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The Modular Degree, Congruence Primes and Multiplicity One

Amod Agashe Kenneth A. Ribet William A. Stein

Abstract.

The modular degree and congruence number are two fundamental
invariants of an elliptic curve over the rational field. Frey and Müller
have asked whether these invariants coincide. Although this question
has a negative answer, we prove a theorem about the relation between
the two invariants: one divides the other, and the ratio is divisible only
by primes whose squares divide the conductor of the elliptic curve. We
discuss the ratio even in the case where the square of a prime does
divide the conductor, and we study analogues of the two invariants
for modular abelian varieties of arbitrary dimension.

1 Introduction

Let E be an elliptic curve over Q. By [BCDT01], we may view E as an
abelian variety quotient over Q of the modular Jacobian J0(N), where N is
the conductor of E. After possibly replacing E by an isogenous curve, we may
assume that the kernel of the map J0(N) → E is connected, i.e., that E is an
optimal quotient of J0(N).

Let fE =
∑
anq

n ∈ S2(Γ0(N)) be the newform attached to E. The con-
gruence number rE of E is the largest integer such that there is an element
g =

∑
bnq

n ∈ S2(Γ0(N)) with integer Fourier coefficients bn that is orthogonal
to fE with respect to the Peterson innner product, and congruent to fE mod-
ulo rE (i.e., an ≡ bn (mod rE) for all n). The modular degree mE is the degree
of the composite map X0(N) → J0(N) → E, where we map X0(N) to J0(N)
by sending P ∈ X0(N) to [P ]− [∞] ∈ J0(N).

Section 2 is about relations between rE and mE. For example, mE | rE. In
[FM99, Q. 4.4], Frey and Müller asked whether rE = mE. We give examples
in which rE 6= mE, then conjecture that for any prime p, ordp(rE/mE) ≤
1
2 ordp(N). We prove this conjecture when ordp(N) ≤ 1.

In Section 3, we consider analogues of congruence primes and the modular
degree for optimal quotients that are not necessarily elliptic curves; these are
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quotients of J0(N) and J1(N) of any dimension associated to ideals of the
relevant Hecke algebras. In Section 4 we prove the main theorem of this paper,
and in Section 5 we give some new examples of failure of multiplicity one
motivated by the arguments in Section 4.

Acknowledgment. The authors are grateful to A. Abbes, R. Coleman,
B. Conrad, J. Cremona, H. Lenstra, E. de Shalit, B. Edixhoven, L. Merel,
and R. Taylor for several discussions and advice regarding this paper.

2 Congruence Primes and the Modular Degree

Let N be a positive integer and let X0(N) be the modular curve over Q that
classifies isomorphism classes of elliptic curves with a cyclic subgroup of or-
der N . The Hecke algebra T of level N is the subring of the ring of endo-
morphisms of J0(N) = Jac(X0(N)) generated by the Hecke operators Tn for
all n ≥ 1. Let f be a newform of weight 2 for Γ0(N) with integer Fourier
coefficients, and let If be kernel of the homomorphism T → Z[. . . , an(f), . . .]
that sends Tn to an. Then the quotient E = J0(N)/IfJ0(N) is an elliptic
curve over Q. We call E the optimal quotient associated to f . Composing
the embedding X0(N) ↪→ J0(N) that sends ∞ to 0 with the quotient map
J0(N) → E, we obtain a surjective morphism of curves φE : X0(N) → E.

Definition 2.1. The modular degree mE of E is the degree of φE.

Congruence primes have been studied by Doi, Hida, Ribet, Mazur and oth-
ers (see, e.g., [Rib83, §1]), and played an important role in Wiles’s work [Wil95]
on Fermat’s last theorem. Frey and Mai-Murty have observed that an appropri-
ate asymptotic bound on the modular degree is equivalent to the abc-conjecture
(see [Fre97, p.544] and [Mur99, p.180]). Thus, results that relate congruence
primes and the modular degree are of great interest.

Theorem 2.2. Let E be an elliptic curve over Q of conductor N , with modular
degree mE and congruence number rE. Then mE | rE and if ordp(N) ≤ 1 then
ordp(rE) = ordp(mE).

We will prove a generalization of Theorem 2.2 in Section 4 below.
The divisibility mE | rE was first discussed in [Zag85, Th. 3], where it is

attributed to the second author (Ribet); however in [Zag85] the divisibility was
mistakenly written in the opposite direction. For some other expositions of
the proof, see [AU96, Lem 3.2] and [CK04]. We generalize this divisibility in
Proposition 4.5. The second part of Theorem 2.2, i.e., that if ordp(N) ≤ 1
then ordp(rE) = ordp(mE), follows from the more general Theorem 3.7 below.
Note that [AU96, Prop. 3.3–3.4] implies the weaker statement that if p - N
then ordp(rE) = ordp(mE), since [AU96, Prop. 3.3] implies

ordp(rE)− ordp(mE) = ordp(#C)− ordp(cE)− ordp(#D),
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Table 1: Differing Modular Degree and Congruence Number

Curve mE rE

54B1 2 6
64A1 2 4
72A1 4 8
80A1 4 8
88A1 8 16
92B1 6 12
96A1 4 8
96B1 4 8

Curve mE rE

99A1 4 12
108A1 6 18
112A1 8 16
112B1 4 8
112C1 8 16
120A1 8 16
124A1 6 12
126A1 8 24

Curve mE rE

128A1 4 32
128B1 8 32
128C1 4 32
128D1 8 32
135A1 12 36
144A1 4 8
144B1 8 16

and by [AU96, Prop. 3.4] ordp(#C) = 0. (Here cE is the Manin constant of E,
which is an integer by results of Edixhoven and Katz-Mazur; see e.g., [ARS06]
for more details.)

