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§1. Introduction.

Modular curves are of central interest for both the theoretical and compu-
tational investigation of elliptic curves. In the course of proving Fermat’s “Last
Theorem”, Wiles [18] and Taylor-Wiles [17] established that a large class of
elliptic curves are parameterized by a modular curve. Cremona has developed
effective algorithms and performed extensive computations of these parametriza-
tions [3]. In a different direction, Elkies [7] has used explicit models for modular
curves to make significant practical improvements to a theoretical polynomial
time algorithm of Schoof [15] for computing the trace of Frobenius on an elliptic
curve over a finite field. This has made it possible to compute the number of
points on elliptic curves over finite fields whose cardinality measures hundreds
of decimal digits [10]. In order to apply this algorithm, one must precompute a
large number of explicit models for modular curves.

One approach to the problem of computing models for modular curves is to
produce a basis for the space of weight two cusp forms. Such forms correspond
to differentials on the curve, by which one can construct the canonical mor-
phism to projective space. When a curve is of genus greater than two and not
hyperelliptic, the canonical morphism is an embedding and gives a nonsingular
model for the curve.

For the purposes of computation, it serves to have the additional informa-
tion of the Hecke module structure on differentials. This gives information
on the decomposition of the Jacobian and on curves covered by the modular
curve. In particular, we exploit the explicit action of the canonical involution
to decompose the cusp forms into invariant and anti-invariant eigenspaces. The
investigation of parametrizations of curves of higher genus is aided by a Hecke
module decomposition of the space of differentials.

It will be the purpose of this article to discuss certain isomorphisms of Hecke
modules, defined in very different contexts, and to describe isomorphisms among
them. The relation between supersingular elliptic curves and the ideal theory
in a quaternion algebra appears in the classical work of Deuring [4], which in
the modern theory is properly stated as an equivalence of categories. The basis
problem of Eichler [5] provides the means of relating the ideal theory to mod-
ular forms. Using this theory Pizer [12] describes an algorithm for computing



modular forms. The method of graphs of Oesterlé and Mestre [9] rephrases the
theory of quaternion ideals in terms of supersingular elliptic curves. This gives
an intuitive method for relating the Hecke module, defined as a subgroup of the
divisor group of a modular curve, with the space of modular forms of weight two.
In this work they express the Hecke operator T'(n) in terms of the adjacency
operator of a graph of supersingular elliptic curves. Via the above mentioned
equivalence of categories, the ideas of Oesterlé and Mestre translate into the
computationally simpler world of the ideal theory of a quaternion algebra. Us-
ing a method which is in essence that of Pizer [12], one can compute an array
of quadratic forms determining the Brandt morphism. For any n, the Hecke
operator T'(n) can be extracted as the Brandt matrix of n-th representation
numbers of these quadratic forms.

In section two, we discuss quaternion algebras and their ideal theory, and
follow in section three with a discussion of the equivalence between supersingular
elliptic curves and certain ideals over a maximal order. In section four we recall
the main ideas of the method of graphs of Mestre and Oesterlé. Section five
introduces the Brandt morphism, given in terms of the Brandt matrix of theta
functions for quadratic forms associated to the module of homomorphisms of a
basis of ideals. We conclude with a discussion in section six of the computational
aspects of computing modular curves using the ideal theory of quaternions.

As an appendix to this article we give a table of characteristic polynomi-
als of the Hecke operators, which suffice to determine the decomposition of the
Jacobian of corresponding modular curve. We further give examples of com-
putations of the ring of modular functions, combining several ideas from the
article of Elkies [7]. For any given level, one can make improvements to this
approach. A significant advantage, however, is that this approach is systematic,
thus suitable for implementation or for proving bounds for the computational
complexity.

§2. Quaternion algebras over Q.

A quaternion algebra A over Q is a central simple algebra of dimension four
over Q. The number theory of these algebras is analogous to that of number
fields. In particular we have an noncommutative theory for each of the following
objects and concepts from commutative number theory.

1. Maximal orders. There exist infinitely many maximal orders of any quater-
nion algebra, however they fall in finitely many isomorphism classes.

2. Ideal theory. We can study the one-sided and two-sided ideals of a given
maximal order in a quaternion algebra. Again, these fall into finitely many
classes.

3. Ramification and splitting. The quaternion algebra 2 is said to split at
the rational prime [ if 2, = A ® @ is isomorphic to Mz (). Otherwise



2 is said to ramify at [ and 2; is a division algebra. Likewise 2l is said to
split or ramify at infinity if A® R is a matrix algebra or a division algebra.

Quaternion algebras are analogous to quadratic extensions of Q. In fact
the analogy goes further: every element x of 20 not in the center generates a
quadratic extension of Q.

Example 1. The matrix algebra My (Q) is a quaternion algebra, which we call
the split quaternion algebra over Q. Let x be the element

10

0 0)’
and set K = Q[z]. Then K is isomorphic to the ring Q[X]/(X? — X). Every
maximal order is conjugate to the order My (Z).

Example 2. Let %A = Q + Qi + Qj + Qk be the quaternion algebra defined by
the relations
?=j32=-1, k=ij=—ji.

Then 2 ramifies at 2 and at infinity, and O = Z + Zi + Zj + Zw, where w =
(14+i+j+k)/2,is the unique maximal order up to isomorphism.

§3. Supersingular elliptic curves.

Let k be an algebraically closed field of characteristic [. An elliptic curve E
is supersingular if and only if its endomorphism ring @ = End(FE) is an order
in a quaternion algebra. Moreover, 2 = O ® Q is ramified at [ and at infinity,
and O is a maximal order in 2.

