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Abstract

These are notes and background information for my lectures at the MSRI Summer Graduate

Workshop in Computational Number Theory, 31st July to 11th August 2006.

The lectures will, of course, only cover part of what is presented here, but may also contain

additional material. The presentation in the workshop willnot follow the notes chronologically.
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1 Modular Forms and Hecke Algebras modp

In this first section we will first recall some facts on congruence subgroups and holomorphic modular

forms. We will then define the concept of Hecke algebras whichon which we will base our treatment

of modp modular forms. Commutative algebra properties of Hecke algebras will also be studied in

some detail, which will enable us to prove some theorems which are useful for computations later on.

This section also contains a short discussion of modular curves, as well as a definition of Katz modular

forms with a particular emphasis on the weight one case. As our principal motivation for the study of

modp modular forms, we shall present their important role in the theory of Galois representations. In

that context, we shall mention Serre’s conjecture.

1.1 Holomorphic modular forms and Hecke operators

Congruence subgroups

We first recall the standard congruence subgroups ofSL2(Z). By N we shall always denote a positive

integer.
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1.1.1 Exercise.The group homomorphism

SL2(Z) → SL2(Z/NZ)

given by reducing the matrices moduloN is surjective.

The kernel ofSL2(Z) → SL2(Z/NZ) is calledΓ(N). The groupSL2(Z/NZ) acts naturally on

(Z/NZ)2 (by multiplying the matrix with a vector). In particular, the homomorphismSL2(Z/NZ) →

(Z/NZ)2 given by
(

a b
c d

)
7→

(
a b
c d

)
( 1

0 ) = ( a
c ) takes all( a

c ) ∈ (Z/NZ)2 as image such thata, c

generateZ/NZ (that’s due to the determinant being1). We also point out that the image can and

should be viewed as the set of elements in(Z/NZ)2 which are of precise (additive) orderN . The

kernel is the stabiliser of( 1
0 ). We define the groupΓ1(N) as the preimage of that stabiliser group

in SL2(Z). Explicitly, this means thatΓ1(N) consists of those matrices inSL2(Z) whose reduction

moduloN is of the form( 1 ∗
0 1 ).

The groupSL2(Z/NZ) also acts onP1(Z/NZ), the projective line overZ/NZ which one can

define as the tuples(a : c) with a, c ∈ Z/NZ such that〈a, c〉 = Z/NZ modulo the equivalence

relation given by multiplication by an element of(Z/NZ)×. The action is the natural one (we should

actually view(a : c) as a column vector, as above). The preimage inSL2(Z) of the stabiliser group

of (1 : 0) is calledΓ0(N). Explicitly, it consists of those matrices inSL2(Z) whose reduction is of

the form( ∗ ∗
0 ∗ ). We also point out that the quotient ofSL2(Z/NZ) modulo the stabiliser of(1 : 0)

corresponds to the set of cyclic subgroups of precise orderN in SL2(Z/NZ). These observations,

which may seem unimportant at this point, are at the base of defining level structures for elliptic curves

(see the section on modular curves).

It is clear that

Γ0(N)/Γ1(N)

“
a b
c d

”
7→a

−−−−−−→ (Z/NZ)×

is a group isomorphism. We also let

χ : (Z/NZ)× → C×

denote a character, i.e. a group homomorphism. We shall extend χ to a map(Z/NZ) → C by

imposingχ(r) = 0 if (r,N) 6= 1. The simplest instance of class field theory (here a simple exercise;

by ζN we mean any primitiveN -th root of unity) tells us that

Gal(Q(ζN )/Q)
Frobl 7→l
−−−−−→ (Z/NZ)×

(for all primes l - N ) is an isomorphism. We shall later on also considerχ as a character of

Gal(Q(ζN )/Q). The nameDirichlet character(here ofmodulusN ) is common usage for both.

Modular forms

We now recall the definitions of modular forms. We denote byH the upper half plane, i.e. the set

{z ∈ C|Im(z) > 0}. The set of cusps is by definitionP1(Q) = Q ∪ {∞}. Fix integersk andN ≥ 1.
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A function

f : H → C

given by a convergent power series (thean(f) are complex numbers)

f(z) =

∞∑

n=0

an(f)(e2πiz)n =

∞∑

n=0

anqn with q(z) = e2πiz

is called amodular form of weightk for Γ1(N) if

(i) the functionf(az+b
cz+d)(cz + d)−k is a holomorphic function (still fromH to C) for all

(
a b
c d

)
∈

SL2(Z) (this condition is calledf is holomorphic at the cuspa/c), and

(ii) f(az+b
cz+d) = (cz + d)kf(z) for all

(
a b
c d

)
∈ Γ1(N).

We use the notationMk(Γ1(N) ; C). If we replace (i) by

(i)’ the functionf(az+b
cz+d)(cz + d)−k is a holomorphic function and the limitf(az+b

cz+d)(cz + d)−k is 0

whenz tends to0,

thenf is called acusp form. For these, we introduce the notationSk(Γ1(N) ; C).

Let us now suppose that we are given a Dirichlet characterχ of modulusN as above. Then we

replace (ii) as follows:

(ii)’ f(az+b
cz+d) = χ(d)(cz + d)kf(z) for all

(
a b
c d

)
∈ Γ0(N).

Functions satisfying this condition are calledmodular forms(respectively,cusp formsif they satisfy

(i)’) of weightk, characterχ and levelN . The notationMk(N,χ ; C) (respectively,Sk(N,χ ; C))

will be used.

All these are finite dimensionalC-vector space and fork ≥ 2, there are dimension formulae,

which one can look up in [SteinBook]. We, however, point the reader to the fact that fork = 1

nearly nothing about the dimension is known (except that it is smaller than the respective dimension

for k = 2; it is believed to be much smaller, but only very weak resultsare known to date).

Hecke operators

At the base of everything that we will do with modular forms are the Hecke operators and the diamond

operators. We should really define them conceptually (see the section on Hecke correspondences).

Here is a definition by formulae.

ForM =
(

a b
c d

)
an integer matrix with non-zero determinant, we put

(f |M)(z) := f
(az + b

cz + d

)det(M)k−1

(cz + d)k

for a modular formf ∈ Mk(Γ1(N) ; C) or f ∈ Mk(N,χ ; C).

If a is an integer coprime toN , we letσa be a matrix inΓ0(N) such that

σa ≡
(

a−1 0
0 a

)
mod N. (1.1)
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1.1.2 Exercise.Prove that such a matrixσa exists.

We define thediamond operator〈a〉 (you see the diamond in the notation, with some phantasy)

by the formula

〈a〉f = f |σa.

If f ∈ Mk(N,χ ; C), then we have by definition〈a〉f = χ(a)f . The diamond operators give a

group action of(Z/NZ)× on Mk(Γ1(N) ; C) and onSk(Γ1(N) ; C), and theMk(N,χ ; C) and

Sk(N,χ ; C) are theχ-eigenspaces for this action.

Let l be a prime. We let

Rl := {
(

1 r
0 l

)
|0 ≤ r ≤ l − 1} ∪ {σl

(
l 0
0 1

)
}, if l - N (1.2)

Rl := {
(

1 r
0 l

)
|0 ≤ r ≤ l − 1}, if l | N (1.3)

We use these sets to define theHecke operatorTl acting off as above as follows:

Tlf =
∑

δ∈Rl

f |δ.

1.1.3 Exercise.Supposef ∈ Mk(N,χ ; C). Recall that we have extendedχ so thatχ(l) = 0 if l

dividesN . Prove the formula

an(Tlf) = aln(f) + lk−1χ(l)an/l(f).

In the formula,an/l(f) is to be read as0 if l does not dividen.

The Hecke operators for compositen can be defined as follows (we putT1 to be the identity):

• Tlr+1 = Tl ◦ Tlr − lk−1〈l〉Tlr−1 for all primesl andr > 1,

• Tuv = Tu ◦ Tv for coprime positive integersu, v.

We derive the very important formula (valid for everyn)

a1(Tnf) = an(f). (1.4)

It is the only formula that we will really need.

From the above formulae it is also evident that the Hecke operators commute among one another.

Hence, eigenspaces for a collection of operators (i.e. eachelement of a given set of Hecke operators

acts by scalar multiplication) are respected by all Hecke operators. Hence, it makes sense to consider

modular forms which are eigenvectors for every Hecke operator. These are calledHecke eigenforms,

or often justeigenforms. Such an eigenformf is callednormalisedif a1(f) = 1.

We shall consider eigenforms in more detail in the followingsection.

Finally, let us point out the formula (forl prime andl ≡ d mod N )

lk−1〈d〉 = T 2
l − Tl2. (1.5)

Hence, the diamond operators can be expressed asZ-linear combinations of Hecke operators. Note

that divisibility is no trouble since we may choosel1, l2, both congruent tod moduloN satisfying an

equation1 = lk−1
1 r + lk−1

2 s.
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1.2 Hecke algebra of holomorphic modular forms and modular forms modp

In this section we shall define the concept of Hecke algebras.It will be of utmost importance to our

treatment of modp modular forms and their computation (in fact, we will compute the Hecke algebra

and not the modular forms). We shall assume thatk ≥ 1 andN ≥ 1.

We define theHecke algebraof Mk(Γ1(N) ; C) as the subring inside the endomorphism ring of

theC-vector spaceMk(Γ1(N) ; C) generated by all Hecke operators and all diamond operators.

We make similar definitions forSk(Γ1(N) ; C), Mk(N,χ ; C) andSk(N,χ ; C). In the latter

two cases, we can alternatively take theO-subalgebra in the respective complex endomorphism ring

which is generated by the Hecke operators. HereO denotes the ringZ[χ] (i.e. Z and all values ofχ

adjoint (they are roots of unity); it is the maximal order (i.e. the ring of integers) ofQ(χ) (Q adjoined

all values ofχ)). It is this description that we shall use in the sequel. Note that the Hecke algebras

are freeZ-modules (respectively, also freeO-modules), since they are defined as submodules of a

complex vector space.

Let us introduce the notationsTZ(Mk(Γ1(N) ; C)) respectivelyTZ(Sk(Γ1(N) ; C)), as well as

TO(Mk(N,χ ; C)) respectivelyTO(Sk(N,χ ; C)). If O → R is anO-algebra, we write

TR(·) := TO(·) ⊗O R.

The q-pairing

We now define a bilinear pairing, which I call the(complex)q-pairing, as

Mk(N,χ ; C) × TC(Mk(N,χ ; C)) → C, (f, T ) 7→ a1(Tf)

(compare with Equation 1.4).

1.2.1 Lemma. The complexq-pairing is perfect, as is the analogous pairing forSk(N,χ ; C). In

particular,

Mk(N,χ ; C) ∼= HomC(TC(Mk(N,χ ; C)), C), f 7→ (Tn 7→ an(f))

and similarly forSk(N,χ ; C).

Proof. Let us first recall that a pairing over a field is perfect if and only if it is non-degenerate.

That is what we are going to check. It follows from Equation 1.4 like this. If for all n we have

0 = a1(Tnf) = an(f), thenf = 0 (this is immediately clear for cusp forms; for general modular

forms at the first place we can only conclude thatf is a constant, but sincek ≥ 1, constants are not

modular forms). Conversely, ifa1(Tf) = 0 for all f , thena1(T (Tnf)) = a1(TnTf) = an(Tf) = 0

for all f and alln, whenceTf = 0 for all f . As the Hecke algebra is defined as a subring in the

endomorphism ofMk(N,χ ; C) (resp. the cusp forms), we findT = 0, proving the non-degeneracy.

2

The perfectness of theq-pairing is also called theexistence of aq-expansion principle.
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Modular forms over rings and mod p

We now use theq-pairing to define modular (cusp) forms over anyO-algebraπ : O → R as follows.

We let

Mk(N,χ ; R) ∼= HomO(TO(Mk(N,χ ; C)), R) ∼= HomR(TR(Mk(N,χ ; C)), R).

Every elementf of Mk(N,χ ; R) thus corresponds to a linear functionΦ : TO(Mk(N,χ ; C)) → R

and is uniquely identified by itsformal q-expansionf =
∑

n Φ(Tn)qn =
∑

n an(f)qn. We note

that TO(Mk(N,χ ; C)) acts naturally onHomO(TO(Mk(N,χ ; C)), R), namely by(T.Φ)(S) =

Φ(TS) = Φ(ST ). This means that the action ofTO(Mk(N,χ ; C)) onMk(N,χ ; R) gives the same

formulae as above on formalq-expansions. We make a similar definition for the cusp space,namely

Sk(N,χ ; R) ∼= HomO(TO(Sk(N,χ ; C)), R) ∼= HomR(TR(Sk(N,χ ; C)), R).

It is well known (see e.g. [SteinBook]) that the space of holomorphic modular forms (for given

k ≥ 1, N ≥ 1 and characterχ) is the orthogonal direct sum with respect to the Petersson inner

product of the cuspidal modular forms and thespace of Eisenstein series:

Mk(N,χ ; C) = Eisk(N,χ ; C) ⊕ Sk(N,χ ; C).

The Hecke operators respect this decomposition. As before,we let

Eisk(N,χ ; R) ∼= HomO(TO(Eisk(N,χ ; C)), R) ∼= HomR(TR(Eisk(N,χ ; C)), R).

Let us notice that the two definitions ofMk(N,χ ; C) agree. As a special case, we get that

Mk(N,χ ; O) precisely consists of those holomorphic forms whoseq-expansions take values inO.

If R = F is a finite field of characteristicp or Fp, we callMk(N,χ ; F) the space ofmodp modular

forms of weightk, levelN and characterχ (overF). By χ we meanπ ◦ χ, which we write to point

out that the definition ofMk(N,χ ; F) only depends onπ ◦ χ. Of course, for the cuspidal and the

Eisenstein spaces similar statements hold and we use similar notations.

Note that the normalised eigenforms inMk(N,χ ; R) are precisely the set ofO-algebra homomor-

phisms insideHomO(TO(Mk(N,χ ; C)), R). Such an algebra homomorphismΦ is often referred to

as asystem of eigenvalues, since the image of eachTn corresponds to an eigenvalue ofTn, namely to

Φ(Tn) = an(f) (if f corresponds toΦ).

Galois conjugacy classes

Let us now consider a fieldK which admits a ring homomorphismO → K. Denote byK a separable

closure, so that we have

Mk(N,χ ; K) ∼= HomK(TK(Mk(N,χ ; C)),K) ∼= HomK(TK(Mk(N,χ ; C)),K).

We can compose anyΦ ∈ HomK(TK(Mk(N,χ ; C)),K) by any Galois automorphismσ : K → K

fixing K. Thus, we obtain an action of the absolute Galois groupGal(K/K) on Mk(N,χ ; K) (on
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formal q-expansions, we only need to applyσ to the coefficients). All this works similarly for the

cuspidal and the Eisenstein spaces, too.

Like this, we also obtain aGal(K/K)-action on the normalised eigenforms, and can hence speak

aboutGalois conjugacy classes of eigenforms. We have the following bijective correspondences.

Spec(TK(·))
1−1
↔ HomK-alg(TK(·),K)

1−1
↔ { normalised eigenforms in· }/Gal(K/K)

and withK = K

Spec(TK(·))
1−1
↔ HomK-alg(TK(·),K)

1−1
↔ { normalised eigenforms in· }.

Here, · stands for eitherMk(N,χ ; K) or Sk(N,χ ; K). We recall thatSpec of a ring is the set of

prime ideals. In the next section we will see that inTK(·)) andTK(·)) all prime ideals are already

maximal (it is an easy consequence of the finite dimensionality).

1.2.2 Exercise.Prove these correspondences.

Let us not fail to record that the coefficients of any eigenform f in Mk(N,χ ; K) lie in a finite

extension ofK, namely inTK(Mk(N,χ ; K))/m, whenm is the maximal ideal corresponding to the

conjugacy class off .

Let us note that the above discussion applies toK = C, K = Q, K = Qp, as well as toK = Fp.

In the next sections we will also take into account the finer structure of Hecke algebras overO, or

rather over the completion ofO at one prime.

1.3 Some commutative algebra

In this section we leave the special context of modular formsfor a moment and provide quite useful

results from commutative algebra that will be applied to Hecke algebras in the sequel.

Let us start with a simple case which we will prove directly. It would, however, also follow from

the more general approach adopted below.

Let T be a finite dimensional algebra over a fieldK. Such an algebra isArtinian, i.e. every

descending chain of ideals becomes stationary. That is obvious, since in every proper inclusion of

ideals the dimension diminishes. In particular, for any ideala of T the sequencean becomes stationary,

i.e.an = an+1 for all n “big enough”. Then we will use the notationa∞ for an. If m is a prime ideal,

thenT/m is an integral domain (sincem is a prime ideal) which is a finite extension of a field, so it is

a field itself, whence the ideal is maximal. Moreover, for dimension reasons there can only be finitely

many maximal ideals inT.

1.3.1 Lemma. The Chinese Remainder Theorem gives

T ∼=
∏

m∈Spec(T)

T/m∞ ∼=
∏

m∈Spec(T)

Tm,

whereTm denotes the localisation atm.
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Proof. The intersection of all prime ideals
⋂

m∈Spec(T) m contains only nilpotent elements, whence⋂
m∈Spec(T) m∞ = (0) (alternatively, one can look at the primary decomposition of (0)). So, if T is

local, we are done. Hence, suppose there are at least two different prime ideals inT.

PutI :=
∑

m∈Spec(T) m∞. We haveI = A. For, let us suppose the contrary. AsI is an ideal, it is

contained in a maximal one, saym1. In particular, everym∞ ⊆ m1. Let x ∈ m2 − m1 (for a prime

idealm2 6= m1). The elementxn is in m∞
2 if n is big enough. Asm∞

2 is a subset ofm1, the primality

of m1 implies thatx is in m1, contradicting the fact that it is not.

It is clear thatTm∞ is a local ring. In fact, every elements ∈ T − m is invertible inTm∞ since

it clearly does not lie in the unique maximal idealm/m∞. This establishes the second isomorphism.

2

Let us now come to a more general setting.

1.3.2 Proposition. Let O be an integral domain of characteristic zero which is a finitely generated

Z-module. WriteÔ for the completion ofO at a maximal prime ofO and denote byF the residue

field and byK the fraction field ofÔ. Let furthermoreT be a commutativeO-algebra which is finitely

generated as anO-module. For any ring homomorphismO → S write TS for T ⊗O S. Then the

following statements hold.