Frey and Müller [FM99, Ques. 4.4] asked whether rE = mE in general. After
implementing an algorithm to compute rE in Magma [BCP97], we quickly found
that the answer is no. The counterexamples at conductor N ≤ 144 are given
in Table 1, where the curve is given using the notation of [Cre97]:

For example, the elliptic curve 54B1, given by the equation y2 + xy + y =
x3 − x2 + x− 1, has rE = 6 and mE = 2. To see explicitly that 3 | rE, observe
that the newform corresponding to E is f = q + q2 + q4 − 3q5 − q7 + · · · and
the newform corresponding to X0(27) if g = q− 2q4 − q7 + · · · , so g(q) + g(q2)
appears to be congruent to f modulo 3. To prove this congruence, we checked
it for 18 Fourier coefficients, where the sufficiency of precision to degree 18 was
determined using [Stu87].

In our computations, there appears to be no absolute bound on the p that
occur. For example, for the curve 242B1 of conductor N = 2 · 112 we have1

mE = 24 6= rE = 24 · 11.

We propose the following replacement for Question 4.4 of [FM99]:

Conjecture 2.3. Let E be an optimal elliptic curve of conductor N and p be
any prime. Then

ordp

(
rE

mE

)
≤ 1

2
ordp(N).

We verified Conjecture 2.3 using Magma for every optimal elliptic curve
quotient of J0(N), with N ≤ 539.

If p ≥ 5 then ordp(N) ≤ 2, so a special case of the conjecture is

ordp

(
rE

mE

)
≤ 1 for any p ≥ 5.

1The curve 242a1 in “modern notation.”
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Remark 2.4. It is often productive to parametrize elliptic curves by X1(N)
instead of X0(N) (see, e.g., [Ste89] and [Vat05]). Suppose E is an optimal
quotient of X1(N), let m′E be the degree of the modular parametrization, and
let r′E be the Γ1(N)-congruence number, which is defined as above but with
S2(Γ0(N)) replaced by S2(Γ1(N)). For the optimal quotient of X1(N) isoge-
nous to 54B1, we find using Magma that m′E = 18 and r′E = 6. Thus the
equality m′E = r′E fails, and the analogous divisibility m′E | r′E no longer holds.
Also, for a curve of conductor 38 we have m′E = 18 and r′E = 6, so equality
need not hold even if the level is square free. We hope to investigate this in a
future paper.

3 Modular abelian varieties of arbitrary dimension

For N ≥ 4, let Γ be a fixed choice of either Γ0(N) or Γ1(N), let X be the
modular curve over Q associated to Γ, and let J be the Jacobian of X. Let I
be a saturated ideal of the corresponding Hecke algebra T ⊂ End(J), so T/I is
torsion free. Then A = AI = J/IJ is an optimal quotient of J since IJ is an
abelian subvariety.

Definition 3.1. If f =
∑
an(f)qn ∈ S2(Γ) and If = ker(T →

Z[. . . , an(f), . . .]), then A = Af = J/IfJ is the newform quotient associated
to f . It is an abelian variety over Q of dimension equal to the degree of the
field Q(. . . , an(f), . . .).

In this section, we generalize the notions of the congruence number and the
modular degree to quotients A = AI , and state a theorem relating the two
numbers, which we prove in Sections 4.1–4.2.

Let φ2 denote the quotient map J → A. By Poincare reducibility over Q
there is a unique abelian subvariety A∨ of J that projects isogenously to the
quotient A (equivalently, which has finite intersection with ker(φ2)), and so
by Hecke equivariance of J → A it follows that A∨ is T-stable. Let φ be the
composite isogeny

φ : A∨
φ1−→ J

φ2−→ A.

Remark 3.2. Note that A∨ is the dual abelian variety of A. More generally,
if C is any abelian variety, let C∨ denote the dual of C. There is a canonical
principal polarization J ∼= J∨, and dualizing φ2, we obtain a map φ∨2 : A∨ →
J∨, which we compose with θ−1 : J∨ ∼= J to obtain a map φ1 : A∨ → J . Note
also that ϕ is a polarization (induced by pullback of the theta divisor).

The exponent of a finite group G is the smallest positive integer n such that
every element of G has order dividing n.

Definition 3.3. The modular exponent of A is the exponent of the kernel of
the isogeny φ, and the modular number of A is the degree of φ.
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We denote the modular exponent of A by ñA and the modular number
by nA. When A is an elliptic curve, the modular exponent is equal to the
modular degree of A, and the modular number is the square of the modular
degree (see, e.g., [AU96, p. 278]).

