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Overview

I Elliptic Curves have been in Sage since (almost) the
beginning.

I The source directory sage/schemes/elliptic curves has
34 files and 21, 628 lines of code, and that does not count
external packages such as my eclib (mwrank and friends),
Runestein’s lcalc, the pari library’s elliptic curve functions,
and Simon’s gp scripts.

I The Sage Tutorial and Constructions documents currently
only mention a tiny part of the elliptic curve functionality in
Sage. The reference manual, Chapter 39, has several sections
on elliptic curves which contain all the docstrings of all the
functions. Browsing these will give you a better idea of what
is (and is not) there, but not necessarily in a coherent order.
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The Elliptic Curve Classes

I The base class for elliptic curves in Sage is
EllipticCurve generic which builds on
ProjectiveCurve generic and lower level machinery for
Curves and Schemes.

I EllipticCurve generic
EllipticCurve field

EllipticCurve finite field
EllipticCurve number field

EllipticCurve rational field

I There is also the class EllipticCurve padic field.
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Points on Elliptic Curves

I The “fancy” class EllipticCurvePoint, which derives from
SchemeMorphism projective coordinates ring, is not in
fact used at all. It is there for when there is some
functionality for elliptic curves defined over base schemes
other than fields, which is not yet.

I The class EllipticCurvePoint field and its children does
all the work.

I EllipticCurvePoint field (derived from
AdditiveGroupElement)

I EllipticCurvePoint number field
I EllipticCurvePoint finite field
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Creating an elliptic curve

I The most common method is to give the usual 5
coefficients a1, a2, a3, a4, a6 of a Weierstrass Equation:

sage: E1 = EllipticCurve([0,0,1,-7,6])

sage: E1

Elliptic Curve defined by y^2 + y = x^3 - 7*x + 6 over

Rational Field

sage: E2 = EllipticCurve(GF(101),[0,0,1,-7,6])

sage: E2

Elliptic Curve defined by y^2 + y = x^3 + 94*x + 6 over

Finite Field of size 101

sage: K = PolynomialRing(QQ,’T’).fraction_field()

sage: T = K.gen()

sage: E3 = EllipticCurve([0,0,0,-T^2,0])

sage: E3

Elliptic Curve defined by y^2 = x^3 - T^2*x over Fraction Field of

Univariate Polynomial Ring in T over Rational Field
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I Starting with a more general genus one curve and a base
point is not yet implemented. For example,

sage: P2.<X, Y, Z> = ProjectiveSpace(QQ, 2)

sage: P2

Projective Space of dimension 2 over Rational Field

sage: C = Curve(X^3 + Y^2*Z - X*Y*Z - Z^3)

sage: C

Projective Curve over Rational Field defined by X^3 - X*Y*Z + Y^2*Z - Z^3

sage: C.genus()

1

sage: pt = C([0, 1, 1]); pt

(0 : 1 : 1)

sage: EllipticCurve(C,pt)

...

TypeError: invalid input to EllipticCurve constructor



Changing models

Elliptic curves in Sage are currently always represented by (long)
Weierstrass models. Standard transformations for changing models
are available:

sage: E = EllipticCurve([1/2,3/4,5/6,7/8,9/10]); E

Elliptic Curve defined by y^2 + 1/2*x*y + 5/6*y = x^3 + 3/4*x^2 + 7/8*x + 9/10 over Rational Field

sage: Emin = E.minimal_model(); Emin

Elliptic Curve defined by y^2 + x*y = x^3 - x^2 + 699258*x + 597561416 over Rational Field

sage: t = Emin.isomorphism_to(E); t

Generic morphism:

From: Abelian group of points on Elliptic Curve defined by y^2 + x*y = x^3 - x^2 + 699258*x + 597561416 over Rational Field

To: Abelian group of points on Elliptic Curve defined by y^2 + 1/2*x*y + 5/6*y = x^3 + 3/4*x^2 + 7/8*x + 9/10 over Rational Field

Via: (u,r,s,t) = (30, 244, 7, 11128)