(a) The dimension ofT bO is less than or equal to1. The maximal ideals ofT bO correspond bijectively

under taking pre-images to the maximal ideals ofTF. Primesp of height0 which are contained

in a prime of height1 of T bO are in bijection with primes ofTK under extension (i.e.pTK), for

which the notationpe will be used.

Under the correspondences, one has

TF,m
∼= T bO,m ⊗ bO F

and

T bO,p
∼= TK,pe.

(b) The algebraT bO decomposes as

T bO
∼=

∏

m

T bO,m
,

where the product runs over the maximal idealsm of T bO.

(c) The algebraTF decomposes as

TF
∼=

∏

m

TF,m,

where the product runs over the maximal idealsm of TF.

(d) The algebraTK decomposes as

TK
∼=

∏

p

TK,pe ∼=
∏

p

T bO,p,
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where the products run over the minimal prime idealsp of T bO which are contained in a prime

ideal of height1.

Proof. As T bO is a finitely generated̂O-module,T bO/p with a primep is an integral domain which

is a finitely generated̂O-module. Hence, it is either a finite field or a finite extensionof Ô. This

proves that the height ofp is less than or equal to1. The correspondences and the isomorphisms of

Part (a) are the subject of the following exercise.

We have already seen Parts (c) and (d) in Lemma 1.3.1. Part (b)follows from (c) by applying

Hensel’s lifting lemma to the idempotents of the decomposition of (c) (see also [Eisenbud], Corol-

lary 7.6). 2

1.3.3 Exercise.Prove the correspondences and the isomorphisms from Part (a) of Proposition 1.3.2.

Similar decompositions forT-modules are derived by applying the idempotents of the decompo-

sitions of Part (b). More precisely, I mean the following. Any direct product decomposition is given

by idempotents. So, in the case ofT bO there exist elementsem for each prime inSpec(T bO) such that

emT bO = T bO,m. Explicitly, under the decomposition we haveem = (0, . . . , 0, 1, 0, . . . , 0). If now V

is anyT bO-module, then we have the natural isomorphism

V ∼=
⊕

m

emV

of T bO-modules.

1.4 Commutative algebra of Hecke algebras

Let k ≥ 1, N ≥ 1 andχ : (Z/NZ)× → C×. Moreover, letp be a prime,O := Z[χ], P a maximal

prime ofO abovep, and letF be the residue field ofO moduloP. We letÔ denote the completion of

O at P. Moreover, the field of fractions of̂O will be denoted byK. ForTO(Mk(N,χ ; C)) we only

write TO for short, and similarly over other rings.

We shall now apply Proposition 1.3.2 toT bO. It is a freeÔ-module of finite rank which has

dimension1, i.e. every maximal prime contains at least one minimal prime.

By Proposition 1.3.2, minimal primes ofT bO correspond to the maximal primes ofTK and hence

to Gal(K/K)-conjugacy classes of eigenforms inMk(N,χ ; K). By a brute force identification of

K = Qp with C we may still think about these eigenforms as the usual holomorphic ones (the Galois

conjugacy can then still be seen as conjugacy by a decomposition group abovep inside the absolute

Galois group of the field of fractions ofO).

Again by Proposition 1.3.2, maximal primes ofT bO correspond to the maximal primes ofTF and

hence toGal(F/F)-conjugacy classes of eigenforms inMk(N,χ ; F).

The spectrum ofT bO allows one to phrase very elegantly when conjugacy classes of eigenforms

are congruent modulo a prime abovep. Let us first explain what that means. Normalised eigenformsf

take their coefficientsan(f) in rings of integers of number fields (TO/m whenm is the kernel of the

10



O-algebra homomorphismTO → C, given byTn 7→ an(f)), so they can be reduced modulo primes

abovep (for which we will often just say “reduced modulop”).

1.4.1 Exercise.Prove that the reduction modulo a prime abovep of theq-expansion of a modular

formf in Mk(N,χ ; C) is the formalq-expansion of an eigenform inMk(N,χ ; F).

If two normalised eigenformsf, g in Mk(N,χ ; C) or Mk(N,χ ; K) reduce to the same element

in Mk(N,χ ; F), we say that they arecongruent modulop.

1.4.2 Exercise.Let f, g ∈ Mk(N,χ ; K) be normalised eigenforms that areGal(K/K)-conjugate.

Prove that their reductions modulop areGal(F/F)-conjugate.

Due to Exercise 1.4.2, we may speak aboutreductions modulop of Gal(K/K)-conjugacy classes

of normalised eigenforms toGal(F/F)-conjugacy classes. We hence say that twoGal(K/K)-conju-

gacy classes, say corresponding to normalised eigenformsf, g, respectively, minimal idealsp1 andp2

of T bO, arecongruent modulop, if they reduce to the sameGal(F/F)-conjugacy class.

1.4.3 Proposition. TheGal(K/K)-conjugacy classes belonging to minimal primesp1 andp2 of TO

are congruent modulop if and only if they are contained in a common maximal primem of TO.

1.4.4 Exercise.Prove Proposition 1.4.3.

1.5 Eisenstein primes

Let integersk ≥ 1, N ≥ 1 and a characterχ be given. Recall the decomposition

Mk(N,χ ; C) = Eisk(N,χ ; C) ⊕ Sk(N,χ ; C).

We return to the notations of the previous section. A minimalidealp of T bO is called anEisenstein

(minimal) idealif the corresponding normalised eigenform lies inEisk(N,χ ; C) (via an identification

of K with C).

A maximal idealm of T bO is called anEisenstein (maximal) idealif it contains an Eisenstein

minimal ideal, i.e. if the eigenforms modp belonging tom are reductions of Eisenstein series. Let us

remark that it can happen that an Eisenstein maximal ideal contains both an Eisenstein minimal ideal

and a non-Eisenstein minimal ideal. In that case one has hence a congruence between a cusp form and

an Eisenstein series.

1.6 Geometry of modular curves

Complex modular curves

We will use the following matrices

σ :=
(

0 −1
1 0

)
, τ :=

(
−1 1
−1 0

)
, T = ( 1 1

0 1 ) .

11



The order ofσ is 4 and the order ofτ is 3. Considered as elements ofPSL2(Z), the respective orders

are2 and3.

We recall that bycuspswe understand the setP1(Q) = Q ∪ {∞}. To make the following com-

pletely explicit, we also recall that we will consider∞ as the element(1 : 0) P1(Q) and also as1/0.

We writeH = H ∪ P1(Q).

The groupSL2(R) acts onH by fractional linear transformations, i.e. by

z 7→
az + b

cz + d
for z ∈ H and

(
a b
c d

)
∈ SL2(R).

Note that the same formula also makes sense for the action ofGL2(Q) on P1(Q), whence overall we

obtain aSL2(Q)-action onH. Obviously, the matrix
(
−1 0
0 −1

)
acts trivially, so that the action passes

to an action ofPSL2(Q).

1.6.1 Exercise.(a) LetM ∈ SLn(Z) be an element of finite orderm. Determine the primes that may

dividem. [Hint: Look at the characteristic polynomial ofM .]

(b) Determine all conjugacy classes of elements of finite order in PSL2(Z). [Hint: One might find it

helpful to look at the standard fundamental domain.]

1.6.2 Exercise.Determine theN ≥ 1 for whichΓ1(N) has no element of finite order apart from the

identity. [Hint: You should getN ≥ 4.]

1.6.3 Exercise.Determine theN ≥ 1 for whichΓ0(N) has no element of order4. Also determine

the cases in which there is no element of order6.

Let Γ ≤ PSL2(Z) be a subgroup of finite index, for example (the projective image of)Γ0(N) or

Γ1(N). We let

YΓ := Γ\H and XΓ := YΓ ∪ Γ\P1(Q).

One can equipYΓ andXΓ with the structure of a Riemann surface (which is compact in the case of

XΓ).

Let us denote byπ the (open) quotient mapH ³ YΓ. Via the associated fractional linear trans-

formation, everyγ ∈ Γ gives a mapH
γ
−→ H, which is trivial on the quotientYΓ. The fibre of a

point y ∈ YΓ is theΓ-orbit Γx (if π(x) = y). If the stabiliser subgroupΓx is trivial for all x, then

the quotient mapπ is a Galois covering and the fractional transformations arecovering maps (deck

transformations, Galois covering maps). One sees thatH is the universal covering space (since it is

simply connected). The groupΓ is hence the universal covering group of the Galois coveringgiven

by π and can thus be identified with the fundamental group ofYΓ.

Complex modular curves as moduli spaces

The following discussion is based on lecture notes and explanations by Bas Edixhoven. These things

are discussed in [KM] and [Deligne-Rapoport] (see also [Diamond-Im] and [DDT]).
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Let us consider the following commutative diagram

Z2 × H
Â Ä (x,τ)7→(φτ (x),τ) //

π

&& &&MMMMMMMMMMMMMMMMMMMMMM
C × H // //

π

²²²²

E

π

yyyytttttttttttttttttttttt

H,

(1.6)

where the mapφτ is defined by( n
m ) 7→ ( n

m )T ( τ
1 ) = nτ + m andπ denotes the obvious projection

maps. We shall consider this diagram in the category of complex manifolds.

Let us look at the fibre of a pointτ ∈ H underπ, it is

0 → Z2 φτ
−→ C → Eτ → 0,

whereEτ = C/Λτ with Λτ = Zτ ⊕ Z. I.e. the fibre is an elliptic curve overC, and we have kept

track of the lattice, in a standard form, that gives rise to the curve.

Next we bring natural actions of the groupSL2(Z) into play. Recall its action on the upper half

planeH by fractional linear transformations. We want to relate this action to the standard one onZ2.

First we note the obvious formula

(cτ + d) ( γ.τ
1 ) = γ ( τ

1 ) .

Furthermore, one immediately finds the commutative diagram

Z2 oo γT

φτ

²²

Z2

φγτ

²²
Λτ

oo ·(cτ+d)
Λγτ .

(1.7)

We will put these relations to two different uses. First, we define actions by the groupSL2(Z) on

Diagram 1.6. So letγ =
(

a b
c d

)
be a matrix inSL2(Z). We makeγ act onZ2 × H by γ.(( n

m ) , τ) :=

(γ−1,T ( n
m ) , γ.τ) and onC × H by γ.(z, τ) := ( z

cτ+d , γ.τ).

It is immediate to check, e.g. using the relations exhibitied above, that the left hand side of Dia-

gram 1.6 isSL2(Z)-equivariant. We transport the action to the right hand side, and could consequently

pass to the quotient for any subgroupΓ < SL2(Z) of finite index. The quotient maps would also be

analytic again. However, we avoid the use of quotients at this stage. Instead of speaking of a fibre of

Γτ for the quotients, we can look at the family of exact sequences

0 → Z2 φγτ
−−→ C → Eγτ → 0 for γ ∈ Γ.

We next want to see the use of the standard congruence subgroups Γ(N), Γ1(N) andΓ0(N) in this

context. They will give rise to families of elliptic curves having some common property related to

their torsion groups.
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For that it is convenient to consider such an exact sequence as a pair(Eτ , φτ ) (here, of course, the

second component determines the first one). We interpretφτ as the choice of a lattice basis.

Let N > 0 be an integer. TheN -torsion groupEτ [N ] of the elliptic curveEτ is defined as the

first term in the exact sequence

0 →
1

N
Λτ/Λτ → Eτ

·N
−→ Eτ .

The “choice of basis” isomorphismφτ descends to give the isomorphism

φτ : (Z/NZ)2 → Eτ [N ], x 7→
1

N
φτ (x),

which should also be interpreted as a choice of basis of the torsion group.φτ is called alevel structure.

Let us now compare the exact sequence ofτ with the one ofγτ for γ ∈ SL2(Z) as above, i.e.

we want to relate the pair(Eτ , φτ ) to (Eγτ , φγτ ). From Diagram 1.7, we immediately obtain the

commutative diagram

(Z/NZ)2 oo γT

φτ

²²

(Z/NZ)2

φγτ

²²
Eτ [N ] oo ·(cτ+d)

Eγτ [N ],

in which all maps are isomorphism.

We fix aτ ∈ H.

• Recall the groupΓ(N) = ker
(
SL2(Z) ³ SL2(Z/NZ)

)
. It gives rise to the family of the exact

sequences represented by the pairs(Eγτ , φγτ ) for γ ∈ Γ(N), which precisely have in common

that the choice of basis of their torsion groups are the same (for the natural ismorphism between

Eτ andEγτ ).

Hence the familyΓ(N)τ corresponds to the isomorphism class of a pair(Eτ , φτ ). By isomor-

phism of pairs we mean an isomorphism between the curves respecting the level structure, i.e.

sitting in the commutative diagram

(Z/NZ)2
φτ

xxppppp φγτ

''OO
OO

OO

Eτ [N ] oo ·(cτ+d)
Eγτ [N ].

• Next consider the groupΓ1(N). It gives rise to the family, whereφτ (( 0
1 )) = φγτ (( 0

1 )). That

means that the natural isomorphism maps the point1
N of Eτ to the point 1

N of Eγτ .

This family thus corresponds to the isomorphism class of thepair (Eτ , φτ ) = (Eτ , 1/N).

• Finally, we consider the groupΓ0(N). The family corresponding to it can be characterised by

saying that the subgroup ofEτ [N ] generated by1
N is mapped isomorphically into the corre-

sponding one ofEγτ [N ].

Thus, we have the interpretation as the isomorphism class ofa pair(Eτ , < 1/N >).
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We have been quite restrictive considering only elliptic curves of the formEτ . More generally

one ought to regard pairs(E,φ), whereE is an elliptic curve overC andφ : Z2 → H1(E(C), Z) is

a group isomorphism, in which caseE = H1(E(C), R)/H1(E(C), Z). Since, however, scaling the

lattice by a non-zero complex number results in an isomorphic elliptic curve, the isomorphism class

of (E,φ) always contains an element of the form(Eτ , φτ ). In particular, there is an obvious way to

broaden the definition of the pairs in the three points above,while the isomorphism classes stay the

same.

The Γ1(N)-moduli problem over a ring R

Motivated by theΓ1(N)-case in the discussion on complex modular curves, we define the category

[Γ1(N)]R of elliptic curves with a given torsion pointfor a ringR as follows:

• Objects:Pairs(E/S/R, φ). HereE/S/R is an elliptic curve, i.e.E/S a proper smooth scheme

overSpec(R), whose geometric fibres are connected smooth curves of genus1, and there is an

S-valued point0 of E. And φ : (Z/NZ)S ↪→ E[N ] is an embedding of group schemes. We

briefly recall thatE[N ] is theS-group scheme obtained from the cartesian diagram

E
·N // E

2

E[N ] //

OO

S,

0

OO

i.e. it is the kernel of the multiplication byN map, which results fromE/S being an abelian

group scheme.

• Morphisms:Cartesian diagrams

E′ h // E

2

S′
g //

²²
S,
²²

such that the diagram

E′ h // E

S′
g //

0

OO

S

0

OO

is commutative, and the embedding

φ′ : (Z/NZ)S′ ↪→ E′[N ]

is obtained by base change from

φ : (Z/NZ)S ↪→ E[N ].
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1.6.4 Theorem. (Igusa)If N ≥ 5 andR is a ring in whichN is invertible, then[Γ1(N)]R is repre-

sentable by a smooth affine schemeY1(N)R which is of finite type overR.

In fact, a suitable extension of the category to the “cusps” (by using generalised elliptic curves)

is representable by a proper smooth schemeX1(N)R which is of finite type overR.

Hecke correspondences on the moduli problem

We first describe Hecke correspondences on complex modular curves. We will only work with the

Γ1(N)-moduli problem.

Let α ∈ GL2(Q)+ and set for abbreviationΓ := Γ1(N). Then the groups

Γα := α−1Γα ∩ Γ and Γα := αΓα−1 ∩ Γ

have finite index inΓ. We consider the commutative diagram

Γα\H
α
∼

//

π

²²

Γα\H

π

²²
Γ\H Γ\H,

(1.8)

whereπ denotes the natural projections. Diagram 1.8 is to be seen asa correspondence onYΓ = Γ\H.

On divisors (formal finite sums of points), it gives rise to the map

Div(YΓ) → Div(YΓ), τ 7→
∑

x∈(πα)−1(τ)

π(x).

Note that we may use Diagram 1.8 to obtain the commutative diagram on group cohomology:

H1(Γα,M)
conj. byα

∼
//

cores

²²

H1(Γα,M)
OO

res

H1(Γ,M) oo Tα
H1(Γ,M),

whereM is aΓ-module. One sees immediately that it is precisely the definition of a Hecke operator

on group cohomology which is given later on.

Now we apply this abstract situation to two cases, in both of which we will give an equivalent

description on the moduli spaces.

• Diamond correspondences:

Let a be an integer coprime toN and choose a matrixα = σa ∈ Γ0(N) as in Equation 1.1. As

Γ1(N) is a normal subgroup ofΓ0(N), the groupsΓα andΓα are equal toΓ and the mapsπ are

the identity. The operator corresponding toα is called thediamond operatorand denoted〈a〉.

It will become apparent that it indeed only depends ona and not on the choice ofα.
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Underα, the elliptic curve with given torsion point(C/Zτ + Z, 1/N) is mapped to(C/Zατ +

Z, 1/N), which is isomorphic to(C/Zτ + Z, a/N).

More generally, we can define the functor〈a〉 on [Γ1(N)]R which sends an object(E/S/R, φ)

to the object(E/S/R, φ ◦ a), where we interpreta as multiplication bya on (Z/NZ)S .

• Hecke correspondences:

For simplicity, we again give the definition of Hecke correspondences only for primesl. So let

l be a prime. Thel-th Hecke correspondenceTl is defined by the matrixα =
(

1 0
0 l

)
.