If R is a subring of C, let S2(R) = S2(Γ;R) denote the subgroup of S2(Γ)
consisting of cups forms whose Fourier expansions at the cusp ∞ have coef-
ficients in R. (Note that Γ is fixed for this whole section.) Let S2(Γ;Z)[I]⊥

denote the orthogonal complement of S2(Γ;Z)[I] in S2(Γ;Z) with respect to
the Petersson inner product.

The following is well known, but we had difficulty finding a good reference.

Proposition 3.4. The group S2(Γ;Z) is of finite rank as a Z-module.

Proof. Using the standard pairing between T and S2(Γ,Z) (see also [Rib83,
Theorem 2.2]) we see that S2(Γ,Z) ∼= Hom(T,Z). Thus S2(Γ,Z) is finitely
generated over Z if and only if T is finitely generated over Z. But the action
of T on H1(J,Z) is a faithful representation that embeds T into Mat2d(Z) ∼=
Z(2d)2 . But Z is Noetherian, so T is finitely generated over Z.

Definition 3.5. The exponent of the quotient group

S2(Γ;Z)
S2(Γ;Z)[I] + S2(Γ;Z)[I]⊥

(1)

is the congruence exponent r̃A of A and its order is the congruence number rA.

Remark 3.6. Note that S2(Γ,Z)⊗Z R = S2(Γ, R); see, e.g., the discussion in
[DI95, §12]. Thus the analogue of Definition 3.5 with Z replaced by an algebraic
integer ring (or even Z) gives a torsion module whose annihilator ideal meets Z
in the ideal generated by the congruence exponent.

Our definition of rA generalizes the definition in Section 2 when A is an
elliptic curve (see [AU96, p. 276]), and the following generalizes Theorem 2.2:

Theorem 3.7. If f ∈ S2(C) is a newform, then

(a) We have ñAf
| r̃Af

, and

(b) If p2 - N , then ordp(r̃Af
) = ordp(ñAf

).

Remark 3.8. When Af is an elliptic curve, Theorem 3.7 implies that the
modular degree divides the congruence number (since for an elliptic curve the
modular degree and modular exponent are the same), i.e., √nAf

| rAf
. In

general, the divisibility nAf
| r2Af

need not hold. For example, there is a
newform of degree 24 in S2(Γ0(431)) such that

nAf
= (211 · 6947)2 - r2Af

= (210 · 6947)2.

Note that 431 is prime and mod 2 multiplicity one fails for J0(431) (see [Kil02]).
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4 Proof of the Main Theorem

In this section we prove Theorem 3.7. We continue using the notation intro-
duced so far.

4.1 Proof of Theorem 3.7 (a)

We begin with a remark about compatibilities. In general, the polarization
of J induced by the theta divisor need not be Hecke equivariant, because if T
is a Hecke operator on J , then on J∨ it acts as WNTWN , where WN is the
Atkin-Lehner involution (see e.g., [DI95, Rem. 10.2.2]). However, on Jnew the
action of the Hecke operators commutes with that of WN , so if the quotient
map J → A factors through Jnew, then the Hecke action on A∨ induced by the
embedding A∨ → J∨ and the action on A∨ induced by φ1 : A∨ → J are the
same. Hence A∨ is isomorphic to φ1(A∨) as a T-module.

Recall that f is a newform, If = AnnT(f), and J = J0(N). Let B = IfJ ,
so that A∨ + B = J , and J/B ∼= A. The following lemma is well known, but
we prove it here for the convenience of the reader.

Lemma 4.1. HomQ(A∨, B) = 0.

Proof. Pick a prime `. Then Q`⊗V`(J)ss as a Q`[GQ]-module is a direct sum of
copies of the representations ρg as g ranges through all normalized eigenforms
of weight 2 and level N with coefficients in Q; by a well-known result of the
second author, these representations are absolutely irreducible. Now since f is
a newform and A∨ → A is an isogeny, Q` ⊗ V`(A∨)ss is a direct sum of copies
of ρσ(f) as σ ranges over all embeddings of Kf into Q. Thus, by the analytic
theory of multiplicity one (see [Li75, Cor. 3, pg. 300]), the Galois modules
V`(A∨) and V`(B) = V`(J)/V`(A∨) share no common Jordan-Hölder factors
even when coefficients are extended to Q`, so HomQ(A′, B) = 0.

Let T1 be the image of T in End(A∨), and let T2 be the image of T in
End(B). We have the following commutative diagram with exact rows:

0 // T //

��

T1 ⊕T2
//

��

T1 ⊕T2

T

��

// 0

0 // End(J) // End(A∨)⊕ End(B) // End(A∨)⊕ End(B)
End(J)

// 0.

(2)
Let

e = (1, 0) ∈ T1 ⊕T2,

and let e1 and e2 denote the images of e in the groups (T1 ⊕ T2)/T and
(End(A∨) ⊕ End(B))/End(J), respectively. It follows from Lemma 4.1 that
the two quotient groups on the right hand side of (2) are finite, so e1 and e2
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have finite order. Note that because e2 is the image of e1, the order of e2 is a
divisor of the order of e1.

