 161 3 4 1 X3 � 2X2 � 4X + 4 X + 25 X3 +X2 � 9X � 13 X + 32 (X � 2)(X2 +X � 1) (X2 + 3X + 1)67 3 5 2 (X + 2)(X2 �X � 1) (X2 + 3X + 1)5 (X � 2)(X2 � 4X � 1) (X + 3)22 (X3 � 5X + 3)(X3 +X2 � 4X � 3) {71 3 6 0 (X3 �X2 � 4X + 3)(X3 +X2 � 8X � 3) {5 (X3 � 5X2 � 2X + 25)(X3 + 3X2 � 2X � 7) {
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l p g0(l) g+0 (l) ��(T (p)) �+(T (p))2 (X � 1)(X2 �X � 3) X2 + 3X + 173 3 5 2 X(X2 �X � 3) X2 + 3X + 15 (X � 2)(X2 +X � 3) X2 + 3X + 12 X6 �X5 � 9X4 + 7X3 + 20X2 � 12X � 8 X + 183 3 7 1 X6 �X5 � 10X4 + 5X3 + 30X2 � 4X � 25 X + 15 X6 � 2X5 � 20X4 + 28X3 + 104X2 � 64X � 160 X + 22 X4 � 3X3 �X2 + 6X � 1 X3 + 4X2 + 3X � 197 3 7 3 X4 � 5X2 �X + 4 X3 + 4X2 + 3X � 15 X4 �X3 � 4X2 +X + 2 X3 + 3X2 � 4X + 12 X7 � 13X5 + 2X4 + 47X3 � 16X2 � 43X + 14 X101 3 8 1 X7 � 4X6 � 7X5 + 38X4 + 4X3 � 96X2 + 13X + 68 X + 25 X7 + 3X6 � 13X5 � 33X4 + 48X3 + 94X2 � 43X � 67 X + 12 X6 � 4X5 �X4 + 17X3 � 9X2 � 16X + 11 X2 + 3X + 1103 3 8 2 X6 � 13X4 + 40X2 � 8X � 16 (X + 1)25 X6 � 3X5 � 11X4 + 34X3 + 12X2 � 40X � 16 X2 + 3X + 12 X7 +X6 � 10X5 � 7X4 + 29X3 + 12X2 � 20X � 8 X2 +X � 1107 3 9 2 X7 � 3X6 � 9X5 + 29X4 + 14X3 � 69X2 + 12X + 29 X2 + 3X + 15 X7 � 5X6 � 9X5 + 64X4 � 28X3 � 152X2 + 192X � 64 X2 + 3X + 12 (X � 1)(X4 +X3 � 5X2 � 4X + 3) X3 + 2X2 �X � 1109 3 8 3 X(X4 � 4X3 �X2 + 15X � 8) X3 + 4X2 + 3X � 15 (X � 3)(X4 �X3 � 5X2 + 4X + 3) X3 + 6X2 + 5X � 132 (X + 1)(X � 1)2(X3 + 2X2 � 5X � 9) X3 + 2X2 �X � 1113 3 9 3 (X � 2)(X2 � 2X � 2)(X3 +X2 � 4X � 1) X3 + 5X2 + 6X + 15 (X � 2)(X2 � 12)(X + 1)3 X3 +X2 � 9X � 12 X7 � 2X6 � 8X5 + 15X4 + 17X3 � 28X2 � 11X + 15 X3 + 3X2 � 3127 3 10 3 X7 � 3X6 � 12X5 + 39X4 + 26X3 � 128X2 + 64X + 16 X3 + 3X2 � 35 X7 � 8X6 + 11X5 + 53X4 � 146X3 + 32X2 + 128X � 48 X3 + 6X2 + 9X + 12 X10 � 18X8 + 2X7 + 111X6 � 18X5 � 270X4 + 28X3 + 232X2 + 16X � 32 X131 3 11 1 X10 �X9 � 22X8 + 24X7 + 157X6 � 184X5 � 403X4 + 533X3 + 222X2 � 390X + 67 X + 15 X10 � 4X9 � 26X8 + 116X7 + 155X6 � 988X5 + 138X4 + 2384X3 � 763X2 � 1856X + 8 X + 22 X7 � 10X5 + 28X3 + 3X2 � 19X � 7 X4 + 3X3 � 4X � 1137 3 11 4 X7 � 3X6 � 8X5 + 26X4 + 11X3 � 58X2 + 16X + 14 X4 + 5X3 + 4X2 � 10X � 115 X7 + 2X6 � 18X5 � 21X4 + 103X3 + 26X2 � 188X + 88 X4 + 2X3 � 12X2 � 23X + 12 (X � 1)(X7 �X6 � 11X5 + 8X4 + 35X3 � 10X2 � 32X � 8) X3 + 2X2 �X � 1139 3 11 3 (X7 + 2X6 � 15X5 � 25X4 + 56X3 + 52X2 � 56X � 16) X3 + 2X2 �X � 15 (X + 1)(X7 � 11X6 + 36X5 + 2X4 � 211X3 + 319X2 � 55X � 83) X3 + 8X2 + 19X + 13
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Appendix IIComputations of modular curvesThe modular curve X0(l) is de�ned in terms of generators and relationsfor the �eld of meromorphic modular functions of weight zero for �0(l). Wede�ne Y0(l) to be the a�ne open subset H=�0(l) of X0(l). The space of weightzero modular functions holomorphic on H can be identi�ed with the ring R offunctions on Y0(l). In order to have a working model for computing with thecurve, we require expressions for j(q) and j(ql) in R. Moreover if we are toapply the ideas of Elkies [7] for e�ciently computing isogenies of curves, werequire