Straightforward calculations yield (whetherl dividesN or not)

Γα = Γ1(N) ∩ Γ0(l) and Γα = Γ1(N) ∩ (Γ0(l))
T ,

where the superscriptT stands for transpose. By identifyingτ 7→ (C/Zτ + Z, 1/N,< τ/l >),

one gets a one-to-one correspondence betweenΓα\H and triples(E,P,H) (up to isomor-

phism), whereE is an elliptic curve withN -torsion pointP andH ≤ E a (cyclic) subgroup of

orderl that does not contain the pointP . ForΓα one can proceed similarly (the third component

must be replaced by< 1/l >). Direct inspection shows that on the moduli spaces the mapα

corresponds to

(E,P,H) 7→ (E/H,P mod H,E[l]/H).

Of course, the mapsπ just mean dropping the third component. TheH correspond precisely to

the isogeniesE → E′ of degreel (for someE′; for givenH, of course,E′ = E/H) with P

not in the kernel.

For [Γ1(N)]R we interpret the Hecke correspondenceTl as assigning to an object(E/S/R, φ)

the set of objects(ψ(E)/S/R,ψ ◦ φ), whereψ runs through the isogeniesψ : E → E′ of

degreel such thatψ ◦ φ is still aΓ1(N)-level structure.

1.6.5 Exercise.Check the above calculations. (I’m not so sure whether I havenot messed them up a

bit when I did them a long time ago, so don’t worry if you find theneed to correct some statements.)

1.7 Katz modular forms

The purpose of the present section is to give an informal introduction to Katz modular forms. We let

R be a ring in whichN ≥ 1 is invertible.

For every elliptic curveE/S/R in [Γ1(N)]R, we let ωE/S = 0∗ΩE/S. Given any morphism

h : E′/S′/R → E/S/R, the induced mapωE′/S′ → h∗ωE/S is an isomorphism. Indeed, it is a well-

known fact ([Hartshorne], II.8.10) that the sheaf of relative differentials is stable under base change:

h∗ΩE/S
∼= ΩE′/S′ . Thus, we get (withg as above)

g∗ωE/S = (g∗ ◦ 0∗)ΩE/S = (0 ◦ g)∗ΩE/S = (h ◦ 0)∗ΩE/S
∼= 0∗ΩE′/S′ = ωE′/S′ .
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A Katz modular form (cusp) formf ∈ Mk(Γ1(N) ; R)Katz (respectively,f ∈ Sk(Γ1(N) ; R)Katz)

assigns to every object(E/S/R,α) of [Γ1(N)]R an elementf(E/S/R,α) ∈ ω⊗k
E/S(S), compatibly

for the morphisms in the category, subject to the condition that all q-expansions (which one obtains

by adjoining allN -th roots of unity and plugging in a suitable Tate curve) haveno negative terms

(respectively, only have positive terms).

Hecke operators

The discussion of Hecke correspondences above, makes the following definition appear quite sugges-

tive. For(a,N) = 1, we define the diamond operator〈a〉 by

〈a〉 : Mk(Γ1(N) ; R)Katz → Mk(Γ1(N) ; R)Katz,

(〈a〉f)(E/S/R, φ) = f(E/S/R, φ ◦ a).

One thus gets again an action of the group(Z/N)∗ ∼= Γ0(N)/Γ1(N) on the space of Katz modular

forms (cusp forms). Letχ : (Z/NZ)∗ → R∗ be a character. Then we letMk(N,χ ; R)Katz be the

χ-eigenspace, and similarly for the cusp space.

Next, we give an idea of the definition of the Hecke operatorTl (for a primel) on Katz modular

forms.

Tl : Mk(Γ1(N) ; R)Katz → Mk(Γ1(N) ; R)Katz,

(TlF )(E/S/R,P ) =
1

l

∑

ψ

F (ψ(E)/S/R,ψ ◦ φ),

where the sum runs over all isogeniesψ : E → E′ of degreel such thatψ ◦ φ is a Γ1(N)-level

structure.

Note that we divide byl which need not always make sense. However, there are ways to get

around that problem. We refer to the discussion in Sections 3and 4 of [Gross]. In that article, Gross

proves also that the Hecke operators defined like this give the very same action on theq-expansions

as we have seen for holomorphic modular forms. To mention another complication we must point out

that the moduli problem considered by Gross is slightly different from ours (the differences are not at

all serious, but must not be forgotten).

Comparison of Katz forms over Fp and modular forms mod p

One can compute explicitly (see [Diamond-Im], Section 12.3) that

Mk(Γ1(N) ; C) ∼= Mk(Γ1(N) ; C)Katz and Sk(Γ1(N) ; C) ∼= Sk(Γ1(N) ; C)Katz.

1.7.1 Theorem. LetS be anR-algebra withR a Z[1/N ]-algebra for some integerN ≥ 5. Letk ∈ N

and suppose that one of the following holds:

(i) k ≥ 2
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(ii) R → S is flat.

Then the following natural maps are isomorphisms:

Mk(Γ1(N) ; R)Katz⊗R S ∼= Mk(Γ1(N) ; S)Katz and

Sk(Γ1(N) ; R)Katz⊗R S ∼= Sk(Γ1(N) ; S)Katz

Proof. This is [Diamond-Im], Theorem 12.3.2. 2

In the case of a character, the statements of the theorem do ingeneral not stay correct. For a

precise statement see [EdixSerre].

One knows (that follows from [EdixSerre], Lemma 1.9) fork ≥ 2, N ≥ 1 over the ringR = Fp

with p > 3 andp - N that

Mk(N,χ ; Fp)Katz
∼= Mk(N,χ ; Fp).

Hence, in most cases for weightsk ≥ 2 we may just think about Katz modular forms overFp as modp

modular forms. A similar statement holds for the cusp spaces(since theq-expansions coincide).

1.8 Katz modular forms over Fp of weight one

Edixhoven explains in [EdixJussieu], Section 4, how weightone cuspidal Katz modular forms over

finite fields of characteristicp can be computed from the knowledge of the Hecke algebra of weightp

cusp forms over the same field. In this section we shall recallthis.

Let F be a finite field of prime characteristicp or Fp and fix a levelN ≥ 1 with p - N and a

characterχ : (Z/NZ)∗ → F∗ with χ(−1) = (−1)k. We have two injections ofF-vector spaces

F,A : S1(N,χ ; F)Katz → Sp(N,χ ; F)Katz,

given onq-expansions byan(Ag) = an(g) andan(Fg) = an/p(g) (with an(Fg) = 0 if p - n), which

are compatible with all Hecke operatorsTl for primesl 6= p. The former comes from theFrobenius

and the latter is multiplication by theHasse invariant. One hasT (p)
p F = A andAT

(1)
p = T

(p)
p A +

χ(p)F , where we have indicated the weight as a superscript (see e.g. [EdixJussieu], Equation (4.1.2)).

Let us writeT(k) for TF(Sk(N,χ ; F)Katz), the Hecke algebra overF of weight k for a fixed

level N and a fixed characterχ. We will also indicate the weight of Hecke operators by superscripts.

We denote byA(p) theFp-subalgebra ofT(p) generated by all Hecke operatorsT
(p)
n for p - n.

1.8.1 Proposition. (a) There is a homomorphismΘ, called aderivation, which onq-expansions is

given byan(Θf) = nan(f) such that the sequence

0 → S1(N,χ ; F)Katz
F
−→ Sp(N,χ ; F)Katz

Θ
−→ Sp+2(N,χ ; F)Katz

is exact.

(b) Supposef ∈ S1(N,χ ; F)Katz such thatan(f) = 0 for all n with p - n. Thenf = 0. In particular

AS1(N,χ ; F)Katz∩ FS1(N,χ ; F)Katz = 0.
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(c) The Hecke algebraT(1) in weight one can be generated by allT
(1)
l , wherel runs through the

primes different fromp.

(d) The weight one Hecke algebraT(1) is the algebra generated by theA(p)-action on the module

T(p)/A(p).

Proof. (a) The main theorem of [KatzDerivation] gives the exact sequence

0 → S1(N,χ ; F)Katz
F
−→ Sp(N,χ ; F)Katz

AΘ
−−→ S2p+1(N,χ ; F)Katz

by taking Galois invariants. As explained in [EdixJussieu], Section 4, the imageAΘSp(N,χ ; F)Katz

in weight2p + 1 can be divided by the Hasse invariant, whence the weight is asclaimed.

(b) The condition implies by looking atq-expansions thatAΘf = 0, whence by Part (3) of Katz’

theorem cited abovef comes from a lower weight than1, but below there is just the0-form (see also

[EdixJussieu], Proposition 4.4).

(c) It is enough to show thatT (1)
p is linearly dependent on the span of allT

(1)
n for p - n. If it

were not, then there would be a modular cusp form of weight1 satisfyingan(f) = 0 for p - n, but

ap(f) 6= 0, contradicting (b).

(d) Dualising the exact sequence in (a) yields thatT(p)/A(p) andT(1) are isomorphic asA(p)-

modules, which implies the claim. 2

1.8.2 Proposition. SetB = N
12

∏
l|N,l prime(1 + 1

l ). TheF-algebraA(p) can be generated as anF-

vector space by the set

{ T (p)
n | p - n, n ≤ (p + 2)B }.

Proof. Assume that someT (p)
m for m > (p + 2)B and p - m is linearly independent of the

operators in the set of the assertion. This means that there is a cusp formf ∈ Sp(N,χ ; F)Katz

satisfyingan(f) = 0 for all n ≤ (p + 2)B with p - n, butam(f) 6= 0. One getsan(Θf) = 0 for all

n ≤ (p + 2)B, butam(Θf) 6= 0. This contradicts the Sturm bound of Proposition 3.3.1 (which also

applies to Katz modular forms). 2

1.8.3 Remark. If we work withΓ1(N) and no character, the numberB above has to be replaced by

B′ =
N2

24

∏

l|N,l prime

(1 −
1

l2
).

Part of the following proposition is [EdixJussieu], Proposition 6.2. We are particularly interested

in its last part which states that weightp eigenforms which live in the span ofAg andFg for a weight

1 eigenformg are ordinary, i.e.ap(f) 6= 0.

1.8.4 Proposition. Let V ⊂ Sp(N,χ ; F)Katz be the eigenspace of a system of eigenvalues for the

operatorsT (p)
l for all primesl 6= p
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If the system of eigenvalues does not come from a weight one form, thenV is at most of dimension

one. Conversely, if there is a normalised weight one eigenform g with that system of eigenvalues for

T
(1)
l for all primesl 6= p, thenV = 〈Ag,Fg〉 and that space is2-dimensional. On itT (p)

p acts with

eigenvaluesu andχ(p)u−1 satisfyingu+χ(p)u−1 = ap(g). In particular, the eigenforms in weightp

which come from weight one are ordinary.

Proof. We choose a normalised eigenformf for all operators. IfV is at least2-dimensional, then

we haveV = Ff ⊕{h | an(h) = 0 ∀p - n}. As a formh in the right summand is annihilated byΘ, it

is equal toFg for some formg of weight one by Proposition 1.8.1 (a). By Part (b) of that proposition

we know that〈Ag,Fg〉 is 2-dimensional. IfV were more than2-dimensional, then there would be

two different cusp forms in weight1, which are eigenforms for allT (1)
l with l 6= p. This, however,

contradicts Part (c).

Assume now thatV is 2-dimensional. Any normalised eigenformf ∈ V for all Hecke operators

in weightp has to be of the formAg + µFg for someµ ∈ F. The eigenvalue ofT (p)
p onf is thep-th

coefficient, henceu = ap(g) + µ, asap(Fg) = a1(g) = 1. Now we have

(ap(g) + µ)(Ag + µFg) = T (p)
p (Ag + µFg) = T (p)

p Ag + µAg

= AT (1)
p g − χ(p)Fg + µAg = (ap(g) + µ)Ag − χ(p)Fg,

which implies−χ(p) = (ap(g) + µ)µ = u2 − uap(g) by looking at thep-th coefficient. From this

one obtains the claim onu. 2

1.9 Galois representations attached to eigenforms

We mention the sad fact that only the one-dimensional representations ofGal(Q/Q) are well under-

stood. In the case of finite image one can use the Kronecker-Weber theorem which asserts that any

cyclic extension ofQ is contained in a cyclotomic field. This is generalised by global class field theory

to one-dimensional representations ofGal(Q/K) for each number fieldK.

The great importance of modular forms for modern number theory is due to the fact that one may

attach a2-dimensional representation of the Galois group of the rationals to each normalised cuspidal

eigenform. The following theorem is due to Shimura fork = 2 and due to Deligne fork ≥ 2.

1.9.1 Theorem. Letk ≥ 2, N ≥ 1, p a prime not dividingN , andχ : (Z/NZ)× → C× a character.

Then to any normalised eigenformf ∈ Sk(N,χ ; C) with f =
∑

n≥1 an(f)qn one can attach a

Galois representation, i.e. a continuous group homomorphism,

ρf : Gal(Q/Q) → GL2(Qp)

such that

(i) ρf is irreducible,

(ii) ρf (c) = −1 for any complex conjugationc ∈ Gal(Q/Q) (one says thatρf is odd),
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(iii) for all primes l - Np the representationρf is unramified atl,

tr(ρf (Frobl)) = al(f) and det(ρf (Frobl)) = εp(l)
k−1χ(l).

In the statement,Frobl denotes a Frobenius element atl, andεp is thep-cyclotomic character.

By choosing a lattice inGL2(Qp) containingρ(Gal(Q/Q)), and applying reduction and semi-

simplification one obtains the following consequence.

1.9.2 Theorem. Letk ≥ 2, N ≥ 1, p a prime not dividingN , andχ : (Z/NZ)× → Fp
×

a character.

Then to any normalised eigenformf ∈ Sk(N,χ ; Fp) with f =
∑

n≥1 an(f)qn one can attach a

Galois representation, i.e. a continuous group homomorphism (for the trivial topology onGL2(Fp)),

ρf : Gal(Q/Q) → GL2(Fp)

such that

(i) ρf is semi-simple,

(ii) ρf (c) = −1 for any complex conjugationc ∈ Gal(Q/Q) (one says thatρf is odd),

(iii) for all primes l - Np the representationρf is unramified atl,

tr(ρf (Frobl)) = al(f) and det(ρf (Frobl)) = lk−1χ(l).

1.9.3 Exercise.A continuous group homomorphism from a profinite groupG to anyGL2(Fp) (with

the discrete topology) has a finite image. [Hint: Image of a compact set under a continuous map is

compact.]

Each normalised eigenform modp hence gives us a2-dimensional odd Galois representation. Its

kernel is by Galois theory of the formGal(Q/K) for some number fieldK. Hence, we can also say

thatK is attached tof . But even more is true. The arithmetic ofK can (at least partially) be read off

from the coefficients off , since we know the traces of the Frobenius elements.

One can also often tell what the Galois groupGal(K/Q) is as an abstract group. This is what

the problems are concerned with. There are not so many possibilites, as we see from the following

theorem.

1.9.4 Theorem. (Dickson)Letp be a prime andH a finite subgroup ofPGL2(Fp). Then a conjugate

of H is isomorphic to one of the following groups:

• finite subgroups of the upper triangular matrices,

• PSL2(Fpr) or PGL2(Fpr) for r ∈ N,

• dihedral groupsDr for r ∈ N not divisible byp,

• A4, A5 or S4.
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1.10 Galois representations of weight one Katz modular forms overFp

We have just seen that a normalised eigenformf ∈ S1(N,χ ; Fp)Katz can be embedded into weightp

in two different ways, via the Hasse invariant and the Frobenius. On the subspaceV := 〈Af,Ff〉

of Sp(N,χ ; Fp)Katz all Hecke operatorsTl for l 6= p act as multiplication byal(f) and there is a

modular formsg ∈ V which is also an eigenform forTp.

We defineρf to be the Galois representation

ρ : Gal(Q/Q) → GL2(Fp)

attached tog by Theorem 1.9.2. Note thatlp−1 = l1−1 = 1, so that we could have formulated

Theorem 1.9.2 to include weight one forms from the beginning.

1.10.1 Theorem. (Edixhoven, Coleman-Voloch, Gross)Let f ∈ S1(N,χ ; Fp)Katz be a normalised

eigenform, and supposep > 2. Thenρf is unramified atp.

Proof. That is [EdixWeight], Theorem 4.5. 2

1.11 Serre’s conjecture

Serre’s conjecture is the following. Letp be a prime andρ : Gal(Q/Q) → GL2(Fp) be a continuous,

odd, irreducible representation.

• Let Nρ be the (outside ofp) conductor ofρ (defined by a formula analogous to the formula for

the Artin conductor, except that the local factor forp is dropped).

• Let k(ρ) be the integer defined by [EdixWeight] orkρ be the integer defined by [Serre]. In

particular, one hask(ρ) = 1 if and only if ρ is unramified atp (in that casekρ = p).

• Let χρ be the prime-to-p part of det ◦ ρ, which we consider as a character(Z/NρZ)× ×

(Z/pZ)× → Fp
×

.

1.11.1 Conjecture. (Serre)Let p be a prime andρ : Gal(Q/Q) → GL2(Fp) be a continuous, odd,

irreducible representation. DefineNρ, k(ρ), kρ andχρ as above.

• (Strongest form) There exists a normalised eigenformf ∈ Sk(ρ)(Nρ, χρ ; Fp)

• (Strong form)) There exists a normalised eigenformf ∈ Skρ
(Nρ, χρ ; Fp)

• (Weak form)) There existN, k, χ and a normalised eigenformf ∈ Sk(N,χ ; Fp)

such thatρ is isomorphic to the Galois representation

ρf : Gal(Q/Q) → GL2(Fp)

attached tof by Theorem 1.9.2.
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It is known that forp > 2, the weak form implies the strong and the strongest form ([EdixWeight],

Theorem 4.5). Forp = 2, this implication is not known in the so-called exceptionalcases, in general.

Very recently, Khare and Wintenberger announced a proof of the strong form of Serre’s conjecture for

all ρ whoseNρ is odd. Let us mention thatNρ is odd if and only ifp = 2 or ρ is unramified at2.

Serre’s conjecture implies, if true, that we can compute (inprinciple, at least) arithmetic

properties of all Galois representations of the type in Serre’s conjecture by computing the modp

Hecke eigenform it comes from. That’s the purpose of these notes.

Edixhoven and coworkers have recently succeeded in giving an algorithm which computes the

actual Galois representation attached to a modp modular form!

1.12 Images of Galois representations

With a view towards the problems, we quote two results of Ribet showing that the images of Galois

representations attached to modular forms are in general not solvable.

