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Abstract

These are notes and background information for my lecturdeaMSRI Summer Graduate
Workshop in Computational Number Theory, 31st July to 11tigést 2006.

The lectures will, of course, only cover part of what is praed here, but may also contain
additional material. The presentation in the workshop mlt follow the notes chronologically.
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1 Modular Forms and Hecke Algebras modp

In this first section we will first recall some facts on congroe subgroups and holomorphic modular
forms. We will then define the concept of Hecke algebras whitkvhich we will base our treatment
of mod p modular forms. Commutative algebra properties of Heckelatas will also be studied in
some detail, which will enable us to prove some theoremsiwduie useful for computations later on.
This section also contains a short discussion of modulatesyias well as a definition of Katz modular
forms with a particular emphasis on the weight one case. Agidncipal motivation for the study of
modp modular forms, we shall present their important role in treoty of Galois representations. In
that context, we shall mention Serre’s conjecture.

1.1 Holomorphic modular forms and Hecke operators

Congruence subgroups

We first recall the standard congruence subgroud.efZ). By N we shall always denote a positive
integer.



1.1.1 Exercise.The group homomorphism
SLy(Z) — SLo(Z/NZ)
given by reducing the matrices modulois surjective.

The kernel ofSLy(Z) — SLa(Z/NZ) is calledI'(N). The groupSLy(Z/NZ) acts naturally on
(Z/N7Z)?* (by multiplying the matrix with a vector). In particular,gihomomorphisn$Ly(Z/NZ) —
(Z/NZ)? given by (¢ %) — (25)(§) = (%) takes all(%) € (Z/NZ)* as image such that, c
generateZ /NZ (that's due to the determinant beiny We also point out that the image can and
should be viewed as the set of element§ZfNZ)? which are of precise (additive) ordé¥. The
kernel is the stabiliser of} ). We define the grouf’; (V) as the preimage of that stabiliser group
in SLy(Z). Explicitly, this means thal'; (V) consists of those matrices #1.2(Z) whose reduction
moduloN is of the form(} % ).

The groupSL»(Z/NZ) also acts oiP!(Z/NZ), the projective line ove?/NZ which one can
define as the tuple&: : ¢) with a,c¢ € Z/NZ such that(a,c) = Z/NZ modulo the equivalence
relation given by multiplication by an element@/NZ)*. The action is the natural one (we should
actually view(a : ¢) as a column vector, as above). The preimagglin(Z) of the stabiliser group
of (1: 0) is calledI'y(N). Explicitly, it consists of those matrices 81.2(Z) whose reduction is of
the form (% ). We also point out that the quotient 8f.2(Z/NZ) modulo the stabiliser ofl : 0)
corresponds to the set of cyclic subgroups of precise aMér SL»(Z/NZ). These observations,
which may seem unimportant at this point, are at the basefifidg level structures for elliptic curves
(see the section on modular curves).

Itis clear that
(¢4)=e

d

Lo(N)/T1(N) (Z/NZ)*

is a group isomorphism. We also let
x:(Z/NZ)* — C*

denote a character, i.e. a group homomorphism. We shalh@éxteto a map(Z/N7Z) — C by
imposingx(r) = 0if (r, N) # 1. The simplest instance of class field theory (here a simpecese;
by (, we mean any primitivéV-th root of unity) tells us that

Cal(Q(¢n)/Q) =L (7/NZ)"

(for all primes! t N) is an isomorphism. We shall later on also consigeas a character of
Gal(Q(¢n)/Q). The nameDirichlet character(here ofmodulusN) is common usage for both.

Modular forms

We now recall the definitions of modular forms. We denotelbyhe upper half plane, i.e. the set
{z € C|Im(z) > 0}. The set of cusps is by definitidh' (Q) = Q U {cc}. Fix integersk and N > 1.
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A function
fH—-C

given by a convergent power series (thg f) are complex numbers)
f(Z) = Z an(f)(e%riz)n — Z ang”  With q(z) _ p2miz
n=0 n=0

is called amodular form of weight for I'; (V) if

(i) the function f(%£5)(cz + d)=* is a holomorphic function (still fronH to C) for all (2%) €

SLo(Z) (this condition is calledf is holomorphic at the cusp/c), and

(i) f(gjjg) = (cz+d)}f(z)forall (24) € T1(N).
We use the notatioM(I'; (N) ; C). If we replace (i) by

(i) the function f(2£2)(cz + d) " is a holomorphic function and the limjt(2£2) (cz + d) % is 0

whenz tends to),

then f is called acusp form For these, we introduce the notatisp(I'; (N) ; C).
Let us now suppose that we are given a Dirichlet charagtef modulusN as above. Then we
replace (ii) as follows:

(i) f(22E2) = x(d)(cz + d)* f(2) forall (2 4) € To(N).

Functions satisfying this condition are callewbdular formgrespectivelycusp formsf they satisfy
(1)) of weightk, charactery and levelN. The notationM (N, x ; C) (respectively,Si(N, x; C))
will be used.

All these are finite dimensional-vector space and fak > 2, there are dimension formulae,
which one can look up in_[SteinBabk]. We, however, point teader to the fact that fok = 1
nearly nothing about the dimension is known (except tha snaller than the respective dimension
for k = 2; it is believed to be much smaller, but only very weak resaftssknown to date).

Hecke operators

At the base of everything that we will do with modular formse #tre Hecke operators and the diamond
operators. We should really define them conceptually (seediation on Hecke correspondences).
Here is a definition by formulae.

For M = (%) an integer matrix with non-zero determinant, we put

az + b) det(M)*—1
cz+d’ (cz+d)F

(fIM)(2) = f(

for a modular formf € My (I'1(N); C) or f € Mg(N, x; C).
If a is an integer coprime td/, we leto, be a matrix in[o(N) such that

Oy = (‘161 2) mod N. (1.2)



1.1.2 Exercise.Prove that such a matrix, exists.

We define thediamond operatofa) (you see the diamond in the notation, with some phantasy)
by the formula
(a)f = floa-
If f € Mg(N,x; C), then we have by definitiofa) f = x(a)f. The diamond operators give a
group action of(Z/NZ)* on M(T'1(N); C) and onS(I';(N); C), and theMy(N, x; C) and
Sk(N, x; C) are they-eigenspaces for this action.
Let] be a prime. We let
Ri= {310 <r<i=13Ufo (59)}, 1N (12)
Ri={({7)0<r<i—1}, ifl| N (1.3)
We use these sets to define thecke operatofl; acting of f as above as follows:

Tf =Y flo.

dER,
1.1.3 Exercise.Supposef € My (N, x; C). Recall that we have extendgdso thaty(l) = 0 if
dividesN. Prove the formula
an(ﬂf) - aln(f) + lkilX(l)an/l(f)
In the formula,a,, ;;(f) is to be read a$ if I does not divide:.

The Hecke operators for compositeean be defined as follows (we pIif to be the identity):

o Tjry1 = Ty o Ty — IF=Y()T}»-1 for all primes] andr > 1,

e T, =T, oT, for coprime positive integers, v.
We derive the very important formula (valid for evesy
al(Tnf) = an(f) (1-4)
It is the only formula that we will really need.

From the above formulae it is also evident that the Heckeatpes commute among one another.
Hence, eigenspaces for a collection of operators (i.e. ekrhent of a given set of Hecke operators
acts by scalar multiplication) are respected by all Heclkerafjors. Hence, it makes sense to consider
modular forms which are eigenvectors for every Hecke operdthese are calledecke eigenforms
or often justeigenforms Such an eigenfornf is callednormalisedif a,(f) = 1.

We shall consider eigenforms in more detail in the followsagtion.
Finally, let us point out the formula (fdrprime and = d mod N)

F=Yd) = T? — Tp. (1.5)
Hence, the diamond operators can be expressédlimgar combinations of Hecke operators. Note

that divisibility is no trouble since we may choadsels, both congruent td modulo N satisfying an
equationl = I%~17 4 1571,



1.2 Hecke algebra of holomorphic modular forms and modular brms mod p

In this section we shall define the concept of Hecke algebtasill be of utmost importance to our
treatment of mogh modular forms and their computation (in fact, we will congpthe Hecke algebra
and not the modular forms). We shall assume that1 andN > 1.

We define theHecke algebraof My (I'; (V) ; C) as the subring inside the endomorphism ring of
the C-vector spacé;(I'1(N); C) generated by all Hecke operators and all diamond operators.

We make similar definitions foB;(I'1(N); C), Mg (N, x; C) andSi(N, x; C). In the latter
two cases, we can alternatively take thesubalgebra in the respective complex endomorphism ring
which is generated by the Hecke operators. H@réenotes the rin@.[x] (i.e. Z and all values ofy
adjoint (they are roots of unity); it is the maximal ordee(ithe ring of integers) d®(x) (Q adjoined
all values ofy)). It is this description that we shall use in the sequel. e\btait the Hecke algebras
are freeZ-modules (respectively, also fré8-modules), since they are defined as submodules of a
complex vector space.

Let us introduce the notatiori; (M (I'1 (V) ; C)) respectivelyTz(S,(I'1 (V) ; C)), as well as
To(Mg(N, x; C)) respectivelyTo(Sk (N, x; C)). If O — R is anO-algebra, we write

Tr() == To(") ®o R.

The ¢-pairing
We now define a bilinear pairing, which | call tieomplex)g-pairing, as
Mi(N,x; C) x Te(Mi(N,x; C)) = C, (f,T)— ar(Tf)

(compare with Equation11.4).
1.2.1 Lemma. The complex-pairing is perfect, as is the analogous pairing 8% (N, x; C). In
particular,

Mi(N, x; €) = Home (Te(Mi(N, x5 €)),C), [ (Tn = an(f))
and similarly forS; (N, x ; C).

Proof. Let us first recall that a pairing over a field is perfect if amdyaf it is non-degenerate.
That is what we are going to check. It follows from Equatiod like this. If for all n we have
0 = a1(T.f) = an(f), thenf = 0 (this is immediately clear for cusp forms; for general meaaiul
forms at the first place we can only conclude tlias a constant, but sinde > 1, constants are not
modular forms). Conversely, if, (T'f) = 0 for all f, thena,(T(T,.f)) = a1(T.Tf) = an(Tf) =0
for all f and alln, whenceT' f = 0 for all f. As the Hecke algebra is defined as a subring in the
endomorphism oM (N, x ; C) (resp. the cusp forms), we fifld = 0, proving the non-degeneracy.
O

The perfectness of thgpairing is also called thexistence of g-expansion principle
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Modular forms over rings and mod p

We now use the-pairing to define modular (cusp) forms over afiyalgebrar : O — R as follows.
We let

Mg(N, x; R) = Homo(To(Mg(N, x; C)), R) = Homg(Tr(My(N, x; C)), R).

Every elementf of My (N, x; R) thus corresponds to a linear functién: To(My (N, x; C)) — R
and is uniquely identified by itlormal g-expansionf = > ®(T,)¢" = >, an(f)q". We note
that To (Mg (N, x; C)) acts naturally orHome (To(Mg(N, x; C)), R), namely by(T.®)(S) =
®(TS) = ®(ST). This means that the action @f (M (N, x ; C)) onMy (N, x; R) gives the same
formulae as above on formalexpansions. We make a similar definition for the cusp spaamely

Sk(N, x; R) = Homo(To(Sk(N, x; C)), R) = Hompg(Tr(Sk(N, x; C)), R).

It is well known (see e.gl[SteinBabk]) that the space of hwdgphic modular forms (for given
k > 1, N > 1 and charactey) is the orthogonal direct sum with respect to the Petersspari
product of the cuspidal modular forms and #pmce of Eisenstein series

Mi(N, x; C) = Eisg (N, x; C) @ Sg(N, x; C).
The Hecke operators respect this decomposition. As befardet
Eisp(N, x; R) = Homo(To(Eisg (N, x; C)), R) = Hompg(Tr(Eisy (N, x ; C)), R).

Let us notice that the two definitions ofi; (N, y; C) agree. As a special case, we get that
My (N, x; O) precisely consists of those holomorphic forms whgsepansions take values @.

If R = Fis a finite field of characteristip or F,,, we callM (N, Y ; F) the space ofnodp modular
forms of weightt, level N and charactery (overF). By Y we meanr o , which we write to point
out that the definition oMy (N, ; F) only depends om o x. Of course, for the cuspidal and the
Eisenstein spaces similar statements hold and we use isimoiiations.

Note that the normalised eigenformsa\ify. (N, x ; R) are precisely the set 67-algebra homomor-
phisms insidéHomo (To (Mg (N, x ; C)), R). Such an algebra homomorphisbnis often referred to
as asystem of eigenvalugesince the image of eadhi, corresponds to an eigenvalue’@f, namely to
®(T,) = an(f) (if f corresponds t@).

Galois conjugacy classes

Let us now consider a fiel” which admits a ring homomorphis — K. Denote byK a separable
closure, so that we have

Mi(N, x; K) = Homg (Tx (Mg (N, x ; C)), K) = Homp(Tx(Mg(N, x; C)), K).

We can compose anly € Hom g (T x (M (N, x ; C)), K) by any Galois automorphism : K — K
fixing K. Thus, we obtain an action of the absolute Galois gréup(K /K ) on My (N, x; K) (on
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formal ¢g-expansions, we only need to apphto the coefficients). All this works similarly for the
cuspidal and the Eisenstein spaces, too.

Like this, we also obtain &al(K /K )-action on the normalised eigenforms, and can hence speak
aboutGalois conjugacy classes of eigenforriige have the following bijective correspondences.

Spec(Tk(+)) P Homg-aig(Tr (), K) P { normalised eigenforms in}/Gal(K /K)
and withK = K
Spec(T#(+)) P Homf_alg('lrf(-),?) P { normalised eigenforms in}.

Here,- stands for eitheM; (N, x; K) or Si(N, x; K). We recall thatSpec of a ring is the set of
prime ideals. In the next section we will see thaflig(-)) andT+(-)) all prime ideals are already
maximal (it is an easy consequence of the finite dimensitypali

1.2.2 Exercise.Prove these correspondences.

Let us not fail to record that the coefficients of any eigemfgf in My (N, x; K) lie in a finite
extension ofi(, namely inT i (Mg (N, x; K))/m, whenm is the maximal ideal corresponding to the
conjugacy class of.

Let us note that the above discussion appliete: C, K = Q, K = Q,, as well as tak = F,,.

In the next sections we will also take into account the finarcstire of Hecke algebras ovél, or
rather over the completion @ at one prime.

1.3 Some commutative algebra

In this section we leave the special context of modular foitna moment and provide quite useful
results from commutative algebra that will be applied to kéealgebras in the sequel.

Let us start with a simple case which we will prove directiywbuld, however, also follow from
the more general approach adopted below.