a description of the �ve Eisenstein seriesE(l)2 (q); E4(ql); E4(q); E6(q); and E6(ql)in the ring M =LMk(�0(l);Q) of modular forms for �0(l).We thus collect here the de�nitions of standard modular functions as wellas some calculations of the graded rings of modular forms for �0(l). For thepresent purposes we will restrict to prime level l.Standard modular formsThe function Ek(q) denotes the normalized Eisenstein series with Fourier seriesexpansion Ek(q) = 1� 2kBk Xn nk�1qn1� qn = 1� 2kBk Xn �k�1(n)qn;where �r(n) denotes the sum of the r-th power of the divisors of n, and Bk isthe k-th Bernoulli number. We writeE(l)k (q) = lk=2Ek(ql)�Ek(q);E+k (q) = lk=2Ek(ql) +Ek(q):Note that wlEk(q) = lk=2Ek(ql), so that E(l)k (q) is anti-invariant and E+k (q)is invariant under wl. While neither E2(q) nor E2(ql) is a modular form, thefunction E(l)2 (q) is, generating the Eisenstein space of weight two for �0(l).The delta function �(q) is de�ned in terms of Eisenstein series as (E4(q)3 �E6(q)2)=123. The Dedekind eta function is a 24-th root of �(q), having q-expansion �(q) = q1=24 1Yn=1(1� qn):It is well-known that �(q), hence also �(q), has no zeros on the upper halfplane H. Thus we will be able to invert �(q) to produce new functions withoutintroducing poles on H. 14



Genus zero curvesFor l = 2, 3, 5, 7, and 13, the modular curve X0(l) has genus zero, hence we can�nd a degree one function on X0(l). For this purpose we take the Hauptmodulh = � �(q)�(ql)�24=(l�1) ;de�ned as a degree one function having neither zeros nor poles on H. The func-tion h is holomorphic outside of the cusps and transforms under the involutionw as wl(h) = l12=(l�1)h�1. We set u equal to h=ln, for appropriate n, and �ndthe following expressions for the j-invariant in terms of u.l = 2 : u = 64�1� �(q)�(q2)�24 ; wl(u) = 1=u; j = 64(u+ 4)3u2 ;l = 3 : u = 27�1� �(q)�(q3)�12 ; wl(u) = 1=u; j = 27(u+ 1)(u+ 9)3u3 :l = 5 : u = 25�1� �(q)�(q5)�6 ; wl(u) = 1=5u; j = 25(u2 + 10u+ 5)3u5 :l = 7 : u = 49�1� �(q)�(q7)�4; wl(u) = 1=49u;j = (49u2 + 13u+ 1)(u2 + 5u+ 1)3u7 :l = 13 : u = 13�1� �(q)�(q13)�2 ; wl(u) = 1=169u;j = (13u2 + 5u+ 1)(u4 + 19u3 + 20u2 + 7u+ 1)3u13 :Similar functions can be found for curvesX+0 (l), where l is one of the ten primes11, 17, 19, 23, 29, 31, 41, 47, 59 and 71 for which X+0 (l) is of genus zero.Graded rings of modular formsIn order to produce the graded ring of modular forms we must �nd modu-lar forms of low weight such that for all k, monomials in the forms span thespaces Mk(�0(l);Q) over Q. The ring of modular forms of level 1 is M =Q[E4 (q); E6(q)]. The dimension of the space Mk(�0(l);Q) is1� k=2 + [k=4] + [k=3] :15