The denominator of any ϕ ∈ End(J)⊗Q is the smallest positive integer n
such that nϕ ∈ End(J).

Let πA∨ , πB ∈ End(J)⊗Q be projection onto A∨ and B, respectively. Note
that the denominator of πA∨ equals the denominator of πB, since πA∨+πB = 1J ,
so that πB = 1J − πA∨ .

Lemma 4.2. The element e2 ∈ (End(A∨)⊕End(B))/End(J) defined above has
order ñA.

Proof. Let n be the order of e2, so n is the denominator of πA∨ , which, as
mentioned above, is also the denominator of πB. We want to show that n is
equal to ñA, the exponent of A∨ ∩B.

Let iA∨ and iB be the embeddings of A∨ and B into J , respectively. Then

ϕ = (nπA∨ , nπB) ∈ Hom(J,A∨ ×B)

and ϕ ◦ (iA∨ + iB) = [n]A∨×B . We have an exact sequence

0 → A∨ ∩B x7→(x,−x)−−−−−−→ A∨ ×B
iA∨+iB−−−−−→ J → 0.

Let ∆ be the image of A∨ ∩B. Then by exactness,

[n]∆ = (ϕ ◦ (iA∨ + iB))(∆) = ϕ ◦ ((iA∨ + iB)(∆)) = ϕ({0}) = {0},

so n is a multiple of the exponent ñA of A∨ ∩B.
To show the opposite divisibility, consider the commutative diagram

0 // A∨ ∩B
x7→(x,−x) //

[ñA]

��

A∨ ×B

([ñA],0)

��

// J //

ψ

��

0

0 // A∨ ∩B
x7→(x,−x) // A∨ ×B // J // 0,

where the middle vertical map is (a, b) 7→ (ñAa, 0) and the map ψ exists because
[ñA](A∨ ∩ B) = 0. But ψ = ñAπA∨ in End(J)⊗Q. This shows that ñAπA∨ ∈
End(J), i.e., that ñA is a multiple of the denominator n of πA∨ .

Let Ext1 = Ext1Z denote the first Ext functor in the category of Z-modules.

Lemma 4.3. The group (T1⊕T2)/T is isomorphic to the quotient (1) in Def-
inition 3.5, so rA = #((T1 ⊕T2)/T) and r̃A is the exponent of (T1 ⊕T2)/T.
More precisely, Ext1((T1⊕T2)/T,Z) is isomorphic as a T-module to the quo-
tient (1).
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Proof. Apply the Hom(−,Z) functor to the first row of (2) to obtain a three-
term exact sequence

0 → Hom(T1 ⊕T2,Z) → Hom(T,Z) → Ext1((T1 ⊕T2)/T,Z) → 0. (3)

There is a T-equivariant bilinear pairing T × S2(Z) → Z given by (t, g) 7→
a1(t(g)), which is perfect by [AU96, Lemma 2.1] (see also [Rib83, Theorem 2.2]).
Using this pairing, we transform (3) into an exact sequence

0 → S2(Z)[If ]⊕ S2(Γ;Z)[If ]⊥ → S2(Z) → Ext1((T1 ⊕T2)/T,Z) → 0

of T-modules. Here we use that Hom(T2,Z) is the unique saturated Hecke-
stable complement of S2(Z)[If ] in S2(Z), hence must equal S2(Z)[If ]⊥. Finally
note that if G is any finite abelian group, then Ext1(G,Z) ≈ G as groups, which
gives the desired result.

Lemma 4.4. The element e1 ∈ (T1 ⊕T2)/T has order r̃A.

Proof. By Lemma 4.3, the lemma is equivalent to the assertion that the order r
of e1 equals the exponent of M = (T1 ⊕T2)/T. Since e1 is an element of M ,
the exponent of M is divisible by r.

To obtain the reverse divisibility, consider any element x of M . Let (a, b) ∈
T1 ⊕ T2 be such that its image in M is x. By definition of e1 and r, we
have (r, 0) ∈ T, and since 1 = (1, 1) ∈ T, we also have (0, r) ∈ T. Thus
(Tr, 0) and (0,Tr) are both subsets of T (i.e., in the image of T under the
map T → T1 ⊕T2), so r(a, b) = (ra, rb) = (ra, 0) + (0, rb) ∈ T. This implies
that the order of x divides r. Since this is true for every x ∈ M , we conclude
that the exponent of M divides r.

Proposition 4.5. If f ∈ S2(C) is a newform, then ñAf
| r̃Af

.

Proof. Since e2 is the image of e1 under the right-most vertical homomorphism
in (2), the order of e2 divides that of e1. Now apply Lemmas 4.2 and 4.4.

This finishes the proof of the first statement in Theorem 3.7.

4.2 Proof of Theorem 3.7 (b)

Let T′ be the saturation of T = Z[. . . , Tn, . . .] in End(J0(N)), i.e., the set of ele-
ments of End(J0(N))⊗Q some positive multiple of which lie in T. The quotient
T′/T is a finitely generated abelian group because both T and End(J0(N)) are
finitely generated over Z. Since T′/T is also a torsion group, it is finite.