Let E be a fixed supersingular elliptic curves over k. Then the map F' —
Hom(E, F') determines a bijection of the set of isomorphism classes of supersin-
gular elliptic curves with the isomorphism classes of locally free rank one right
O-modules. This is properly stated as an equivalence of categories as follows.

Theorem 1 Let k be an algebraic closure of a finite field, let S be the category
of supersingular elliptic curves over k, and let E be an object in S. Then the
functor Homgs(E, —) to the category of locally free rank one right modules over
O = End(E) is an equivalence of categories.

Consequences. We note a few consequences of the theorem.

1. Under the equivalence, isogenies of elliptic curves correspond to nonzero
O-module homomorphisms. Isomorphism of objects is functorial, thus
the finite set of isomorphism classes in each category are in bijective cor-
respondence.



2. Given any right O-module of the form Hom(E, F) we can choose any
element . Then the dual determines an embedding

¢ : Hom(E,F) — O = End(E),

as an ideal of O. By the equivalence of categories every locally free rank
one right module over O is isomorphic to one of the form Hom(E, F') and
all of its embeddings in O are determined in this way.

3. The degree of a morphism ¢ : I — J of right O-modules is defined, which
we refer to as the norm N(¢p) in the category Z. The norm may be defined
locally or as the squareroot of |J/plI].

4. For finite extensions k/F; the functor F — (Hom(E, F'), w,), where «
is the Frobenius morphism, gives an equivalence of supersingular elliptic
curves over k with an appropriately defined category of pairs.

5. One can define the j-invariant of an ideal I. To make the latter well-
defined, we must specify an orientation O — k as described in Ribet [13].
An orientation is a homorphism to k, with the kernel equal to the unique
prime ideal containing p. The image is a quadratic extension over the
prime field, in which the j-invariant of I lies.

6. In its full generality, we take a category of supersingular elliptic curves
with level N-structure and ideals of an FEichler order of index N in the
maximal order.

In terms of computations, the two categories are quite different. The j-
invariant of an elliptic curve is trivial to compute, while the endomorphism ring
and isogenies are generally difficult. In contrast, determining homomorphisms
and the endomorphism ring is easy for ideals, and determining the j-invariant
of an O-ideal is presumably of comparable difficulty to that of determining the
j-invariant modulo [ of a binary quadratic lattice.

§4. Method of graphs.

Following Mestre [9] we associate a graph to a set S of representatives of the
isomorphism classes of §. Fix an integer n. Let S be the set of vertices and let
the edges £ be the isogenies ¢ : E — F' of degree n with cyclic kernel, up to
isomophism of F'. Define

et L sxs
o — (i(p),t(¢)) = (E, F)

This defines a directed multigraph. For an edge ¢ : E — F' the curve E = i(p)
is called the initial vertex, and F' = t(y) is called the terminal vertex.




For a prime n = p, the number of edges with initial vertex E are p + 1 in
number, in bijection with the p + 1 cyclic subgroups of E[p| = Z/pZ x Z [ pZ.
Due to automorphisms of E, fewer edges may terminate at E.

Example. Let [ = 37. There are three supersingular elliptic curves over the
algebraic closure of Fs7. Since none of these curves has automorphisms group
larger than {1}, we can view the graph as undirected. For p = 2, we have the
graph:

Up to isomorphism there is exactly one supersingular elliptic curve defined over
the prime field, and two curves, one conjugate to the other, defined over a
quadratic extension. The necessary 3-regularity of the graph and the auto-
morphism induced by the Frobenius morphism completely determine the above
graph of 2-isogenies. The adjacency matrix of the graph is the matrix

111
T2)=|( 10 2|,
120

with characteristic polynomial (X — 3)(X + 2)X. We will see that T'(2) can be
interpretted as a Hecke operator on the space M2(T¢(37),Q) of modular forms
of weight two for I'g(37). The rational roots of the characteristic polynomial for
T'(2) imply that the Jacobian of the modular curve Xy(37) splits as a product
of elliptic curves over Q.

We construct a Hecke module associated to a graph of n-isogenies as follows.
Let 9 be the free abelian group with basis S. Define T'(n) : 9t — 90 to be
the adjacency operator on 9:

p€i~1(E)

We define T'(n) to be the n-th Hecke operator on 9. Define an inner product
on M by

[ JAut(E)| if E=F,
(B, F) = { 0 otherwise,

extending by linearity. Then T'(n) is self-adjoint with respect to the inner prod-
uct:
(E,T(n)F) =(T'(n)E, F),



and this number equals the count of cyclic isogenies of degree p from E to F'.
Define an operator A(n) by

Aw) = Y T(m),

r2m=n

the adjacency operator of the graph of all n-isogenies.

In terms of the basis S = {E;} for M, the operators T'(n) and A(n) have
matrix representations where | Aut(E;)|A(n)[¢, j] is the number of isogenies of
degree n from E; to Ej.

For all relatively prime integers n and m, we obtain T'(n)T'(m) = T'(nm),
and T'(n)D is a symmetric matrix, where D is the diagonal matrix with entries
D[i,i] = | Aut(E;)|. The operators A(n) satisfy the relations

A(np®) = A(p)A(np) — pA(n).
The Hecke algebra T is defined to be the algebra over Q generated by the
operators T'(n).

§5. Brandt morphism.

Let My = M @ Q. We define the Brandt morphism
O: mQ X mQ — Mz(Fg(l),Q)

by O(E,F) = > q%8%¢ = > (A(n)E, F)q", where the first sum is over all ele-
ments ¢ of Hom(E, F'), then extending © linearly to 9tg. That the images lies
in My(To(l),Q) is a well-known result for theta functions [14]. Eichler proved,
as part of his work on the basis problem [5], that Mg and M2(Ty(1),Q) are
isomorphic as Hecke modules. We state this result in the form of the following
theorem.