Let T be a finite dimensional algebra over a figil Such an algebra iértinian, i.e. every
descending chain of ideals becomes stationary. That ioobyisince in every proper inclusion of
ideals the dimension diminishes. In particular, for anylaef T the sequence” becomes stationary,
i.e.a” = a1 for all n “big enough”. Then we will use the notatiad® for a™. If m is a prime ideal,
thenT /m is an integral domain (sinae is a prime ideal) which is a finite extension of a field, so it is
a field itself, whence the ideal is maximal. Moreover, for dimaion reasons there can only be finitely
many maximal ideals iff.

1.3.1 Lemma. The Chinese Remainder Theorem gives
T J[ T/m*= J[ T
meSpec(T) meSpec(T)

whereT,, denotes the localisation at.



Proof. The intersection of all prime ideaf§ g .ty m contains only nilpotent elements, whence
ﬂmespecm m> = (0) (alternatively, one can look at the primary decompositibri0g). So, if T is
local, we are done. Hence, suppose there are at least twoatiffprime ideals iff.

PUt! := 3" cspec(r) M™- We havel = A. For, let us suppose the contrary. As an ideal, it is
contained in a maximal one, say,. In particular, everym® C m;. Letz € my — my (for a prime
idealmy # m;). The element™ is in m3° if n is big enough. Asns® is a subset o, the primality
of m; implies thatr is in my, contradicting the fact that it is not.

It is clear thatT,~ is a local ring. In fact, every elemente T — m is invertible inT,~ since
it clearly does not lie in the uniqgue maximal idea/m*°. This establishes the second isomorphism.

O

Let us now come to a more general setting.

1.3.2 Proposition. Let O be an integral domain of characteristic zero which is a filyitgenerated
Z-module. Write® for the completion o) at a maximal prime o) and denote by the residue
field and byK the fraction field oD). Let furthermoreT be a commutativé@-algebra which is finitely
generated as af-module. For any ring homomorphis® — S write Tg for T ®» S. Then the
following statements hold.

(@) The dimension df 5 is less than or equal td. The maximal ideals df 5 correspond bijectively
under taking pre-images to the maximal idealsTef Primesp of height0 which are contained
in a prime of heightl of T 5 are in bijection with primes off i under extension (i.eT), for
which the notatiorp® will be used.

Under the correspondences, one has

and
T(’ip = TK7PE
(b) The algebrdl' 5 decomposes as
To = [[Tom
m
where the product runs over the maximal idealsf T 5.

(c) The algebrdlr decomposes as
T = HTF,I’H?
m

where the product runs over the maximal idealef Tr.

(d) The algebrdl';x decomposes as



where the products run over the minimal prime ideglsf T 5 which are contained in a prime
ideal of heightl.

Proof. As T is a finitely generatedA)-moduIe,Té/p with a primep is an integral domain which
is a finitely generated’-module. Hence, it is either a finite field or a finite extensadn?. This
proves that the height gf is less than or equal tb. The correspondences and the isomorphisms of
Part (a) are the subject of the following exercise.

We have already seen Parts (c) and (d) in Lerimall.3.1. Pafol{tvs from (c) by applying
Hensel’s lifting lemma to the idempotents of the decomjmsibf (c) (see also [Eisenblud], Corol-
lary 7.6). O

1.3.3 Exercise.Prove the correspondences and the isomorphisms from Paof @ropositio_L.31.

Similar decompositions fdf-modules are derived by applying the idempotents of the mipos
sitions of Part (b). More precisely, | mean the following. yAdirect product decomposition is given
by idempotents. So, in the casedf; there exist elements;, for each prime irSpec(T5) such that
emTs = T@,m- Explicitly, under the decomposition we hawg = (0,...,0,1,0,...,0). If now V'
is anyT 5-module, then we have the natural isomorphism

V§@emv
m

of Té-modules.

1.4 Commutative algebra of Hecke algebras

Letk > 1, N > 1landy : (Z/NZ)* — C*. Moreover, letp be a prime O := Z[x], § a maximal
prime of © abovep, and letF be the residue field a® modulo3. We letO denote the completion of
O atB. Moreover, the field of fractions @b will be denoted by For To (M (N, x ; C)) we only
write T for short, and similarly over other rings.

We shall now apply Proposition L.3.2 ;. Itis a free O-module of finite rank which has
dimensionl, i.e. every maximal prime contains at least one minimal prim

By Propositior”L312, minimal primes @f; correspond to the maximal primesBf; and hence
to Gal(K /K )-conjugacy classes of eigenformsNfy, (N, x ; K). By a brute force identification of
K = Q, with C we may still think about these eigenforms as the usual holphic ones (the Galois
conjugacy can then still be seen as conjugacy by a decorigrogitoup above inside the absolute
Galois group of the field of fractions @?).

Again by Propositiofi 1312, maximal primesBf; correspond to the maximal primes Bf and
hence tdGal(F/IF)-conjugacy classes of eigenformshfy, (N, x ; ).

The spectrum off' 5 allows one to phrase very elegantly when conjugacy classegenforms
are congruent modulo a prime abgue_et us first explain what that means. Normalised eigenfofms
take their coefficients,,(f) in rings of integers of number field¥'¢ /m whenm is the kernel of the
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O-algebra homomorphisfip — C, given byT,, — a,(f)), so they can be reduced modulo primes
abovep (for which we will often just say “reduced modu}d).

1.4.1 Exercise.Prove that the reduction modulo a prime abqvef the g-expansion of a modular

form f in My (N, x ; C) is the formalg-expansion of an eigenform M (N, x ; F).

If two normalised eigenformg, g in M, (N, x ; C) or My(N, x ; K) reduce to the same element
in My (N, x; F), we say that they argongruent modulg.

1.4.2 Exercise.Let f, g € My (N, x; K) be normalised eigenforms that afl(K /K)-conjugate.
Prove that their reductions modujoare Gal(F/F)-conjugate.

Due to ExercisEZL412, we may speak aledluctions modulg of Gal(K /K)-conjugacy classes
of normalised eigenforms Gal(F /F)-conjugacy classes. We hence say that Gud(K / K )-conju-
gacy classes, say corresponding to normalised eigenféymsespectively, minimal ideals, andps
of T 5, arecongruent modul, if they reduce to the san@al(F/F)-conjugacy class.

1.4.3 Proposition. TheGal(K / K )-conjugacy classes belonging to minimal prinpesandps of To
are congruent modulg if and only if they are contained in a common maximal primef T¢.

1.4.4 Exercise.Prove Propositio_1.4]3.

1.5 Eisenstein primes

Letintegersk > 1, N > 1 and a charactey be given. Recall the decomposition
M (N, x; C) = Eisg (N, x; C) & Sg(N, x; C).

We return to the notations of the previous section. A miniidealp of T 5 is called arEisenstein
(minimal) idealif the corresponding normalised eigenform lie¥is, (N, x ; C) (via an identification
of K with C).

A maximal idealm of T is called anEisenstein (maximal) ideaf it contains an Eisenstein
minimal ideal, i.e. if the eigenforms mqggbelonging tom are reductions of Eisenstein series. Let us
remark that it can happen that an Eisenstein maximal idedhats both an Eisenstein minimal ideal
and a non-Eisenstein minimal ideal. In that case one hasteoongruence between a cusp form and
an Eisenstein series.

1.6 Geometry of modular curves
Complex modular curves

We will use the following matrices

o:=(17), m=(20) T=(



The order ofr is 4 and the order of is 3. Considered as elementsp§1,(Z), the respective orders
are2 and3.

We recall that bycuspswe understand the s&t(Q) = Q U {co}. To make the following com-
pletely explicit, we also recall that we will consides as the elementl : 0) P'(Q) and also ag /0.
We writeH = H U P1(Q).

The groupSLy(R) acts ontH by fractional linear transformations, i.e. by

az+b
cz+d

Z

forz e Hand (¢%) € SLy(R).

Note that the same formula also makes sense for the actiGi.ofQ) on P*(Q), whence overall we
obtain aSL»(Q)-action onH. Obviously, the matri>( ‘01 Pl) acts trivially, so that the action passes
to an action ofPSLy(Q).

1.6.1 Exercise.(a) LetM € SL,(Z) be an element of finite order. Determine the primes that may
dividem. [Hint: Look at the characteristic polynomial aif.]

(b) Determine all conjugacy classes of elements of finitenirPSLs(Z). [Hint: One might find it
helpful to look at the standard fundamental domain.]

1.6.2 Exercise.Determine theV > 1 for whichT'; (V) has no element of finite order apart from the
identity. [Hint: You should gelv > 4.]

1.6.3 Exercise.Determine theV > 1 for whichT'o(/N) has no element of ordet. Also determine
the cases in which there is no element of oréler

LetT" < PSL»(Z) be a subgroup of finite index, for example (the projectivegemaf) I'o(V) or
I'1(N). We let
Yr:=T\H and Xr:=YrUD\P(Q).

One can equigt and X with the structure of a Riemann surface (which is compachéndase of
Xp).

Let us denote byr the (open) quotient mafl — Yr. Via the associated fractional linear trans-
formation, everyy € I' gives a magd - H, which is trivial on the quotient;. The fibre of a
pointy € Yr is theT-orbit I'z (if 7(z) = y). If the stabiliser subgroup',, is trivial for all z, then
the quotient mapr is a Galois covering and the fractional transformationscargering maps (deck
transformations, Galois covering maps). One seeslhiatthe universal covering space (since it is
simply connected). The groupis hence the universal covering group of the Galois covegingn
by = and can thus be identified with the fundamental grouprof

Complex modular curves as moduli spaces

The following discussion is based on lecture notes and agfitans by Bas Edixhoven. These things
are discussed il [KM] and [Deligne-Rapogport] (see &lsofibad-Im] and[DDT]).
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Let us consider the following commutative diagram

72 g e @0 E (1.6)

)

where the map, is defined by( ) — ()7 (]) = nt + m and= denotes the obvious projection
maps. We shall consider this diagram in the category of cernplanifolds.
Let us look at the fibre of a point € H underr, itis

O—>Z2¢—T>(C—>ET—>O,

whereE, = C/A, with A, = Z7 @ Z. l.e. the fibre is an elliptic curve ovét, and we have kept
track of the lattice, in a standard form, that gives rise todtrve.

Next we bring natural actions of the groBj.»(Z) into play. Recall its action on the upper half
planeH by fractional linear transformations. We want to relate #ition to the standard one @A.
First we note the obvious formula

(er+d) (1) =7(1)-

Furthermore, one immediately finds the commutative diagram

T

72~ 72 (1.7)

d)‘r L Ld"\/f
(eT+d)

ALY W

We will put these relations to two different uses. First, vedirk actions by the groupl,(Z) on
Diagram[Lb. So let = (2 %) be a matrix inSLy(Z). We makey act onZ? x H by ~.((;),7) :=
(v 5T (%), y.7) and onC x H by y.(z, 7) := (5, 7.7).

It is immediate to check, e.g. using the relations exhibidove, that the left hand side of Dia-
gramL® iSSLy(Z)-equivariant. We transport the action to the right hand,sidd could consequently
pass to the quotient for any subgrolip< SLy(Z) of finite index. The quotient maps would also be
analytic again. However, we avoid the use of quotients atdtiige. Instead of speaking of a fibre of
I'r for the quotients, we can look at the family of exact sequence

0—>Zz¢i>C—>E,YT—>O fory eT.

We next want to see the use of the standard congruence sgpisdroN ), I'y (V) andT'y(N) in this
context. They will give rise to families of elliptic curvesving some common property related to
their torsion groups.

13



For that it is convenient to consider such an exact sequenagair(E-, ¢, ) (here, of course, the
second component determines the first one). We integgras the choice of a lattice basis.

Let N > 0 be an integer. Thé/-torsion groupE,[N] of the elliptic curveE; is defined as the
first term in the exact sequence

— %AT/AT — E; N E..
The “choice of basis” isomorphisi, descends to give the isomorphism
_ 1
Or (Z/NZ)2 - ET[N]v €T = N¢T(m)7

which should also be interpreted as a choice of basis of thtogroup.¢, is called devel structure

Let us now compare the exact sequence @iith the one ofyr for v € SLy(Z) as above, i.e.
we want to relate the paitE,, ¢,) to (E,,, ¢,-). From Diagran[_1]7, we immediately obtain the
commutative diagram

(Z/NTZ)? <— (Z/NZ)?
@[ an—w
B [N] <" BN,

in which all maps are isomorphism.
We fixar € H.

e Recall the group’ (V) = ker (SL2(Z) — SLy(Z/NZ)). It gives rise to the family of the exact
sequences represented by the pélfs, ¢, ) for v € I'(V), which precisely have in common
that the choice of basis of their torsion groups are the séwnéhe natural ismorphism between
E.andE,;).

Hence the familyl'(N)7 corresponds to the isomorphism class of a pair, ¢, ). By isomor-

phism of pairs we mean an isomorphism between the curvesatsg the level structure, i.e.
sitting in the commutative diagram

— (Z/ND)*
(eT+d) \

E,[N] E,[N).

e Next consider the group; (V). It gives rise to the family, where, ((V)) = ¢,.((})). That
means that the natural isomorphism maps the pﬁimﬂf E; to the point% of E..

This family thus corresponds to the isomorphism class optie(E,, ¢, ) = (E,,1/N).

¢ Finally, we consider the grouB, (V). The family corresponding to it can be characterised by
saying that the subgroup @[N] generated by}v is mapped isomorphically into the corre-
sponding one of, [ N].

Thus, we have the interpretation as the isomorphism claaafr(E., < 1/N >).

14



We have been quite restrictive considering only ellipticves of the formE... More generally
one ought to regard paifsz, ¢), whereE is an elliptic curve oveC and¢ : Z? — Hy(E(C),Z) is
a group isomorphism, in which cage = H,;(E(C),R)/H,(E(C),Z). Since, however, scaling the
lattice by a non-zero complex number results in an isomerpHiptic curve, the isomorphism class
of (E, ¢) always contains an element of the fofifi., ¢, ). In particular, there is an obvious way to
broaden the definition of the pairs in the three points abedgle the isomorphism classes stay the
same.

TheI'; (N)-moduli problem over aring R

Motivated by thel'; (/V)-case in the discussion on complex modular curves, we défmeategory
[I'1 (V)] r of elliptic curves with a given torsion poifior a ring R as follows:

e Objects:Pairs(E/S/R, ¢). HereE/S/R is an elliptic curve, i.eE /S a proper smooth scheme
overSpec(R), whose geometric fibres are connected smooth curves of geaunsl there is an
S-valued point0 of E. And ¢ : (Z/N7Z)s — E[N] is an embedding of group schemes. We
briefly recall thatE'[ V] is the S-group scheme obtained from the cartesian diagram

E—2~ . F
O o
E[N] s,

i.e. it is the kernel of the multiplication by¢ map, which results fron¥ /S being an abelian
group scheme.

e Morphisms:Cartesian diagrams

such that the diagram

g —1—=9
is commutative, and the embedding
¢ : (Z/NZ)g — E'[N]
is obtained by base change from

¢:(Z/NZ)s — E[N].
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1.6.4 Theorem. (Igusa)lf N > 5 and R is a ring in whichV is invertible, thenI';(N)]g is repre-
sentable by a smooth affine scheiéN )z which is of finite type oveR.