Twists

Sage can construct quadratic (and higher) twists over any field,
including fields of characteristic 2 or 3. It cannot (yet) detect when
two curves are (quadratic or more general) twists except by
comparing j-invariants:

sage: E = EllipticCurve([1,0,0,0,1])

sage: E3 = E.quadratic_twist(3)

sage: E;E3

Elliptic Curve defined by y^2 + x*y = x^3 +1 over Rational Field

Elliptic Curve defined by y^2 = x^3 - 3*x + 1730 over Rational Field

sage: E.is_isomorphic(E3)

False

sage: K = QuadraticField(3,’root3’)

sage: phi = E.change_ring(K).isomorphism_to(E3.change_ring(K))

sage: E.gens()

[(-1 : 1 : 1), (0 : -1 : 1)]

sage: [phi(P) for P in E.gens()]

[(-11 : 12*root3 : 1), (1 : -24*root3 : 1)]
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Twists (continued)

Quartic and sextic twists are only defined for curves with
appropriate j-invariant:

sage: F = GF(101)

sage: E = EllipticCurve(F,[1,0,0,0,1])

sage: d = F.multiplicative_generator()

sage: E.quadratic_twist(d)

Elliptic Curve defined by y^2 = x^3 + 2*x^2 + 7 over Finite Field of size 101

sage: E = EllipticCurve(F,[0,0,0,0,1])

sage: E.j_invariant() == 0

True

sage: E.sextic_twist(d)

Elliptic Curve defined by y^2 = x^3 + 89 over Finite Field of size 101

sage: E = EllipticCurve(F,[0,0,0,1,0])

sage: E.j_invariant() == 1728

True

sage: E.quartic_twist(d)

Elliptic Curve defined by y^2 = x^3 + 67*x over Finite Field of size 101



Accessing basic invariants

Obviously one can access the coefficients and other basic invariants
of a curve:

sage: E = EllipticCurve([0,0,1,-7,36])

sage: E.a_invariants()

[0, 0, 1, -7, 36]

sage: E.b_invariants()

(0, -14, 145, -49)

sage: E.c_invariants()

(336, -31320)

sage: E.discriminant()

-545723

sage: E.j_invariant()

-37933056/545723

The ai , bi and ci are returned as lists so if you need to assign
names to them you can do this:

sage: c4,c6 = E.c_invariants(); c4,c6

(336, -31320)



Note: elliptic curves in Sage are always defined over fields and so
in the above examples the type of everything is
sage.rings.rational.Rational, i.e. rational and not integer.
This rarely causes problems:

sage: E.discriminant().factor()

-1 * 545723

sage: E.j_invariant().factor()

-1 * 2^12 * 3^3 * 7^3 * 545723^-1

sage: E.discriminant().is_prime()

...

AttributeError: ’sage.rings.rational.Rational’ object has no attribute ’is_prime’

sage: ZZ(E.discriminant()).is_prime()

False

sage: ZZ(E.discriminant()).is_irreducible()

True



Sets of points on a curve
Points on an elliptic curve E defined over a field F have as parent
the object E (K ) (where K is any extension of the field F of
definition of E ). Over a finite field we can list its elements, or ask
for a random point.

sage: F = GF(13)

sage: E = EllipticCurve(F,[0,-1,1,0,0])

sage: E(F)

Abelian group of points on Elliptic Curve defined by y^2 + y = x^3 + 12*x^2 over

Finite Field of size 13

sage: E(GF(13^100,’a’))

Abelian group of points on Elliptic Curve defined by y^2 + y = x^3 + 12*x^2 over

Finite Field in a of size 13^100

sage: E.points()

[(0 : 0 : 1), (0 : 1 : 0), (0 : 12 : 1), (1 : 0 : 1), (1 : 12 : 1),

(2 : 5 : 1), (2 : 7 : 1), (8 : 2 : 1), (8 : 10 : 1), (10 : 6 : 1)]

sage: E.cardinality()

10

sage: E.abelian_group()

(Multiplicative Abelian Group isomorphic to C10, ((8 : 2 : 1),))



sage: E.change_ring(GF(13^10,’a’)).abelian_group()

(Multiplicative Abelian Group isomorphic to C68929587450 x C2,

((9*a^9 + 12*a^8 + 3*a^7 + 7*a^6 + 2*a^5 + 6*a^4 + 9*a^3 + 12*a^2 + 4*a + 1 :