Theorem 2 The map T(n) — Ta(n) of Hecke operators defines an isomor-
phism of Hecke algebras on Mg and My (To(1), Q) such that the Brandt morphism
O is a nondegenerate Hecke bilinear map:

O(T(n)E, F) = O(E, T(n)F) = Tx(n)O(E, F),

and such that the traces of T'(n) on Mg and T>(n) on M2(T(1),Q) agree.

We compute the Brandt morphism as follows. The degree map
deg . HOms(Fl,Fg) — 7

is a quadratic map: deg(ny) = n?deg(yp), and by means of a choice of ba-
sis, gives a quadratic form. By the equivalence of categories of Theorem 1,



we can identify the module Homg(F, Fy) with a module Home (I3, I2) of O-
homomorphisms of ideals. For a choice of basis we call the associated quadratic
form the norm form.

Example. Let O = Z + Zi+ Zj + Zw, defined above. O is a right principal
ideal ring, thus any right ideal I is isomorphic to O itself, and the ring of O-
endomorphisms of I is isomorphic to O, acting by left multiplication. In the
above basis, the norm form is given by

N(xy + @2t + x3j + waw) = f(x1,x2,23,14)

= 22422+ 25+ (z1 + 20 + 33+ T4)T4.

We represent a quadratic form f by its Gram matrix M. In this case we write
f as the product:

1 1
f($1,$2,$3,$4):§XMXt:§X _)(t7

= o O N
= o N O
=N oo
I

where X = (z1,x2,x3,24). Therefore the series Zcpeo ¢V is equal to the

theta series
Z qf(I17I27I37I4) — Z ang",
n

L1y T4

where a, is the n-th representation number of f. For the above example, we
obtain the Eisenstein series

0(q) =1+ 24(q+ ¢ +4¢°> + ¢* +6¢° +4¢° +8¢" + ¢* +13¢° + 6¢'° + - )

which generates the module M, (T'(2), Q).

In the previous example the Hecke operator T'(2) acted on My(T'o(37),Z)
with characteristic polynomial (X — 3)(X + 2)X. The eigenspace of 3 is that
generated by the Eisenstein series, and the eigenspaces of the eigenvalues —2
and 0 are rational cusp forms, each defining an isogeny class of modular elliptic
curves over Q.

§6. Computational aspects of modular curves.

The modular curve Xo(l) has a singular model ®;(4, j;) = 0 based on the map
Xo(l) — X (1) x X(1) taking a moduli point for the isogeny ¢ : E — F' to the
pair (j(E),j(F)). There exists a Fricke or canonical involution w; : Xo(l) —
Xo (1) which takes ¢ to its dual, ¢, determining the involution (4, 7;) — (ji, )
on the singular model.

It is often convenient to compute first X (1) = Xo(l)/wy, a curve of genus
at most one half that of Xo(I). The modular functions on X (I) are just those
functions on Xy (l) invariant under w;. Moreover, by means of a decomposition



of modular functions into invariant and anti-invariant spaces under w;, the order
of the poles at each cusp coincide, so relations between functions can be reduced
to linear algebra on the Fourier expansions around the single cusp at oco.

The morphism Xy(I) — X (I) has degree 2 and is ramified precisely at
the points of complex multiplication by an order of discriminant —I, —2I, or
—4l. Thus there are precisely R = h(—1) + h(—2l) + h(—4l) ramification points,
where h(D) is the class number of an order of discriminant D, when such an
order exists, or zero otherwise. By the Riemann-Hurwitz formula, we obtain

go(l) +1 - R/2
!](;r (1) = - 9
where go(1) is the genus of X,(I) and g (1) is the genus of X (I). Moreover,
R/2 is the number of supersingular elliptic curves which can be defined over F,
and dim M>(T'o(1),Q) = go(I) + 1 is the total number.

For the finitely many curves for which gg' (1) equals 0, we can compute a
Hauptmodul for X (1), then obtain the function field of Xy(I) as a quadratic
extension by a function anti-invariant under w;. We will thus focus on methods
applicable as gd (1) and go(l) grow large.

Let {fi,..., fq} be a basis for the space S2(I'¢(l),Q) of cusp forms. Then
we define the canonical morphism to projective space by

Xo(l) Po—t,
Qr—— (f1(Q) : -+ f4(Q))

When Xy (1) is nonhyperelliptic of genus greater than two, the canonical mor-
phism is an embedding. In practice we will take a special subset of a basis for
Sa2(To(l),Q), consisting of forms with prescribed zeros at co. We treat some
specific examples in Appendix II.

In order to efficiently compute Sa(T'o (1), Q) and its subspaces of invariant and
anti-invariant forms, we will make a detailed study of the Brandt morphism and
the decomposition of Mg. We begin with the following corollaries of Theorem 2.

Corollary 3 Let U be a Hecke submodule of Mqg. Then the orthogonal decom-
position Mo =U ® YV is a decomposition of Hecke modules. Moreover, v lies in
V if and only if O(u,v) =0 for all u in U.

Proof. Let u € U and v € V, and let T lie in T. Since Tw € U, we have
(u, Tv) = (Tu,v) = 0,50 Tv lies in V. Since the T'(n) span T as a Q vector space,
the latter statement is clear from examination of the coefficients of ©(u,v) =
2 (T ()u,v)g". O

Corollary 4 O(—,v) : Mo — M2(T'o(1),Q) is an isomorphism of Hecke mod-
ules if and only if v is not contained in any proper T-submodule of My.