In fact, a suitable extension of the category to the “cusg®y (Ising generalised elliptic curves)
is representable by a proper smooth schefné¢/V) z which is of finite type oveR.

Hecke correspondences on the moduli problem

We first describe Hecke correspondences on complex modutaes. We will only work with the

I’y (N)-moduli problem.
Leta € GL2(Q)™ and set for abbreviatioRl := I'1(N). Then the groups

Iy:=a 'TanT and I'*:=ala ' NT

have finite index irl". We consider the commutative diagram

Lo \H ——T*\H (1.8)
I'\H I'\H,

wherer denotes the natural projections. Diagfan 1.8 is to be searc@asespondence dfy = '\ H.
On divisors (formal finite sums of points), it gives rise te timap

Div(Yr) — Div(Yr), 7~ Z m(x).
z€(ma)~1(T)

Note that we may use Diagrdm1lL.8 to obtain the commutativgraia on group cohomology:

conj. by«

HY (Do, M) 225 F(0e, M)
cores res
1 Ta 1
HY(I',M) HY(T', M),

wherel is al’-module. One sees immediately that it is precisely the di&fimbf a Hecke operator
on group cohomology which is given later on.

Now we apply this abstract situation to two cases, in both lictv we will give an equivalent
description on the moduli spaces.

e Diamond correspondences:

Leta be an integer coprime & and choose a matrix = o, € I'o(IN) as in Equatiofi_T]1. As
I'1(N) is a normal subgroup dfy(N), the groupd’, andl'® are equal td* and the maps are
the identity. The operator correspondingctas called thediamond operatoand denoteda).
It will become apparent that it indeed only depends:@nd not on the choice of.
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Underq, the elliptic curve with given torsion poifC/Zr + Z,1/N) is mapped tqC/Zat +
Z,1/N), which is isomorphic t¢C/Z7 + Z,a/N).

More generally, we can define the functa) on [I'; (V)] r which sends an obje¢t/S/ R, ¢)
to the object £/S/R, ¢ o a), where we interpret as multiplication by on (Z/NZ)s.

Hecke correspondences:

For simplicity, we again give the definition of Hecke corres@ences only for primds So let
I be a prime. The-th Hecke correspondendg is defined by the matrix. = ((1] ?)

Straightforward calculations yield (whethiedivides NV or not)
I =T (N)NTy(l) and Ty =T (N) N (To(1)7,

where the superscriff stands for transpose. By identifying— (C/Zt + Z,1/N,< 7/l >),
one gets a one-to-one correspondence betwegyl and triples(E, P, H) (up to isomor-
phism), whereF is an elliptic curve withV-torsion pointP andH < E a (cyclic) subgroup of
order! that does not contain the poift ForI'® one can proceed similarly (the third component
must be replaced by 1/I >). Direct inspection shows that on the moduli spaces the aap
corresponds to

(E,P,H) — (E/H,Pmod H, E[l]/H).

Of course, the maps just mean dropping the third component. THecorrespond precisely to
the isogenied? — E’ of degreel (for someFE’; for given H, of course,E’ = E/H) with P
not in the kernel.

For[I'1 (V)] r we interpret the Hecke corresponderiGeas assigning to an objetE/S/R, ¢)
the set of objecty)(E)/S/R, 1 o ¢), wherey runs through the isogenies : £ — FE’ of
degre€d such that) o ¢ is still aT'; (V)-level structure.

1.6.5 Exercise.Check the above calculations. (I'm not so sure whether | lmtanessed them up a
bit when | did them a long time ago, so don't worry if you find tieed to correct some statements.)

1.7 Katz modular forms

The purpose of the present section is to give an informabdhiction to Katz modular forms. We let
R be aring in whichNV > 1 is invertible.

For every elliptic curveE/S/R in [I'1(N)|r, we letwg,g = 0°Qp/g. Given any morphism

h:E'/S'"/R — E/S/R, the induced mapp, ;s» — h*wp g is an isomorphism. Indeed, it is a well-
known fact ([Hartshorrie], 11.8.10) that the sheaf of refatdifferentials is stable under base change:
h*Qp s = Qg Thus, we get (withy as above)

gwrs = (9" 00")2pg=(009)"Qg/g=(ho0) Ry =0 Qg =wp g
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A Katz modular form (cusp) fornfi € My (I'1(N) ; R)katz (respectively,f € Si(I'1(N); R)katz)
assigns to every obje¢t/S/R, ) of [['1(N)]r an elementf (E/S/R,«a) € g%’;S(S), compatibly
for the morphisms in the category, subject to the conditiat &ll g-expansions (which one obtains
by adjoining all V-th roots of unity and plugging in a suitable Tate curve) hawenegative terms
(respectively, only have positive terms).

Hecke operators

The discussion of Hecke correspondences above, makedltwirfig definition appear quite sugges-
tive. For(a, N) = 1, we define the diamond operat@r) by

(a) : Mp(T1(N); R)katz = Mp(I'1(N) ; R)Katz,

(a)F)(E/S/R,¢) = f(E/S/R, ¢ a).

One thus gets again an action of the gredgN)* = I'y(N)/I'1(N) on the space of Katz modular
forms (cusp forms). Lek : (Z/N7Z)* — R* be a character. Then we I&f; (N, x; R)karz be the
x-eigenspace, and similarly for the cusp space.
Next, we give an idea of the definition of the Hecke operdioffor a primel) on Katz modular
forms.
T, : Mg(T'1(N) 5 R)kaz = Mg(T'1(N) 5 R)katz,

(TF)(E/S/R,P) = 1 3 F(0(E)/S/R. 4 09),
P

where the sum runs over all isogenigs: £ — E’ of degreel such thaty o ¢ is aT';(N)-level
structure.

Note that we divide by which need not always make sense. However, there are wayet to g
around that problem. We refer to the discussion in Sectiomsd34 of [Gross]. In that article, Gross
proves also that the Hecke operators defined like this giwevéiny same action on thegexpansions
as we have seen for holomorphic modular forms. To mentioth@n@omplication we must point out
that the moduli problem considered by Gross is slightlyedéht from ours (the differences are not at
all serious, but must not be forgotten).

Comparison of Katz forms over F,, and modular forms mod p
One can compute explicitly (see [Diamondtim], Section 1#hat
Mg(T1(N); C) ZMg(T'1(N); Ckaz and Si(T'1(N); C) = Sk(T'1(N); C)katz-

1.7.1 Theorem. Let S be anR-algebra withR a Z[1/N]-algebra for some integeN > 5. Letk € N
and suppose that one of the following holds:

Q) k>2
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(i) R — Sisflat.
Then the following natural maps are isomorphisms:

Mi(T1(N); R)katz®r S = Mi(T'1(N); S)kaz and
Sk(T1(N); R)kaz ®r S = Sp(T'1(N) ;5 S)katz

Proof. This is [Diamond-Im], Theorem 12.3.2. O

In the case of a character, the statements of the theorem genieral not stay correct. For a
precise statement see [EdixSerre].
One knows (that follows froni_[EdixSeire], Lemma 1.9) fo>> 2, N > 1 over the ringR = I,
with p > 3 andp t N that
Mg(N, X IE‘p)Katz = Mg (N, X; Fp)-

Hence, in most cases for weigltits> 2 we may just think about Katz modular forms oWgyas modp
modular forms. A similar statement holds for the cusp spésiese thez-expansions coincide).

1.8 Katz modular forms over F, of weight one

Edixhoven explains in [EdixJussieu], Section 4, how weigh¢ cuspidal Katz modular forms over
finite fields of characteristip can be computed from the knowledge of the Hecke algebra afhwei
cusp forms over the same field. In this section we shall réieill

Let F be a finite field of prime characteristicor F,, and fix a levelN > 1 with p { N and a
charactefy : (Z/NZ)* — F* with x(—1) = (—1)*. We have two injections df-vector spaces

FvA : Sl(N7Y7 F)Katz - Sp(N7Y7 F)Kath

given ong-expansions by, (Ag) = a,(g) anda,(Fg) = a,/,(g) (With a,(Fg) = 0if p { n), which
are compatible with all Hecke operatdfsfor primesi # p. The former comes from thierobenius
and the latter is multiplication by thidasse invariant One hasTlgp)F =A andAngl) = TZSP)A +
X(p)F, where we have indicated the weight as a superscript (sefEeigJussieu], Equation (4.1.2)).

Let us write T(®) for Tr(Sk(N,X; F)katz), the Hecke algebra ovéff of weight & for a fixed
level N and a fixed charactéey. We will also indicate the weight of Hecke operators by sspidpts.
We denote byd®) theF,-subalgebra of'(?) generated by all Hecke operatd§’ for p { .

1.8.1 Proposition. (a) There is a homomorphisi, called aderivation which ong-expansions is
given bya,, (© f) = na,(f) such that the sequence

_ F _ e _
0— Sl(N7 X5 IF‘)Katz — Sp(N7 X5 IE‘)Katz — Sp+2(N7 X3 IE‘)Katz
is exact.

(b) Supposg € S1(V,X; F)kaz such thata,, (f) = 0 for all n withp { n. Thenf = 0. In particular
Asl(N77§ IE‘)Katzﬁ FSl(N77§ IE‘)Katz =0.
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(c) The Hecke algebra® in weight one can be generated by sqi”, wherel runs through the
primes different fronp.

(d) The weight one Hecke algebf!) is the algebra generated by th&)-action on the module
T(p)/A(p).

Proof. (a) The main theorem of [KatzDerivation] gives the exacusege
_ F _ A© —
0— Sl(Na X5 F)Katz - Sp(Na X3 F)Katz B 82p+1(N7 X5 F)Katz

by taking Galois invariants. As explained In_[EdixJussjebgction 4, the imagd©S, (N, X ; F)katz
in weight2p + 1 can be divided by the Hasse invariant, whence the weightétairaed.

(b) The condition implies by looking atexpansions thatl® f = 0, whence by Part (3) of Katz’
theorem cited abov¢ comes from a lower weight thain but below there is just théform (see also
[EdixJussiel], Proposition 4.4).

(c) It is enough to show thar;” is linearly dependent on the span of mil) forp f n. Ifit
were not, then there would be a modular cusp form of welgsatisfyinga,,(f) = 0 for p 1 n, but
a,(f) # 0, contradicting (b).

(d) Dualising the exact sequence in (a) yields th&r /A®) andT(™) are isomorphic asi(®-
modules, which implies the claim. O

1.8.2 Proposition. SetB = {5 [T}, prime(1 + 1)- TheF-algebra A®) can be generated as &
vector space by the set
{T | ptn,n<(p+2)B}.

Proof. Assume that somé}%’) for m > (p+ 2)B andp t m is linearly independent of the
operators in the set of the assertion. This means that teesecusp formf € S,(N,X; F)kat
satisfyinga,,(f) = 0 for all n < (p + 2) B with p t n, buta,,(f) # 0. One gets.,(©f) = 0 for all
n < (p+ 2)B, buta,,(©f) # 0. This contradicts the Sturm bound of Proposifion-3.3.1 ¢talso
applies to Katz modular forms). O

1.8.3 Remark. If we work withI'; (V) and no character, the numbé? above has to be replaced by
N? 1
r_ 2 _
B'= <, H (1= 7).
l|N,l prime

Part of the following proposition i$ [EdixJussleu], Propios 6.2. We are particularly interested
in its last part which states that weightigenforms which live in the span dfg and F'g for a weight
1 eigenformg are ordinary, i.ea,(f) # 0.

1.8.4 Proposition. Let V' C S,(NV, X ; F)karz be the eigenspace of a system of eigenvalues for the
operatorsTl(p) for all primesi # p
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If the system of eigenvalues does not come from a weight onetftenV” is at most of dimension
one. Conversely, if there is a normalised weight one eigemnfowith that system of eigenvalues for
Tl(l) for all primes! # p, thenV = (Ag, Fg) and that space i&-dimensional. On itl}gp) acts with
eigenvalues: andx/(p)u ! satisfyingu+x(p)u~! = a,(g). In particular, the eigenforms in weight
which come from weight one are ordinary.

Proof. We choose a normalised eigenforfvior all operators. Ifi is at leasR-dimensional, then
we havelV =Ff @ {h | a,(h) = 0 Vp1{n}. As aformh in the right summand is annihilated By it
is equal toF'g for some formg of weight one by Propositidn1.8.1 (a). By Part (b) of thatpgmsition
we know that(Ag, Fg) is 2-dimensional. Ifl” were more thar2-dimensional, then there would be
two different cusp forms in weight, which are eigenforms for a]Fl(l) with [ # p. This, however,
contradicts Part (c).

Assume now thal” is 2-dimensional. Any normalised eigenforfne V' for all Hecke operators
in weightp has to be of the formilg + ;.Fg for someyu € F. The eigenvalue dI}Ep) on f is thep-th
coefficient, hence: = a,(g) + i, asa,(Fg) = ai(g) = 1. Now we have

(ap(9) + p)(Ag + pFg) = T (Ag + pFg) = TP Ag + nAg
= ATV g —X(p)Fg + nAg = (ap(9) + 1) Ag — X(p) Fg,
which implies—x(p) = (a,(g) + p)p = u? — ua,(g) by looking at thep-th coefficient. From this
one obtains the claim on. |
1.9 Galois representations attached to eigenforms

We mention the sad fact that only the one-dimensional reptations oiGal(Q/Q) are well under-
stood. In the case of finite image one can use the Kroneckeektbeorem which asserts that any
cyclic extension of) is contained in a cyclotomic field. This is generalised bybglalass field theory
to one-dimensional representationsfl(Q/ K ) for each number fields .

The great importance of modular forms for modern numberrthisodue to the fact that one may
attach a&2-dimensional representation of the Galois group of thenatis to each normalised cuspidal
eigenform. The following theorem is due to Shimurafot 2 and due to Deligne fok > 2.