A normalised eigenformf is said to havecomplex multiplications (CM)by a non-trivial quadratic

characterε : Gal(Q/Q) → {±1}, if

ap(f) = ε(p)ap(f)

for all primesp in a set of density1.

1.12.1 Proposition. (Ribet)Let f ∈ S2(N,χ ; C) be an eigenform of levelN and some characterχ

which is not a CM-form. Then for almost all primesp, the image of the representation

ρp : GQ → GL2(Fp)

attached tof restricted to a suitable open subgroupH ≤ GQ is {g ∈ GL2(F)|det(g) ∈ F∗
p} for

some finite extensionF of Fp.

Proof. Reducing modulo a suitable prime abovep, this follows from Theorem 3.1 of [R1], where

the statement is proved for thep-adic representation attached tof . 2

1.12.2 Proposition. (Ribet)Let N be a square-free integer andf ∈ S2(Γ0(N) ; C) a newform for

the trivial character. Then for all primesp > 2, the image of the Galois representation

ρp : GQ → GL2(Fp)

attached tof contains the groupSL2(Fp) if ρp is irreducible.

Proof. The representationρp is semi-stable (see [R2], p. 278). As it is assumed to be irreducible,

the proposition is just a restatement of [R2], Corollary 2.3. 2
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2 Modular Symbols modp

We distinguish different kinds of modular symbols which we name as follows:

(I) Formal modular symbols: themodular symbols formalism.

(II) Group (cohomological) modular symbols.

(III) Geometric homological modular symbols

(IV) Geometric cohomological modular symbols.

The historically first notion of modular symbols was that of geometric homological modular sym-

bols (Birch, Manin,S̆okurov, Merel). Group (cohomological) modular symbols were prominently

used by Shimura in his proof of the Eichler-Shimura theorem (Theorem 3.1.1). The modular sym-

bols formalism was discussed by Cremona, Merel and Stein, and it is the way MAGMA and SAGE

understand modular symbols. Geometric cohomological modular symbols are useful for applying

cohomological methods in (algebraic) geometry.

We shall describe in some detail group modular symbols and the modular symbols formalism.

Their relation to geometric cohomological modular symbolswill be stated without proofs. The geo-

metric homological modular symbols will only be mentioned as a motivation in the weight two case,

but will otherwise be disregarded in the present treatment.[SteinBook] is based on them, but unfortu-

nately does not give all the proofs.

Each of the four types mentioned has its own virtues: The modular symbols formalism is purely in

terms of linear algebra and can hence easily be implemented on a computer. The group cohomological

description has the advantage of allowing the use of cohomological tools (long exact sequences etc.),

while staying in a rather explicit environment. Obviously,the geometric modular symbols have their

virtues in all geometric treatments. We only point out that modern definitions of modular forms are

very often geometric ones (as one may see if the section on Katz modular forms is written).

2.1 Motivation for weight 2

This part only serves as a motivation for what is going to come. We present geometric homological

modular symbols and relate them to the modular symbols formalism, in the case of weight two.

Geometric homological modular symbols should be thought ofas a presentation (in terms of

generators) of the homology of modular curves. In the following we shall establish a link to the

modular symbols formalism. As the base field we choose the complex numbersC.
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Consider the following commutative diagram forΓ = Γ0(N)

A : C[X0(N)] C[paths inX0(N)]oo C[faces inX0(N)]oo

B : C[P1(Q)]Γ

OO

C[c-paths inH]Γoo

OO

C[c-faces inH]Γoo

OO

C : C[P1(Q)]Γ C[{α, β}|α, β ∈ P1(Q)]Γoo

OO

C[{α, β} + {β, γ} + {γ, α}|·]Γoo

OO

One must read “path” as “1-simplex” and “face” as “2-simplex”. As we are only motivating a defini-

tion, we are not really precise. By c-paths we mean paths thathave both their endpoints in the set of

cusps. A c-face is a face whose boundary consists of c-paths.The boundary maps are the natural ones

for the complexesA andB. The left map inC is given by{α, β} 7→ β − α. The right hand side one

is the natural map. We have by definitionH1(A) = H1(X0(N), C). Moreover,

H1(C) ∼= ker
(
(C[{α, β}|α, β ∈ P1(Q)]/〈{α, β} + {β, γ} + {γ, α}〉)Γ → C[Γ\P1(Q)]

)
.

We denote this space byCM2(Γ0(N) ; C) and call it the space ofcuspidal modular symbols for

Γ0(N).

The vertical maps fromB to A are the natural ones. The map fromC1 to B1 sends{α, β} to the

geodesic path fromα to β, which is a semi-circle withα andβ on the diameter. Thus, the element

{α, β} + {β, γ} + {γ, α} in C2 is sent to the face whose boundaries are the geodesics fromα to β,

from β to γ and fromγ to α. In order to see that this is well defined, one must verify thatγ ∈ SL2(Z)

sends a geodesic to another geodesic, which is true.

2.1.1 Proposition. We haveH1(C) ∼= H1(B) ∼= H1(A). In particular, this gives

CM2(Γ0(N) ; C) ∼= H1(X0(N), C).

We shall not give a proof in this section. However, it is easy to derive one from the general

comparison result to be established later on (Theorem 2.5.1). One can try to compute this iso-

morphism directly, but one has to watch out, since withZ instead ofC, one only has surjections

H1(C) ³ H1(B) ³ H1(A) whose kernels are torsion. That torsion is due to the existence of non-

trivial stabilisers for the actions ofΓ0(N) on H.

2.1.2 Remark. We haveH1(B) ³ H1(A) by a direct argument.

Proof. The idea is that the elements in the kernel ofA1 → A0 are loops and that one can always

compose a loop with another one which meets a cusp and is contractible.

Let x =
∑

φ zφφ be in the kernel of the boundary map (theφ are paths). Hence, one has0 =∑
φ zφ(φ(0) − φ(1)) from which it follows that for anya ∈ X0(N) the equality

0 =
∑

φ,φ(0)=a

zφ −
∑

ψ,ψ(1)=a

zψ
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holds. This implies

0 =
∑

φ,φ(0)=a

zφ{∞, a} −
∑

ψ,ψ(1)=a

zψ{∞, a} =
∑

φ,φ(0)=a

zφ{∞, a} +
∑

ψ,ψ(1)=a

zψ{a,∞},

where{∞, a} means a path from∞ (as a cusp ofX0(N)) to a. One concludes:

x =
∑

a∈X0(N)

( ∑

φ,φ(0)=a

zφφ +
∑

ψ,ψ(1)=a

zψψ −
∑

η,η(0)=η(1)=a

zηη
)

=
∑

a∈X0(N)

( ∑

φ,φ(0)=a

zφ(φ + {∞, a}) +
∑

ψ,ψ(1)=a

zψ(ψ + {a,∞})

−
∑

η,η(0)=η(1)=a

zη(η + {∞, a} + {a,∞})
)
.

By composing the paths, one sees that all paths used have the endpoints in the cusps (in fact, equal to

the image of∞). If one lifts these paths toH, one obtains the desired surjectivity. 2

Why are we computingH1(X0(N), C)? Because one has an isomorphism, theEichler-Shimura

isomorphism, of its dual to the holomorphic and anti-holomorphic modular forms!

2.1.3 Proposition. The map

S2(Γ0(N) ; C) ⊕ S2(Γ0(N) ; C) → H1(X0(N), C)∨, (f, g) 7→
(
γ 7→

∫

γ
f(z)dz +

∫

γ
g(z)dz

)

is an isomorphism. Under the identifications explained above, one may replaceH1(X0(N), C)∨ by

CM2(Γ0(N) ; C)∨. The map then becomes

(f, g) 7→
(
{α, β} 7→

∫ β

α
f(z)dz +

∫ β

α
g(z)dz

)

where the integration path is along the geodesic fromα to β.

Proof. This is a special case of the Eichler-Shimura isomorphism tobe discussed later. The

modern proof uses cohomology and the Hodge decomposition:

H1(X0(N), C)∨ ∼= H1(X0(N), C) ∼= H1
dR(X0(N)) ∼= H0(X0(N),Ωhol

X0(N) ⊕ Ωanti-hol
X0(N)).

A proof in the language of Riemann surfaces can be found in several books. 2

Let us recall that forf ∈ S2(Γ0(N) ; C) andM =
(

a b
c d

)
∈ PGL2(Q) one puts(f |M)(z) =

f(Mz) det(M)
(cz+d)2

.

2.1.4 Definition. Let p be a prime. Recall the setRp from Equation 1.2. Recall also that the Hecke

operatorTp for f ∈ S2(Γ0(N) ; C) is

(Tpf)(z) =
∑

M∈Rp

(f |M)(z).
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We now defineTp onCM2(Γ0(N) ; C) by

Tp{α, β} =
∑

M∈Rp

M{α, β} =
∑

M∈Rp

{Mα,Mβ}

which we extend linearly.

2.1.5 Proposition. The Hecke operators are compatible with the isomorphism of Proposition 2.1.3.

Proof. Let γ be a geodesic path fromα to β. ForM =
(

a b
c d

)
we have

∫

Mγ
f(z)dz =

∫

γ
f(Mz)d(Mz) =

∫

γ
f(Mz)

det(M)

(cz + d)2
dz =

∫

γ
(f |M)(z)dz,

whence the result. 2

The idea of the modular symbols algorithm is to compute the Hecke algebra on modular sym-

bols, which we have described explicitly above and which is suitable for an implementation on the

computer. By the compatibility of the Eichler-Shimura isomorphism with the Hecke operators the

Hecke algebra on modular symbols agrees with the one on modular forms! We have seen above that

its knowledge is equivalent to the knowledge of the modular forms.

2.2 The modular symbols formalism

In this section we give a definition of formal modular symbols, as implemented in MAGMA and like

the one in [MerelUniversal], [Cremona] and Stein’s textbook [SteinBook], except that we do not factor

out torsion, but intend a common treatment for all rings.

We let R be a commutative ring with unit andΓ be a subgroup of finite index inPSL2(Z) For

the time being we allow general modules; so we letV be a leftR[Γ]-module. Ifg ∈ PSL2(Z) is

some element of finite orderm, we denote byNg the element1 + g + · · · + gm−1 of the group

ring R[PSL2(Z)]. Similarly, if H ≤ PSL2(Z) is a finite subgroup, we writeNH =
∑

h∈H h ∈

R[PSL2(Z)].

2.2.1 Definition. We define theR-modules

MR := R[{α, β}|α, β ∈ P1(Q)]/〈{α,α}, {α, β} + {β, γ} + {γ, α}|α, β, γ ∈ P1(Q)〉

and

BR := R[P1(Q)].

We equip both with the natural leftΓ-action. Furthermore, we let

MR(V ) := MR ⊗R V and BR(V ) := BR ⊗R V

for the left diagonalΓ-action.
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(a) We call theΓ-coinvariants

MR(Γ, V ) := MR(V )Γ = MR(V )/〈(x − gx)|g ∈ Γ, x ∈ MR(V )〉

the space of(Γ, V )-modular symbols.

(b) We call theΓ-coinvariants

BR(Γ, V ) := BR(V )Γ = BR(V )/〈(x − gx)|g ∈ Γ, x ∈ BR(V )〉

the space of(Γ, V )-boundary symbols.

(c) We define theboundary mapas the map

MR(Γ, V ) → BR(Γ, V )

which is induced from the mapMR → BR sending{α, β} to {β} − {α}.

(d) The kernel of the boundary map is denoted byCMR(Γ, V ) and is calledthe space of cuspidal

(Γ, V )-modular symbols.

(e) The image of the boundary map insideBR(Γ, V ) is denoted byER(Γ, V ) and is calledthe space

of (Γ, V )-Eisenstein symbols.

2.2.2 Exercise.LetR, Γ andV as above and letR → S be a ring homomorphism. Then

MR(Γ, V ) ⊗R S ∼= MS(Γ, V ⊗R S).

[Hint: Use that tensoring and taking coinvariants are both right exact.]

Manin symbols

Manin symbols provide an alternative description of formalmodular symbols. We shall use this

description for the comparison with the other kinds of modular symbols. We should also point out

that Manin symbols are important for the implementations ofthe modular symbols formalism.

We stay in the general setting over a ringR.

As PSL2(Z) is infinite, the induced moduleR[PSL2(Z)] is not isomorphic to the coinduced one

HomR(R[PSL2(Z)], R) and R[PSL2(Z)] is not cohomologically trivial. However, theR-module

H1
par(PSL2(Z), R[PSL2(Z)]) is zero. This is the essence of the following proposition. (One need not

understand that sentence at this point.)

2.2.3 Proposition. The sequence ofR-modules

0 → R[PSL2(Z)]Nσ + R[PSL2(Z)]Nτ → R[PSL2(Z)]
g 7→ g(1−σ)∞
−−−−−−−−→ R[P1(Q)]

g∞ 7→ 1
−−−−→ R → 0

is exact. (We are consideringR[PSL2(Z)] as a rightR[PSL2(Z)]-module.)
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Proof. We first use thatR[PSL2(Z)] is a cohomologically trivial module for both〈σ〉 and〈τ〉.

This gives

R[PSL2(Z)]Nσ = kerR[PSL2(Z)](1 − σ) = R[PSL2(Z)]〈σ〉,

R[PSL2(Z)]Nτ = kerR[PSL2(Z)](1 − τ) = R[PSL2(Z)]〈τ〉,

R[PSL2(Z)](1 − σ) = kerR[PSL2(Z)] Nσ and R[PSL2(Z)](1 − τ) = kerR[PSL2(Z)] Nτ .

By Proposition B.6.1, we have the exact sequence

0 → R[PSL2(Z)] → R[PSL2(Z)]〈σ〉 ⊕ R[PSL2(Z)]〈τ〉 → R → 0.

The injectivity of the first map in the exact sequence means

R[PSL2(Z)](1 − σ) ∩ R[PSL2(Z)](1 − τ) = 0.

We identifyR[PSL2(Z)]/R[PSL2(Z)](1−T ) with R[P1(Q)] by sendingg to g∞. Now we show

the exactness atR[PSL2(Z)], which comes down to proving that the equationx(1 − σ) = y(1 − T )

for x, y ∈ R[PSL2(Z)] implies thatx is in R[PSL2(Z)]〈σ〉 + R[PSL2(Z)]〈τ〉.

Using the formulaτ = Tσ we obtain thatx(1 − σ) = y(1 − T ) = y(1 − τ) − yT (1 − σ). This

yieldsx(1− σ) + yT (1− σ) = y(1− τ). This expression, however, is zero. Consequently, there isa

z ∈ R[PSL2(Z)] such thaty = zNτ . Hence, usingT = τσ and consequentlyNτT = Nτσ, we get

y(1 − T ) = zNτ (1 − T ) = zNτ (1 − σ) = y(1 − σ).

The equationx(1 − σ) = y(1 − σ) means thatx − y is in R[PSL2(Z)]〈σ〉. As we know thaty ∈

R[PSL2(Z)]〈τ〉, we see thatx = (x−y)+y is in R[PSL2(Z)]〈σ〉 +R[PSL2(Z)]〈τ〉, as required. Note

that instead of this explicit calculation we could also haveappealed to Proposition 2.3.6.

The exactness atR[P1(Q)] can be seen as follows (we avoid here the traditional continued frac-

tions argument). Sinceσ andT = τσ generatePSL2(Z), the kernel ofR[PSL2(Z)]
g 7→1
−−−→ R is

R[PSL2(Z)](1 − σ) + R[PSL2(Z)](1 − T ). Taking the quotient byR[PSL2(Z)](1 − T ) gives the

desired exactness. 2

2.2.4 Lemma. The sequence ofR-modules

0 → MR
{α,β}7→β−α
−−−−−−−−→ R[P1(Q)]

α7→1
−−−→ R → 0

is exact.

Proof. The injectivity of the first arrow is clear, since we can writeany element inMR as∑
α6=∞ rα{∞, α} with rα ∈ R, using the relations definingMR. The image of this element un-

der the first arrow is
∑

α6=∞ rαα − (
∑

α6=∞ rα)∞. If this is zero, clearly allrα are zero, proving the

injectivity of the first arrow.
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Suppose now we are given
∑

α rαα ∈ R[P1(Q)] in the kernel of the second arrow. Then
∑

α rα =

0 and consequently we have

∑

α

rαα =
∑

α6=∞

rαα − (
∑

α6=∞

rα)∞

which is in the image of the first arrow, as noticed before. 2

2.2.5 Proposition. The homomorphism ofR-modules

R[PSL2(Z)]
φ
−→ MR, g 7→ {g.0, g.∞}

is surjective and its kernel is given byR[PSL2(Z)]Nσ + R[PSL2(Z)]Nτ .

Proof. This is a direct consequence of Proposition 2.2.3 and Lemma 2.2.4. 2

We are now ready to prove the description of modular symbols in terms of Manin symbols.

2.2.6 Theorem. LetM = Ind
PSL2(Z)
Γ (V ), which we identify with(R[PSL2(Z)]⊗RV )Γ. That module

carries the rightR[PSL2(Z)]-action (h ⊗ v)g = (hg ⊗ v), and theΓ-coinvariants are taken for the

diagonal leftΓ-action. The following statements hold:

(a) The homomorphismφ from Proposition 2.2.5 induces the exact sequence ofR-modules

0 → MNσ + MNτ → M → MR(Γ, V ) → 0.

(b) The homomorphismR[PSL2(Z)] → R[P1(Q)] sendingg to g.∞ induces the exact sequence of

R-modules

0 → M(1 − T ) → M → BR(Γ, V ) → 0.

(c) The identifications of (a) and (b) imply the isomorphism

CMR(Γ, V ) ∼= ker
(
M/(MNσ + MNτ )

m7→m(1−σ)
−−−−−−−→ M/M(1 − T )

)
.

Proof. (a) We derive this from Proposition 2.2.5, which gives the exact sequence

0 → R[PSL2(Z)]Nσ + R[PSL2(Z)]Nτ → R[PSL2(Z)] → M2(R) → 0.

Tensoring withV overR, we obtain the exact sequence of leftR[Γ]-modules

0 → (R[PSL2(Z)] ⊗R V )Nσ + (R[PSL2(Z)] ⊗R V )Nτ → (R[PSL2(Z)] ⊗R V ) → MR(V ) → 0.