In Section 4.2.1, we will give some conditions under which T and T′ agree
locally at maximal ideal of T. In Section 4.2.2, we will explain how the ratio
of the congruence number to the modular degree is closely related to the order
of T′/T, and finally deduce that this ratio is 1 (for quotients associated to
newforms) locally at a prime p such that p2 - N .
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4.2.1 Multiplicity One

Fixt an integer N and a prime p | N . Suppose for a moment that N is prime,
so p = N . In [Maz77], Mazur proves that T = T′; he combines this result with
the equality

T⊗Q = End(J0(p))⊗Q,

to deduce that T = End(J0(p)). This result, combined with Ribet’s result
[Rib75] or [Rib81] to the effect that T⊗Q = (EndQJ0(N))⊗Q, shows that T
is the full ring of endomorphisms of J0(N) over Q. When N is no longer
necessarily prime, the method of [Maz77] shows that T and T′ agree locally at
a maximal ideal m of T that satisfies a simple condition involving differentials
form mod `, where ` is the residue characteristic of m.

For the sake of completeness, we state and prove a lemma that can be
easily extracted from [Maz77]. Let m be the largest square dividing N and let
R = Z[ 1

m ]. Let X0(N)R denote the minimal regular model of X0(N) over R.
Let Ω = ΩX0(N)/R denote the sheaf of regular differentials on X0(N)R, as
in [Maz78, §2(e)]. If ` is a prime such that `2 - N , then X0(N)F`

denotes the
special fiber of X0(N)R at the prime `.

Lemma 4.6 (Mazur). Let m be a maximal ideal of T of residue characteristic `
such that `2 - N . Suppose that

dimT/m H0(X0(N)F`
,Ω)[m] ≤ 1.

Then T and T′ agree locally at m.

Proof. Let M denote the group H1(X0(N)R,OX0(N)), where OX0(N) is the
structure sheaf of X0(N). As explained in [Maz77, p. 95], we have an
action of EndQJ0(N) on M , and the action of T on M via the inclusion
T ⊆ EndQJ0(N) is faithful, so likewise for the action by T′. Hence we have an
injection φ : T′ ↪→ EndTM . Suppose m is a maximal ideal of T that satisfies
the hypotheses of the lemma. To prove that Tm = T′m it suffices to prove the
following claim:

Claim: The map φ|T is surjective locally at m.

Proof. By Nakayama’s lemma, to show that M is generated as a single el-
ement over T locally at m, it suffices to check that the dimension of the
T/m -vector space M/mM is at most one. Since `2 - N , M/mM is dual
to H0(X0(N)F`

,Ω)[m] (see, e.g., [Maz78, §2]). Since we are assuming that
dimT/mH

0(X0(N)F`
,Ω)[m] ≤ 1, we have dimT/m(M/mM) ≤ 1, which proves

the claim.
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If m is a maximal ideal of the Hecke algebra T of residue characteristic `,
we say that m satisfies multiplicity one for differentials if

dim(H0(X0(N)F`
,Ω)[m]) ≤ 1.

By Lemma 4.6, multiplicity one for H0(X0(N)F`
,Ω)[m] implies that T and T′

agree at m.
There is quite a bit of literature on the question of multiplicity 1 for

H0(X0(N)F`
,Ω)[m]. The easiest case is that ` is prime to the level N :

Lemma 4.7 (Mazur). If m is a maximal ideal of T of residue characteristic `
such that ` - N , then

dimT/m H0(X0(N)F`
,Ω)[m] ≤ 1.

Proof. Mazur deduces this lemma from injectivity of the q-expansion map. The
reader may find the following alternative approach to part of the argument
easier to follow than the one on p. 95 of [Maz77]. We have an F`-vector space
that embeds in F`[[q]], for example a space V of differentials that is killed by
a maximal ideal m. This space is a T/m-vector space, and we want to see
that its dimension over T/m is at most 1. Mazur invokes tensor products and
eigenvectors; alternatively, we note that V embeds in HomF`

(T/m,F`) via the
standard duality that sends v ∈ V to the linear form whose value on a Hecke
operator T is the qth coefficient of v|T . The group HomF`

(T/m,F`) has the
same size as T/m, which completes the argument because HomF`

(T/m,F`)
has dimension 1 as a T/m-vector space.

In the context of Mazur’s paper, where the level N is prime, we see from
Lemma 4.7 that T and T′ agree away from N . Locally at N , Mazur proved
that T = T′ by an analogue of the arguments that he used away from N ; see
Chapter II of [Maz77] (and especially Prop. 9.4 and 9.5 of that chapter) as well
as [MR91], where these arguments are taken up in a context where the level
is no longer necessarily prime (and where one works locally at a prime whose
square does not divide the level). Thus in the prime level case, T = T′, as we
asserted above.

Now let p be a prime such that p ‖ N , and let M = N/p. The question of
multiplicity 1 at p for H0(X0(pM)Fp ,Ω)[m] is discussed in [MR91], where the
authors establish multiplicity 1 for maximal ideals m | p for which the associated
mod p Galois representation is irreducible and not p-old. (A representation of
level pM is p-old if it arises from S2(Γ0(M)).)