1.9.1 Theorem.Letk > 2, N > 1, p a prime not dividingV, andy : (Z/NZ)* — C* a character.
Then to any normalised eigenforfne Si(V, x; C) with f = >~ -, a,(f)q" one can attach a
Galois representation, i.e. a continuous group homomaphi

ps+ Gal(Q/Q) — GL2(Qy)
such that
(i) pyisirreducible,

(i) ps(c) = —1 for any complex conjugation € Gal(Q/Q) (one says thap; is odd),
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(iii) for all primes [ { Np the representatiop is unramified at,

tr(ps(Froby)) = ay(f) and det(ps(Froby)) = (1) " 1x(0).
In the statementrob; denotes a Frobenius element/aande, is thep-cyclotomic character.

By choosing a lattice irGL,(Q,) containingp(Gal(Q/Q)), and applying reduction and semi-
simplification one obtains the following consequence.

1.9.2 Theorem. Letk > 2, N > 1, p a prime not dividingV, andy : (Z/NZ)* — IF_pX a character.
Then to any normalised eigenforfne Si(N,x; F,) with f = >_n>1an(f)g" One can attach a
Galois representation, i.e. a continuous group homomahfor the trivial topology oG Ly(F,,)),

ps: Gal(@/Q) — GL(Fy)
such that
(i) pyis semi-simple,
(i) ps(c) = —1 for any complex conjugation € Gal(Q/Q) (one says thap; is odd),
(iii) for all primes( { Np the representatiop is unramified at,

tr(ps(Frob;)) = a;(f) and det(p;(Froby)) = 1F"15(1).

1.9.3 Exercise.A continuous group homomorphism from a profinite graupo anyGLg(IF_p) (with
the discrete topology) has a finite image. [Hint: Image of anpact set under a continuous map is
compact.]

Each normalised eigenform machence gives us 2-dimensional odd Galois representation. Its
kernel is by Galois theory of the for@al(Q/K) for some number fieldC. Hence, we can also say
that K is attached tgf. But even more is true. The arithmetic &fcan (at least partially) be read off
from the coefficients of, since we know the traces of the Frobenius elements.

One can also often tell what the Galois grodpl(K/Q) is as an abstract group. This is what
the problems are concerned with. There are not so many jidssibas we see from the following
theorem.

1.9.4 Theorem. (Dickson)Letp be a prime and{ a finite subgroup oPGLx(F,). Then a conjugate
of H is isomorphic to one of the following groups:

finite subgroups of the upper triangular matrices,

e PSLy(F,) or PGLy(F,r) for r € N,

dihedral groupsD,. for » € N not divisible byp,

Ay, A5 or Sy.
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1.10 Galois representations of weight one Katz modular forra overF,

We have just seen that a normalised eigenfgrm S; (N, ; F,)kaz an be embedded into weight
in two different ways, via the Hasse invariant and the FralmenOn the subspace := (Af, F'f)
of S,(N,X; F,)katz all Hecke operatord; for [ # p act as multiplication by (f) and there is a
modular formsy € V' which is also an eigenform fdf,,.

We definep to be the Galois representation

p: Gal(Q/Q) — GLy(F,)

attached toy by Theoren{_L.9]2. Note th&—! = [!~! = 1, so that we could have formulated
Theoren .92 to include weight one forms from the beginning

1.10.1 Theorem. (Edixhoven, Coleman-Voloch, Gross)et f € S;(N,Y; F,)kaz be a normalised
eigenform, and suppoge> 2. Thenp, is unramified ap.

Proof. That is [EdixWelight], Theorem 4.5. O

1.11 Serre’s conjecture

Serre’s conjecture is the following. Lptbe a prime ang : Gal(Q/Q) — GL(F,) be a continuous,
odd, irreducible representation.

e Let IV, be the (outside op) conductor ofp (defined by a formula analogous to the formula for
the Artin conductor, except that the local factor fos dropped).

e Let k(p) be the integer defined by [EdixWeight] &y, be the integer defined by [Selrre]. In
particular, one hak(p) = 1 if and only if p is unramified ap (in that case:, = p).

e Let x, be the prime-tg part of det o p, which we consider as a charactgf/N,Z)* x
(Z/pZ)* =T,

1.11.1 Conjecture. (Serre)Let p be a prime andg : Gal(Q/Q) — GL»(F,) be a continuous, odd,
irreducible representation. Defin¥),, k(p), k, andy, as above.

e (Strongest form) There exists a normalised eigenférenS;,,) (N,, X, ; Fp)
e (Strong form)) There exists a normalised eigenfgira S, (N,, X, ; F,)

e (Weak form)) There exisY, k, y and a normalised eigenforrfi € S.(N, x; F,)
such thatp is isomorphic to the Galois representation
ps: Gal(Q@/Q) — GLy(F,)
attached tof by Theoreni 1.912.
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Itis known that forp > 2, the weak form implies the strong and the strongest farmid@&eight],
Theorem 4.5). Fop = 2, this implication is not known in the so-called exceptiooases, in general.
Very recently, Khare and Wintenberger announced a prodfeostrong form of Serre’s conjecture for
all p whoseN,, is odd. Let us mention thaY, is odd if and only ifp = 2 or p is unramified ap.

Serre’s conjecture implies, if true, that we can compute (inprinciple, at least) arithmetic
properties of all Galois representations of the type in Sem’s conjecture by computing the modp
Hecke eigenform it comes from. That'’s the purpose of these ties.

Edixhoven and coworkers have recently succeeded in givinglgorithm which computes the
actual Galois representation attached to a matbdular form!

1.12 Images of Galois representations

With a view towards the problems, we quote two results of Ribewing that the images of Galois
representations attached to modular forms are in generabha@ble.

A normalised eigenfornf is said to haveomplex multiplications (CM)y a non-trivial quadratic
charactek : Gal(Q/Q) — {1}, if

ap(f) = e(p)ay(f)

for all primesp in a set of density.

1.12.1 Proposition. (Ribet)Let f € Sy(N, x ; C) be an eigenform of levéy and some charactey
which is not a CM-form. Then for almost all primgsthe image of the representation

pp : Go — GLy(Fy)

attached tof restricted to a suitable open subgroup < Gq is {g € GLz(F)|det(g) € F,} for
some finite extensiak of IF,,.

Proof. Reducing modulo a suitable prime abagyehis follows from Theorem 3.1 of [R1], where
the statement is proved for tipeadic representation attachedjto O

1.12.2 Proposition. (Ribet) Let N be a square-free integer anfl € Sy(I'o(N) ; C) a newform for
the trivial character. Then for all primeg > 2, the image of the Galois representation

pp : G — GLa(Fy)
attached tof contains the grouSLy(IF,) if 5, is irreducible.

Proof. The representatiop,, is semi-stable (seé[R2], p. 278). As it is assumed to beunibte,
the proposition is just a restatementof [R2], Corollary. 2.3 O
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2 Modular Symbols modp

We distinguish different kinds of modular symbols which veene as follows:
(I) Formal modular symbols: theodular symbols formalism
(1) Group (cohomological) modular symbols.

(1) Geometric homological modular symbols

(IV) Geometric cohomological modular symbols.

The historically first notion of modular symbols was that ebgetric homological modular sym-
bols (Birch, Manin,Sokurov, Merel). Group (cohomological) modular symbolse@vprominently
used by Shimura in his proof of the Eichler-Shimura theor@mepren3.1]1). The modular sym-
bols formalism was discussed by Cremona, Merel and Stethjtdaa the way MAGMA and S\GE
understand modular symbols. Geometric cohomological taodiymbols are useful for applying
cohomological methods in (algebraic) geometry.

We shall describe in some detail group modular symbols aadrtbdular symbols formalism.
Their relation to geometric cohomological modular symhwils be stated without proofs. The geo-
metric homological modular symbols will only be mentionesdaamotivation in the weight two case,
but will otherwise be disregarded in the present treatn{Shé€inBook] is based on them, but unfortu-
nately does not give all the proofs.

Each of the four types mentioned has its own virtues: The taodymbols formalism is purely in
terms of linear algebra and can hence easily be implementaccomputer. The group cohomological
description has the advantage of allowing the use of cohagiral tools (long exact sequences etc.),
while staying in a rather explicit environment. Obvioughe geometric modular symbols have their
virtues in all geometric treatments. We only point out thatdern definitions of modular forms are
very often geometric ones (as one may see if the section anrlatlular forms is written).

2.1 Motivation for weight 2

This part only serves as a motivation for what is going to colive present geometric homological
modular symbols and relate them to the modular symbols fismain the case of weight two.

Geometric homological modular symbols should be thoughasof presentation (in terms of
generators) of the homology of modular curves. In the fallgwve shall establish a link to the
modular symbols formalism. As the base field we choose thepamumbersC.
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Consider the following commutative diagram fior= I'y(NV)

A C[Xo(N)] C|paths inX((N)] C[faces inXy(N)]
B: CIPYQ)]r Clc-paths inH] Clc-faces inH]r
C: C[PY(Q)lr <—— Cl{e, B}lev, B € PH(Q)lr < C[{a, B} + {87} + {v, a}|Ir

One must read “path” adl*simplex” and “face” as 2-simplex”. As we are only motivating a defini-
tion, we are not really precise. By c-paths we mean pathshéha both their endpoints in the set of
cusps. A c-face is a face whose boundary consists of c-paflesboundary maps are the natural ones
for the complexesd andB. The left map irC is given by{«a, 3} — (8 — «. The right hand side one
is the natural map. We have by definitiéh (A) = H;(Xo(NV),C). Moreover,

Hy(C) = ker ((C[{e, B}, B € PH(Q)]/{{er, B} + {B.7} + {7, }))r — C[C\P1(Q)]).

We denote this space My (T'o(N); C) and call it the space afuspidal modular symbols for
To(N).

The vertical maps fron$8 to .A are the natural ones. The map frainto B, sends{«, 5} to the
geodesic path fromx to 3, which is a semi-circle withy and 8 on the diameter. Thus, the element
{a, B} + {B,7} + {,a} in C2 is sent to the face whose boundaries are the geodesicsofrmns,
from /3 toy and fromy to «. In order to see that this is well defined, one must verify thatSLs(7Z)
sends a geodesic to another geodesic, which is true.

2.1.1 Proposition. We haveH (C) = H,(B) = H1(A). In particular, this gives
CMQ(FQ(N) 3 (C) = Hl(Xo(N), (C)

We shall not give a proof in this section. However, it is easydérive one from the general
comparison result to be established later on (Thedrem)2.5dne can try to compute this iso-
morphism directly, but one has to watch out, since witlinstead ofC, one only has surjections
H,(C) - Hy(B) — Hi(A) whose kernels are torsion. That torsion is due to the existef non-
trivial stabilisers for the actions af,(V) on H.

2.1.2 Remark. We haveH; (B) — H;(.A) by a direct argument.

Proof. The idea is that the elements in the kernellagf — A, are loops and that one can always
compose a loop with another one which meets a cusp and isactibte.

Letx = Z¢ z4¢ be in the kernel of the boundary map (theare paths). Hence, one has=
> 26(0(0) — ¢(1)) from which it follows that for any: € X, (V) the equality

0= Zz¢— Z 24

¢,6(0)=a ¥yp(l)=a
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holds. This implies

0= Z zp{00,a} — Z zp{o0,a} = Z zp{00,a} + Z zypla, o0},

¢,¢(0)=a ¥¥(1)=a ¢,¢(0)=a ¥¥(1)=a

where{co, a} means a path fromo (as a cusp oXy(/NV)) to a. One concludes:

p= > (3 e+ D omv— Y )

a€Xo(N) ¢,¢(0)=a Y(1)=a n,n(0)=n(1)=a

= > (Y we+{ca)+ Yz +{a,0})
aeXo(N) ¢,9(0)=a ¥, ¥(l)=a

- Z ZV](U + {OO’ CL} + {CL, OO})) .
n,m(0)=n(1)=a

By composing the paths, one sees that all paths used havedheists in the cusps (in fact, equal to
the image ofx). If one lifts these paths ], one obtains the desired surjectivity. O

Why are we computingd; (X(N),C)? Because one has an isomorphism,Eieghler-Shimura

isomorphismof its dual to the holomorphic and anti-holomorphic modditams!

2.1.3 Proposition. The map

f(z)dz+/g(z)d§)

SyTo(N): €) & ST ()3 ©) — Hi(Xo(N),©), (frg) — (7 /

o

is an isomorphism. Under the identifications explained abane may replacél; (Xy(N),C)" by
CMs(To(N); C)V. The map then becomes

B B
(F.9) = (o= [ f)az+ [ glo)a2)
where the integration path is along the geodesic fioto 5.

Proof. This is a special case of the Eichler-Shimura isomorphisrhetaliscussed later. The
modern proof uses cohomology and the Hodge decomposition:

Hy(Xo(N),C)Y = H'(Xo(N),C) = Hgr(Xo(N)) = H(Xo(N), Q) ) © Q3.

A proof in the language of Riemann surfaces can be found ieraétaooks. |
Let us recall that forf € Sy(I'o(N); C) andM = (2%) € PGL2(Q) one puts(f|M)(z) =
det(M)
f(MZ) (cz+d)2 .

2.1.4 Definition. Letp be a prime. Recall the s&,, from Equatior_TR. Recall also that the Hecke
operatorT, for f € S(I'o(IN); C) is

(L)) = Y (fIM)(=).

MER,
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We now defin€), onCMy(I'o(N); C) by

Tp{o‘>ﬁ}: Z M{O‘>ﬁ}: Z {MO‘>Mﬁ}

MER, MER,

which we extend linearly.

2.1.5 Proposition. The Hecke operators are compatible with the isomorphisnradsitionZT.B.
Proof. Let~ be a geodesic path fromto 3. ForM = (¢ Y) we have

det(M)

—=d
(cz +d)? -

f(2)dz = / F(M2)d(Mz) = / F(M2) / (f1M)(2)dz,
Y v Y

M~

whence the result. O
The idea of the modular symbols algorithm is to compute thekelgebra on modular sym-
bols, which we have described explicitly above and whichuigable for an implementation on the
computer. By the compatibility of the Eichler-Shimura ismphism with the Hecke operators the

Hecke algebra on modular symbols agrees with the one on mofitwims! We have seen above that
its knowledge is equivalent to the knowledge of the modusams.

2.2 The modular symbols formalism

In this section we give a definition of formal modular symbals implemented in MGMA and like
the one inl[MerelUnivershl] [Cremana] and Stein’s textb{teinBook], except that we do not factor
out torsion, but intend a common treatment for all rings.

We let R be a commutative ring with unit arid be a subgroup of finite index iRSL2(Z) For
the time being we allow general modules; so wellebe a left R[I']-module. Ifg € PSLy(Z) is
some element of finite order, we denote byN, the elementl + g + --- + g™ ! of the group
ring R[PSLy(Z)]. Similarly, if H < PSLy(Z) is a finite subgroup, we writ&Vyy = >, . h €
R[PSLy(Z)).