5*a^9 + 11*a^8 + 11*a^7 + 4*a^6 + 5*a^5 + 12*a^4 + 12*a^3 + 4*a^2 + a : 1),

(2*a^8 + 9*a^6 + 8*a^5 + 11*a^4 + 5*a^3 + 6*a^2 + 11*a + 4 : 6 : 1)))

sage: E.change_ring(GF(13^100,’a’)).cardinality()

24793351109659725335110728847348651362387744678749411498748696227612229\

66104977552895203130235525308261778000000

E = EllipticCurve(GF(next_prime(10^10)),[0,-1,1,0,0]); E

Elliptic Curve defined by y^2 + y = x^3 + 10000000018*x^2 over

Finite Field of size 10000000019

E.cardinality()

9999910115

sage: E.random_point().order()

9999910115
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Creation of points on a curve

All points are given in normalized projective coordinates (last
nonzero coordinate = 1), so either (0 : 1 : 0) or (x : y : 1). To
define a point, use E (s) where s is a list [x , y ] or [x , y , z ]; an error
results if the equation is not satisfied. For the identity one can just
use E (0). Using is x coord() one can test whether an x value is
the x-coordinate of a point, and use lift x() to construct the
point:

sage: E = EllipticCurve([0,0,1,-7,36])

sage: E(0)

(0 : 1 : 0)

sage: E(1,5)

(1 : 5 : 1)

sage: [a for a in srange(100) if E.is_x_coord(a)]

[1, 2, 3, 4, 6, 9, 15, 17, 32, 36, 40, 43]

sage: E.lift_x(6)

(6 : 14 : 1)

sage: E(6,14,1).order() # only over GF(q) or number fields

+Infinity



Point operations

To add and subtract points or multiply a point by an integer is
easy:

sage: E = EllipticCurve(’5077a1’)

sage: P1,P2,P3 = E.gens()

sage: P1+P2

(4 : -7 : 1)

sage: -P3

(1 : 0 : 1)

sage: 2*P1

(221/49 : -2967/343 : 1)

We can also (attempt to) divide points:

sage: P1.division_points(2)

[]

sage: Q=2*P1; Q

(-226/121 : -9374/1331 : 1)

sage: Q.division_points(2)

[(-2 : 3 : 1)]
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The following shows that the three points are in fact independent:

sage: all([len(Q.division_points(2)) ==0 for Q in [P1,P2,P3,P1+P2,P1+P3,P2+P3,P1+P2+P3]])

True

More simply (but only available over Q at present since it uses the
canonical height pairing) the following shows that the three points
are in fact independent:

sage: E.regulator([P1,P2,P3])

0.417143558758384

sage: E.regulator([P1,P2,P3],precision=280)

0.41714355875838396981711954462602952052616673147328427226777802155137687035815486683

. . . and in fact

sage: E.rank()

3

. . . more on elliptic curves over number fields later . . .



Division Polynomials

We can obtain the nth division polynomial of E (as a univariate
polynomial):

sage: E = EllipticCurve([0,-1,1,0,0])

sage: f5 = E.division_polynomial(5); f5

5*x^12 - 20*x^11 + 16*x^10 + 95*x^9 - 285*x^8 + 360*x^7 - 255*x^6 + 94*x^5 + 15*x^4 - 45*x^3 + 25*x^2 - 5*x

sage: f5.roots()

[(1, 1), (0, 1)]

sage: E(0).division_points(5)

[(0 : -1 : 1), (0 : 0 : 1), (0 : 1 : 0), (1 : -1 : 1), (1 : 0 : 1)]

DivisionPolynomial() has various options:

sage: E.division_polynomial(4,two_torsion_multiplicity=0)

2*x^6 - 4*x^5 + 10*x^3 - 10*x^2 + 4*x - 1

sage: E.division_polynomial(4,two_torsion_multiplicity=1)

4*x^6*y + 2*x^6 - 8*x^5*y - 4*x^5 + 20*x^3*y + 10*x^3 - 20*x^2*y - 10*x^2 + 8*x*y + 4*x - 2*y - 1

sage: E.division_polynomial(4,two_torsion_multiplicity=2)