Proof. By Theorem 2 the map ©(—,v) is a homomorphism of Hecke modules,
and by the last statement of Corollary 3 it follows that ©(—,v) is injective if
and only if v lies in no proper Hecke submodule. It remains only to show that
©(—,v) is surjective when Tv = 9g. By the trace condition of Theorem 2,

dim Mg = Tr(T'(1)) = Tr(Tx(1)) = dim Ms(To(1), Q),

so O is surjective. Let u and w lie in Mg, and write w = Tw. Then O(u,w) =
O(u,Tv) = O(Tu,v), so the image of O(—,v) is all of M2(Ty(l),Q). O

Mg has a decomposition as Eg ® Sg, where g is the Eisenstein space gen-
erated by
E =) |Aut(E)| 'E,
E€S

and the cusp space Sg is the orthogonal complement {> agE : Y ap = 0}.

From Pizer [11] we know that the canonical involution w; acts as —T'(l) on
M, thus we also have a decomposition Mg = fm& ©My,, where dim 9326 =gd ()
and dim My = go(l) — ga (1) + 1. The canonical involution acts by sending F to
—FE7, where o is the Frobenius automorphism, and E? is the representative in
S of the curve o-conjugate to E. Thus the spaces 93?6 and M, are spanned by
{E—-E°:E¢€S}and {E+ E°: E € S}, respectively.

By taking the intersection with the previous decomposition, we obtain an
orthogonal decomposition Mg = Eo & S @ S, where S§ = M. Note that
86 is the kernel of T'(I) + 1 and S, is the kernel of T'(I) — 1 on Sg. Moreover
T(p) has eigenvalue p + 1 on &g for all primes p # | and eigenvalue 1 for p = I[.
Since each such space is defined as the kernel of certain Hecke operators, so is
the image. We thus have the following corollary.

Corollary 5 Let v € Mg. Then O(Ep,v), @(Sa;,v), and O(Sy,v), are con-
tained in the space of Eisenstein series, invariant cusp forms, and anti-invariant
cusp forms, respectively.

It is clear from Corollary 4 that for general v, equality will hold with the
respective image space. We can thus exploit the structure of Mg to decompose
the Hecke module before mapping to the respective submodules of M5 (Ly(1), Q).

Remark. A supersingular elliptic curve E is S lies in I whenever £ can be
defined over the prime field. This is the basis of the observation of Pizer [12,
Remark 2.16] that in the matrix of © with respect to the basis S, not every row
or column can span My (To(1), Q).

Using the equivalence of categories of Theorem 1 we find a basis for 91 in
terms of right ideal classes for a fixed maximal order O in the quaternion algebra
ramified at [ and co. For each pair (I, J), we determine the reduced quadratic
norm form of the module Homp (I, J) = JI~!. For the resulting positive definite
quaternary quadratic forms over Z there exits a unique reduced form. Beginning



with the ideal O, we construct a basis for 9, by choosing neighboring ideals in
the graph of homormorphisms of small degree, in analogy with elliptic curves.
For two ideals ideals I and J we test for identity via the reduced Gram matrix
of Homp (I, J).

By means of an implementation of the arithmetic of quaternion algebras
using the computer algebra package Magma V 2.3 [1] we have computed the
Hecke module of modular forms of weight two and small level. For instance,
for prime level 73, the array of reduced Gram matrices of the ideal forms is the
following.

21 0 0 4 2 2 1 6 2 3 -1 6 2 3 -1 [6 2 -1 0 6 2 -1 0
14 2 1 2 8 3 -2 2 8 3 4 2 8 3 4 2 10 4 3 2 10 4 3
0 2 22 11 2 3 12 5 3 3 12 4 3 3 12 4 -1 4 10 4 -1 4 10 4
0 1 11 42 1 -2 22 -1 4 4 16 -1 4 4 16 [0 3 4 14 0 3 4 14
12 2 1 21 0 0 411 -1 0 1 1 -1 0 6 1 2 -2 6 1 2 -2
2 8 3 -2 16 2 1 1 8 4 3 8 4 3 1 8 0 -3 1 8 0 -3
2 3 12 5 02 14 7 -1 4 12 4 -1 4 12 4 2 0 10 1 2 0 10 1
1 -2 5 22 01 7 40 0 3 4 2 0 3 4 2 -2 -3 1 14 -2 -3 1 14
6 2 3 -1 4 1 -1 0 2 0 1 0 4 21 1 4 1 -1 1 6 3 1 -2
2 8 3 4 8 4 3 0 10 3 -1 2 6 2 3 1 10 2 3 3 8 2 1
3 3 12 4 -1 4 12 4 1 3 16 7 128 1 -1 2 12 6 1 28 2
-1 4 4 16 0 3 4 2 0 -1 7 22 13 1 38 1 3 6 16 -2 12 2
6 2 3 -1 1 1 -1 0 12 1 1 2 0 1 0 6 3 1 -2 4 1 -1 1
2 8 3 4 1 8 4 3 2 6 2 3 0 10 3 -1 3 8 2 1 1 10 2 3
3 3 12 4 -1 4 12 4 128 1 1 3 16 7 1 28 2 -1 2 12 6
-1 4 4 16 0 3 4 2 13 1 3 0 -1 7 22 -2 1 2 2 1 3 6 16
6 2 -1 0 6 1 2 -2 4 1 -1 1 6 3 1 -2 21 0 1 41 0 2
2 10 4 3 1 8 -3 1 1 2 3 3 8 2 1 18 2 1 14 1 1
-1 4 10 4 2 0 10 1 -1 2 1 6 1 28 2 02 2 5 01 10 5
0 3 4 14 -2 -3 1 14 1 3 6 16 -2 1 2 2 11 5 2 2 1 5 40
6 2 -1 0 6 1 2 -2 6 3 1 -2 11 -1 1 4 1 0 2 21 0 1
2 10 4 3 1 8 0 -3 3 8 2 1 1 10 3 14 1 1 18 2 1
-1 4 10 4 2 0 10 1 1 28 2 -1 2 12 6 01 10 5 02 2 5
0 3 4 14 -2 -3 1 14 -2 1 2 20 1 3 6 16 2 1 40 11 5 20