2.2.1 Definition. We define thé&?-modules

Mg = Rl{o B}, 8 € PAQ))/({as o}, o, 8} + {8.7} + {7, o, 5.7 € P(Q))

and
Br := R[P'(Q)].

We equip both with the natural Ieftaction. Furthermore, we let
MR(V) =Mpr®rV and BR(V) =Br®grV

for the left diagonall-action.
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(a) We call thel’-coinvariants
Mg, V) = Mp(V)r = Mg(V)/((z — gz)|g €',z € Mg(V))

the space ofl", V')-modular symbols.

(b) We call thel’-coinvariants
Br(',V) = Br(V)r = Br(V)/((z — gz)lg € T,z € Br(V))

the space ofl", V')-boundary symbols.

(c) We define thboundary mags the map
Mpg(T, V) — Br(T',V)
which is induced from the maptr — Br sending{«, 8} to {5} — {a}.

(d) The kernel of the boundary map is denoted’yt z(I", V') and is calledthe space of cuspidal
(T, V')-modular symbols.

(e) The image of the boundary map insiflg(T", V') is denoted b¥r(I", V') and is calledthe space
of (T', V')-Eisenstein symbols.

2.2.2 Exercise.Let R, " andV as above and lek — S be a ring homomorphism. Then
Mp(T,V)®r S =2 Mg,V @gS).

[Hint: Use that tensoring and taking coinvariants are botpght exact.]

Manin symbols

Manin symbols provide an alternative description of formaddular symbols. We shall use this
description for the comparison with the other kinds of madwymbols. We should also point out
that Manin symbols are important for the implementationthefmodular symbols formalism.

We stay in the general setting over a riRg

As PSLy(Z) is infinite, the induced modul&[PSL2(Z)] is not isomorphic to the coinduced one
Homp(R[PSLs2(Z)], R) and R[PSLy(Z)] is not cohomologically trivial. However, th&-module
H]..(PSLy(Z), R[PSLy(Z)]) is zero. This is the essence of the following propositiome®@eed not
understand that sentence at this point.)

2.2.3 Proposition. The sequence @t-modules

goor—1
_—

0 — R[PSL(Z)|N, + R[PSLa(Z)]N, — R[PSLy(Z)] L7400, pipl(Q)] R—0

is exact. (We are considerinG[PSLy(Z)] as a right R[PSLy(Z)]-module.)
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Proof. We first use that?[PSLs(Z)] is a cohomologically trivial module for bottr) and (7).
This gives
R[PSL2(Z)|Ny = kergipsr,(z) (1 — o) = R[PSLy(2)]',

R[PSLy(Z)|N; = kergipsr,z) (1 — 7) = R[PSLo(Z)]"™,
RIPSL2(Z)|(1 - o) = kergppsyzy) No - @and - R[PSLa(Z)](1 — 7) = kerpipsiy(z)) Nr-

By Propositiof B.611, we have the exact sequence
0 — R[PSLy(Z)] — R[PSL2(Z)] () @ R[PSL2(Z)](ry — R — 0.
The injectivity of the first map in the exact sequence means
R[PSLs(Z)](1 — o) N R[PSLy(Z))(1 — 7) = 0.

We identify R[PSLy(Z)]/R[PSLa(Z)](1—T) with R[P'(Q)] by sendingg to goo. Now we show
the exactness a@[PSL2(Z)], which comes down to proving that the equatigi — o) = y(1 — T)
for 2,y € R[PSLy(Z)] implies thatz is in R[PSLy(Z)]'") 4+ R[PSLy(Z)](7.

Using the formular = T'o we obtain that:(1 — o) = y(1 —=T) = y(1 —7) —yT(1 — o). This
yieldsz(1 — o) + yT(1 — o) = y(1 — 7). This expression, however, is zero. Consequently, thexe is
z € R[PSLy(Z)] such thaty = zN,. Hence, using’ = 7o and consequentlW, 7 = N,o, we get

y1—-T)=2zN;(1-T)=2N.(1—-0) =y(l — o).

The equationz(1 — o) = y(1 — o) means that: — y is in R[PSLy(Z)]‘"). As we know thaty €
R[PSLy(Z)]‘"), we see that = (z —y) +y is in R[PSLy(Z)]{”? + R[PSLy(Z)]'", as required. Note
that instead of this explicit calculation we could also hapeealed to Propositidn 2.B.6.

The exactness a[P'(Q)] can be seen as follows (we avoid here the traditional coetirfrac-
tions argument). Since andT = 7o generatePSLy(Z), the kernel of R[PSLy(Z)] =L Ris
R[PSLs(Z)](1 — o) + R[PSL2(Z)](1 — T'). Taking the quotient by?[PSL2(Z)](1 — T') gives the
desired exactness. O

2.2.4 Lemma. The sequence dt-modules

{a76}’_'187a
—_—>

0— Mg RPY(Q)] 2L R —0

is exact.

Proof. The injectivity of the first arrow is clear, since we can wrény element inMpz as
> aroo Tatoo, a} with o € R, using the relations definingtr. The image of this element un-
der the firstarrow i, o, 7o — (3_,200 Ta)o0- If this is zero, clearly alt, are zero, proving the
injectivity of the first arrow.
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Suppose now we are givén, r,a € R[P*(Q)] in the kernel of the second arrow. Thgn, 7, =
0 and consequently we have

Zraoz: Z raoz—(z To )00

o aF#00 aF#oo

which is in the image of the first arrow, as noticed before. O
2.2.5 Proposition. The homomorphism d?-modules

R[PSLy(Z)] & Mg, g {g.0,9.00}
is surjective and its kernel is given B{PSL2(Z)| N, + R[PSL2(Z)]|N;.

Proof. This is a direct consequence of Proposifion 2.2.3 and Lenihd.2 O

We are now ready to prove the description of modular symlolerims of Manin symbols.

2.2.6 Theorem.LetM = Ind?SLQ(Z)(V), which we identify witi R[PSLy(Z)]®@rV )r. That module
carries the rightR[PSLy(Z)]-action (h ® v)g = (hg ® v), and thel'-coinvariants are taken for the
diagonal leftl’-action. The following statements hold:

(@) The homomorphism from Propositio 2215 induces the exact sequende-ofodules

0— MN,+MN; - M — Mg, V) —0.

(b) The homomorphismk[PSL3(Z)] — R[P'(Q)] sendingg to g.co induces the exact sequence of
R-modules
0—-M1-T)— M — Br(I',V) — 0.

(c) The identifications of (a) and (b) imply the isomorphism

m—m(l—o

CMg(T,V) 2 ker (M/(MN, + MN,) LoMyM(1 - T)).

Proof. (a) We derive this from Propositidn 2.2.5, which gives thaasequence
0 — R[PSLy(Z)|N, + R[PSLy(Z)|N, — R[PSLy(Z)] — Ma(R) — 0.
Tensoring withV" over R, we obtain the exact sequence of I&ff"]-modules
0 — (R[PSL2(Z)] ®r V)N, + (R[PSLs(Z)] @ g V)N, — (R[PSL2(Z)] @r V) — Mgr(V) — 0.

Passing to lefl’-coinvariants yields (a). Part (b) is clear from the defaritand Part (c) has already
been noticed in the proof of Propositibn 2]2.3. O

31



The modulesV,,(R) and V;*(R)

Let R be a ring. We puV/,,(R) = Sym"(R?) & R[X,Y],. By the latter we mean the homogeneous
polynomials of degree in two variables with coefficients in the ring. By Maty(Z).., we denote the
Z-module of integra x 2-matrices with non-zero determinant. THEp(R) is aMaty(Z)..o-module
in several natural ways.

One can give it the structure of a léffat,(Z)_.o-module via the polynomials by putting

((28).HEXY)=F(X,Y)(28)) = f((aX + cY,bX +dY)).

Merel and Stein, however, consider a different one, andstitaé one implemented in MsMA,
namely

((28) - HECY) = F(((e o) () = F(L0) () = FO(T ) )
Here,. denotes Shimura’s main involution whose definition can lagl i&ff from the line above (note
that M* is the inverse of\f if M has determinant). Fortunately, both actions are isomorphic due to
the fact that the transpose @f¢ %)) (&%) is equal to(X,Y)o ! (2 }) o (the isomorphism is given
by v — ov).

Of course, there is also a natural right actionNbyt(Z)_o, namely

(2N = F(25) (55) = FU(ex Ty )-

By the standard inversion trick, also both left actions ithest above can be turned into right ones.

2.2.7 Proposition. Suppose that! is invertible in R. Then there is a perfect pairing
Va(R) x Vo (R) — R

of R-modules. It hence induces an isomorphisp{R) — V,,(R)" of R-modules respecting the
Mats (Z)0-action which is given o, (R)Y by (M.¢)(w) = ¢(M'w) for M € Mato(Z)1o, ¢ €
Vo(R)Y andw € V,(R).

Proof. One defines the perfect pairing 6 (R) by first constructing a perfect pairing d#?,
which we consider as column vectors. One sets

R x R - R, (v,w) := det(v|w) = vjwy — vowy.

If M is a matrix inMat(Z)o, one checks easily thaf\/v, w) = (v, M*w). This pairing extends
naturally to a pairing on the-th tensor power of?2. Due to the assumption on the invertibility of,

we may viewSym" (R?) as a submodule in theth tensor power, and hence obtain the desired pairing
and the isomorphism of the statement. O

2.2.8Lemma. Letn > 1 be anintegert = ({ 1) andt’ = (% 9). If n!N is not a zero divisor inR,
then for thet-invariants we havé/, (R) = (X") and for thet'-invariantsV,,(R){) = (Y"). If n!N
is invertible inR, then the coinvariants are given B%,(R)y = Vo(R)/(Y™, XY™, ... X" 1Y)
respectively,,(R) y = Vu(R)/(X™, X"71Y, ..., XY™ 1),
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Proof. The action oft ist.(X"~'Y?) = X" /(N X +Y)? and consequentlgt — 1).(X"~'Y?) =
S orig X"y with r;; = NI (%), which is not a zero divisor, respectively invertible, by
assumption. For = Y7 a;X""'Y" we have(t — 1)z = Y70 X" IYI(0 . agryj). If
(t — 1).z = 0, we conclude forj = n — 1 thata,, = 0. Next, forj = n — 2 it follows that
a,—1 = 0, and so on, untik; = 0. This proves the statement on théwvariants. The one on the
t’-invariants follows from symmetry. The claims on the coiaats are proved in a very similar and
straightforward way. O

2.2.9 Proposition. Letn > 1 be an integer.
(@) If n!N is not a zero divisor inR, then theR-module of'(N)-invariants V;, (R)" V) is zero.
(b) If n!N is invertible in R, then theR-module ofl"(V)-coinvariantsV;, (R)r () is zero.

(c) Suppose thdt is a subgroup o8L,(Z) such that reduction modulp defines a surjectiol’ —
SLy(F,) (e.9.T'(N), I'1 (IV), I'g(IN) for p { N). Suppose moreover that< n < pif p > 2, and
n = 1if p = 2. Then one ha¥,(F,)' = 0 = V,,(F,)r.

Proof. AsT'(V) contains the matricesandt’, LemmdZ.ZB already finishes Parts (a) and (b). The
only part of (c) that is not yet covered is when the degree-sp > 2. One has the exact sequence of
I'-modules) — Vi (F,) — V,(F,) — V,_2(F,) — 0. Hence, it suffices to take invariants respectively
coinvariants to obtain the resuilt. |

Letnowy : Tg(N)/T1(N) = (Z/NZ)* — R* be a character. BRX we denote the?[['o(V)]-
module which is defined to b& with T'q(/N)-action throughy~! (taking the inverse is not some
amusement in making formulae more difficult, but arises fittvm fact that we want our modular
symbols with charactey to match the definition i [SteinBobk] (at least in most cases

We further let
VX(R) := V,(R) ®r RX

n

equipped with the diagondly(V)-action. Note that unfortunately this module is not &, (Z)-
module any more, but we will not need that.

Since asl'(N)-modulesV,X(R) and V,,(R) are isomorphic, Propositidn 2Z.2.9 also applies to
VX(R). Note, moreover, that if(—1) = (—1)", then minus the identity acts trivially ovi,‘(R),
whence we consider this module also d%&V)/{+1}-module.

The modular symbols formalism for standard congruence subgups

We now specialise the general set-up on modular symbolsatbatave used so far to the precise
situation needed for establishing relations with modubamfs.

So we letN > 1, k > 2 be integers and fix a character: (Z/NZ)* — R*, which we also
sometimes view as a group homomorphiEgiN) — R*. We impose thag(—1) = (—1)*.
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We define
My(N, x5 R) := Mp(To(N)/{£1}, VX 4 (R)),

as well as similarly for the boundary and the cuspidal spatége natural action of the matrix =
(') gives an involution on all of these spaces. We will denoteheysuperscript the subspace
invariant under this involution, and by the superscrighe anti-invariant one.

In the literature on Manin symbols one usually finds a mordieixpersion of the induced mod-
ule. This is the contents of the following proposition. Itadishes the link with the main theorem
on Manin symbols in[|SteinBobk], namely Theorem 8.2.2 (ia kst version of([SteinBook] that |
printed).

Since in the following proposition left and right actiong anvolved, we sometimes indicate left
(co-)invariants by using left subscripts (resp. supepsgyiand right (co-)invariants by right ones.

2.2.10 Proposition. Consider theR-moduleX := R[['1(V)\SL2(Z)] ®r Vi—2(R) @ g RX equipped
with the right SLy(Z)-action (I'1(N)h @ V @ r)g = (I'1(N)hg ® g~ 'v ® r) and with the left
I (N)\I'g(NV)-actiong(I'y (N)h @ v @ r) = (T'1(N)gh @ v @ x(g)r).

Then X is isomorphic as a rightR[SLy(Z)]-module and a leftR[['y (N)\I'o(V)]-module to
Indf,ff](vz))(vkx(}%)), and, moreoverp, (vy\r,(v)X iS isomorphic tOIndISiI;(zj(VZ))(VkX(R)). If N > 3,

then the latter module is isomorphic Iﬂdﬁf(L]f,g%%ﬂ}(VkX(R)).

Proof. Mappingg ® v ® r t0 g ® g~ 'v ® r defines an isomorphism of rigiit[SL»(Z)]-modules
and of leftR[I"; (N)\I'o(N)]-modules

I'1(N) (R[SL2(Z)] ®g Vk—2(R) ®pr RX) — X.