Passing to leftΓ-coinvariants yields (a). Part (b) is clear from the definition and Part (c) has already

been noticed in the proof of Proposition 2.2.3. 2
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The modulesVn(R) and V χ
n (R)

Let R be a ring. We putVn(R) = Symn(R2) ∼= R[X,Y ]n. By the latter we mean the homogeneous

polynomials of degreen in two variables with coefficients in the ringR. By Mat2(Z)6=0 we denote the

Z-module of integral2×2-matrices with non-zero determinant. ThenVn(R) is aMat2(Z)6=0-module

in several natural ways.

One can give it the structure of a leftMat2(Z)6=0-module via the polynomials by putting

(
(

a b
c d

)
.f)(X,Y ) = f

(
(X,Y )

(
a b
c d

) )
= f

(
(aX + cY, bX + dY )

)
.

Merel and Stein, however, consider a different one, and that’s the one implemented in MAGMA ,

namely

(
(

a b
c d

)
.f)(X,Y ) = f

(
(
(

a b
c d

)
)ι

(
X
Y

) )
= f

( (
d −b
−c a

) (
X
Y

) )
= f

( (
dX−bY
−cX+aY

) )
.

Here,ι denotes Shimura’s main involution whose definition can be read off from the line above (note

thatM ι is the inverse ofM if M has determinant1). Fortunately, both actions are isomorphic due to

the fact that the transpose of(
(

a b
c d

)
)ι

(
X
Y

)
is equal to(X,Y )σ−1

(
a b
c d

)
σ (the isomorphism is given

by v 7→ σv).

Of course, there is also a natural right action byMat2(Z)6=0, namely

(f.
(

a b
c d

)
)(

(
X
Y

)
) = f(

(
a b
c d

) (
X
Y

)
) = f(

(
aX+bY
cX+dY

)
).

By the standard inversion trick, also both left actions desribed above can be turned into right ones.

2.2.7 Proposition. Suppose thatn! is invertible inR. Then there is a perfect pairing

Vn(R) × Vn(R) → R

of R-modules. It hence induces an isomorphismVn(R) → Vn(R)∨ of R-modules respecting the

Mat2(Z)6=0-action which is given onVn(R)∨ by (M.φ)(w) = φ(M ιw) for M ∈ Mat2(Z)6=0, φ ∈

Vn(R)∨ andw ∈ Vn(R).

Proof. One defines the perfect pairing onVn(R) by first constructing a perfect pairing onR2,

which we consider as column vectors. One sets

R2 × R2 → R, 〈v,w〉 := det(v|w) = v1w2 − v2w1.

If M is a matrix inMat2(Z)6=0, one checks easily that〈Mv,w〉 = 〈v,M ιw〉. This pairing extends

naturally to a pairing on then-th tensor power ofR2. Due to the assumption on the invertibility ofn!,

we may viewSymn(R2) as a submodule in then-th tensor power, and hence obtain the desired pairing

and the isomorphism of the statement. 2

2.2.8 Lemma. Letn ≥ 1 be an integer,t =
(

1 N
0 1

)
andt′ =

(
1 0
N 1

)
. If n!N is not a zero divisor inR,

then for thet-invariants we haveVn(R)〈t〉 = 〈Xn〉 and for thet′-invariantsVn(R)〈t
′〉 = 〈Y n〉. If n!N

is invertible inR, then the coinvariants are given byVn(R)〈t〉 = Vn(R)/〈Y n,XY n−1, . . . ,Xn−1Y 〉

respectivelyVn(R)〈t′〉 = Vn(R)/〈Xn,Xn−1Y, . . . ,XY n−1〉.
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Proof. The action oft is t.(Xn−iY i) = Xn−i(NX + Y )i and consequently(t− 1).(Xn−iY i) =∑i−1
j=0 ri,jX

n−jY j with ri,j = N i−j
(

i
j

)
, which is not a zero divisor, respectively invertible, by

assumption. Forx =
∑n

i=0 aiX
n−iY i we have(t − 1).x =

∑n−1
j=0 Xn−jY j(

∑n
i=j+1 airi,j). If

(t − 1).x = 0, we conclude forj = n − 1 that an = 0. Next, for j = n − 2 it follows that

an−1 = 0, and so on, untila1 = 0. This proves the statement on thet-invariants. The one on the

t′-invariants follows from symmetry. The claims on the coinvariants are proved in a very similar and

straightforward way. 2

2.2.9 Proposition. Letn ≥ 1 be an integer.

(a) If n!N is not a zero divisor inR, then theR-module ofΓ(N)-invariantsVn(R)Γ(N) is zero.

(b) If n!N is invertible inR, then theR-module ofΓ(N)-coinvariantsVn(R)Γ(N) is zero.

(c) Suppose thatΓ is a subgroup ofSL2(Z) such that reduction modulop defines a surjectionΓ ³

SL2(Fp) (e.g.Γ(N), Γ1(N), Γ0(N) for p - N ). Suppose moreover that1 ≤ n ≤ p if p > 2, and

n = 1 if p = 2. Then one hasVn(Fp)
Γ = 0 = Vn(Fp)Γ.

Proof. AsΓ(N) contains the matricest andt′, Lemma 2.2.8 already finishes Parts (a) and (b). The

only part of (c) that is not yet covered is when the degree isn = p > 2. One has the exact sequence of

Γ-modules0 → V1(Fp) → Vp(Fp) → Vp−2(Fp) → 0. Hence, it suffices to take invariants respectively

coinvariants to obtain the result. 2

Let nowχ : Γ0(N)/Γ1(N) ∼= (Z/NZ)× → R× be a character. ByRχ we denote theR[Γ0(N)]-

module which is defined to beR with Γ0(N)-action throughχ−1 (taking the inverse is not some

amusement in making formulae more difficult, but arises fromthe fact that we want our modular

symbols with characterχ to match the definition in [SteinBook] (at least in most cases)).

We further let

V χ
n (R) := Vn(R) ⊗R Rχ

equipped with the diagonalΓ0(N)-action. Note that unfortunately this module is not anSL2(Z)-

module any more, but we will not need that.

Since asΓ1(N)-modulesV χ
n (R) and Vn(R) are isomorphic, Proposition 2.2.9 also applies to

V χ
n (R). Note, moreover, that ifχ(−1) = (−1)n, then minus the identity acts trivially onV χ

n (R),

whence we consider this module also as aΓ0(N)/{±1}-module.

The modular symbols formalism for standard congruence subgroups

We now specialise the general set-up on modular symbols thatwe have used so far to the precise

situation needed for establishing relations with modular forms.

So we letN ≥ 1, k ≥ 2 be integers and fix a characterχ : (Z/NZ)× → R×, which we also

sometimes view as a group homomorphismΓ0(N) → R×. We impose thatχ(−1) = (−1)k.
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We define

Mk(N,χ ; R) := MR(Γ0(N)/{±1}, V χ
k−2(R)),

as well as similarly for the boundary and the cuspidal spaces. The natural action of the matrixη =(
−1 0
0 1

)
gives an involution on all of these spaces. We will denote by the superscript+ the subspace

invariant under this involution, and by the superscript− the anti-invariant one.

In the literature on Manin symbols one usually finds a more explicit version of the induced mod-

ule. This is the contents of the following proposition. It establishes the link with the main theorem

on Manin symbols in [SteinBook], namely Theorem 8.2.2 (in the last version of [SteinBook] that I

printed).

Since in the following proposition left and right actions are involved, we sometimes indicate left

(co-)invariants by using left subscripts (resp. superscripts) and right (co-)invariants by right ones.

2.2.10 Proposition. Consider theR-moduleX := R[Γ1(N)\SL2(Z)]⊗R Vk−2(R)⊗R Rχ equipped

with the right SL2(Z)-action (Γ1(N)h ⊗ V ⊗ r)g = (Γ1(N)hg ⊗ g−1v ⊗ r) and with the left

Γ1(N)\Γ0(N)-actiong(Γ1(N)h ⊗ v ⊗ r) = (Γ1(N)gh ⊗ v ⊗ χ(g)r).

Then X is isomorphic as a rightR[SL2(Z)]-module and a leftR[Γ1(N)\Γ0(N)]-module to

Ind
SL2(Z)
Γ1(N) (V χ

k (R)), and, moreover,Γ1(N)\Γ0(N)X is isomorphic toInd
SL2(Z)
Γ0(N) (V χ

k (R)). If N ≥ 3,

then the latter module is isomorphic toInd
PSL2(Z)
Γ0(N)/{±1}(V

χ
k (R)).

Proof. Mappingg ⊗ v ⊗ r to g ⊗ g−1v ⊗ r defines an isomorphism of rightR[SL2(Z)]-modules

and of leftR[Γ1(N)\Γ0(N)]-modules

Γ1(N)(R[SL2(Z)] ⊗R Vk−2(R) ⊗R Rχ) → X.

As we have seen above, the left hand side module is naturally isomorphic to the induced module

Ind
SL2(Z)
Γ1(N) (V χ

k (R)) (equipped with its rightR[SL2(Z)]-action described before). This establishes the

first statement. The second one follows fromΓ1(N)\Γ0(N)

(
Γ1(N)M

)
= Γ0(N)M for any Γ0(N)-

moduleM . The third statement is due to the fact that〈−1〉(R[SL2(Z)] ⊗R V χ
k−2(R)) is naturally

isomorphic toR[PSL2(Z)]⊗RV χ
k−2(R), since−1 acts trivially on the second factor, as the assumption

assures that−1 ∈ Γ0(N) but−1 6∈ Γ1(N). 2

Hecke operators

The aim of this part is to state the definition of Hecke operators and diamond operators on formal

modular symbolsMk(N,χ ; R) andCMk(N,χ ; R). One immediately sees that it is very similar

to the one on modular forms. One can get a different insight inthe defining formulae by seeing how

they are derived from a “Hecke correspondence like” formulation in the section on Hecke operators

on group cohomology.

The definition given here is also explained in detail in [SteinBook]. We should also mention the

very important fact that one can transfer Hecke operators inan explicit way to Manin symbols. Also

that point is discussed in detail in [SteinBook].
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We now give the definition only forTl for a primel and diamond operators. TheTn for composite

n can be computed from those by the formulae already stated in the beginning. Notice that the

R[Γ0(N)]-action onV χ
k−2(R) (for the usual conventions, in particular,χ(−1) = (−1)k) extends

naturally to an action of the semi-group generated byΓ0(N) andRl (see Equation 1.2). To be precise,

we make that statement for the action discussed by Stein and Merel (see the section onVn(R)). Thus,

this semi-group acts onMk(N,χ ; R) (and the cusp space) by the diagonal action on the tensor

product. Letx ∈ Mk(N,χ ; R). We put

Tpx =
∑

δ∈Rl

δ.x.

If a is an integer coprime toN , we define the diamond operator as

〈a〉x = σax = χ(a)x

with σa as in Equation 1.1.

I had wondered for a long time why Merel and Stein use their action onVn(R) (i.e. applying the

Shimura main involution) and not the maybe more straight forward one. The answer becomes clear

in the discussion of Hecke operators on group cohomology, where the main involution comes in quite

naturally.

2.3 Group cohomological modular symbols

As in the section on the modular symbols formalism, we shall also base our group cohomological

modular symbols on the groupPSL2(Z), rather thanSL2(Z), which simplifies the treatment, since

SL2(Z) has a very simple structure, namely as a free product of two cyclic groups.

PSL2(Z) as a free product

Recall the matrices ofSL2(Z)

σ :=
(

0 −1
1 0

)
, τ :=

(
−1 1
−1 0

)
, T = ( 1 1

0 1 ) = τσ.

One knows thatPSL2(Z) is the free product of the cyclic groups〈σ〉 of order2 and〈τ〉 of order3. In

other words,PSL2(Z) has the presentation〈σ, τ |σ2 = τ3 = 1〉 as an abstract group.

In the following we will exploit the simplicity of this description. In fact, we have already used a

consequence of the freeness (namely Proposition B.6.1) in our proof of the Manin symbols theorem.

Mayer-Vietoris for PSL2(Z)

We now apply the Mayer-Vietoris sequence (Prop. B.6.2) to our situation to get that for any ringR

and any leftR[PSL2(Z)]-moduleM the sequence

0 → MPSL2(Z) → M 〈σ〉 ⊕ M 〈τ〉 → M

→ H1(PSL2(Z),M) → H1(〈σ〉,M) ⊕ H1(〈τ〉,M) → 0 (2.9)
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is exact and for alli ≥ 2 one has isomorphisms

H i(PSL2(Z),M) ∼= H i(〈σ〉,M) ⊕ H i(〈τ〉,M). (2.10)

2.3.1 Corollary. Let R be a ring andΓ ≤ PSL2(Z) be a subgroup of finite index such that all the

orders of all stabiliser groupsΓx for x ∈ H are invertible inR. Then for allR[Γ]-modulesV one has

H1(Γ, V ) = M/(M 〈σ〉 + M 〈τ〉) with M = Coind
PSL2(Z)
Γ (V ) andH i(Γ, V ) = 0 for all i ≥ 2.

Proof. Forx ∈ H we denote byPSL2(Z)x the stabiliser subgroup ofPSL2(Z) of the pointx. The

image of thePSL2(Z)-orbit of x in Γ\H is in bijection with the double cosetsΓ\PSL2(Z)/PSL2(Z)x

as follows

Γ\PSL2(Z)/PSL2(Z)x
g 7→gx
−−−→ Γ\PSL2(Z)x.

Moreover, the groupΓ ∩ gPSL2(Z)xg−1 equalsΓgx, the stabiliser subgroup ofΓ of the pointgx.

Thus, for alli ∈ N, Mackey’s formula (Prop. B.5.1) gives an isomorphism

H i(PSL2(Z)x,Coind
PSL2(Z)
Γ V ) ∼=

∏

y∈Γ\PSL2(Z)x

H i(Γy, V ). (2.11)

By Exercise 1.6.1, all non-trivial stabiliser groups for the action ofPSL2(Z) onH are of the form

g〈σ〉g−1 ∩Γ or g〈τ〉g−1 ∩ Γ for someg ∈ PSL2(Z). Due to the invertibility assumption we get from

Prop. B.3.1 that the groups in Equation 2.11 are zero. Hence,by Shapiro’s lemma (Prop. B.4.1) and

Equations (2.9) and (2.10) we obtain the proposition. 2

By Exercise 1.6.1, the assumptions of the proposition are for instance always satisfied ifR is a

field of characteristic not2 or 3. They also hold forΓ1(N) with N ≥ 4 over any ring.

Definition of parabolic group cohomology

Let R be a ring,Γ ≤ PSL2(Z) a subgroup of finite index. One defines theparabolic cohomology

group for the leftR[Γ]-moduleV as the kernel of the restriction map in

0 → H1
par(Γ, V ) → H1(Γ, V )

res
−−→

∏

g∈Γ\PSL2(Z)/〈T 〉

H1(Γ ∩ 〈gTg−1〉, V ). (2.12)

2.3.2 Exercise.Use Mackey’s formula as in the proof of Corollary 2.3.1 to show that the definition of

parabolic cohomology is compatible with Shapiro’s lemma, i.e. that Equation (2.12) is isomorphic to

0 → H1
par(PSL2(Z),M) → H1(PSL2(Z),M)

res
−−→ H1(〈T 〉,M) (2.13)

with M = Coind
PSL2(Z)
Γ V = HomR[Γ](R[PSL2(Z)], V ).

2.3.3 Proposition. LetR be a ring andΓ ≤ PSL2(Z) be a subgroup of finite index such that all the

orders of all stabiliser groupsΓx for x ∈ H are invertible inR. Then for all leftR[Γ]-modulesV the

sequence

0 → H1
par(Γ, V ) → H1(Γ, V )

res
−−→

∏

g∈Γ\PSL2(Z)/〈T 〉

H1(Γ ∩ 〈gTg−1〉, V ) → H0(Γ, V ) → 0
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is exact.

Proof. Due to the assumptions we may apply Corollary 2.3.1. The restriction map in Equa-

tion (2.13) thus becomes

M/(M 〈σ〉 + M 〈τ〉)
m7→(1−σ)m
−−−−−−−→ M/(1 − T )M,

sinceH1(〈T 〉,M) ∼= M/(1 − T )M by Exercise B.2.1. SeeingM asHomΓ(R[PSL2(Z)], V ) gives

that the cokernel of this map, which one directly obtains asMG (theG-coinvariants), are the constant

functions toV Γ, which are clearly isomorphic toV Γ. 2

Exact computation of cohomology of subgroups ofPSL2(Z)

We have already seen how to use the Mayer-Vietoris sequence (Proposition 2.9) to compute the co-

homology of subgroups ofPSL2(Z) of finite index, if we allow some rather weak conditions on the

invertiblity of stabiliser orders in the base ring.

For the course we will not need the present section, but it is included since it gives an explicit de-

scription of the cohomology ofPSL2(Z) over any ring, even in the presence of non-trivial stabilisers.

Moreover, it illustrates that already from the definition ofgroup cohomology in terms of cochains,

one can get a Manin symbols like statement.

Let us recall some notation. We letR be a ring. Ifg ∈ PSL2(Z) is some element of finite

orderm, we denote byNg the element1 + g + · · · + gm−1 of the group ringR[PSL2(Z)]. Similarly,

if H ≤ PSL2(Z) is a finite subgroup, we writeNH =
∑

h∈H h ∈ R[PSL2(Z)].

2.3.4 Proposition. LetM be a leftR[PSL2(Z)]-module. Then the sequence ofR-modules

0 → MPSL2(Z) → M → kerM Nσ × kerM Nτ → H1(PSL2(Z),M) → 0

is exact.

Proof. We determine the1-cocycles ofM . Apart fromf(1) = 0, they must satisfy

0 = f(σ2) = σf(σ) + f(σ) = Nσf(σ) and

0 = f(τn) = · · · = Nτf(τ).

Since these are the only relations inPSL2(Z), a cocycle is uniquely given by the choices

f(σ) ∈ kerM Nσ andf(τ) ∈ kerM Nτ .

The1-coboundaries are precisely the cocyclesf which satisfyf(σ) = (1−σ)m andf(τ) = (1−τ)m

for somem ∈ M . This proves

H1(PSL2(Z),M) ∼= (kerM Nσ × kerM Nτ )/
(
((1 − σ)m, (1 − τ)m) |m ∈ M

)
.