From the representation numbers of the above quadratic forms, we find the first
few Hecke operators act on this basis by the matrices:

210000 0011 11 001122
101100 0200 11 0021 111
010110 100201 111210
T™@=lo 11001 "™=l102010/" O] 112101
00100 2 110101 2 1100 2
000120 111010 2 10120
which have respective characteristic polynomials:
g2t) = (t=3)t—-1)(* —t-3)(t* +3t+1),
gs(t) = (- DOE —t -3 +3t+1),
gs(t) = (t—6)(t—2) +t—3)t* +3t+1).

In each case, the eigenvalue p + 1 of T'(p) corresponds to the one dimensional
space of Eisenstein series and the second linear factor to a one dimensional factor
of Jo(73). By calculating sufficiently many coefficients of the corresponding
normalized eigenform,

f — q+q2_q4+2q5+2q7_3q8_3q9+2q10_2q11_6q13+2q14_q16

+ 2q17 _ 3q18 + 8q19 _ 2q20 _ 2q22 + 4q23 _ q25 _ 6(]26 _ 2q28 4o
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we can verify that this corresponds to the single isogeny class of conductor 73
of Cremona’s tables [2].

Appendix I

We collect in the following tables the characteristic polynomials x(7'(p))
and x~ (T'(p)) of the Hecke operator T'(p) on 86 and S for p =2, 3, and 5 and
all primes [ up to 139.
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Characteristic polynomials of Hecke operators

L p g o) x(Twm) xHTp) L p g g5 X~ (T(p) X (T(p)
2 - - 2 XZ2_X -1 -
2 3 0 0 - - 31 3 2 0 X2 42X —4 -
5 - - 5 (X —1)? -
2 - - 2 X X +2
3 3 0 0 - - 37 3 2 1 X -1 X+3
5 - - 5 X X +2
2 - - 2 X34+ X2-5X-1 —
5 3 0 0 - - 41 3 3 0 X3 —4X 42 -
5 - - 5 X342X2 - 4X —4 -
2 - - 2 X2 -2 X +2
73 0 0 43 3 3 1 X2 -2 X+2
5 5 X2 —4X +2 X+4
2 X +2 - 2 XT X7 -5X2+5X -1 -
1 3 1 0 X+1 - 47 3 4 0 X4 —7X2 44X +1 -
5 X-1 - 5 X*42X3 - 16X2 - 16X + 48 -
2 2 X?4+X?2-3X-1 X+1
13 3 0 0 53 3 4 1 X3 -3X2-X+1 X+3
5 - - 5 X342X2-4X -4 X
2 X+1 - 2 X° —9X®4+2X2+16X —8 -
17 3 1 0 X - 5 3 5 0 X5 4+2X%—8X3 —11X2+13X -1 -
5 X +2 - 5 X° —2X* - 14X3+23X2 4+ 19X + 1 -
5 X 2 X2 X2 -3X+1 X+1
19 3 1 0 X +2 - 61 3 4 1 X3 _92X2 _4X +4 X +2
5 X-3 - 5 X34+ X2 -9X —13 X+3
2 X7+ X+1 - 2 (X-2)(XZ+X-1) (XT+3X+1)
23 3 2 0 X2-5 - 67 3 5 2 (X +2)(X2-X-1) (X2+3X+1)
5 X2 42X —4 - 5 (X —2)(X2-4X-1) (X +3)2
2 X24+2X -1 - 2 (X3 =5X +3)(X3+X?—4X -3) -
29 3 2 0 X2-2X-1 - 71 3 6 0 (X?— X2 —4X +3)(X*+ X2 -8X —3) -
5 (X +1)? - 5 (X3 —5X2—2X +25)(X®+3X2-2X —7) -