8*x^9 - 24*x^8 + 16*x^7 + 42*x^6 - 84*x^5 + 56*x^4 - 10*x^3 - 6*x^2 + 4*x - 1



Morphisms and Isogenies

These are essentially not yet implemented, except for isomorphisms
and automorphisms.

sage: E = EllipticCurve(GF(17),[0,0,0,1,0]); E

Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 17

sage: E.automorphisms()

[Generic endomorphism of Abelian group of points on Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 17

Via: (u,r,s,t) = (1, 0, 0, 0),

Generic endomorphism of Abelian group of points on Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 17

Via: (u,r,s,t) = (4, 0, 0, 0),

Generic endomorphism of Abelian group of points on Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 17

Via: (u,r,s,t) = (13, 0, 0, 0),

Generic endomorphism of Abelian group of points on Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 17

Via: (u,r,s,t) = (16, 0, 0, 0)]



Elliptic Curves over Number Fields

We now describe some of the greater functionality provided in
Sage dealing with elliptic curves over Q and other number fields.
At present there are more functions available over Q than over
general number fields, but the gap is closing. With more Sage
developers, the gap would close faster!



What’s available (over all number fields)
Extra functionality available both over Q and over general number
fields:

I Conductor, local reduction data; global minimal models over
class number one fields;
sage: K.<i> = NumberField(x^2+1)

sage: E = EllipticCurve([0,1,0,i,1+i])

sage: E.conductor()

Fractional ideal (-104*i - 472)

sage: E.conductor().factor()

(Fractional ideal (i + 1))^7 * (Fractional ideal (2*i + 1))^2 * (Fractional ideal (-3*i - 8))

sage: E.local_data()

[Local data at Fractional ideal (i + 1) of Elliptic Curve defined by y^2 = x^3 + x^2 + i*x + (i+1) over Number Field in i with defining polynomial x^2 + 1:

Local minimal model: Elliptic Curve defined by y^2 = x^3 + x^2 + i*x + (i+1) over Number Field in i with defining polynomial x^2 + 1

Minimal discriminant valuation: 8

Conductor exponent: 7

Kodaira Symbol: III

Tamagawa Number: 2,

Local data at Fractional ideal (2*i + 1) of Elliptic Curve defined by y^2 = x^3 + x^2 + i*x + (i+1) over Number Field in i with defining polynomial x^2 + 1:

Local minimal model: Elliptic Curve defined by y^2 = x^3 + x^2 + i*x + (i+1) over Number Field in i with defining polynomial x^2 + 1

Minimal discriminant valuation: 2

Conductor exponent: 2

Kodaira Symbol: II

Tamagawa Number: 1,

Local data at Fractional ideal (-3*i - 8) of Elliptic Curve defined by y^2 = x^3 + x^2 + i*x + (i+1) over Number Field in i with defining polynomial x^2 + 1:

Local minimal model: Elliptic Curve defined by y^2 = x^3 + x^2 + i*x + (i+1) over Number Field in i with defining polynomial x^2 + 1

Minimal discriminant valuation: 1

Conductor exponent: 1

Kodaira Symbol: I1

Tamagawa Number: 1]



I Rank and Mordell-Weil group via 2-descent (up to finite index
in the case of number fields); torsion subgroup;

sage: E.simon_two_descent()

(2, 2, [(-i - 1 : 2 : 1), (-1 : 1 : 1)])

sage: E.rank() # Exercise: fix this bug today!

...