As we have seen above, the left hand side module is natusaiynarphic to the induced module
Ind%f](vz))(vkx(}%)) (equipped with its right?[SLy(7Z)]-action described before). This establishes the
first statement. The second one follows fremuy\ro(v) (ry(v)M) = ryv)M for any Ty(N)-
module M. The third statement is due to the fact that,(R[SL2(Z)] ®r V,* ,(R)) is naturally
isomorphic toR[PSLy(Z)|®rV,* 5 (R), since—1 acts trivially on the second factor, as the assumption

assures that1 € T'o(IV) but—1 € I'1 (N). O

Hecke operators

The aim of this part is to state the definition of Hecke opestind diamond operators on formal
modular symbolsM (N, x; R) andCM (N, x; R). One immediately sees that it is very similar
to the one on modular forms. One can get a different insigthéndefining formulae by seeing how
they are derived from a “Hecke correspondence like” fortiaitain the section on Hecke operators
on group cohomology.

The definition given here is also explained in detaillin [8800K]. We should also mention the
very important fact that one can transfer Hecke operatoamiaxplicit way to Manin symbols. Also
that point is discussed in detail in [SteinBook].
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We now give the definition only fdf; for a primel and diamond operators. TH& for composite
n can be computed from those by the formulae already statedeirbéginning. Notice that the
R[Iy(N)]-action onV}* ,(R) (for the usual conventions, in particulag(—1) = (—1)¥) extends
naturally to an action of the semi-group generated'pyV) andR,; (see Equatioh1l2). To be precise,
we make that statement for the action discussed by Stein @&melllsee the section dn,(R)). Thus,
this semi-group acts oM (N, x; R) (and the cusp space) by the diagonal action on the tensor
product. Letr € My(N, x; R). We put

Tyx = Z o.x.

SER,
If a is an integer coprime td/, we define the diamond operator as
(a)r = oqx = x(a)x

with o, as in EquatiofT]1.

| had wondered for a long time why Merel and Stein use theioaatnV,,(R) (i.e. applying the
Shimura main involution) and not the maybe more straighvéod one. The answer becomes clear
in the discussion of Hecke operators on group cohomologgrethe main involution comes in quite
naturally.

2.3 Group cohomological modular symbols

As in the section on the modular symbols formalism, we sHath d#ase our group cohomological
modular symbols on the groupSL2(Z), rather tharSLy(Z), which simplifies the treatment, since
SLo(Z) has a very simple structure, namely as a free product of twicagroups.
PSLy(Z) as a free product
Recall the matrices &Ly (Z)

o=(17), 7=(210), T=(§1) =70
One knows thaPSL.(Z) is the free product of the cyclic grougs) of order2 and(r) of order3. In
other wordsPSLy(Z) has the presentatiof, 7|0 = 73 = 1) as an abstract group.

In the following we will exploit the simplicity of this desigtion. In fact, we have already used a
consequence of the freeness (namely PropodifionIB.6.)riproof of the Manin symbols theorem.

Mayer-Vietoris for PSLy(Z)

We now apply the Mayer-Vietoris sequence (Piop. B.6.2) tosituation to get that for any ring
and any leftR[PSLy(Z)]-moduleM the sequence

0 — MPSL2@) _ pplo) o pp(m) 5
— HY(PSLy(Z), M) — H'((0), M) ® H'((1), M) — 0 (2.9)
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is exact and for all > 2 one has isomorphisms
H'(PSLy(Z), M) = H'((0), M) @ H'({(T), M). (2.10)

2.3.1 Corollary. Let R be a ring andl’ < PSLy(Z) be a subgroup of finite index such that all the
orders of all stabiliser group$', for = € H are invertible inR. Then for allR[I']-modulesV” one has
HYT,V) = M/(M© + M) with M = Coindl.">®) (V) and H/(T', V') = 0 for all i > 2.

Proof. Forz € H we denote by’SLy(Z),, the stabiliser subgroup &fSLs(Z) of the pointz. The
image of theéPSLy(Z)-orbit of 2 in T'\H is in bijection with the double coseld PSLy(Z)/PSLy(Z),
as follows

I\PSLy(Z)/PSLy(Z), 2=%% I'\PSLy(Z)z.
Moreover, the groug’ N gPSLy(Z) g equalsl’y,, the stabiliser subgroup df of the pointgz.
Thus, for alli € N, Mackey’s formula (Prof.B.5.1) gives an isomorphism
H(PSLy(Z), Coind>*Pvy= [ HI(T,.V). (2.11)
y€D\PSLa(Z)x

By Exercisd_L.6]1, all non-trivial stabiliser groups foe taction ofPSLy(Z) onH are of the form
gloyg 1 NT or g(r)g~! NT for someg € PSLy(Z). Due to the invertibility assumption we get from
Prop[B31 that the groups in Equation2.11 are zero. Hdnc8hapiro's lemma (Prop.B.4.1) and
Equations[(Z]9) and{Z.]10) we obtain the proposition. O

By Exercisd_L.8]1, the assumptions of the proposition arénfdance always satisfied R is a
field of characteristic nat or 3. They also hold fol*; (N) with N > 4 over any ring.

Definition of parabolic group cohomology

Let R be aring,I" < PSIL»(Z) a subgroup of finite index. One defines therabolic conomology
group for the leftR[I']-moduleV” as the kernel of the restriction map in

0— HL (T, V) — HYI,V) =5 11 HYT' N {(gTg™),V). (2.12)
ge'\PSL2(Z)/(T)

2.3.2 Exercise.Use Mackey’s formula as in the proof of Corolldry 2]3.1 tosttbat the definition of
parabolic cohomology is compatible with Shapiro’s lemn, that Equation[{Z.]2) is isomorphic to

0 — Hpo(PSLa(Z), M) — H' (PSLy(Z), M) == H'((T), M) (2.13)
with M = Coind}.> ">V = Hom gy (R[PSLa(Z)], V).

2.3.3 Proposition. Let R be a ring andl’ < PSI»(Z) be a subgroup of finite index such that all the
orders of all stabiliser group$',, for = € H are invertible inR. Then for all leftR[I']-modulesV the
sequence

0— Hy,(T,V) — H'(T,V) = [T H'@T@NTg™),V)—HT,V) =0
geT\PSL2(Z) /(T
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is exact.

Proof. Due to the assumptions we may apply Corollary 2.3.1. Theicésh map in Equa-
tion (ZI3) thus becomes

m—(1—o)m

M/(M + M)

M/(1—T)M,

sinceH'((T), M) = M/(1 — T)M by Exercisd B.2J1. Seeinty asHomp(R[PSLy(Z)],V) gives
that the cokernel of this map, which one directly obtaind/&s (the G-coinvariants), are the constant
functions tol’"', which are clearly isomorphic tg". O

Exact computation of cohomology of subgroups oPSLz(Z)

We have already seen how to use the Mayer-Vietoris sequ@&ropdsitior 29) to compute the co-
homology of subgroups d?PSL.(Z) of finite index, if we allow some rather weak conditions on the
invertiblity of stabiliser orders in the base ring.

For the course we will not need the present section, butiitdlsided since it gives an explicit de-
scription of the cohomology d?PS1L(7Z) over any ring, even in the presence of non-trivial stabitise
Moreover, it illustrates that already from the definitiongsbup cohomology in terms of cochains,
one can get a Manin symbols like statement.

Let us recall some notation. We Iét be a ring. Ifg € PSLy(Z) is some element of finite
orderm, we denote byV, the element + g + - - - + g™~ ! of the group ringR[PSLy(Z)]. Similarly,
if H < PSLy(Z) is a finite subgroup, we writ&/z; = >, ., h € R[PSLy(Z)].

2.3.4 Proposition. Let M be a leftR[PSLy(Z)]-module. Then the sequencef®modules
0 — MPSE2(Z) _ M — kerys Ny x kerpyy N, — HY(PSLy(Z), M) — 0
is exact.

Proof. We determine thé-cocycles ofM. Apart from f(1) = 0, they must satisfy
0= f(o?) = of(0) + f(0) = No.f(o) and

0= f(r") = --- = N, f(1).

Since these are the only relationsHAL2(Z), a cocycle is uniquely given by the choices
f(o) € kerpy N, and f(7) € kerps N-.

Thel-coboundaries are precisely the cocycfeshich satisfyf (o) = (1—o)mandf(7) = (1—7)m
for somem € M. This proves

H'(PSLy(Z), M) = (kerps Ny x kerpys N;)/(((1 = o)m, (1 —7)m) |m € M).

Rewriting yields the proposition. O
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2.3.5 Remark. AsPSLy(Z ) (T') < PSLy(Z) is infinite cyclic, one has by ExercifeBJ2.1 that
PSL2

H'(PSLa(Z) o, Respgp o oo )= M/(1-T)M.
An explicit presentation of the parabolic group cohomolagthe following.
2.3.6 Proposition. The parabolic group cohomology group sits in the exact secgie

O—>M<T>/MPSL2(Z) — kerpr Ny Nkerp N, 2, g

par

(PSLy(Z), M) — 0,
where¢ maps an element to thel-cocyclef uniquely determined by(o) = f(7) = m.

Proof. Using Propositiol 2.314, we have the exact commutativerdiag

-1
M) /MPSL2(Z)u ker Ny N ker N

par(PSLQ( ) M)

HY(PSLy(Z), M)

(1-T)o (a,b)—b—a
(1 —T)M¢ M HY(PSLy(Z),, M).
As the bottom left vertical arrow is surjective, the clainfida/s from the snake lemma. O

Hecke operators

Hecke operators conceptually come from Hecke correspamedesn modular curves. Itis quite easily
checked that the treatment of Hecke operators on group cologsnto be given here, coincides with
the one coming from the Hecke correspondences on compleulararlirves (at least, when there are
no non-trivial stabilisers, i.e. for the grodp (N) with N > 5), see e.g[[Diamond-Im], 3.2 and 7.3.
For the description here, we follow [Diamondiim] 12.4.

Let N > 1. We define the following two sets (far # 0):

AG(N) ={(
AT(N) ={(

‘;3) la,b,c,d € Z,(a,N) = 1,c = 0mod N, det (‘ZZ) =n} (2.14)
gg) la,b,c,d € Z,a = 1mod N,c = 0mod N, det (Cc” g) =n} (2.15)
We now letl’ := I'y(N) andA? := AJ(N) or T := I'y(N) and AP := AL(N). We also letR be a
ring andV a left R[I']-module which extends to a semi-group action by the semigmmnsisting of
all o* for o € A™ for all n. Recall that( 2 4)" = ( 4, °).

Leta € A. We use the notatiorB, := I' N a T andT’'® := ' N al'a~!, where we consider
a~! as an element dfiLy(Q). Both groups are commensurable with

TheHecke operatofl,, acting on group cohomology is the composite

HYT, V) ™ gire, v) e gL, vy <O gLa, v).
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The first map is the usuakstriction and the third one is the so-callemrestriction which one
also finds in the literature under the natnensfer We explicitly describe the second map on non-
homogeneous cocycles (di._ [Diamond-Iim], p. 116):

conj, : Hl(I‘a7V) — Hl(I‘o”V)7 c (ga — @L-C(agaa_l)),

There is a similar description on the parabolic subspacettantivo are compatible. The following
formula can also be found in [Diamonddim], p. 116, and [Sm&juSection 8.3.

2.3.7 Proposition. Suppose thafal' = |J!' , I'd; is a disjoint union. Then the Hecke operaffi
acts onH (T, V) and H!, (T, V') by sending the non-homogeneous coeyteT,,c defined by

par
Z 8c(8i907 |

for g € I'. Herejj(i) is the index such thal—géj‘(}) el

Proof. We only have to describe the corestriction explicitly. Hoattwe notice that one has
I' = U, Tagi With ag; = 6;. Furthermore the corestriction of a non-homogeneous ¢eaye
HY(T',, V) is the cocyclecores(u) uniquely given by

cores(u Z g; u(gi 995

for g € I'. Combining with the explicit description of the magnj,, yields the result. O

For a positive integenr, the Hecke operatofl;, is defined a$ |, Ti,, where the sum runs through
a system of representatives of the double cosets™ /T

2.3.8 Exercise.Letp be a prime. Prove tha\? = T" (52) I' and thatR,, is a system of representa-
tives of [\ AP. (R, was defined in Equatidn.2.)

Let a be an integer coprime t&/. The diamond operator(a) is defined a<l,, for the matrix
0. € To(N), defined in EquatioiIl1 (if thE-action onV” extends to an action of the semi-group
generated by andat; note thatn € A}, but in general not in\}).

It can be checked that the Hecke and diamond operatorsystiesf‘'usual” Euler product and
one has the formula&;,T,, = 7., for any pair of coprime integers, m andT,-+1 = T T}, —
PN p) Ty if pt N, andTyr1 = T, T, if p | N.

Finally, we should mention that the definition of Hecke opensis compatible under Shapiro’s
Lemma. This was first proved by [AshStevens].

Group cohomological modular symbols

The group cohomological modular symbols that we will beriegged in are, of course, those arising
in the Eichler-Shimura theorem (see Theofem8.1.1).
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Let R bearingk > 2, N > lintegers,x : (Z/NZ)* — R* a character.
The group cohomological modular symbols of weidhtlevel N for the charactery over the
ring R are defined to be
HY(To(N), VX 5(R)).
Their cusp spacés defined to be
Hpor(To(N), VX5 (R)).-

par
For our treatment of Hecke operators to make sense, we nillisagthow we sed/,* ,(R) as a
Af(N)-module. We just extend the alternative description of theractery : I'o(V)/T'1(N) — R
given by (2%) — x(a) tox : Aj(N) — R given by the same formula. Accordingly, we extend the
I'o(IN) action onRX to aAf (N)-action, so that,* ,(R) = V;,_o(R)®@rRX is also aA{ (NN )-module.

Torsion in group cohomological modular symbols

Herremans has computed a torsion-freeness result likeollmving proposition in [[Herremans],
Proposition 9. Here we give a short and conceptual proof difjatly more general statement. The
way of approach was suggested by Bas Edixhoven. This is aifie @oitns where the cohomological
machinery becomes really handy. Herremans worked withdbmodular symbols, so his proof is
much more difficult (to my mind).