€1

L p go) g5 (D) X (T() XHT0)
2 X-1DNX?*-X-3) XZ+3X +1
73 3 5 2 X(X?2-X -3 X24+3X +1
5 (X —2)(X2+ X - 3) X2+3X +1
2 X0 - X° —9oXT+7X%+20X%-12X -8 X +1
8 3 7 1 X0 - X° —10X*+5X°% +30X2% -4X — 25 X+1
5 X6 _2X5 - 20X* +28X3 4+ 104X2 — 64X — 160 X +2
2 XT-3X7 - X?+6X -1 X3 +4X2+3X — 1
97 3 7 3 Xt —5X2-X +4 X3 4+4X%243X -1
5 X4 X% —4X?24+ X 42 X34+ 3X2 4X +1
2 X7 —13X° +2XT+47X° —16X° — 43X + 14 X
101 3 8 1 X7 —4X% —7X° +38X% +4X3% —96X? + 13X + 68 X+2
5 X7+ 3X% - 13X5 - 33X"* +48X° + 94X? — 43X — 67 X+1
2 X0 _4X° - XT417X° —9X% — 16X + 11 X2 4+3X +1
103 3 8 2 X6 —13X* +40X2 - 8X — 16 (X +1)?
5 X6 —3X°% —11X%1434X° +12X2 — 40X — 16 X24+3X+1
2 X7+ X6 - 10X5 - 7X7 +29X% + 12X2 — 20X — 8 X2+ X -1
107 3 9 2 XT—3X%—9X° +29X* 4+ 14X3 —69X2 + 12X + 29 X24+3X+1
5 X7 —5X0 —9X® +64X* —28X3 — 152X2 + 192X — 64 X2 43X +1
2 (X-1DX"+X3-5X%>-4X +3) X3+2X2-X-1
109 3 8 3 X(X*—4X3 - X2 +15X - 8) X3 44X%2 43X -1
5 (X —3)(X*— X? —5X? +4X +3) X3 +6X24+5X —13
2 (X +1D)(X —1D2(X°>+2X2-5X —-9) X34+2X2-X -1
13 3 9 3 (X —2)(X? —2X —2)(X3 4 X2 —4X — 1) X3 4+5X2 46X +1
5 (X =2)(X2—12)(X +1)3 X3+ X2-9X -1
2 X7 —2X% - 8X° +15XT +17X°% - 28X2 — 11X + 15 X3 +3X2 -3
127 3 10 3 X7 —3X6 - 12X5+39X* +26X° — 128X2 + 64X + 16 X3 4+3X%2-3
5 X7 —8X% 4+ 11X5 +53X* — 146X + 32X2 + 128X — 48 X3 4+6X%24+9X +1
2 XT0 _18X°% +2X7 +111X°% — 18X° — 270X 7% + 28X + 232X2% + 16X — 32 X
131 3 11 1 X110 X9 _22X% 4 24X7 4+ 157X% — 184X°% — 403X* + 533X°3 + 222X2 — 390X + 67 X +1
5 X10 _4X9 —26X8 + 116 X7 + 155X% — 988 X5 + 138X * + 2384 X3 — 763X2 — 1856 X + 8 X +2
2 X7 —10X5 +28X° +3X? - 19X — 7 XT43X? —4x -1
137 3 11 4 X7 3X6 - 8X5+26X* 4+ 11X°% — 58X2 + 16X + 14 X4 45X% +4X?% - 10X — 11
5 X7 +2X°% - 18X5 — 21X* + 103X3 + 26 X2 — 188X + 88 X4 +2X3 - 12X2-23X +1
2 (X —1)(X7— X% —11X° + 8XT+35X°% - 10X% — 32X — 8) X7 r2X?2-X -1
139 3 11 3 (X7 42X - 15X° — 25X* 4+ 56X° + 52X2 — 56X — 16) X3+2X2-X-1
5 (X +1)(X7 = 11X +36X° +2X* — 211X3 + 319X2 — 55X — 83) X3 +8X24+19X +13




Appendix 11
Computations of modular curves

The modular curve Xo(l) is defined in terms of generators and relations
for the field of meromorphic modular functions of weight zero for T'y(l). We
define Yy (1) to be the affine open subset $3/T'g (1) of Xy (). The space of weight
zero modular functions holomorphic on §) can be identified with the ring R of
functions on Yp(!). In order to have a working model for computing with the
curve, we require expressions for j(g) and j(¢') in R. Moreover if we are to
apply the ideas of Elkies [7] for efficiently computing isogenies of curves, we
require a description of the five Eisenstein series

B (@, Buld), B0, Esl), and Bs(q)
in the ring M = @ M (To (1), Q) of modular forms for ['y(1).

We thus collect here the definitions of standard modular functions as well
as some calculations of the graded rings of modular forms for I'y(l). For the
present purposes we will restrict to prime level [.

Standard modular forms

The function Ej(q) denotes the normalized Eisenstein series with Fourier series
expansion

2k nk—1lgn 2k
E = il = ]_ _— _ n
k(2) E 1= ¢ By £ or-1(n)q",

n

where o,.(n) denotes the sum of the r-th power of the divisors of n, and By, is
the k-th Bernoulli number. We write

EV(q) = *?Eu(d) - Ei(q),
Ef(q) = I"2Ey(d) + Ex(q).

Note that w; By (q) = [¥/2Ey(¢"), so that E\”(q) is anti-invariant and E; (q)
is invariant under w;. While neither Fs(q) nor Es(q') is a modular form, the
function Egl) (¢) is, generating the Eisenstein space of weight two for T'g(l).
The delta function A(q) is defined in terms of Eisenstein series as (E4(q)® —
E¢(q)?)/123. The Dedekind eta function is a 24-th root of A(q), having ¢-

expansion
o0
n(g) = ¢"* [J1-q").
n=1

It is well-known that A(q), hence also 1(gq), has no zeros on the upper half
plane $). Thus we will be able to invert n(gq) to produce new functions without
introducing poles on ).

14



Genus zero curves

Forl =2, 3,5, 7, and 13, the modular curve X (/) has genus zero, hence we can
find a degree one function on Xy (l). For this purpose we take the Hauptmodul

()

defined as a degree one function having neither zeros nor poles on §. The func-
tion h is holomorphic outside of the cusps and transforms under the involution
w as wy(h) = 1*/-Dp=1 We set u equal to h/I", for appropriate n, and find
the following expressions for the j-invariant in terms of w.

[=2: u:641<’7(q)>24, wi(u) =1/u, j:M,

n(q*) u?
. 12 o 27(u+ 1D (u+9)°
=3 u =27 7;7((;3))) , wi(u) =1/u, J= s u)3( 9 :

25(u? 4+ 10u + 5)3

(
I=5: u:251<"(q)>6, wi(u) =1/5u, j=
(

n(q°) ud
4
=7 u=49"" n(a) wi(u) =1/49%
a a n@) > T ’
_(49u? 4 13u + 1) (u? + 5u +1)*
- = .
2
1=13: uw=13" (2 wi(u) = 1/169u
S n(@®)) T ’
(13u? + 5u + 1) (u* + 19u® + 20u? + Tu + 1)?

ul3

Similar functions can be found for curves X (1), where [ is one of the ten primes
11, 17, 19, 23, 29, 31, 41, 47, 59 and 71 for which X (1) is of genus zero.