AttributeError: ’EllipticCurve_number_field’ object has no attribute ’rank’

sage: E.torsion_order()

1

sage: E = EllipticCurve(’11a1’)

sage: K.<a>=NumberField(x^4 + x^3 + 11*x^2 + 41*x + 101)

sage: EK=E.base_extend(K)

sage: tor = EK.torsion_subgroup()

sage: tor

Torsion Subgroup isomorphic to Multiplicative Abelian Group isomorphic to

C5 x C5 associated to the Elliptic Curve defined by

y^2 + y = x^3 + (-1)*x^2 + (-10)*x + (-20) over Number Field in a

with defining polynomial x^4 + x^3 + 11*x^2 + 41*x + 101

sage: tor.gens()

((16 : 60 : 1), (a : 1/11*a^3 + 6/11*a^2 + 19/11*a + 48/11 : 1))
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I Periods, elliptic logarithm and exponential (z 7→ (℘(z), ℘′(z)))
(only for real embeddings so far);

sage: K.<a> = NumberField(x^2-2)

sage: E=EllipticCurve([0,0,0,a,2])

sage: embs=K.embeddings(RR); len(embs)

2

sage: # For each embedding we have a different period lattice:

sage: L = E.period_lattice(embs[0]); L

Period lattice associated to Elliptic Curve defined by y^2 = x^3 + a*x + 2 over Number Field in a with defining polynomial x^2 - 2 with respect to the real embedding Ring morphism:

From: Number Field in a with defining polynomial x^2 - 2

To: Real Field with 53 bits of precision

Defn: a |--> -1.41421356237310

sage: L.basis()

(4.13107185270501681, -2.06553592635250840 + 0.988630424469107767*I)

sage: P,Q = E.simon_two_descent()[2]

sage: P.elliptic_logarithm(embs[0])

1.5454184304794459018335238473

sage: P.elliptic_logarithm(embs[1])

0.62430211670806143068243968901

sage: sage: (2*P).elliptic_logarithm(embs[0]) / P.elliptic_logarithm(embs[0])

2.0000000000000000000000000000



What’s available (over Q only)

Extra functionality available over Q only:
I Point searching (up to a given bound on naive height).

sage: E = EllipticCurve(’5077a1’)

sage: E.point_search(10, verbose=False)

[(1 : -1 : 1), (-2 : 3 : 1), (-7/4 : 25/8 : 1)]

I Canonical heights and related functions (regulator, height
pairing)

sage: [P.height() for P in E.gens()]

[1.36857250535393, 2.71735939281229, 0.668205165651928]

sage: E.height_pairing_matrix()

[ 1.36857250535393 -1.30957670708658 0.634867157837156]

[-1.30957670708658 2.71735939281229 -1.09981843056673]

[0.634867157837156 -1.09981843056673 0.668205165651928]

sage: E.regulator()

0.417143558758384



What’s available (over Q only)

Extra functionality available over Q only:
I Point searching (up to a given bound on naive height).

sage: E = EllipticCurve(’5077a1’)

sage: E.point_search(10, verbose=False)

[(1 : -1 : 1), (-2 : 3 : 1), (-7/4 : 25/8 : 1)]

I Canonical heights and related functions (regulator, height
pairing)

sage: [P.height() for P in E.gens()]

[1.36857250535393, 2.71735939281229, 0.668205165651928]

sage: E.height_pairing_matrix()

[ 1.36857250535393 -1.30957670708658 0.634867157837156]

[-1.30957670708658 2.71735939281229 -1.09981843056673]

[0.634867157837156 -1.09981843056673 0.668205165651928]

sage: E.regulator()

0.417143558758384



I Database of curves:

I Default: Curves defined over Q, conductor < 104 with
equations and rank (but no generators);

I Optional (1.6MB extra): Curves defined over Q,
conductor < 13 · 104 with equations, rank, generators and
other data.

I Optional (2.6GB extra): Stein-Watkins database.
I sage: E.cremona_label()

’5077a1’

sage: for E in CremonaDatabase().iter(srange(1000,1002)):

print E.label(), E.ainvs(), E.rank(), E.modular_degree()

....:

1001a1 [0, -1, 1, -15881, 778423] 1 1680

1001b1 [1, -1, 1, -16, -198] 0 152

1001b2 [1, -1, 1, -621, -5764] 0 304

1001b3 [1, -1, 1, -9916, -377564] 0 608

1001b4 [1, -1, 1, -1006, 2552] 0 608

1001c1 [0, 0, 1, -199, 1092] 2 1008

I Analytic rank;
sage: E = EllipticCurve(’5077a1’)

sage: E.analytic_rank()

3
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I Modular degree;

sage: E = EllipticCurve(’5077a1’)

sage: E.modular_degree()