If m is a maximal ideal of T of residue characteristic `, then we say that m is
ordinary if T` 6∈ m (note that T` is often denoted U` if ` | N). For our purposes,
the following lemma is convenient:

Lemma 4.8 (Wiles). If m is an ordinary maximal ideal of T of characteristic p,
then

dimT/m H0(X0(pM)Fp ,Ω)[m] ≤ 1.
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This is essentially Lemma 2.2 in [Wil95, pg. 485]; we make a few comments
about how it applies on our situation:

1. Wiles considers X1(M,p) instead of X0(pM), which means that he is
using Γ1(M)-structure instead of Γ0(M)-structure. This surely has no
relevance to the issue at hand.

2. Wiles assumes (on page 480) that p is an odd prime, but again this
assumption is not relevant to our question.

3. The condition that m is ordinary does not appear explicitly in the state-
ment of Lemma 2.2 in [Wil95]; instead it is a reigning assumption in the
context of his discussion.

4. We see by example that Wiles’s “ordinary” assumption is less stringent
than the assumption in [MR91]; note that [MR91] rule out cases where m
is both old and new at p, whereas Wiles is happy to include such cases.
(On the other hand, Wiles’s assumption is certainly nonempty, since it
rules out maximal ideals m that arise from non-ordinary (old) forms of
level M . Here is an example with p = 2 and M = 11, so N = 22: There is
a unique newform f =

∑
anq

n of level 11, and T = Z[T2] ⊂ End(J0(22)),
where T 2

2 − a2T2 + 2 = 0. Since a2 = −2, we have T ∼= Z[
√
−1]. We

can choose the square root of −1 to be T2 + 1. Then T2 is a generator of
the unique maximal ideal m of T with residue characteristic 2, and this
maximal ideal is not ordinary.)

We now summarize the conclusions we can make from the lemmas so far:

Proposition 4.9. The modules T and T′ agree locally at each maximal ideal m
that is either prime to N or that satisfies the following supplemental hypothe-
sis: the residue characteristic of m divides N only to the first power and m is
ordinary.

Proof. This follows easily from Lemmas 4.6, 4.7, and 4.8.

In Mazur’s original context, where the level N is prime, we have T 2
N = 1

because there are no forms of level 1. Accordingly, each m dividing N is
ordinary, and we recover Mazur’s equality T = T′ in this special case.

4.2.2 Degrees and Congruences

Let e ∈ T ⊗Q be as in Section 4.1, and let p,N,M be as before Lemma 4.8.
The image of e in J0(pM) is the T-stable abelian subvariety denoted A∨ in
Section 4.1, but since we shall now exclusively work with this subvariety rather
than the corresponding optimal quotient of J0(pM) (which was denoted A
earlier), we will now write A to denote the image of e (without risk of confusion).
We also write B to denote the unique T-stable abelian subvariety of J0(pM)
complementary to A.
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For t ∈ T, let tA be the restriction of t to A, and let tB be the image of t in
End(B). Let TA be the subgroup of End(A) consisting of the various tA, and
define TB similarly. As before, we obtain an injection j : T ↪→ TA ×TB with
finite cokernel. Because j is an injection, we refer to the maps πA : T → TA

and πB : T → TB , given by t 7→ tA and t 7→ tB , respectively, as “projections”.

Definition 4.10. The congruence ideal associated with the projector e is I =
πA(ker(πB)) ⊂ TA.

Viewing TA as TA × {0}, we may view TA as a subgroup of T ⊗ Q ∼=
(TA × TB) ⊗ Q. Also, we may view T as embedded in TA × TB , via the
map j.

Lemma 4.11. We have I = TA ∩T.

A larger ideal of TA is J = AnnTA
(A ∩ B); it consists of restrictions to A

of Hecke operators that vanish on A ∩B.

Lemma 4.12. We have I ⊂ J .

Proof. The image in TA of an operator that vanishes on B also vanishes on
A ∩B.

Lemma 4.13. We have J = TA ∩ End(J0(pM)) = TA ∩T′.

Proof. This is elementary; it is an analogue of Lemma 4.11.

Proposition 4.14. There is a natural inclusion J/I ↪→ T′/T of T-modules.

Proof. Consider the map T → T ⊗Q given by t 7→ te. This homomorphism
factors through TA and yields an injection ιA : TA ↪→ T⊗Q. Symmetrically,
we also obtain ιB : TB ↪→ T ⊗Q. The map (tA, tB) 7→ ιA(tA) + ιB(tB) is an
injection TA × TB ↪→ T ⊗Q. The composite of this map with the inclusion
j : T ↪→ TA × TB defined above is the natural map T ↪→ T ⊗ Q. We thus
have a sequence of inclusions

T ↪→ TA ×TB ↪→ T⊗Q ⊂ End(J0(pM))⊗Q.