Graded rings of modular forms

In order to produce the graded ring of modular forms we must find modu-
lar forms of low weight such that for all £, monomials in the forms span the
spaces My (To(l),Q) over Q. The ring of modular forms of level 1 is M =
Q[E4(q), Es(q)]. The dimension of the space My (T'o(1), Q) is

1—Fk/2+ [k/4] + [k/3].

15



From Theorem 2.23 in Shimura [16] we find that for [ # 2,3 and all even &
greater than 2, that

mmAQ@dD):(k—D@MD—1V+k+W{§}+W[g

dim M;F(To(1)) = (k=1 (95 (1) = 1) + k/2+ (R +12/2) [ﬂ + (v3/2) {g]

where g (1) = (go(l) + 1 — R/2)/2 with R = h(—I) + h(—4l), and where

_4 _
1/2:1—|—<T> and 1/3:14—(73).

Recall that h(D) denotes the class number of a binary quadratic order of dis-
criminant D, where such exists, and is zero otherwise. Let K = Q(X, (1)) be the
function field of X¢(I) and note that KM = KJw] for any w in M»(T'y(1), Q).

Level 2.

The graded ring of modular functions for I'g(2) is Q[X, Y], with

u—1_.,
u+1" 7

X=EP, and Y = E{?/3 =

where u is the Hauptmodul defined above for T'g(2). By means of an analysis
of the ramification of X(2) — X (2) we find the dimensions of the spaces of
modular forms of even weight are given by

dlka(F0(2)7Q) = 1+[k/4]7

dim M, (T9(2),Q) = 1-k/2+ [k/4] + [3k/8],
and verify that this agrees with the dimensions of the graded components of

Q[X,Y]. We express the standard Eisenstein series in terms of X and Y as
follows:

Level 3.

The graded ring of modular functions for I'g(3) is Q[X,Y, Z]/I, where
X=B")/2 Y=E /s, ad Z= (),

and where I is the ideal (X* — 108XZ — Y?). The forms Y and Z can be
expressed in the ring Q(u)[X] as

y =4l
u+1

v x3
27w+ 12"

, and Z =
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where u is the Hauptmodul defined above for I'g(3). As above we deduce from
the ramification of Xo(3) — X (3) and Theorem 2.23 of Shimura [16] that
the dimensions of the spaces of modular forms of even weight are as follows:

dim Mk(FO(?’):Q) 1+ [k/?’] ’
dim M, (T9(3),Q) = 1-—k/2+ [5k/12]+ [k/4],

and verify that this coincides with the dimensions of the graded components of
Q[X,Y, Z]/I. We express the Eisenstein series for I'g(3) in terms of X, Y, and
Z, by the following relations:

EP () =2X, EP(q)=8Y, Ef(q)=10X2
EP) (q) = 26X° — 4322, E} (q) = 28XY.

Mapping forms to functions

Determining the full ring of modular forms of a given level is an impractical
undertaking in general, as the size of a basis for M (I'o({), Q) grows in proportion
to both k£ and I. Rather, following Elkies [7], we find a modular form A of
weight —2 with no poles on $) then map the spaces Ma,,, (I'o(I)) to meromorphic
functions on Xy (1) all of whose poles lie at the cusps, by f —— A™f.

For the purpose of constructing such a A, we introduce certain generalized
theta function of weight one. Let a be an ideal in the quadratic imaginary order
R of discriminant D. Then

011 (q) = Z qN(z)7

z€Hom(R,a)

where N(z) is the cardinality of the ideal quotient a/xz(R), is a modular form
of weight one and level |D|. The product of any two such forms is a modular
form of weight two and level |D|, which is anti-invariant under the canonical
involution.

For [ = 3 mod 4 we can set D = —[ to obtain modular forms of level /. As
in Elkies’” manuscript [6] we can modify the construction for forms associated
to discriminant D = —4[ to obtain forms with characters and level [, when
!l = 1mod 4.

Since 2 ramified in R, the ring R/2R is isomorphic to Fy[e], where 2 = 0.
Fix an isomorphism R/2R = a/2a, and let x : R/2R — {-1,0,1} be the
unique character on R/2R. Then

() = > xl@)g" @,

z€Hom(R,a)

where x is defined on a via the reduction to a/2a and isomorphism with R/2R.

17



We may take A to be the following function, according to the congruence
class of [ modulo 12.

[ =1mod4. Set A = 0/(nm)?, where 6 is a linear combination of functions 6y
having maximal zero at the cusps, and with each a in the correct genus such
that 8y and (nm;)® have the same character. There exists such an ideal with
60X # 0 for all primes | = 1 mod 4 except for the three primes 5, 13, and 37 for
which Z[v/~I] has class number two.

[ =7mod12. Set A = 6/(nm)?3, for the linear combination € of functions 6,
having the highest order zero at the cusps.

[ =11mod 12. Set A\ = w™!, where w = (nm;)?, the unique anti-invariant cusp
form with a zero of maximal order at the cusps.

In each case A is a modular function of weight —2, holomorphic on §), which is
anti-invariant under the canonical involution.

Level 73.