1984

I integral points.

sage: E = EllipticCurve(’5077a1’)

sage: E.integral_points()

[(-3 : 0 : 1), (-2 : 3 : 1), (-1 : 3 : 1), (0 : 2 : 1), (1 : 0 : 1),

(2 : 0 : 1), (3 : 3 : 1), (4 : 6 : 1), (8 : 21 : 1), (11 : 35 : 1),

(14 : 51 : 1), (21 : 95 : 1), (37 : 224 : 1), (52 : 374 : 1), (93 :

896 : 1), (342 : 6324 : 1), (406 : 8180 : 1), (816 : 23309 : 1)]
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What’s not yet available

Most of the following would be easy to implement; some would be
more challenging!

I Canonical heights and related functions over general number
fields

I Isogenies, and computation of isogeny classes (only available
over Q so far);

I higher descents;

I other models for curves of genus 1.

I S-integral points.
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Elliptic Curves over finite fields
Sage’s elliptic curve functionality over function fields applies to
curves defined over general fields Fq, not just prime fields Fp, for
which q is of “reasonable size”. Just one function has a more
sophisticated implementation: the cardinality of elliptic curves
defined over prime fields (or whose j-invariant lies in a prime field)
is computed using an implementation of the SEA algorithm.

sage: p=next_prime(10^100); F=GF(p)

sage: E=EllipticCurve(F,[F.random_element(),F.random_element()])

sage: time E.cardinality()

CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s

Wall time: 50.82 s

9999999999999999999999999999999999999999999999999924484601817481249\

666415353322710763009674434747580

sage: time E.cardinality(extension_degree=2)

CPU times: user 0.03 s, sys: 0.00 s, total: 0.03 s

Wall time: 0.04 s

1000000000000000000000000000000000000000000000000000000000000000000\

000000000000000000000000000000053542974246373356438188803510556168\

45842378799234068724513647475437926957999836869874208002198708846480
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sage: time E.cardinality(extension_degree=10)

CPU times: user 0.03 s, sys: 0.01 s, total: 0.04 s

Wall time: 0.03 s

100000000000000000000000000000000000000000000000000000000000000000000000000\

00000000000000000000002670000000000000000000000000000000000000000000000000\

00000000000000000000000000000000000000000000032080050000000000000000000000\

00000000000000000000000000000000000000000000000000000000000000000000228409\

95600000000000000000000000000000000000000000000000000000000000000000000000\

00000000000000000106724551941000000000000000000000000000000000000000000000\

00000000000000000000000000000000000000000341945464418962509903679306552589\

84139922886286767230373334752777342388086487961812542903258962877306649904\

69770980234067567621007717683074156764661446813231487549748517423367579883\

29852202063851274431460073567710162473872980661633036084624699887428954556\

49588162970844268899341853787606320599511750596421996361484879909292436630\

20304748466770294550551348694881774574801084822353650085667201087642384995\

43623008271906498216192175905222500663955761503679716043113917674162663609\

55595237149578942394113993363715920400



As well as the cardinality of the group E (Fq) we can compute the
abelian group structure and generators:

sage: K.<i> = QuadraticField(-1)

sage: OK = K.ring_of_integers()

sage: P=K.factor(10007)[0][0]

sage: OKmodP = OK.residue_field(P)

sage: E = EllipticCurve([0,0,0,i,i+3])

sage: Emod = E.change_ring(OKmodP); Emod

Elliptic Curve defined by y^2 = x^3 + ibar*x + (ibar+3) over Residue field

in ibar of Fractional ideal (10007)

sage: Emod.abelian_group()

(Multiplicative Abelian Group isomorphic to C50067594 x C2,

((9538*ibar + 3564 : 9291*ibar + 8885 : 1), (2425*ibar + 4050 : 0 : 1)))



We have elliptic logarithms, implemented using a generic algorithm
based on Shanks’ Baby-Step-Giant-step:

sage: P,Q = Emod.abelian_group()[1]

sage: P.order()

50067594

sage: n = randint(0,P.order())

sage: Q = n*P

sage: P.discrete_log(Q)

18055058

sage: n

18055058
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