From Theorem 2.23 in Shimura [16] we �nd that for l 6= 2; 3 and all even kgreater than 2, thatdimMk(�0(l)) = (k � 1)(g0(l)� 1) + k + �2 �k4�+ �3 �k3�dimM+k (�0(l)) = (k � 1)(g+0 (l)� 1) + k=2 + (R+ �2=2) �k4�+ (�3=2) �k3�where g+0 (l) = (g0(l) + 1�R=2)=2 with R = h(�l) + h(�4l), and where�2 = 1 +��4l � and �3 = 1 +��3l � :Recall that h(D) denotes the class number of a binary quadratic order of dis-criminant D, where such exists, and is zero otherwise. Let K = Q(X0 (l)) be thefunction �eld of X0(l) and note that KM = K[!] for any ! in M2(�0(l);Q).Level 2.The graded ring of modular functions for �0(2) is Q[X;Y ], withX = E(2)2 ; and Y = E(2)4 =3 = u� 1u+ 1X2;where u is the Hauptmodul de�ned above for �0(2). By means of an analysisof the rami�cation of X0(2) �! X+0 (2) we �nd the dimensions of the spaces ofmodular forms of even weight are given bydimMk(�0(2);Q) = 1 + [k=4] ;dimM+k (�0(2);Q) = 1� k=2 + [k=4] + [3k=8] ;and verify that this agrees with the dimensions of the graded components ofQ[X;Y ]. We express the standard Eisenstein series in terms of X and Y asfollows: E(2)4 (q) = 3Y; E+4 (q) = 5X2;E(2)6 (q) = 7X3; E+6 (q) = 3XY:Level 3.The graded ring of modular functions for �0(3) is Q[X;Y; Z]=I , whereX = E(3)2 (q)=2; Y = E(3)4 (q)=8; and Z = (��3)6;and where I is the ideal (X4 � 108XZ � Y 2). The forms Y and Z can beexpressed in the ring Q(u)[X ] asY = u� 1u+ 1X2; and Z = u27(u+ 1)2X3;16



where u is the Hauptmodul de�ned above for �0(3). As above we deduce fromthe rami�cation of X0(3) �! X+0 (3) and Theorem 2.23 of Shimura [16] thatthe dimensions of the spaces of modular forms of even weight are as follows:dimMk(�0(3);Q) = 1 + [k=3] ;dimM+k (�0(3);Q) = 1� k=2 + [5k=12] + [k=4] ;and verify that this coincides with the dimensions of the graded components ofQ[X;Y; Z]=I . We express the Eisenstein series for �0(3) in terms of X , Y , andZ, by the following relations:E(3)2 (q) = 2X; E(3)4 (q) = 8Y; E+4 (q) = 10X2;E(3)6 (q) = 26X3 � 432Z; E+6 (q) = 28XY:Mapping forms to functionsDetermining the full ring of modular forms of a given level is an impracticalundertaking in general, as the size of a basis forMk(�0(l);Q) grows in proportionto both k and l. Rather, following Elkies [7], we �nd a modular form � ofweight �2 with no poles on H then map the spacesM2m(�0(l)) to meromorphicfunctions on X0(l) all of whose poles lie at the cusps, by f 7�! �mf .For the purpose of constructing such a �, we introduce certain generalizedtheta function of weight one. Let a be an ideal in the quadratic imaginary orderR of discriminant D. Then �a(q) = Xx2Hom(R;a)qN(x);where N(x) is the cardinality of the ideal quotient a=x(R), is a modular formof weight one and level jDj. The product of any two such forms is a modularform of weight two and level jDj, which is anti-invariant under the canonicalinvolution.For l � 3 mod 4 we can set D = �l to obtain modular forms of level l. Asin Elkies' manuscript [6] we can modify the construction for forms associatedto discriminant D = �4l to obtain forms with characters and level l, whenl � 1 mod 4.Since 2 rami�ed in R, the ring R=2R is isomorphic to F2 ["], where "2 = 0.Fix an isomorphism R=2R �= a=2a, and let � : R=2R �! f�1; 0; 1g be theunique character on R=2R. Then��a (q) = Xx2Hom(R;a)�(x)qN(x)=4;where � is de�ned on a via the reduction to a=2a and isomorphism with R=2R.17