By Lemma 4.11 and Lemma 4.13, we have I = TA∩T and J = TA∩T′. Thus
I = J ∩T, where the intersection is taken inside T′. Thus

J/I = J/(J ∩T) ∼= (J + T)/T ↪→ T′/T.

Corollary 4.15. If m is a maximal ideal not in SuppT(T′/T), then m is not
in the support of J/I, i.e., if T and T′ agree locally at m, then I and J also
agree locally at m.
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Note that the Hecke algebra T acts on J/I through its quotient TA, since
the action of T on I and on J factors through this quotient.

Now we specialize to the case where A is ordinary at p, in the sense that the
image of Tp in TA, which we denote Tp,A, is invertible modulo every maximal
ideal of TA that divides p. (This case occurs when A is a subvariety of the
p-new subvariety of J0(pM), since the square of Tp,A is the identity.)

If m | p is a maximal ideal of T that arises by pullback from a maximal
ideal of TA, then m is ordinary in the sense used above. When A is ordinary
at p, it follows from Proposition 4.9 and Corollary 4.15 that I = J locally at p.
The reason is simple: regarding I and J as TA-modules, we realize that we
need to test that I = J at maximal ideals of TA that divide p. These ideals
correspond to maximal ideals m | p of T that are automatically ordinary, so
we have I = J locally at m because of Proposition 4.9. By Proposition 4.9, we
have T = T′ locally at primes away from the level pM . Thus we conclude that
I = J locally at all primes ` - pM and also at p, a prime that divides the level
pM exactly once.

Suppose, finally, that A is the abelian variety associated to a newform f of
level pM . The ideal I ⊂ TA measures congruences between f and the space of
forms in S2(Γ0(pM)) that are orthogonal to the space generated by f . Also,
A∩B is the kernel in A of the map “multiplication by the modular element e”.
In this case, the inclusion I ⊂ J corresponds to the divisibility ñA | r̃A, and
we have equality at primes at which I = J locally. We conclude that the
congruence exponent and the modular exponent agree both at p and at primes
not dividing pM , which completes our proof of Theorem 3.7(b).

Remark 4.16. The ring

R = End(J0(pM)) ∩ (TA ×TB)

is often of interest, where the intersection is taken in End(J0(pM)) ⊗Q. We
proved above that there is a natural inclusion J/I ↪→ T′/T. This inclusion
yields an isomorphism J/I

∼−→ R/T. Indeed, if (tA, uB) is an endomorphism of
J0(pM), where t, u ∈ T, then (tA, uB) − u = (tA, 0) is an element of J . The
ideals I and J are equal to the extent that the rings T and R coincide. Even
when T′ is bigger than T, its subring R may be not far from T.

5 Failure of Multiplicity One

In this section, we discuss examples of failure of multiplicity one (in two dif-
ferent but related senses). The notion of multiplicity one, originally due to
Mazur [Maz77], has played an important role in several places (e.g., in Wiles’s
proof of Fermat’s last theorem [Wil95]). This notion is closely related to Goren-
steinness of certain Hecke algebras (e.g., see [Til97]). Kilford [Kil02] found
examples of failure of Gorensteinness (and multiplicity one) at the prime 2 for
certain prime levels. Motivated by the arguments in Section 4, in this section
we give examples of failure of multiplicity one for primes (including odd primes)
whose square divides the level.
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5.1 Multiplicity One for Differentials

In connection with the arguments in Section 4, especially Lemmas 4.6 and
4.8, it is of interest to compute the index [T′ : T] for various N . We
can compute this index in Magma, e.g., the following commands com-
pute the index for N = 54: “J := JZero(54); T := HeckeAlgebra(J);
Index(Saturation(T), T);” We obtain Table 2, where the first column con-
tains N and the second column contains [T′ : T]:

Let m be a maximal ideal of the Hecke algebra T ⊂ End(J0(N)) of residue
characteristic p. Recall that we say that m satisfies multiplicity one for differ-
entials if dim(H0(X0(N)Fp

,Ω)[m]) ≤ 1.
In each case in which [T′ : T] 6= 1, Lemma 4.6 implies that there is some

maximal ideal m of T such that dim(H0(X0(N)Fp
,Ω)[m]) > 1, which is an

example of failure of multiplicity one for differentials.
In Table 2, whenever p | [T′ : T], then p2 | 2N . This is a consequence

of Proposition 4.9, which moreover asserts that when 2 exactly divides N and
2 | [T′ : T] then there is a non-ordinary (old) maximal ideal of characteristic 2
in the support of T′/T.

Moreover, notice that Theorem 3.7(b) (whose proof is in Section 4.2) follows
formally from two key facts: that Af is new and that multiplicity one for
differentials holds for ordinary maximal ideals with residue characteristic p || N
and for all maximal ideals with residue characteristic p - N . The conclusion
of Theorem 3.7(b) does not hold for the counterexamples in Section 2 (e.g.,
for 54B1), which are all new elliptic curves, so multiplicity one for differentials
does not hold for certain maximal ideals that arise from the new quotient of the
Hecke algebra. Note that in all examples we have p | (r/m) with p2 | N , which
raises the question: are there non-ordinary counterexamples with p || N?