2.3.9 Proposition. Let R be an integral domain of characteristichaving a principal maximal ideal
m = (7) with residue field® of characteristicp. Let N > 1 andk > 2 be integers such that the orders
of the stabiliser subgroups &% (V) for x € H have order coprime tp (see Exercise_1.9.3). We also
let x : (Z/NZ)* — R* be a character withy(—1) = (—1)*. We denote by the composition of
with the natural projection? — F. Then the following statements hold:

(@) H'(T'o(N), VX 5(R)) @r F = HY(To(N), VX, (F)).
(b) If k =2, thenH! (I'o(N), V;* 5(R))[x] = 0. If k > 3, then
H' (To(N), V¥ o(R)[w] = VX, (F) o),
In particular, if p{ N, thenH!(I'g(N), VX ,(R))[r] = 0forall k € {2,...,p+ 2}.
() Ifk=2,0rifk e {3,...,p+2} andpt N, then

Héar(FO(N)’ VkX72(R)) @R F= Héar(FO(N)a szQ(F))

Proof. Let us first notice that the sequence

0= VX L(R) 5 VX ,(R) = ViX,(F) — 0
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of R[I'o(/V)]-modules is exact. The associated long exact sequenceriiee® the short exact se-
quence

0 — H'(To(N), V;y(R) ® F — H'(To(N), V() — H™ ! (To(N), Vi, (R))[x] — 0

for everyi > 0. Exploiting this sequence far= 1 immediately yields Part (a), since af? of T'y(N)
is zero by CorollaryZ311. Part (b) is a direct consequeri¢beocase = 0 and Propositiof Z.2.9.
We have the exact commutative diagram

0= Hl(FO(N)7 Vk>i2(R)) = Hl(PO(N)v VkX72(R)) - Hl(FO(N)v VizQ(F)) >0

v v v
0 =TT, H' (Dg. Vi o (R) ZTT, H' (Dg. Vi y(R)) = 1, H' (Dy, V5 (F)) = 0
¥ ¥
(V5 (RO T (VX (R))Fo)
¥ ¥
0 0

where the products are taken overe T'o(N)\PSL2(Z)/(T), andD, = I'((N) N (gTg~'). The
exactness of the first row is the contents of Parts (a) and'fi@t the columns are exact follows from
PropositioZ313. The zero on the right of the second rows t the fact thaD, is free on one
generator (see Exercife Bll.1). That generator is of tha fof} ;) ¢~* with r | IV, so thatr is
invertible inF. The zero on the left is trivial fok = 2 and for3 < k£ < p + 2 it is a consequence of
LemmaZZB. Part (c) now follows from the snake lemma, sinceropositior 2.2]9 the lower row
is zero. O

2.4 Geometric cohomological modular symbols

In this section we give a brief introduction to “geometridhomological modular symbols”, without
proving any results.
We letT" < PSL2(Z) be a subgroup of finite index anda left R[I']-module for a ringk. Denote
by C eitherH or H, by X the quotient spackr respectivelyXt, and byr the quotient mag — X.
Let V be the constant sheaf @ghassociated td” together with its natural’-action, i.e. for an
open set/ C C we letV(U) = Homes(U, V') (equippingV with the discrete topology) together
with isomorphismsp, : V. — ¢,V for eachg € I" which onU are given by

HomctS(U7 V) - Homcts(gU7 V)7 f = (gu = gf(U) Vu S U)

We have thatr,V is a sheaf onX of R[I']-modules and th&-action from geometry agrees with the
one on the module. We Iétr,. V)T to be the sheaf

U (mV(0)" = (V="' 0))".

Suppose now that there is no non-trivially stabilised poinf for the action ofl". In that case,
the shealfr,V is easily seen to be locally constant. In that case, one carkdhat

Hi(D,V) = Hi(Yr, (r,V)F). (2.16)
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In the general setting, the following theorem is provedlin2]WTheorems 5.7 and 5.9, using
methods from homological algebra.

2.4.1 Theorem. Let M denote the coinduced modul®indS (V). We have the two exact sequence:
0— H'(Yr, (mV)") — H'(L,V) — H'((0), M) ® H'((7), M)
and
0 — H'(Xp, (mV)") — H'(T, V) — H'((0), M) & H' ((r), M) & H'((T), M).
2.4.2 Corollary. We have the explicit descriptions:
HY (Y, (mV)Y) = M/ (M@ M)

and
HE (Ve (m )T 2 ker (M/(MY) + M) 2% MJ(1 - T)M).

par

Proof. It suffices to compare the exact sequences of Thebren 2.ththe Mayer-Vietoris exact
sequence (Equatidn2.9). O

2.5 Comparing the different types of modular symbols

LetT" < PSLy(Z) be a subgroup of finite index, anda left R[I']-module for a ringR.

2.5.1 Theorem. Suppose that the orders of all stabliser subgroup§' ér the action onH are in-
vertible in R. Then we have isomorphisms (which respect the Hecke opeiatthe cases for which
we defined them):

HYI,V) = Mg(L,V)

and
Hpo (T, V) = CMp(T, V)

par

Proof. This follows immediately from comparing the Manin symboésdription of modular sym-
bols (Theoreni 2. 216) with the Mayer-Vietoris exact seqeefitquatiorZ19) and Shapiro’s Lemma.
|

The precise differences between the spaces of modular syrate computed in the following

theorem. We assume the notations from the previous section.

2.5.2 Theorem. The following sequences are exact:

@ 0— H'(Yr, (m)") — HY(T,V) = [loey, H' Ty, V),

zEYr

(0) 0 — HL,. (O, (mW)Y) = HL (T, V) = [Toey, H Ty, V),

par par
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© ey, (V' /Np,, V) = Mg(T, V) — H' (3, (mX)") — 0,
(d) HmEYF (VFW /Nryz V) - CMR(F’ V) - Hfl)ar(YF’ (W*K)F) — 0,
where for allz € Yr we have chosen, € H such thatr(y,) = «.

Proof. Via an identification between the induced and the coinducedute, this follows from
Corollary[ZZ.? and Theoreris Z1.1 4nd 2.2.6 together wibKdy's formula and Shapiro’s Lemma.
O

2.5.3 Corollary. Let R = Z. TheZ-modulesH!(T', V'), H' (Y, (7.V)!) and Mz(T, V) only dif-
fer by torsion. The same statement holds for #henodulesH], (I, V), H., (Y7, (m.V)") and
CMz(T,V). 0O

2.5.4 Corollary. We now suppose that the orderIgf is invertible inR for all z € H. Then there are
isomorphisms
HYD,V) = H (Yr, (mV)F) =2 MR(T, V)

and
Hpor (T, V) 2 Hyo (Yr, (mV)) 2 CMR(T, V).
The statements hold, in particular, for the grolip(/V) with N > 4.

Proof. This follows from TheorerirZ5 2. We have already seen paittiofTheorenZZ511. For
the last part we use that under the conditiér> 4 all I"; (), are trivial by Exercis€1.6.2. O

We point the reader to ExercisEs_116.3. in order to see intwbases the assumptions of the
previous corollary hold for the groulpy (V).

3 Computing Modular Forms mod p

Throughout this section, we let, as befoke> 2, N > 1, p a prime, andy : (Z/NZ)* — C* a
character. Further we | = Z[x], 9 a prime ofO abovep, F the residue fieldD the completion of
O at’R3, as well ask’ the field of fractions 0D.

Notation for Hecke algebras

Let R be aring,S C R a subring and// an R-module on which Hecke operators and diamond op-
erators act. We denote By (M) the subS-algebra of the endomorphism rifénd (M) generated
by the Hecke and the diamond operatorsS If- S’ is a ring homomorphism, we use the notation
Te (M) =Tg(M) ®s S".

This notation agrees with the previous one used for moduolang.
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3.1 The Eichler-Shimura theorem

3.1.1 Theorem. (Eichler-Shimura) There are isomorphisms respecting the Hecke operators
(@) My (N, x; C)) @ Sk(N,x; C)Y = HY(To(N), VX ,(C)) = Mp(N, x; C),

(0) Sk(N,x; €)) ® Sk(N,x; C)Y = Hy, (Lo (N), VX ,(C)) = CM(N, x5 C),

par

(©) Sk(N,x: C) = HL, (To(N), VX, (C))* = CM(N, x; C)*.

par

Proof. The first isomorphisms of Parts (a) and (b) are [Diamond-Ihmgorem 12.2.2. Via the
comparison, Theorefi 2%.1, we obtain the second isomanghig\s the space of anti-holomorphic
cusp forms is dual to the space of holomorphic cusp formg, (Epis a direct consequence of (b).

O

We may rephrase the Eichler-Shimura theorem as follows.
3.1.2 Corollary. (a) The Hecke algebrdBo (Mg (N, x; C)), To(My(N, x; C)) are isomorphic.
(b) The Hecke algebra&o (S, (N, x; C)), To(CMy(N,x; C)) and To(CMi(N,x; C)*) are

isomorphic. O

3.2 Comparing Hecke algebras ovelr
From Exercis€ 2212 one deduces a natural surjection
To(Mk(N,x; 0)) ®0 F — Tp(Mg(N, x; F)). (3.17)

One way to think about this map is as reducing matrices witHesnin @ modulo®3. In the same
way, one also obtains from Corolldiy311.2

To(Mk(N,x; 0)) - To(Mg(N,x; O)/torsion) = To(Mg(N, x; C)). (3.18)

Similar statements hold for the cuspidal subspace.

Later on, we shall give a criterion to determine during thiewdation of Tr(CM (N, x; F))
whether Equatiof“3:17 is an isomorphism, from which one tletuces via Equatidn-3118 a relation
to the Hecke algebra of cusp forms modpulo

We call a maximal primen of To(My (N, x; O)) ®o O (respectively the corresponding prime
of To(Mg(N, x; O)) ®o F) non-torsionif

M (N, x; O))m = (My(N, x; O)/torsion) .
Equivalently, we have that Equatibn-3.18 becomes

TO(M/C(Nv X3 O))m - TO(Mk(N7 X5 O)/tOfSiOﬂ)m = TO(MR(Nv X5 C))m (319)
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Another equivalent condition is that the heighthofs 1.

We recall that we have listed cases of the absence of tomsitheidiscussion of group cohomo-
logical modular symbols. Via the comparison (Theofem B.tvd see that in many cases all primes
are non-torsion.

Even if Equatioi:3.l7 is not an isomorphism, we can still 48g( N, x ; F) for the computation
of the coefficients of all eigenforms med

3.2.1 Proposition. (a) Letf € My(N,¥; F) be a normalised eigenform. Then there exista:aa 0
in My (N,x; F) such thatl},x = a,(f)x for all n.

(b) Letm be a non-torsion maximal ideal @fy (M (N,%; F)) and0 # =z € M(N,X; F) such

that 7,2 = a,(f)x for all n and certain\,, € F. Then there exists a normalised eigenform
f € My(N,x; F) such thata,,(f) = A, for all n.

Proof. The systems of eigenvalues for the action of the Hecke opsra}, on the non-torsion
part of M (N, x; C)y, agree by Equation=31L8 with the systems of eigenvaluesipfV, x ; C)y,.
Due to

Mi(N,x; O)m @0 F = Mi(N,X; F)m

(see Exercise2.4.2) both parts follow. |

3.3 The Sturm bound

In this section we state the so call&turm boundalso calledHecke bouny which gives the best
known a priori upper bound for how many Hecke operators assle@ to generate all the Hecke
algebra. We only need it in our algorithm in cases in whicls thieoretically not known that the stop
criterion which we will discuss below is always reached.shill enable the algorithm to detect if the
Hecke algebra on modular symbols is not isomorphic to theesponding one on cuspidal modular
forms.

3.3.1 Proposition. (Sturm bound) The Hecke algebr&'¢ (S (V, x ; C)) can be generated as an al-
gebra by the Hecke operatoffs, for all primesp smaller than or equal té“g H”N’l prime(l + %).

Proof. This is discussed in detail in Chapter 11 [of [SteinBook]. O

3.4 The stop criterion

This section is based on the preprint [KW], which is joint waevith Lloyd Kilford.

Algebraic preparation

3.4.1 Proposition. Assume the set-up of Proposition 113.2 andMgtN be T-modules which a®-
modules are free of finite rank. Suppose that
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(@ M®nC=N®onCasT ®»n C-modules, or

(b) M ®0 K = N ®p K asT ®p K-modules.

Then for all prime idealsn of Tr corresponding to height primes ofT 5 the equality
dimp(M ®0 F)m = dimp(N ®0 F)m

holds.

Proof. As for T, we also writeM i for M ®» K and similarly forV andO, F, etc. By choosing an
isomorphismC = K, it suffices to prove Part (b). Using Propositlon 11.3.2, Raixtthe isomorphism
M ®o K =2 N ®p K can be rewritten as

DMk pe @k K) = PNk pe @1 K),
p p

where the sums run over the minimal primesf T 5 which are properly contained in a maximal
prime. Hence, an isomorphistWx - ®x K = Ng e @i K exists for eactp. Since for each
maximal ideaim of T 5 of height1 we have by Propositidn 1.3.2

Mg, ©5K= P Mgy

pCmmin.

and similarly forN, we get

dimp My m :rk@M@ = Z dim g M pe

pCmmin.

= Y dimg N pe = tkgNg ,, = dimg N .

pCmmin.

This proves the proposition. O

Comparing dimensions

We use the algebraic preparation in order to compareFtdanensions of local factors of mogd
modular forms withF-dimensions of the corresponding local factors of mpadodular symbols.

3.4.2 Proposition. Letm be a maximal ideal of o (M (N, x; O)) ®o F which is non-torsion and
non-Eisenstein. Then the following statements hold:

(@) CME(N,X; F)m = Mp(N,X; F)m.
(b) 2 - dimg Sp(N, X; F)e = dimg CMy(N, X Fan

(c) If p # 2, thendimp Si (N, X ; F)ym = dimp CM (N, X ; ).
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Proof. Part (c) follows directly from Part (b) by decomposiGg1, (N, x ; F) into a direct sum
of its plus- and its minus-part. Statements (a) and (b) valtbncluded from Propositidn 3.%.1. More
precisely, it allows us to derive from Theorém3]1.1 that

dimg ((Mg(N, x; O))/torsion) @o IF)m
= dimp (Eis (N, X; F) ® Sk(N,X; F) @ Sg(N,x; F)")

m

and
dimp ((CMi(N, x; O)/torsion) @ F) = 2 - dimg Sg(N, X ; F)m.

The latter proves Part (b), sinee is non-torsion. As by the definition of a non-Eisenstein grim
Eisi (N, X ; F)m = 0 and again sincen is non-torsion, it follows that

dimg CMy(N,X; F)m = dime My (N, X; F)m,

which implies Part (a). O

We will henceforth often regard non-Eisenstein non-targiddmes as in the proposition as maxi-
mal primes ofTr(S; (N, X ; F)).

The stop equality

Although it is impossible to determine a priori the dimemsas the local factor of the Hecke algebra
associated with a given modular form mpahe following corollary implies that the computation of
Hecke operators can be stopped when the algebra generateddehed a certain dimension that is
computed along the way. This criterion has turned out to lemely useful.

3.4.3 Corollary. (Stop Criterion) Letm be a maximal ideal ofr(Sx (N, Y ; F)) which is non-Eisen-
stein and non-torsion.

(a) One haslimg My (N, X ; F)m = 2 - dimp Tp (M (N, X ; F)) _ ifand only if
T (Sk(N, X ; F)) ,, = Tr (CMi(N,X; F)).