We may take � to be the following function, according to the congruenceclass of l modulo 12.l � 1 mod 4. Set � = �=(��l)3, where � is a linear combination of functions ��ahaving maximal zero at the cusps, and with each a in the correct genus suchthat ��a and (��l)3 have the same character. There exists such an ideal with��a 6= 0 for all primes l � 1 mod 4 except for the three primes 5, 13, and 37 forwhich Z[p�l] has class number two.l � 7 mod 12. Set � = �=(��l)3, for the linear combination � of functions �ahaving the highest order zero at the cusps.l � 11 mod 12. Set � = !�1, where ! = (��l)2, the unique anti-invariant cuspform with a zero of maximal order at the cusps.In each case � is a modular function of weight �2, holomorphic on H, which isanti-invariant under the canonical involution.Level 73.Using a decomposition of S2(�0(73);Q) into invariant and anti-invariantforms, we set ff1; f2g equal to the echelon basisf1 = q � 3q3 � 3q4 + q6 � 3q7 + 3q8 + 5q9 � q10 � 3q11 + � � �f2 = q2 � q3 � 3q4 + q5 + 4q8 + 3q9 � 3q10 � q11 + 3q12 + � � �for the space S+2 (�0(73);Q) of invariant cusp forms, and let fg1; g2; g3g be thebasis g1 = q + q3 � q4 + 2q5 � q6 + q7 � q8 � q9 + q10 � q11 + � � �g2 = q2 � q3 + q4 � q5 � q9 � q10 + q11 � q12 + q13 + � � �g3 = q4 � q5 � q6 � q7 + 2q8 + q9 � 2q10 + 2q11 � q12 + � � �for the anti-invariant forms such that g1=g2 = f1=f2. Note that both f2 and g3are uniquely determined as the invariant and anti-invariant forms having zerosof maximum order at the cusps. By Chaper IV x5 of Hartshorne [8], the formsf1 and f2 de�ne the degree 2 canonical morphism of X+0 (73) to a genus zerocurve C0 = X+0 (73)=e, where e is the hyperelliptic involution of X+0 (73). Set tand u equal to the invariant functionst = f1=f2 � 1 = q�1 + q + 2q3 + 2q4 + q5 + q6 + 3q7 + � � �u = g1=g3 = q�3 + q�2 + 3q�1 + 4 + 8q + 11q2 + 19q3 + � � �satisfying the equationu2 � (t3 + t2 + 1)u� t(t� 1)(t+ 1) = 0:Then t is a generator for the function �eld of C0, having poles only at thecusp of X+0 (73) and its image under e. Since the twist of u by the hyperellipticinvolutioneu = (t3 + t2 + 1)� u = �1 + q + q3 � 5q4 � q5 + 6q6 + 3q7 + � � �18



has value �1 at the cusp, we conclude that u is holomorphic on H. We eliminatethe pole of t to �nd a degree 4 function v = (u+ 1)t on X+0 (73).Let R be the imaginary quadratic order of discriminant �292, and set a = Rand b equal to a prime ideal of norm 7. We obtain two modi�ed theta functions��a (q) = q1=4(1 + q2 + q6 + q12 � q18 � 2q19 + q20 � 2q22 + � � � )��b (q) = q3=4(q � q2 � q7 + q10 � q11 + q14 + q15 + q20 + � � � )set � = ��b=(��73)3, and �nd a degree 5 functionw = �g3 = u(u� 1)t = u(u� 1)(u+ 1)v = t(u+ v)� 1;holomorphic on H, and conclude that u, v, and w generate the ring of functionson X+0 (73) with poles only at the cusp.To complete the calculation of modular functions for X0(73), we set x equalto the degree 3 function f1=g3 and y equal to the degree 5 functiony = �(f1 � f2)u = (1� v + w)xu :We verify that x and y are holomorphic on H by expressing their squares interms of u, v, and w:x2 = u2 � 8v � 12u� 8y2 = u2v � u3 � 7uw + 2uv + 3u2 � 2w + 6v � u� 10By the Riemann-Roch theorem, we see that these functions generate the ringof meromorphic functions on X0(73) with poles only at the cusps. Each of thefunctions �E(73)2 , �2E(73)4 , �2E+4 , �3E(73)6 , and �3E+6 can thus be expressed interms of u, v, w, x and y. Level 239.By computing the Hecke module of theta function we �nd the echelon basisff1; f2; f3gf1 = q � q4 � 2q5 � q6 � q7 � q9 � q11 � q12 � 3q13 + � � �f2 = q2 � q4 � q5 � q6 � q8 + q9 � q11 � q13 � q14 + � � �f3 = q3 � q4 � q5 + q8 + q10 � q11 � q12 � q13 � 2q15 + � � �for the space S+2 (�0(239)) of cusp forms invariant under the canonical involution.Likewise we compute an echelon basis for the space of anti-invariant cusp formsin S2(�0(239)), and take the four formsg1 = q14 � 3q17 � 6q18 + q19 + 23q21 + 11q22 � 17q23 + � � �g2 = q15 � 2q17 � 3q18 + 12q21 + 7q22 � 10q23 + 6q26 + � � �g3 = q16 � q17 � 2q18 + 6q21 + 2q22 � 4q23 � 3q24 + � � �g4 = q20 � 2q21 � q22 + 2q23 + q24 + 2q25 � 2q26 + � � �19



of highest zeros at the cusps. Necessarily g4 is the form (��239)2, with no zeroson the upper half plane H.We set X = f3, Y = f2, and Z = f1, and �nd a nonsingular quartic relationX4 �X3(Y + Z) +X2Z2 +XZ(Y 2 � Z2)� Y 2(Y 2 + Y Z � Z2) = 0;de�ning the canonical embedding of X+0 (239) as a plane curve. We set x, y,and z to be the modular functions f3=g4, f2=g4, and f1=g4, respectively.Next we set u, v, and w equal to the functions on X+0 (239),u = g3=g4 = q�4 + q�3 + q�2 + q�1 + 1 + 2q + 3q2 + 3q3 + 4q4 + � � �v = g2=g4 = q�5 + 2q�4 + 3q�3 + 3q�2 + 4q�1 + 3 + 7q + 9q2 + 11q3 + � � �w = g1=g4 = q�6 + q�5 + 5q�4 + 6q�3 + 7q�2 + 8q�1 + 4 + 15q + 21q2 + � � �= (v3 + 2u3 + 31v + 11v2 � 8uv + 5u2 � 37u� 9)=(uv + u2 + v + 8u+ 9);of degree 4, 5, and 6, respectively. By eliminating coe�cients, we �nd a functionr = uw�v2+uv�u2 of degree 7, and the ring of modular functions for X+0 (239)is generated by u, v, and w, satisfying the relationsw2 � u3 � vw � v2 � 3uw + uv + 5w � 14v � 10u� 19 = 0w(uv + u2 + v + 8u+ 9) = v3 + 2u3 + 31v + 11v2 � 8uv + 5u2 � 37u� 9By the relation z = uy� vx+ y� 4x, we �nd that u, v, w, x, and y generatethe ring of modular functions on X0(239) with poles only at the cusps. Weverify that the gap sequence consists exactly of the g(l) gaps accounted for bythe Riemann-Roch theorem, so that these functions indeed generate the full ringof modular functions holomorphic on H.To complete a working model for X0(l) we solve for x2, xy, and y2 in termsof u, v, and w, and �nd expressions for the �ve functions�E(239)2 (q); �2E(239)4 (q); �2E+4 (q); �3E(239)6 (q); and �3E+6 (q);with � = g�14 , in Q[u; v; w; x; y].References[1] Wieb Bosma, John Cannon, Catherine Playoust, et al. Magma referencemanual. Online reference document, 1997.[2] John E. Cremona. Algorithms for modular elliptic curves. CambridgeUniversity Press, 1992.[3] John E. Cremona. Computing the degree of the modular parametrization ofa modular elliptic curve. Mathematics of Computation, 64(211):1235{1250,1995. 20
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