5.2 Multiplicity One for Jacobians

We say that a maximal ideal m of T satisfies multiplicity one if J0(N)[m] is
of dimension two over T/m. We sometimes use the phrase “multiplicity one
for J0(N)” in order to distinguish this notion from the notion of multiplicity
one for differentials.

Proposition 5.1. Suppose E is an optimal elliptic curve over Q of conduc-
tor N and p is a prime such that p | rE but p - mE. Let m be the annihilator
in T of E[p]. Then multiplicity one fails for m, i.e., dimT/m J0(N)[m] > 2.

Proof. Using the principal polarization E ∼= E∨ we view E as an abelian subva-
riety of J = J0(N) and consider the complementary T-stable abelian subvariety
A of E (thus A is the kernel of the modular parametrization map J → E). In
this setup, J = E + A, and the intersection of E and A is E[mE ]. Here we
use that the composite map E ' E∨ → J∨ → J → E is a polarization, and
hence is multiplication by a positive integer mE . Because p - mE , we have
E[p] ∩ A = 0. On the other hand, let m be the annihilator of E[p] inside T.
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Table 2: The Index [T′ : T]

11 1
12 1
13 1
14 1
15 1
16 1
17 1
18 1
19 1
20 1
21 1
22 1
23 1
24 1
25 1
26 1
27 1
28 1
29 1
30 1
31 1
32 1
33 1
34 1
35 1
36 1
37 1
38 1
39 1
40 1
41 1
42 1
43 1
44 2
45 1
46 2
47 1
48 1
49 1
50 1

51 1
52 1
53 1
54 3
55 1
56 2
57 1
58 1
59 1
60 2
61 1
62 2
63 1
64 2
65 1
66 1
67 1
68 2
69 1
70 1
71 1
72 2
73 1
74 1
75 1
76 2
77 1
78 2
79 1
80 4
81 1
82 1
83 1
84 2
85 1
86 1
87 1
88 8
89 1
90 1

91 1
92 16
93 1
94 4
95 1
96 8
97 1
98 1
99 9
100 1
101 1
102 1
103 1
104 4
105 1
106 1
107 1
108 54
109 1
110 2
111 1
112 8
113 1
114 1
115 1
116 4
117 1
118 2
119 1
120 32
121 1
122 1
123 1
124 16
125 25
126 18
127 1
128 64
129 1
130 1

131 1
132 8
133 1
134 1
135 27
136 16
137 1
138 4
139 1
140 8
141 1
142 8
143 1
144 32
145 1
146 1
147 7
148 4
149 1
150 5
151 1
152 32
153 9
154 1
155 1
156 32
157 1
158 4
159 1
160 256
161 1
162 81
163 1
164 8
165 1
166 2
167 1
168 128
169 13
170 1

171 9
172 8
173 1
174 4
175 5
176 512
177 1
178 1
179 1
180 72
181 1
182 1
183 1
184 1024
185 1
186 4
187 1
188 256
189 243
190 8
191 1
192 4096
193 1
194 1
195 1
196 14
197 1
198 81
199 1
200 80
201 1
202 1
203 1
204 32
205 1
206 4
207 81
208 256
209 1
210 2
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Then J [m] contains E[p] and also A[m], and because p is a congruence prime,
the submodule A[m] ⊂ J [m] is nonzero. Thus the sum E[p] + A[m] is a direct
sum and is larger than E[p], which is of dimension 2 over T/m = Z/pZ. Hence
the dimension of J [m] over T/m is bigger than 2, as claimed.

Proposition 5.1 implies that any example in which simultaneously p - mE

and ordp(rE) 6= ordp(mE) produces an example in which multiplicity one for
J0(N) fails. For example, for the curve 54B1 and p = 3, we have ord3(rE) = 1
but ord3(mE) = 0, so multiplicity one at 3 fails for J0(54).
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Progr. Math., vol. 12, Birkhäuser Boston, Mass., 1981, pp. 263–276.

[Rib83] K. A. Ribet, Mod p Hecke operators and congruences between mod-
ular forms, Invent. Math. 71 (1983), no. 1, 193–205.

[Ste89] G. Stevens, Stickelberger elements and modular parametrizations of
elliptic curves, Invent. Math. 98 (1989), no. 1, 75–106.



18 Agashe, Ribet, Stein

[Stu87] J. Sturm, On the congruence of modular forms, Number theory
(New York, 1984–1985), Springer, Berlin, 1987, pp. 275–280.

[Til97] J. Tilouine, Hecke algebras and the Gorenstein property, Modular
forms and Fermat’s last theorem (Boston, MA, 1995), Springer,
New York, 1997, pp. 327–342.

[Vat05] V. Vatsal, Multiplicative subgroups of J0(N) and applications to
elliptic curves, J. Inst. Math. Jussieu 4 (2005), no. 2, 281–316.

[Wil95] A. J. Wiles, Modular elliptic curves and Fermat’s last theorem, Ann.
of Math. (2) 141 (1995), no. 3, 443–551.

[Zag85] D. Zagier, Modular parametrizations of elliptic curves, Canad.
Math. Bull. 28 (1985), no. 3, 372–384.