Rewriting yields the proposition. 2
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2.3.5 Remark. AsPSL2(Z)∞ = 〈T 〉 < PSL2(Z) is infinite cyclic, one has by Exercise B.2.1 that

H1(PSL2(Z)∞,Res
PSL2(Z)

∞

PSL2(Z) M) ∼= M/(1 − T )M .

An explicit presentation of the parabolic group cohomologyis the following.

2.3.6 Proposition. The parabolic group cohomology group sits in the exact sequence

0 → M 〈T 〉/MPSL2(Z) → kerM Nσ ∩ kerM Nτ
φ
−→ H1

par(PSL2(Z),M) → 0,

whereφ maps an elementm to the1-cocyclef uniquely determined byf(σ) = f(τ) = m.

Proof. Using Proposition 2.3.4, we have the exact commutative diagram

M 〈T 〉/MPSL2(Z) Â Ä(σ
−1−1) //

Ä _

σ−1

²²

ker Nσ ∩ ker Nτ
//

Ä _

²²

H1
par(PSL2(Z),M)

Ä _

²²
M/MPSL2(Z) Â Ä(1−σ,1−τ) //

(1−T )σ

²²²²

ker Nσ × ker Nτ
// //

(a,b)7→b−a

²²

H1(PSL2(Z),M)

²²
(1 − T )M Â Ä // M // // H1(PSL2(Z)∞,M).

As the bottom left vertical arrow is surjective, the claim follows from the snake lemma. 2

Hecke operators

Hecke operators conceptually come from Hecke correspondences on modular curves. It is quite easily

checked that the treatment of Hecke operators on group cohomology to be given here, coincides with

the one coming from the Hecke correspondences on complex modular curves (at least, when there are

no non-trivial stabilisers, i.e. for the groupΓ1(N) with N ≥ 5), see e.g. [Diamond-Im], 3.2 and 7.3.

For the description here, we follow [Diamond-Im] 12.4.

Let N ≥ 1. We define the following two sets (forn 6= 0):

∆n
0 (N) = {

(
a b
c d

)
|a, b, c, d ∈ Z, (a,N) = 1, c ≡ 0mod N,det

(
a b
c d

)
= n} (2.14)

∆n
1 (N) = {

(
a b
c d

)
|a, b, c, d ∈ Z, a ≡ 1mod N, c ≡ 0mod N,det

(
a b
c d

)
= n} (2.15)

We now letΓ := Γ1(N) and∆p := ∆p
1(N) or Γ := Γ0(N) and∆p := ∆p

0(N). We also letR be a

ring andV a left R[Γ]-module which extends to a semi-group action by the semi-group consisting of

all αι for α ∈ ∆n for all n. Recall that
(

a b
c d

)ι
=

(
d −b
−c a

)
.

Let α ∈ ∆. We use the notationsΓα := Γ ∩ α−1Γα andΓα := Γ ∩ αΓα−1, where we consider

α−1 as an element ofGL2(Q). Both groups are commensurable withΓ.

TheHecke operatorTα acting on group cohomology is the composite

H1(Γ, V )
res
−−→ H1(Γα, V )

conjα−−−→ H1(Γα, V )
cores
−−−→ H1(Γ, V ).
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The first map is the usualrestriction, and the third one is the so-calledcorestriction, which one

also finds in the literature under the nametransfer. We explicitly describe the second map on non-

homogeneous cocycles (cf. [Diamond-Im], p. 116):

conjα : H1(Γα, V ) → H1(Γα, V ), c 7→
(
gα 7→ αι.c(αgαα−1)

)
.

There is a similar description on the parabolic subspace andthe two are compatible. The following

formula can also be found in [Diamond-Im], p. 116, and [Shimura], Section 8.3.

2.3.7 Proposition. Suppose thatΓαΓ =
⋃n

i=1 Γδi is a disjoint union. Then the Hecke operatorTα

acts onH1(Γ, V ) andH1
par(Γ, V ) by sending the non-homogeneous cocylec to Tαc defined by

(Tαc)(g) =

n∑

i=1

δι
ic(δigδ−1

j(i))

for g ∈ Γ. Herej(i) is the index such thatδigδ−1
j(i) ∈ Γ.

Proof. We only have to describe the corestriction explicitly. For that we notice that one has

Γ =
⋃n

i=1 Γαgi with αgi = δi. Furthermore the corestriction of a non-homogeneous cocycle u ∈

H1(Γα, V ) is the cocyclecores(u) uniquely given by

cores(u)(g) =
n∑

i=1

g−1
i u(gigg−1

j(i))

for g ∈ Γ. Combining with the explicit description of the mapconjα yields the result. 2

For a positive integern, theHecke operatorTn is defined as
∑

α Tα, where the sum runs through

a system of representatives of the double cosetsΓ\∆n/Γ.

2.3.8 Exercise.Let p be a prime. Prove that∆p = Γ
(

1 0
0 p

)
Γ and thatRp is a system of representa-

tives ofΓ\∆p. (Rp was defined in Equation 1.2.)

Let a be an integer coprime toN . The diamond operator〈a〉 is defined asTα for the matrix

σa ∈ Γ0(N), defined in Equation 1.1 (if theΓ-action onV extends to an action of the semi-group

generated byΓ andαι; note thatα ∈ ∆1
0, but in general not in∆1

1).

It can be checked that the Hecke and diamond operators satisfy the “usual” Euler product and

one has the formulaeTnTm = Tnm for any pair of coprime integersn,m andTpr+1 = TprTp −

pk−1〈p〉Tpr−1 if p - N , andTpr+1 = TprTp if p | N .

Finally, we should mention that the definition of Hecke operators is compatible under Shapiro’s

Lemma. This was first proved by [AshStevens].

Group cohomological modular symbols

The group cohomological modular symbols that we will be interested in are, of course, those arising

in the Eichler-Shimura theorem (see Theorem 3.1.1).
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Let R be a ring,k ≥ 2, N ≥ 1 integers,χ : (Z/NZ)× → R× a character.

The group cohomological modular symbols of weightk, level N for the characterχ over the

ring R are defined to be

H1(Γ0(N), V χ
k−2(R)).

Their cusp spaceis defined to be

H1
par(Γ0(N), V χ

k−2(R)).

For our treatment of Hecke operators to make sense, we must still say how we seeV χ
k−2(R) as a

∆n
0 (N)-module. We just extend the alternative description of the characterχ : Γ0(N)/Γ1(N) → R

given by
(

a b
c d

)
7→ χ(a) to χ : ∆n

0 (N) → R given by the same formula. Accordingly, we extend the

Γ0(N) action onRχ to a∆n
0 (N)-action, so thatV χ

k−2(R) = Vk−2(R)⊗RRχ is also a∆n
0 (N)-module.

Torsion in group cohomological modular symbols

Herremans has computed a torsion-freeness result like the following proposition in [Herremans],

Proposition 9. Here we give a short and conceptual proof of a slightly more general statement. The

way of approach was suggested by Bas Edixhoven. This is one ofthe poitns where the cohomological

machinery becomes really handy. Herremans worked with formal modular symbols, so his proof is

much more difficult (to my mind).

2.3.9 Proposition. LetR be an integral domain of characteristic0 having a principal maximal ideal

m = (π) with residue fieldF of characteristicp. LetN ≥ 1 andk ≥ 2 be integers such that the orders

of the stabiliser subgroups ofΓ0(N) for x ∈ H have order coprime top (see Exercise 1.6.3). We also

let χ : (Z/NZ)× → R× be a character withχ(−1) = (−1)k. We denote byχ the composition ofχ

with the natural projectionR → F. Then the following statements hold:

(a) H1(Γ0(N), V χ
k−2(R)) ⊗R F ∼= H1(Γ0(N), V χ

k−2(F)).

(b) If k = 2, thenH1(Γ0(N), V χ
k−2(R))[π] = 0. If k ≥ 3, then

H1(Γ0(N), V χ
k−2(R))[π] = V χ

k−2(F)Γ0(N).

In particular, if p - N , thenH1(Γ0(N), V χ
k−2(R))[π] = 0 for all k ∈ {2, . . . , p + 2}.

(c) If k = 2, or if k ∈ {3, . . . , p + 2} andp - N , then

H1
par(Γ0(N), V χ

k−2(R)) ⊗R F ∼= H1
par(Γ0(N), V χ

k−2(F)).

Proof. Let us first notice that the sequence

0 → V χ
k−2(R)

·π
−→ V χ

k−2(R) → V χ
k−2(F) → 0
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of R[Γ0(N)]-modules is exact. The associated long exact sequence givesrise to the short exact se-

quence

0 → H i(Γ0(N), V χ
k−2(R)) ⊗ F → H i(Γ0(N), V χ

k−2(F)) → H i+1(Γ0(N), V χ
k−2(R))[π] → 0

for everyi ≥ 0. Exploiting this sequence fori = 1 immediately yields Part (a), since anyH2 of Γ0(N)

is zero by Corollary 2.3.1. Part (b) is a direct consequence of the casei = 0 and Proposition 2.2.9.

We have the exact commutative diagram

0 // H1(Γ0(N), V χ
k−2(R))

²²

·π // H1(Γ0(N), V χ
k−2(R))

²²

// H1(Γ0(N), V χ
k−2(F))

²²

// 0

0 //
∏

g H1(Dg, V
χ
k−2(R))

²²

·π //
∏

g H1(Dg, V
χ
k−2(R))

²²

//
∏

g H1(Dg, V
χ
k−2(F)) // 0

(V χ
k−2(R))Γ0(N) ·π //

²²

(V χ
k−2(R))Γ0(N)

²²
0 0

where the products are taken overg ∈ Γ0(N)\PSL2(Z)/〈T 〉, andDg = Γ0(N) ∩ 〈gTg−1〉. The

exactness of the first row is the contents of Parts (a) and (b).That the columns are exact follows from

Proposition 2.3.3. The zero on the right of the second row is due to the fact thatDg is free on one

generator (see Exercise B.1.1). That generator is of the form g ( 1 r
0 1 ) g−1 with r | N , so thatr is

invertible inF. The zero on the left is trivial fork = 2 and for3 ≤ k ≤ p + 2 it is a consequence of

Lemma 2.2.8. Part (c) now follows from the snake lemma, sinceby Proposition 2.2.9 the lower row

is zero. 2

2.4 Geometric cohomological modular symbols

In this section we give a brief introduction to “geometric cohomological modular symbols”, without

proving any results.

We letΓ ≤ PSL2(Z) be a subgroup of finite index andV a leftR[Γ]-module for a ringR. Denote

by C eitherH or H, by X the quotient spaceYΓ respectivelyXΓ, and byπ the quotient mapC → X.

Let V be the constant sheaf onC associated toV together with its naturalΓ-action, i.e. for an

open setU ⊂ C we let V (U) = Homcts(U, V ) (equippingV with the discrete topology) together

with isomorphismsφg : V → g∗V for eachg ∈ Γ which onU are given by

Homcts(U, V ) → Homcts(gU, V ), f 7→ (gu 7→ gf(u) ∀u ∈ U).

We have thatπ∗V is a sheaf onX of R[Γ]-modules and theΓ-action from geometry agrees with the

one on the module. We let(π∗V )Γ to be the sheaf

U 7→ (π∗V (U))Γ =
(
V (π−1(U))

)Γ
.

Suppose now that there is no non-trivially stabilised pointof C for the action ofΓ. In that case,

the sheafπ∗V is easily seen to be locally constant. In that case, one can check that

H i(Γ, V ) ∼= H i(YΓ, (π∗V )Γ). (2.16)
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In the general setting, the following theorem is proved in [W2], Theorems 5.7 and 5.9, using

methods from homological algebra.

2.4.1 Theorem. LetM denote the coinduced moduleCoindG
Γ (V ). We have the two exact sequence:

0 → H1(YΓ, (π∗V )Γ) → H1(Γ, V ) → H1(〈σ〉,M) ⊕ H1(〈τ〉,M)

and

0 → H1(XΓ, (π∗V )Γ) → H1(Γ, V ) → H1(〈σ〉,M) ⊕ H1(〈τ〉,M) ⊕ H1(〈T 〉,M).

2.4.2 Corollary. We have the explicit descriptions:

H1(YΓ, (π∗V )Γ) ∼= M/
(
M 〈σ〉 + M 〈τ〉

)

and

H1
par(YΓ, (π∗V )Γ) ∼= ker

(
M/(M 〈σ〉 + M 〈τ〉)

1−σ
−−→ M/(1 − T )M

)
.

Proof. It suffices to compare the exact sequences of Theorem 2.4.1 with the Mayer-Vietoris exact

sequence (Equation 2.9). 2

2.5 Comparing the different types of modular symbols

Let Γ ≤ PSL2(Z) be a subgroup of finite index, andV a leftR[Γ]-module for a ringR.

2.5.1 Theorem. Suppose that the orders of all stabliser subgroups ofΓ for the action onH are in-

vertible inR. Then we have isomorphisms (which respect the Hecke operators in the cases for which

we defined them):

H1(Γ, V ) ∼= MR(Γ, V )

and

H1
par(Γ, V ) ∼= CMR(Γ, V )

Proof. This follows immediately from comparing the Manin symbols description of modular sym-

bols (Theorem 2.2.6) with the Mayer-Vietoris exact sequence (Equation 2.9) and Shapiro’s Lemma.

2

The precise differences between the spaces of modular symbols are computed in the following

theorem. We assume the notations from the previous section.

2.5.2 Theorem. The following sequences are exact:

(a) 0 → H1(YΓ, (π∗V )Γ) → H1(Γ, V ) →
∏

x∈YΓ
H1(Γyx , V ),

(b) 0 → H1
par(YΓ, (π∗V )Γ) → H1

par(Γ, V ) →
∏

x∈YΓ
H1(Γyx , V ),
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(c)
∏

x∈YΓ

(
V Γyx /NΓyx

V
)
→ MR(Γ, V ) → H1(YΓ, (π∗V )Γ) → 0,

(d)
∏

x∈YΓ

(
V Γyx /NΓyx

V
)
→ CMR(Γ, V ) → H1

par(YΓ, (π∗V )Γ) → 0,

where for allx ∈ YΓ we have chosenyx ∈ H such thatπ(yx) = x.

Proof. Via an identification between the induced and the coinduced module, this follows from

Corollary 2.4.2 and Theorems 2.4.1 and 2.2.6 together with Mackey’s formula and Shapiro’s Lemma.

2

2.5.3 Corollary. Let R = Z. TheZ-modulesH1(Γ, V ), H1(YΓ, (π∗V )Γ) andMZ(Γ, V ) only dif-

fer by torsion. The same statement holds for theZ-modulesH1
par(Γ, V ), H1

par(YΓ, (π∗V )Γ) and

CMZ(Γ, V ). 2

2.5.4 Corollary. We now suppose that the order ofΓx is invertible inR for all x ∈ H. Then there are

isomorphisms

H1(Γ, V ) ∼= H1(YΓ, (π∗V )Γ) ∼= MR(Γ, V )

and

H1
par(Γ, V ) ∼= H1

par(YΓ, (π∗V )Γ) ∼= CMR(Γ, V ).

The statements hold, in particular, for the groupΓ1(N) with N ≥ 4.

Proof. This follows from Theorem 2.5.2. We have already seen part ofit in Theorem 2.5.1. For

the last part we use that under the conditionN ≥ 4 all Γ1(N)x are trivial by Exercise 1.6.2. 2

We point the reader to Exercises 1.6.3. in order to see in which cases the assumptions of the

previous corollary hold for the groupΓ0(N).

3 Computing Modular Forms mod p

Throughout this section, we let, as before,k ≥ 2, N ≥ 1, p a prime, andχ : (Z/NZ)× → C× a

character. Further we letO = Z[χ], P a prime ofO abovep, F the residue field,̂O the completion of

O atP, as well asK the field of fractions ofÔ.

Notation for Hecke algebras

Let R be a ring,S ⊂ R a subring andM anR-module on which Hecke operators and diamond op-

erators act. We denote byTS(M) the sub-S-algebra of the endomorphism ringEndR(M) generated

by the Hecke and the diamond operators. IfS → S′ is a ring homomorphism, we use the notation

TS′(M) = TS(M) ⊗S S′.

This notation agrees with the previous one used for modular forms.
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3.1 The Eichler-Shimura theorem

3.1.1 Theorem. (Eichler-Shimura) There are isomorphisms respecting the Hecke operators

(a) Mk(N,χ ; C)) ⊕ Sk(N,χ ; C)∨ ∼= H1(Γ0(N), V χ
k−2(C)) ∼= Mk(N,χ ; C),

(b) Sk(N,χ ; C)) ⊕ Sk(N,χ ; C)∨ ∼= H1
par(Γ0(N), V χ

k−2(C)) ∼= CMk(N,χ ; C),

(c) Sk(N,χ ; C) ∼= H1
par(Γ0(N), V χ

k−2(C))+ ∼= CMk(N,χ ; C)+.

Proof. The first isomorphisms of Parts (a) and (b) are [Diamond-Im],Theorem 12.2.2. Via the

comparison, Theorem 2.5.1, we obtain the second isomorphisms. As the space of anti-holomorphic

cusp forms is dual to the space of holomorphic cusp forms, Part (c) is a direct consequence of (b).

2

We may rephrase the Eichler-Shimura theorem as follows.

3.1.2 Corollary. (a) The Hecke algebrasTO(Mk(N,χ ; C)), TO(Mk(N,χ ; C)) are isomorphic.

(b) The Hecke algebrasTO(Sk(N,χ ; C)), TO(CMk(N,χ ; C)) and TO(CMk(N,χ ; C)+) are

isomorphic. 2

3.2 Comparing Hecke algebras overF

From Exercise 2.2.2 one deduces a natural surjection

TO(Mk(N,χ ; O)) ⊗O F ³ TF(Mk(N,χ ; F)). (3.17)

One way to think about this map is as reducing matrices with entries inO moduloP. In the same

way, one also obtains from Corollary 3.1.2

TO(Mk(N,χ ; O)) ³ TO(Mk(N,χ ; O)/torsion) ∼= TO(Mk(N,χ ; C)). (3.18)

Similar statements hold for the cuspidal subspace.