Using a decomposition of S2(I'9(73),Q) into invariant and anti-invariant
forms, we set {f1, f2} equal to the echelon basis
fi = ¢-3¢° =3¢ +¢°—3¢" +3¢° +5¢° —¢'° — 3¢"" +---
f2 — q2_q3_3q4+q5+4q8+3q9_3q10_q11+3q12+‘_‘

for the space Sy (I'9(73),Q) of invariant cusp forms, and let {g1, 92,93} be the
basis

o= 0+ - +2¢0 -+~ —¢" +q"0 — g+
o = PP =P —® —q 0+ — g2 g
g5 = g =P — g —qT+2¢°+¢q° —2¢'0 4+ 2¢" — g2 4 ...

for the anti-invariant forms such that g;/g> = f1/f2. Note that both f» and g3
are uniquely determined as the invariant and anti-invariant forms having zeros
of maximum order at the cusps. By Chaper IV §5 of Hartshorne [8], the forms
f1 and f, define the degree 2 canonical morphism of X (73) to a genus zero
curve Cy = X (73)/~, where ~ is the hyperelliptic involution of X (73). Set ¢
and u equal to the invariant functions

t = fi/fe=1=q¢ +q+2+2¢* +P +¢5 +3¢" + -
u = gi/gs=q > +q 2 +3¢ +4+8¢+11¢* +19¢° + - --

satisfying the equation
w— B+ 4+ Du—tt—1)(t+1)=0.

Then ¢t is a generator for the function field of Cjy, having poles only at the
cusp of X;(73) and its image under ~. Since the twist of u by the hyperelliptic
involution

u= 4+ +1)—u=-14+q+¢"-5¢" — " +6¢° +3¢" + - --
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has value —1 at the cusp, we conclude that u is holomorphic on §). We eliminate
the pole of ¢ to find a degree 4 function v = (u + 1)t on X (73).

Let R be the imaginary quadratic order of discriminant —292, and set a = R
and b equal to a prime ideal of norm 7. We obtain two modified theta functions

05(q) = ¢/ 1+@ +¢ +q%— g8 —2¢"0 + ¢ —2¢22 +---)
0@ = - -0 +¢° - " +q" +¢P +¢0+-)

set A = 0% /(nmrs)?, and find a degree 5 function

w:)\ggzu(ut_l) _ u(u—lZ(u-l—l) o)1,

holomorphic on §, and conclude that u, v, and w generate the ring of functions
on X, (73) with poles only at the cusp.

To complete the calculation of modular functions for X¢(73), we set z equal
to the degree 3 function fi/gs and y equal to the degree 5 function

y = Afi—f2) (1—v—|—w)$.

u u

We verify that z and y are holomorphic on $) by expressing their squares in
terms of u, v, and w:

22 = u?P-8v—-12u—-38

y? = u?v—ud — Tuw+ 2uv + 3u? — 2w + 6v —u — 10
By the Riemann-Roch theorem, we see that these functions generate the ring
of meromorphic functions on X, (73) with poles only at the cusps. Each of the
functions )\Eén), )\2E£73), NEF, )\3Eé73), and A\*E can thus be expressed in
terms of u, v, w, z and y.

Level 239.

By computing the Hecke module of theta function we find the echelon basis

{f17f27f3}

fi= 00" =20 -"~q" ¢’ — ¢ —¢"* = 3¢" + -
fo = - P - — Pt - —g® gt
fo = P g =P AP+ g g2 g 21 ...

for the space S5 (T'0(239)) of cusp forms invariant under the canonical involution.
Likewise we compute an echelon basis for the space of anti-invariant cusp forms
in S2(I'p(239)), and take the four forms

g1 = q14 _ 3q17 _ 6q18 + q19 + 23q21 + 11q22 _ 17q23 + e
g = q15 _ 2q17 _ 3q18 + 12q21 + 7q22 _ 10q23 + 6q26 + .-
g3 = q16 _ q17 _ 2q18 + 6q21 + 2q22 _ 4q23 _ 3q24 4o
T q20 _ 2q21 _ q22 + 2q23 + q24 + 2q25 _ 2q26 4o
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of highest zeros at the cusps. Necessarily g4 is the form (77239)?, with no zeros
on the upper half plane $).

Weset X = f3,Y = fo, and Z = f;, and find a nonsingular quartic relation
X - X3(Y 4+ D)+ X222+ XZ(Y? -2} - Y?*(Y? +YZ - Z?) =0,
defining the canonical embedding of X (239) as a plane curve. We set x, v,

and z to be the modular functions f3/g4, f2/g4, and f1/ga, respectively.

Next we set u, v, and w equal to the functions on X (239),

w=g3/9a=q " +q P +q P +q +1+20+3¢ +3¢7 +4¢" + -

v =g2/9a=0q7"+2¢7" +3¢7° +3¢77 +4¢7 +3+Tq+9¢" +11¢° + -

w = g1/90=q""+q" +5¢"" +6¢7° +7¢77 +8¢7" + 4+ 15¢ + 21¢" + - -
= (v® 4+ 2u® + 31v + 11v? — 8uv + 5u® — 37Tu — 9)/(uv + u* + v + 8u + 9),

of degree 4, 5, and 6, respectively. By eliminating coefficients, we find a function

r = uw—v*+uv —u? of degree 7, and the ring of modular functions for X (239)
is generated by u, v, and w, satisfying the relations

w? —u? —ow —v? —3uw+ uwv + 5w —14v — 10u—19=10
w(uv +u? + v+ 8u+9) = v3 + 2u® + 31v + 11v? — 8uv + 5u? — 37u — 9

By the relation z = uy — vx +y — 4z, we find that u, v, w, z, and y generate
the ring of modular functions on X((239) with poles only at the cusps. We
verify that the gap sequence consists exactly of the g(I) gaps accounted for by
the Riemann-Roch theorem, so that these functions indeed generate the full ring
of modular functions holomorphic on $).

To complete a working model for X(l) we solve for 2, zy, and y? in terms
of u, v, and w, and find expressions for the five functions

AES ) (g), NEP(q), NEf(g), NES(g), and NE{(g),

with A = g, %, in Qu,v,w,,y].
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