Later on, we shall give a criterion to determine during the calculation of TF(CMk(N,χ ; F))

whether Equation 3.17 is an isomorphism, from which one thendeduces via Equation 3.18 a relation

to the Hecke algebra of cusp forms modulop.

We call a maximal primem of TO(Mk(N,χ ; O)) ⊗O Ô (respectively the corresponding prime

of TO(Mk(N,χ ; O)) ⊗O F) non-torsionif

Mk(N,χ ; Ô))m ∼= (Mk(N,χ ; Ô)/torsion)m.

Equivalently, we have that Equation 3.18 becomes

TO(Mk(N,χ ; O))m ³ TO(Mk(N,χ ; O)/torsion)m ∼= TO(Mk(N,χ ; C))m. (3.19)
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Another equivalent condition is that the height ofm is 1.

We recall that we have listed cases of the absence of torsion in the discussion of group cohomo-

logical modular symbols. Via the comparison (Theorem 2.5.1) we see that in many cases all primes

are non-torsion.

Even if Equation 3.17 is not an isomorphism, we can still useMk(N,χ ; F) for the computation

of the coefficients of all eigenforms modp.

3.2.1 Proposition. (a) Letf ∈ Mk(N,χ ; F) be a normalised eigenform. Then there exists anx 6= 0

in Mk(N,χ ; F) such thatTnx = an(f)x for all n.

(b) Letm be a non-torsion maximal ideal ofTF(Mk(N,χ ; F)) and 0 6= x ∈ Mk(N,χ ; F) such

that Tnx = an(f)x for all n and certainλn ∈ F. Then there exists a normalised eigenform

f ∈ Mk(N,χ ; F) such thatan(f) = λn for all n.

Proof. The systems of eigenvalues for the action of the Hecke operators Tn on the non-torsion

part ofMk(N,χ ; C)m agree by Equation 3.18 with the systems of eigenvalues onMk(N,χ ; C)m.

Due to

Mk(N,χ ; O)m ⊗O F ∼= Mk(N,χ ; F)m

(see Exercise 2.2.2) both parts follow. 2

3.3 The Sturm bound

In this section we state the so calledSturm bound(also calledHecke bound), which gives the best

known a priori upper bound for how many Hecke operators are needed to generate all the Hecke

algebra. We only need it in our algorithm in cases in which it is theoretically not known that the stop

criterion which we will discuss below is always reached. This will enable the algorithm to detect if the

Hecke algebra on modular symbols is not isomorphic to the corresponding one on cuspidal modular

forms.

3.3.1 Proposition. (Sturm bound) The Hecke algebraTC(Sk(N,χ ; C)) can be generated as an al-

gebra by the Hecke operatorsTp for all primesp smaller than or equal tokN
12

∏
l|N,l prime(1 + 1

l ).

Proof. This is discussed in detail in Chapter 11 of [SteinBook]. 2

3.4 The stop criterion

This section is based on the preprint [KW], which is joint work with Lloyd Kilford.

Algebraic preparation

3.4.1 Proposition. Assume the set-up of Proposition 1.3.2 and letM,N beT-modules which asO-

modules are free of finite rank. Suppose that
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(a) M ⊗O C ∼= N ⊗O C asT ⊗O C-modules, or

(b) M ⊗O K̄ ∼= N ⊗O K̄ asT ⊗O K̄-modules.

Then for all prime idealsm of TF corresponding to height1 primes ofT bO the equality

dimF(M ⊗O F)m = dimF(N ⊗O F)m

holds.

Proof. As for T, we also writeMK for M⊗OK and similarly forN andÔ, F, etc. By choosing an

isomorphismC ∼= K̄, it suffices to prove Part (b). Using Proposition 1.3.2, Part(d), the isomorphism

M ⊗O K̄ ∼= N ⊗O K̄ can be rewritten as

⊕

p

(MK,pe ⊗K K̄) ∼=
⊕

p

(NK,pe ⊗K K̄),

where the sums run over the minimal primesp of T bO which are properly contained in a maximal

prime. Hence, an isomorphismMK,pe ⊗K K̄ ∼= NK,pe ⊗K K̄ exists for eachp. Since for each

maximal idealm of T bO of height1 we have by Proposition 1.3.2

M bO,m ⊗ bO K ∼=
⊕

p⊆mmin.

MK,pe

and similarly forN , we get

dimF MF,m =rk bOM bO,m =
∑

p⊆mmin.

dimK MK,pe

=
∑

p⊆mmin.

dimK NK,pe = rk bON bO,m = dimF NF,m.

This proves the proposition. 2

Comparing dimensions

We use the algebraic preparation in order to compare theF-dimensions of local factors of modp

modular forms withF-dimensions of the corresponding local factors of modp modular symbols.

3.4.2 Proposition. Letm be a maximal ideal ofTO(Mk(N,χ ; O)) ⊗O F which is non-torsion and

non-Eisenstein. Then the following statements hold:

(a) CMk(N,χ ; F)m ∼= Mk(N,χ ; F)m.

(b) 2 · dimF Sk(N,χ ; F)m = dimF CMk(N,χ ; F)m.

(c) If p 6= 2, thendimF Sk(N,χ ; F)m = dimF CMk(N,χ ; F)+m.
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Proof. Part (c) follows directly from Part (b) by decomposingCMk(N,χ ; F) into a direct sum

of its plus- and its minus-part. Statements (a) and (b) will be concluded from Proposition 3.4.1. More

precisely, it allows us to derive from Theorem 3.1.1 that

dimF

(
(Mk(N,χ ; O))/torsion) ⊗O F

)
m

= dimF

(
Eisk(N,χ ; F) ⊕ Sk(N,χ ; F) ⊕ Sk(N,χ ; F)∨

)
m

and

dimF

(
(CMk(N,χ ; O)/torsion) ⊗O F

)
m

= 2 · dimF Sk(N,χ ; F)m.

The latter proves Part (b), sincem is non-torsion. As by the definition of a non-Eisenstein prime

Eisk(N,χ ; F)m = 0 and again sincem is non-torsion, it follows that

dimF CMk(N,χ ; F)m = dimF Mk(N,χ ; F)m,

which implies Part (a). 2

We will henceforth often regard non-Eisenstein non-torsion primes as in the proposition as maxi-

mal primes ofTF(Sk(N,χ ; F)).

The stop equality

Although it is impossible to determine a priori the dimension of the local factor of the Hecke algebra

associated with a given modular form modp, the following corollary implies that the computation of

Hecke operators can be stopped when the algebra generated has reached a certain dimension that is

computed along the way. This criterion has turned out to be extremely useful.

3.4.3 Corollary. (Stop Criterion) Letm be a maximal ideal ofTF(Sk(N,χ ; F)) which is non-Eisen-

stein and non-torsion.

(a) One hasdimF Mk(N,χ ; F)m = 2 · dimF TF

(
Mk(N,χ ; F)

)
m

if and only if

TF

(
Sk(N,χ ; F)

)
m
∼= TF

(
CMk(N,χ ; F)

)
m
.

(b) One hasdimF CMk(N,χ ; F)m = 2 · dimF TF

(
CMk(N,χ ; F)

)
m

if and only if

TF

(
Sk(N,χ ; F)

)
m
∼= TF

(
CMk(N,χ ; F)

)
m
.

(c) Assumep 6= 2. One hasdimF CMk(N,χ ; F)+m = dimF TF

(
CMk(N,χ ; F)

)
m

if and only if

TF

(
Sk(N,χ ; F)

)
m
∼= TF

(
CMk(N,χ ; F)+

)
m
.
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Proof. We only prove (a), as (b) and (c) are similar. From Part (b) of Proposition 3.4.2 and the

fact that theF-dimension of the algebraTF

(
Sk(N,χ ; F)

)
m

is equal to the one ofSk(N,χ ; F)m, as

they are dual to each other, it follows that

2 · dimF TF

(
Sk(N,χ ; F)

)
m

= dimF CMk(N,χ ; F)m.

The result is now a direct consequence of Equations 3.17 and 3.19. 2

Note that the first line of each statement only uses modular symbols and not modular forms, but

it allows us to make statements involving modular forms. Moreover, the maximal idealm can a

posteriori be taken as a maximal ideal ofTF

(
Mk(N,χ ; F)

)
, respectively, for the cuspidal version.

3.5 The algorithm

In this section we present a sketch of a rather efficient modp modular symbols algorithm for comput-

ing Hecke algebras of modp modular forms.

Input: IntegersN ≥ 1, k ≥ 2, a finite fieldF, a characterχ : (Z/NZ)× → F× and for each primep

less than or equal to the Sturm bound an irreducible polynomial fp ∈ F[X].

Output: An F-algebra.

• M ← CMk(N,χ ; F), f ← 2, p ← 1, L ← empty list.

• repeat

– p ← next prime afterp.

– ComputeTp onM and append it to the listL.

– M ← the restriction ofM to thefp-primary subspace forTp, i.e. to the biggest subspace

of M on which the minimal polynomial ofTp is a power offp.

– A ← theF-algebra generated by the restrictions toM of T2, T3, . . . , Tp.

• until dim(A) = f · dim(M) or p > Sturm bound.

• returnA.

Thefp should, of course, be chosen as the minimal polynomials of the coefficientsap(f) of the

normalised eigenformf ∈ Sk(N,χ ; F) whose local Hecke algebra one wants to compute. Suppose

the algorithm stops at the primep. If p is bigger than the Sturm bound, the equivalent conditions of

Corollary 3.4.3 do not hold. In that case the output should bedisregarded. Otherwise,A is isomorphic

to a direct product of the form
∏

m TF(Sk(N,χ ; F))m where them are those maximal ideals such that

the minimal polynomials ofT2, T3, . . . , Tp on T(Sk(N,χ ; F))m are equal tof2, f3, . . . , fp. It can

happen thatA consists of more than one factor. Hence, one should still decomposeA into its local

factors. Alternatively, one can also replace the last line but one in the algorithm by
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• until
(
(dim(A) = f · dim(M)) andA is local

)
or p > Sturm bound,

which ensures that the output is a local algebra. In practice, one modifies the algorithm such that not

for every primep a polynomialfp need be given, but that the algorithm takes each irreduciblefactor

of the minimal polynomial ofTp if no fp is known.

3.6 Eichler-Shimura like statements overFp

In this section we present an analog of the Eichler-Shimura isomorphism, formulated in terms ofp-

adic Hodge theory. This was already used in [EdixJussieu], Theorem 5.2, to derive an algorithm for

computing modular forms. However,p-adic Hodge theory always has the restriction that the weight

be smaller thanp.

3.6.1 Theorem. (Fontaine, Messing, Faltings)Letp be a prime andN ≥ 5, 2 ≤ k < p be integers

s.t. p - N . Then the Galois representationH1
ét, par(Y1(N)Qp

,Symk−2(V))∨ is crystalline, where

V = R1π∗Fp with π : E → Y1(N) the universal elliptic curve. The correspondingφ-moduleD sits

in the exact sequence

0 → Sk(Γ1(N) ; Fp) → D → Sk(Γ1(N) ; Fp)
∨ → 0,

which is equivariant for the action of the Hecke operators.

This can be compared to Theorem 1.1 and Theorem 1.2 of [FJ]. Part (a) of the following corollary

is part of [EdixJussieu], Theorem 5.2.

3.6.2 Corollary. Let N ≥ 5, p - N and 2 ≤ k < p. Then the parabolic cohomology group

H1
par(Γ1(N), Vk−2(Fp)) is a faithful module forTFp

(
Sk(Γ1(N) ; Fp)

)
.

Proof. From Theorem 3.6.1 we know thatD is a faithful Hecke module. Hence, so is the co-

homologyH1
ét, par(YΓ1(N),Symk−2(V)). This module can be identified with its analog in analytic

cohomology which is isomorphic toH1
par(Γ1(N), Vk−2(Fp)). 2

A weaker statement holds fork = p andk = p + 1. For our computations this is good enough.

3.6.3 Theorem. Let 2 < k ≤ p + 1, N ≥ 5 such thatp - N . Let P be a maximal ideal of

TFp

(
Sk(Γ1(N) ; Fp)

)
corresponding to a normalised eigenformf ∈ Sk(Γ1(N) ; Fp) which isor-

dinary, i.e.ap(f) 6= 0. Then we have an isomorphism

TFp

(
Sk(Γ1(N) ; Fp)P

)
∼= TFp

(
H1

par(Γ1(N), Vk−2(Fp))P
)
.

We have seen before that the embedding of weight one forms into weightp results in ordinary

modular forms. As a consequence, the weight one forms land inthe part of weightp which can be

computed via parabolic group cohomology.
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4 Problems

1. Big images. To every modp eigenform Deligne attaches a 2-dimensional odd "modp" Galois

representation, i.e. a continuous group homomorphism

Gal(Q/Q) → GL2(Fp).

(See Theorem 1.9.2). The trace of a Frobenius element at a prime l is for almost alll given by the

l-th coefficient of the (normalised) eigenform. By continuity, the image of such a representation is

a finite group.

Find group theoretic criteria that allow one (in some cases)to determine the image computationally.

Carry out systematic computations of modp modular forms in order to find "big" images. Like

this one can certainly realise some groups as Galois groups over Q that were not known to occur

before!

2. Non-liftable weight one modular forms overFp. This problem is closely connected to the "big

images" challenge, and could/should be treated in collaboration. Modular forms of weight 1 over

Fp behave completely differently from forms of higher weights. One feature is that they are very

often NOT reductions of holomorphic modular forms. In the course it will be explained how to

compute modular forms of weight one. By looking at the image of a weight one form, one can

often prove that it is such a non-liftable form. So far, thereare many examples overF2, but only

one example for an odd prime, namely forp = 199. Find examples in small odd characteristics!

A Computing local decompositions

Let K be a perfect field,K an algebraic closure andA a finite dimensional commutativeK-algebra.

We will write AL for A ⊗K L, whereL|K is an extension insideK. The image ofa ∈ A in AK is

denoted asa.

In the context of Hecke algebras we would like to

(1) compute a local decomposition ofA, resp.

(2) compute a local decomposition ofAK keeping track of theG(K |K)-conjugacy.

In this section we present an algorithms for both points.

A.1 Primary spaces

A.1.1 Lemma. (a) A is local if and only if the minimal polynomial ofa (in K[X]) is a prime power

for all a ∈ A.

(b) LetV be anA-module such that for alla ∈ A the minimal polynomial ofa onV is a prime power

in K[X], i.e. V is a primary space for alla ∈ A. Then the image ofA in End(V ) is a local

algebra.
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(c) Let V be anAK -module and leta1, . . . , an be generators of the algebraA. Suppose that for

i ∈ {1, . . . , n} the minimal polynomial ofai on V is a power of(X − λi) in K[X] for some

λi ∈ K. Then the image ofAK in End(V ) is a local algebra.

Proof. (a) Suppose first thatA is local and takea ∈ A. Letφa : K[X] → A be the homomorphism

of K-algebras defined by sendingX to a. Let (f) be the kernel withf monic, so that by definitionf

is the minimal polynomial ofa. Hence,K[X]/(f) ↪→ A, whenceK[X]/(f) is local, implying thatf

cannot have two different prime factors.

Conversely, ifA were not local, we would have an idempotente 6∈ {0, 1}. The minimal polyno-

mial of e is X(X − 1), which is not a prime power.

(b) follows directly. For (c) one can use the following. Suppose that(a − λ)rV = 0 and(b −

µ)sV = 0. Then((a + b) − (λ + µ))r+sV = 0, as one sees by rewriting((a + b) − (λ + µ)) =

(a−λ)+(b−µ) and expanding out. From this it also follows that(ab−λµ)2(r+s)V = 0 by rewriting

ab − λµ = (a − λ)(b − µ) + λ(b − µ) + µ(a − λ). 2

Let us remark that algebras such that a set of generators actsprimarily need not be local, unless

they are defined over an algebraically closed field, as we haveseen in Part (c) above.

A.2 Algorithm for computing common primary spaces

In this section we present a straight forward algorithm for computing common eigenspaces.

A.2.1 Algorithm. Input: A list ops of operators acting on theK-vector spaceV .

Output: A list of the common primary spaces insideV for all operators inops.

• List := [V];

• for T in ops do

– newList := [];

– for W in List do

∗ Compute the minimal polynomialf ∈ K[X] of T restricted toW .

∗ Factorf overK into its prime powersf(X) =
∏n

i=1 pi(X)ei .

∗ If n equals1, then

· AppendW to newList,

∗ else for i := 1 to n do

· ComputẽW as the kernel ofpi(T |W )ei .

· AppendW̃ to newList.

∗ end for; end if;

– end for;

– List := newList;
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• end for;

• Return List and stop.

A.3 Algorithm for computing local factors up to Galois conjugacy

Let us call a pair(V,L) consisting of a finite extensionL|K with L ⊂ K and anAL-moduleV an

a-pair for a ∈ A if the coefficients of the minimal polynomial ofa acting onV ⊗L K generateL

overK.

Let us furthermore call a set{(V1, L1), . . . (Vn, Ln)} consisting ofa-pairs ana-decompositionof

ana-pair (V,L) if

(i) V ⊗L K ∼=
⊕n

i=1 Ṽi with Ṽi
∼=

⊕
σ∈GL/GLi

σ(Vi ⊗Li
K) and

(ii) the minimal polynomial ofa restricted toVi is a power of(X − λi) for someλi ∈ Li for all i

and

(iii) the minimal polynomial ofa restricted toṼi is coprime to the minimal polynomial ofa restricted

to Ṽj wheneveri 6= j.

The Ṽi correspond to the local factors of theL-algebra〈a〉 and theσ(Vi ⊗Li
K) to the local

factors of theK-algebra〈a〉. So the(Vi, Li) are a choice out of aG(Li|L)-conjugacy class. The third

condition above assures that fori 6= j no(σVi, σLi) for σ ∈ G(Li|L) is conjugate to a(τVj , τLj) for

anyτ ∈ G(Lj |L).

An a-decomposition of ana-pair can be computed by the following algorithm.

A.3.1 Algorithm. We define the functionDecomposePair as follows.

Input: (V,L), a, where(V,L) is ana-pair.

Output: A list output [(V1, L1), . . . , (Vn, Ln)] containing ana-decomposition of(V,L).

1. Create an empty listoutput, which after the running will contain ana-decomposition.

2. Computef ∈ L[X], the minimal polynomial ofa restricted toV .

3. Factorf =
∏n

i=1 pei

i with pi ∈ L[X] pairwise coprime.

4. For alli in {1, . . . , n} do

1. ComputeṼi as the kernel ofpi(a|V )ei .

2. ComputeLi, the splitting field overL of pi.

3. Factorpi(X) =
∏

σ∈GL/GLi
(X − σλi), for someλi ∈ Li.

4. ComputeVi as the kernel of(a| eVi
− λi)

ei .

5. Join(Vi, Li) to the listoutput.

5. Returnoutput and stop.
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The decomposition of anAK -moduleV corresponding to the local factors ofAK and keeping

track of conjugacy can be computed by the following algorithm, when thea1, . . . , an in the input

generateA.

A.3.2 Algorithm. We define the functionDecompose as follows.

Input: (V,K), [a1, . . . , an] with [a1, . . . , an] a list of elements ofA and(V,K) anai-pair for all

i = 1, . . . , n.

Output: A list output = [(V1,K1), . . . , (Vn,Kn)] consisting of pairs withKi a finite extension

of K andVi anAKi
-module. See Proposition A.3.3 for an interpretation.

1. Computedec asDecomposePair((V,K), a1).

2. If n = 1, then returndec.

3. Create the empty listoutput.

4. For alld in dec do

1. Computedec1 asDecompose(d, [a2, . . . , an]).

2. Joindec1 to the listoutput.

5. Return the listoutput and stop.

From Lemma A.1.1 the following is clear.

A.3.3 Proposition. LetA be a commutative finite dimensionalK-algebra with generatorsa1, . . . , an.

Let V be anA-module. Suppose that{(V1,K1), . . . , (Vm,Km)} is the output of the function call

Decompose((V,K), [a1, . . . , an]).

ThenV ⊗K K =
⊕m

i=1 Ṽi with Ṽi =
⊕

σ∈Gk/GKi
σVi. TheṼi correspond to the local factors

of A and theσVi correspond to the local factors ofAK . 2

A.3.4 Corollary. We keep the notation from Proposition A.3.3. IfV is a faithfulA-module, then the

local factors ofA are isomorphic to the images ofA in End(Ṽi). Moreover the local factors ofAK

correspond to the images ofAK in End(σVi).

B Group cohomology - an introduction

B.1 The derived functor definition

Those, not knowing group cohomology, but being comfortablyacquainted with derived functor coho-

mology (e.g. with sheaf cohomology as in [Hartshorne]) might want to think about group cohomology

in the following way.

We fix a ringR and a groupG. By aG-module, we usually mean a leftR[G]-module. The functor

F : R[G]-modules→ R-modules, M 7→ MG = HomR[G](R,M)
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takingG-invariants is left exact. We define

H i(G,M) := Ri(F)(M)

as the right derived functors of theG-invariants functor. Alternatively, we have by definition (of the

Ext-functor)

H i(G,M) := ExtiR[G](R,M).

SinceExt is balanced, i.e.

Exti
R[G](R,M) ∼= RnHomR[G](R, ·)(M) ∼= RnHomR[G](·,M)(R)

([Weibel],Theorem 2.7.6), we may also computeH i(G,M) by applying the functorHomR[G](·,M)

to any resolution ofR by projectiveR[G]-modules. This shows the equivalence with the definition of

group cohomology using the normalised standard resolutionto be given later on.

B.1.1 Exercise.Let G be a free group andM anyR[G]-module. Prove thatH i(G,M) = 0 for all

i ≥ 2. Hint: Choose a suitable free resolution ofR by R[G]-modules. Hint for the hint: Show that

the augmentation ideal is free.

B.2 Group cohomology via the standard resolution

We describe thestandard resolutionF (G)• of R by freeR[G]-modules:

0 ←− R
∂0←− F (G)0 := R[G]

∂1←− F (G)1 := R[G2]
∂2←− . . . ,

where we put (the “hat” means that we leave out that element):

∂n :=

n∑

i=0

(−1)idi and di(g0, . . . , gn) := (g0, . . . , ĝi, . . . , gn).

If we let hr := g−1
r−1gr, then we get the identity

(g0, g1, g2, . . . , gn) = g0.(1, h1, h1h2, . . . , h1h2 . . . hn) =: g0.[h1|h2| . . . hn].

The symbols[h1|h2| . . . |hn] with arbitraryhi ∈ G hence form anR[G]-basis ofF (G)n, and one has

F (G)n = R[G] ⊗R (free abelian group on[h1|h2| . . . |hn]). One computes the action ofdi on this

basis and gets

di[h1| . . . |hn] =





h1[h2| . . . |hn] i = 0

[h1| . . . |hihi+1| . . . |hn] 0 < i < n

[h1| . . . |hn−1] i = n.

One checks that the standard resolution is a complex and is exact (i.e. is a resolution).
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As mentioned above,H i(G,M) for anR[G]-moduleM can be calculated as thei-th cohomology

group of the complex obtained by applying the functorHomR[G](·,M) to the standard resolution. Let

us point out the following special case:

Z1(G,M) = {f : G → M map| f(gh) = g.f(h) + f(g) ∀g, h ∈ G},

B1(G,M) = {f : G → M map| ∃m ∈ M : f(g) = (1 − g)m ∀g ∈ G},

H1(G,M) = Z1(G,M)/B1(G,M).

So, if the action ofG onM is trivial, the boundariesB1(G,M) are zero, and one has:

H1(G,M) = Homgroup(R[G],M).

B.2.1 Exercise.Let 〈g〉 be a free group on one generator. ShowH1(〈g〉,M) = M/(1− g)M (either

using the normalised standard resolution, or the resolution of Exercise B.1.1, or any other trick).

B.3 Functorial properties

The functorHn(G, ·) is a positive cohomologicalδ-functor for R[G]-modules, by which we mean

the following: For every short exact sequence0 → A → B → C → 0 of R[G]-modules there

is for everyn a so-calledconnecting homomorphismδn : Hn(G,C) → Hn+1(G,A) such that the

following hold:

(i) For every commutative diagram

0 −−−−→ A −−−−→ B −−−−→ C −−−−→ 0

f

y g

y h

y

0 −−−−→ A′ −−−−→ B′ −−−−→ C ′ −−−−→ 0

with exact rows, the following diagram commutes, too:

Hn(G,C)
δn

−−−−→ Hn+1(G,A)

Hn(h)

y Hn+1(f)

y

Hn(G,C ′)
δn

−−−−→ Hn+1(G,A′)

(ii) The so-calledlong exact sequenceis exact for alln:

Hn(G,A) → Hn(G,B) → Hn(G,C)
δn

−−−−→ Hn+1(G,A) → Hn+1(G,B).

By positivewe mean that the groupsHn(G,A) are zero for alln < 0.

The functorHn(G, ·) is alsocoeffaçablewith respect to the injectiveR[G]-modules, i.e. every

R[G]-moduleA can be embedded into an injective moduleI. Injective modules are cohomologically

trivial.
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It is known that coeffaçable cohomologicalδ functors areuniversal. This means by definition that

if S is another cohomologicalδ-functor andf0 : H0(G, ·) → S0(·) is a natural transformation, then

there is a unique natural transformationfn : Hn(G, ·) → Sn(·) for all n extendingf0 such that all

properties ofδ-functors are preserved (all diagrams one would want to be commutative are). A shorter

way to phrase this is thatf0 extends to a morphism of cohomologicalδ-functorsH•(G, ·) → S•.

We now apply the universality. Letφ : H → G be group homomorphism andA anR[G]-module.

Via φ we may considerA also as anR[H]-module. Sores0 : H0(G, ·) → H0(H, ·) is a natural

transformation by the univesality ofH•(G, ·), so that we get

resn : Hn(G, ·) → Hn(H, ·).

These maps are calledrestrictions. On cochains of the standard resolution they can be seen as com-

posing mapsG → A by φ. Note that very oftenφ is just the embedding map of a subgroup.

Assume now thatH is a normal subgroup ofG andA is anR[G]-module. Then we can consider

φ : G → G/H and the restriction above gives us natural transformationsresn : Hn(G/H, (·)H ) →

Hn(G, (·)H ). We define theinflation mapsto be

infln : Hn(G/H, (·)H )
resn

−−→ Hn(G, (·)H ) −→ Hn(G, ·).

Under the same assumptions, note that by a similar argument applied to the conjugation byg map

H → H, one obtains anR[G]-action onHn(H,A). As conjugation byh ∈ H is clearly the identity

onH0(G,A), the above action is in fact also anR[G/H]-action.

Let nowH < G be a subgroup of finite index. Then the normNG/H :=
∑

gi
∈ R[G] with {gi}

a system of representatives ofG/H gives a natural transformationcores0 : H0(H, ·) → H0(G, ·)

where· is anR[G]-module. By universality, we obtain

coresn : Hn(H, ·) → Hn(G, ·),

thecorestriction (transfer)maps. It is clear thatcores0 ◦ res0 is multiplication by the index(G : H),

which also extends to alln. Hence we have proved the first part of the following proposition.

B.3.1 Proposition. (a) LetH < G be a subgroup of finite index(G : H). For all i and all R[G]-

modulesM one has the equality

coresG
H ◦ resG

H = (G : H)

on all H i(G,M).

(b) LetG be a finite group of ordern andR a ring in whichn is invertible. ThenH i(G,M) = 0 for

all i and allR[G]-modulesM .

Proof. Part (b) is an easy consequence withH = 1, since

H i(G,M)
resG

H−−−→ H i(1,M)
coresG

H−−−−→ H i(G,M)
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is trivially the zero map, but it also is multiplication byn. 2

Let H ≤ G be a normal subgroup andA anR[G]-module. Grothendieck’s theorem on spectral

sequences associates to the composition of functors

(A 7→ AH 7→ (AH)G/H) = (A 7→ AG)

a spectral sequence. This is the contents of the following theorem (see [Weibel], 6.8.2).

B.3.2 Theorem. (Hochschild-Serre)There is a convergent first quadrant spectral sequence

Ep,q
2 : Hp(G/H,Hq(H,A)) ⇒ Hp+q(G,A).

In particular, one has the exact sequence:

0 → H1(G/H,AH )
infl
−−→ H1(G,A)

res
−−→ H1(G,A)G/H → H2(G/H,AH )

infl
−−→ H2(G,A).

B.4 Coinduced modules and Shapiro’s Lemma

Let H < G be a subgroup andA be anR[H]-module. TheR[G]-module

CoindG
H(A) := HomH(R[G], A)

is called thecoinduction fromH to G of A.

B.4.1 Proposition. (Shapiro’s Lemma)We have

Hn(G,CoindG
H(A)) ∼= Hn(H,A)

for all n ≥ 0.

B.5 Mackey’s formula and stabilisers

We now prove Mackey’s formula for coinduced modules. IfH ≤ G are groups andV is anR[H]-

module, the coinduced moduleCoindG
HV can be described asHomR[H](R[G], V ).

B.5.1 Proposition. Let R be a ring,G be a group andH,K subgroups ofG. Let furthermoreV be

anR[H]-module. ThenMackey’s formula

ResG
KCoindG

HV ∼=
∏

g∈H\G/K

CoindK
K∩g−1Hg

g(ResH
H∩gKg−1V )

holds. Hereg(ResH
H∩gKg−1V ) denotes theR[K∩g−1Hg]-module obtained fromV via the conjugated

actiong−1hg.gv := h.v for v ∈ V andh ∈ H such thatg−1hg ∈ K.
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Proof. We consider the commutative diagram

ResG
KHomH(R[G], V ) //

++WWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

∏
g∈H\G/K HomK∩g−1Hg(R[K], g(ResH

H∩gKg−1V ))

∼

²²∏
g∈H\G/K HomH∩gKg−1(R[gKg−1],ResH

H∩gKg−1V )).

The vertical arrow is just given by conjugation and is clearly an isomorphism. The diagonal map is

the product of the natural restrictions. From the bijection

(
H ∩ gKg−1

)
\gKg−1 gkg−1 7→Hgk

−−−−−−−−→ H\HgK

it is clear that also the diagonal map is an isomorphism, proving the proposition. 2

From Shapiro’s Lemma we directly get the following.

B.5.2 Corollary. In the situation of Proposition B.5.1 one has

H i(K,CoindG
HV ) ∼=

∏

g∈H\G/K

H i(K ∩ g−1Hg, g(ResH
H∩gKg−1V )

∼=
∏

g∈H\G/K

H i(H ∩ gKg−1,ResH
H∩gKg−1V )

for all i ∈ N.

B.6 Free products and the Mayer-Vietoris exact sequence

Let us that the groupG is the free product of two finite groupsG1 andG2, for which we use the

notationG = G1 ∗ G2.

B.6.1 Proposition. The sequence

0 → R[G]
α
−→ R[G/G1] ⊕ R[G/G2]

ε
−→ R → 0

with α(g) = (gG1,−gG2) andε(gG1, 0) = 1 = ε(0, gG2) is exact.

For the proof, which is completely elementary, we follow [Bieri]. Let G be a group andM an

R[G]-module. Recall that a mapd : G → M is called aderivation if

d(xy) = d(x) + xd(y)

(these are precisely the1-cochains of the standard resolution!). Denote byε the mapR[G] → R given

by g 7→ 1. Then it is easy to check thatd extends to anR-linear map

d : R[G] → M, satisfyingd(ab) = d(a)ε(b) + ad(b).
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LetF be a free group on generators{fi}. Since there are no relations, it is clear that the assignment

∂

∂fi
(fj) = δi,j

extends to a derivationF → R[F ] (we defineδi,j = 1 if i = j andδi,j = 0 if i 6= j). Next, for any

derivationd : F → M one puts

d̃ : F → M, d̃(w) =
∑

i

∂w

∂fi
d(fi).

A short calculation shows that̃d is also a derivation. Moreover,̃d(fi) = d(fi), whenced̃ = d. In

other words,

d(w) =
∑

i

∂w

∂fi
d(fi).

We now specialise to the derivationd : F → R[F ] given byd(w) = w − 1. Moreover, we also

suppose thatπ : F ³ G is a free presentation of the groupG by the free groupF discussed so far.

We denoteπ(fi) by gi and extendπ linearly toπ : R[F ] → R[G]. From the above, we immediately

get the formula

λ − ε(λ) =
∑

i

π(
∂Λ

∂fi
)(gi − 1) (2.20)

for Λ ∈ R[F ] with π(Λ) = λ. It will be the main input in the following proof.

Proof of Proposition B.6.1. Suppose thatG1 is generated by the (minimal) set{xi} andG2 by

{yj}. Let F be the free group on symbols{xi, yj} so thatπ : F ³ G is given byxi 7→ xi and

yi 7→ yi.

Clearly,ε is surjective and alsoε ◦α = 0. Next we compute exactness at the centre. The image of

Equation 2.20 inR[G/G1] = R[G]/(R[G](1 − h)|h ∈ G1) is

λG1 − ε(λG1) =
∑

j

(π(
∂Λ

∂yj
)(yj − 1)G1

for Λ ∈ R[F ] with π(Λ) = λ. In the same way we have

λG2 − ε(λG2) =
∑

i

(π(
∂Λ

∂xi
)(xi − 1)G2.

Suppose now that

ε(λG1, µG2) = ε(λG1) + ε(µG2) = 0

and chooseΛ,M ∈ R[F ] with π(Λ) = λ andπ(M) = µ. We directly get

α(
∑

j

(π(
∂Λ

∂yj
)(yj − 1) −

∑

i

(π(
∂M

∂xi
)(xi − 1) + ε(λ)) = (λG1, µG2)

and hence the exactness at the centre.
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It remains to prove thatα is injective. Note that we have not yet used the freeness of the product;

the discussion above would remain valid if there were additional relations inG. Now we do use the

freeness, namely as follows. Every element1 6= g ∈ G has a unique representation as products of the

form g = a1b2a3b4 · · · ak−1bk, or g = a1b2a3b4 · · · bk−1ak where either all theai ∈ G1 − {1} and

all bj ∈ G2 − {1} or all theai ∈ G2 − {1} and allbj ∈ G1 − {1}. The integerk is defined to be the

length ofg, denoted byl(g). We letl(1) = 0. For cosetsgG1 ∈ G/G1 we let l(gG1) := l(g) wheng

is represented by a product as above ending in an element ofG2. We definel(gG2) similarly.

Let λ =
∑

w aww ∈ R[G] be an element in the kernel ofα. Hence,
∑

w awwG1 = 0 =∑
w awwG2. Let us assume thatλ 6= 0. It is clear thatλ cannot just be a multiple of1 ∈ G, as

otherwise it would not be in the kernel ofα. Now pick theg ∈ G with ag 6= 0 having maximal length

l(g) (among all thel(w) with aw 6= 0). It follows that l(g) > 0. Assume without loss of generality

that the representation ofg ends in a non-zero element ofG1. Thenl(gG2) = l(g). Further, since

ag 6= 0 and0 =
∑

w awwG2, there must be anh ∈ G with g 6= h, gG2 = hG2 andah 6= 0. As g

does not end inG2, we must haveh = gy for some0 6= y ∈ G2. Thus,l(h) > l(g), contradicting the

maximality and proving the proposition. 2

B.6.2 Proposition. (Mayer-Vietoris) Let M be a leftR[G]-module. Then the Mayer-Vietoris se-

quence gives the exact sequences

0 → MG → MG1 ⊕ MG2 → M → H1(G,M) → H1(G1,M) ⊕ H1(G2,M) → 0.

and for all i ≥ 2 an isomorphism

H i(G,M) ∼= H i(G1,M) ⊕ H i(G2,M).

Proof. We see that all terms in the exact sequence of Proposition B.6.1 are freeR-modules. We

now apply the functorHomR(·,M) to this exact sequence and obtain the exact sequence ofR[G]-

modules

0 → M → HomR[G1](R[G],M) ⊕ HomR[G2](R[G],M) → HomR(R[G],M) → 0.

The central terms, as well as the term on the right, can be identified with coinduced modules. Hence,

the statements on cohomology follow by taking the long exactsequence of cohomology and invoking

Shapiro’s Lemma B.4.1. 2
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