(b) One haslimp CMy (N, X ; F)m = 2 - dimp Tr(CM(N, X ; F))_ if and only if
Tr(Sk(N,X; ), = Tr (CMi(N,X; F)) .

(c) Assume # 2. One haslimp CM (N, ; F)f = dimp TF(CMk(N,y; IF))m if and only if

TIF(Sk(va; F))m = TIF(CMIC(N7Y7 F)+) :

m
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Proof. We only prove (a), as (b) and (c) are similar. From Part (b) ropBsition[3.ZP and the
fact that theF-dimension of the algebrar (S(N, X ; F)) _is equal to the one dx(N, X ; F)m, as
they are dual to each other, it follows that

2 - dimp TF(Sk(N,Y7 F))m = dimp CM(N, X ; F)m.

The result is now a direct consequence of Equafiond 3.1 48d 3 O

Note that the first line of each statement only uses modulabsis and not modular forms, but
it allows us to make statements involving modular forms. &twer, the maximal ideah can a
posteriori be taken as a maximal ideafIE}gf(Mk(N, X; F)), respectively, for the cuspidal version.

3.5 The algorithm

In this section we present a sketch of a rather efficient puogbdular symbols algorithm for comput-
ing Hecke algebras of mgadmodular forms.

Input: IntegersN > 1, k > 2, afinite fieldF, a charactey : (Z/NZ)* — F* and for each prime
less than or equal to the Sturm bound an irreducible polyabypic F[X].
Output: An F-algebra.

o M «— CMyk(N,x;F), f—2,p«—1, L« empty list.
e repeat

— p < next prime aftep.
— ComputeT), on M and append it to the list.

— M « the restriction ofM/ to the f,-primary subspace fdf,,, i.e. to the biggest subspace
of M on which the minimal polynomial df, is a power off;,.

— A — theF-algebra generated by the restrictions\oof 15, T3, . . ., T),.
e until dim(A) = f - dim(M) or p > Sturm bound.
e returnA.

The f, should, of course, be chosen as the minimal polynomialseotdefficientsz,(f) of the
normalised eigenfornf € S, (N, x ; F) whose local Hecke algebra one wants to compute. Suppose
the algorithm stops at the prime If p is bigger than the Sturm bound, the equivalent conditions of
Corollary[3.4.B do not hold. In that case the output shouldibegarded. Otherwisgl, is isomorphic
to a direct product of the forrp[,, Tr(Sk(V, x ; F))m Where them are those maximal ideals such that
the minimal polynomials off», T3, ...,7, on T(Sk(N, x; F))m are equal tofs, f3,..., fp. It can
happen thatd consists of more than one factor. Hence, one should stibrdeoseA into its local
factors. Alternatively, one can also replace the last limedme in the algorithm by
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e until ((dim(A) = f - dim(M)) and A is local) or p > Sturm bound,

which ensures that the output is a local algebra. In praatice modifies the algorithm such that not
for every primep a polynomialf, need be given, but that the algorithm takes each irredutalsker
of the minimal polynomial off}, if no f,, is known.

3.6 Eichler-Shimura like statements oveiF,

In this section we present an analog of the Eichler-Shimswendrphism, formulated in terms pf
adic Hodge theory. This was already used n [EdixJussieligofem 5.2, to derive an algorithm for
computing modular forms. However;adic Hodge theory always has the restriction that the weigh
be smaller tham.

3.6.1 Theorem. (Fontaine, Messing, Faltings).etp be a prime andV > 5, 2 < k < p be integers
s.t.p f N. Then the Galois representatiob pa,(Yl(N)@, Sym*~2(V))Y is crystalline, where
V = R'1.F, with7 : E — Y;(N) the universal elliptic curve. The correspondipgmoduleD sits

in the exact sequence
O — Sk(Fl(N), Fp) — D — Sk(Fl(N), Fp)v — O,
which is equivariant for the action of the Hecke operators.

This can be compared to Theorem 1.1 and Theorem 1[2of [Fid](8Da@f the following corollary
is part of [EdixJussi€u], Theorem 5.2.

3.6.2 Corollary. Let N > 5, p t N and2 < k < p. Then the parabolic cohomology group
HL (T1(N), Vi_o(F,)) is a faithful module fofTr, (S (T'1(N) ; Fyp)).

Proof. From Theoreni.3.611 we know tha is a faithful Hecke module. Hence, so is the co-
homolongélt’ pal YT (V) Sym*~2(V)). This module can be identified with its analog in analytic
cohomology which is isomorphic tH, (U1 (N), Vi—2(F})). O

A weaker statement holds fér= p andk = p + 1. For our computations this is good enough.

3.6.3Theorem.Let2 < k£ < p+ 1, N > 5 such thatp { N. Let be a maximal ideal of
Tr, (Sk(I'1(N); F,)) corresponding to a normalised eigenforfne S;(I'y(N); F,,) which isor-
dinary, i.e.a,(f) # 0. Then we have an isomorphism

Tr, (Sk(T1(N) ; Fp)p) 2= Tr, (Hpor(T1(N), Vieea (Fp))p)-

We have seen before that the embedding of weight one formsaiaightp results in ordinary
modular forms. As a consequence, the weight one forms latieipart of weighp which can be
computed via parabolic group cohomology.

49



4 Problems

1. Big images. To every modp eigenform Deligne attaches a 2-dimensional odd "mb&alois
representation, i.e. a continuous group homomorphism

Gal(Q/Q) — GLa(F,).

(See Theoreri 1.9.2). The trace of a Frobenius element atna pis for almost alll given by the
[-th coefficient of the (normalised) eigenform. By contiguthe image of such a representation is
a finite group.

Find group theoretic criteria that allow one (in some catedgtermine the image computationally.
Carry out systematic computations of mpdanodular forms in order to find "big" images. Like
this one can certainly realise some groups as Galois growgrspothat were not known to occur
before!

2. Non-liftable weight one modular forms over[F,. This problem is closely connected to the "big
images" challenge, and could/should be treated in col&lmor. Modular forms of weight 1 over
IF, behave completely differently from forms of higher weigh®ne feature is that they are very
often NOT reductions of holomorphic modular forms. In theise it will be explained how to
compute modular forms of weight one. By looking at the imafja weight one form, one can
often prove that it is such a non-liftable form. So far, thare many examples ovék, but only
one example for an odd prime, namely for= 199. Find examples in small odd characteristics!

A Computing local decompositions

Let K be a perfect fieldK an algebraic closure and a finite dimensional commutativ& -algebra.
We will write A, for A ® ¢ L, whereL| K is an extension insid&’. The image ofi € A in A is
denoted ag.

In the context of Hecke algebras we would like to

(1) compute a local decomposition df resp.

(2) compute a local decomposition éf= keeping track of th&?(K | K')-conjugacy.

In this section we present an algorithms for both points.

A.1 Primary spaces

A.l.1 Lemma. (a) Ais local if and only if the minimal polynomial af (in K[X]) is a prime power
forall a € A.

(b) LetV be anA-module such that for ali € A the minimal polynomial of on V' is a prime power
in K[X], i.e.V is a primary space for alu € A. Then the image aofl in End(V) is a local
algebra.
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(c) LetV be anAz-module and let, ..., a, be generators of the algebrd. Suppose that for
i € {1,...,n} the minimal polynomial ofi; on V is a power of(X — ;) in K[X] for some
\; € K. Then the image ol in End(V) is a local algebra.

Proof. (a) Suppose first that is local and take € A. Let¢, : K[X]| — A be the homomorphism
of K-algebras defined by sendidgto a. Let (f) be the kernel withf monic, so that by definitiorf
is the minimal polynomial of.. Hence K [X]/(f) — A, whenceK[X]/(f) is local, implying thatf
cannot have two different prime factors.

Conversely, ifA were not local, we would have an idempoteng {0, 1}. The minimal polyno-
mial of e is X (X — 1), which is not a prime power.

(b) follows directly. For (c) one can use the following. Sopp thatla — \)"V = 0 and (b —
w)*V = 0. Then((a + b) — (A + w))" ™5V = 0, as one sees by rewritinda + b) — (A + u)) =
(a— )+ (b— ) and expanding out. From this it also follows tiab — Az)2(" %)V = 0 by rewriting
ab—Ap=(a—=XN)(b—p)+Ab—p)+pla—A). 0

Let us remark that algebras such that a set of generatorpractarily need not be local, unless
they are defined over an algebraically closed field, as we $@ae in Part (c) above.

A.2 Algorithm for computing common primary spaces

In this section we present a straight forward algorithm famputing common eigenspaces.

A.2.1 Algorithm. Input A list ops of operators acting on thi -vector spacé’ .
Output A list of the common primary spaces insitlefor all operators irops.

o List:=[V];

e forT inops do

— newlist :=[];
— for W in List do
x Compute the minimal polynomigl € K[X] of T restricted taV .
« Factorf overK into its prime powerd (X) =[]}, pi(X).
x If n equalsl, then
- AppendWW to newlList,
x else fori:=1tondo

. ComputelV as the kernel of;(T |y )<
. AppendW to newList.

+ end for; end if;

— end for;

— List := newlList;
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e end for;

e Return List and stop.

A.3 Algorithm for computing local factors up to Galois conjugacy

Let us call a paiV, L) consisting of a finite extensioh| K with L. ¢ K and anAr-moduleV an
a-pair for a € A if the coefficients of the minimal polynomial @f acting onV ®;, K generatel

overK.
Let us furthermore call a s¢{V1, L), ... (V,, L,)} consisting ofa-pairs ana-decompositiorof

ana-pair (V, L) if
M) VerK =@, ViwithV; = @,cq, /q, o(Vi©r, K) and
(i) the minimal polynomial ofa restricted tol; is a power of( X — \;) for some\; € L; for all ¢

and

(i) the minimal polynomial ofa restricted toV; is coprime to the minimal polynomial afrestricted
to V; whenever # j.

The V; correspond to the local factors of tHealgebra(a) and theo(V; ®, K) to the local
factors of thel{-algebra(a). So the(V;, L;) are a choice out of & (L;| L)-conjugacy class. The third
condition above assures that fo# j no(cV;, o L;) for o € G(L;|L) is conjugate to &7V}, 7L;) for
anyt € G(L;|L).

An a-decomposition of an-pair can be computed by the following algorithm.

A.3.1 Algorithm. We define the functiobeconposePai r as follows.

Input (V, L), a, where(V, L) is ana-pair.

Output A list out put [(V1, L1),...,(Vs, Ly)] containing aru-decomposition ofV, L).
Create an empty listut put , which after the running will contain anrdecomposition.
Computef € L[X], the minimal polynomial o restricted td/ .

Factorf =[]\, p* with p; € L|X] pairwise coprime.

A W N R

Foralliin{1,...,n} do

Computéy; as the kernel of;(aly )% .

Computel;, the splitting field ovell. of p;.

Factom;(X) = [[,eq, /G, (X —o\), forsome\; € L;.
ComputeV; as the kernel ofaly; — A;)®.

Join(V;, L;) to the listout put .

o A W DN R

5. Returmout put and stop.
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The decomposition of ar x-module V" corresponding to the local factors df and keeping
track of conjugacy can be computed by the following algenittwhen theaq, ..., a, in the input
generateA.

A.3.2 Algorithm. We define the functio@econpose as follows.

Input (V, K), [a1,...,a,] with [a1, ..., a,] alist of elements ofA and(V, K) ana;-pair for all
1=1,...,n.

Output Alist out put = [(Vi, K1),...,(Va, Ky,)] consisting of pairs with; a finite extension
of K andV; anAk,-module. See Propositien A.B.3 for an interpretation.

1. Computedec asDeconposePair ((V,K), ay).
2. Ifn =1, then returrdec.

3. Create the empty listut put .

4. Foralld indec do

1. Computedecl asDeconpose(d, [ag,...,ay]).
2. Joindec1 to the listout put .

5. Return the lisbut put and stop.
From Lemmd4 A TN the following is clear.

A.3.3 Proposition. Let A be a commutative finite dimensiorfdlalgebra with generatora,, . . . , a,,.
Let V be anA-module. Suppose thd(Vi, K1),. .., (Vi,, Kpn)} is the output of the function call
Deconpose( (V,K), [a1,...,a,]).

ThenV @x K = @, Vi with V; = @,cc, a,, oVi- TheV; correspond to the local factors
of A and theo'V; correspond to the local factors of. 0

A.3.4 Corollary. We keep the notation from Proposition-Al3.3V1fs a faithful A-module, then the

local factors ofA are isomorphic to the images df in End(V;). Moreover the local factors ofl -
correspond to the images df in End(cVj).

B Group cohomology - an introduction

B.1 The derived functor definition

Those, not knowing group cohomology, but being comfortauguainted with derived functor coho-
mology (e.g. with sheaf cohomology aslin [Hartshorne]) rigant to think about group cohomology
in the following way.

We fix aring R and a grougy. By aG-module, we usually mean a lef{G]-module. The functor

F : R|G]-modules— R-modules M — M = Hompgg(R, M)
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taking G-invariants is left exact. We define
H'(G, M) := R'(F)(M)

as the right derived functors of th&-invariants functor. Alternatively, we have by definitioof the
Ext-functor)
H'(G, M) := Extpg (R, M).

SinceExt is balanced, i.e.
Extlyey (R, M) = R"Homgig) (R, -)(M) = R"Hom g (-, M)(R)

(Weibel],Theorem 2.7.6), we may also compufé(G, M) by applying the functotiom ¢ (-, M)
to any resolution of? by projective R[G]-modules. This shows the equivalence with the definition of
group cohomology using the normalised standard resolttidie given later on.

B.1.1 Exercise.Let G be a free group and/ any R[G]-module. Prove that{*(G, M) = 0 for all
i > 2. Hint: Choose a suitable free resolution 8fby R[G]-modules. Hint for the hint: Show that
the augmentation ideal is free.

B.2 Group cohomology via the standard resolution

We describe thstandard resolutior’(G), of R by free R[G]|-modules:

o1

0 R F(G) = RG] <%~ F(G): := R[G?] < ...,

where we put (the “hat” means that we leave out that element):

n

Op = Z(—l)idi and d;(go,---,9n) == (90, -, Gis---s9n)-
=0

If we let b, := g1, g,, then we get the identity
(907917927 e 7gn) = go.(l, hl, hlhg, N ,hlhg N hn) = go.[hﬂhg’ N hn]

The symbolgh |hs]| .. . |hy] with arbitraryh; € G hence form arR[G]-basis of F(G),,, and one has
F(G), = R|G] ®r (free abelian group ofh|hs| ... |hy,]). One computes the action df on this
basis and gets

hilhol . . |l i=0
dl[hl“hn]: [hl“hth_l“hn] 0<i<n
[h1||hn,1] 1=n.

One checks that the standard resolution is a complex andt €. is a resolution).
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As mentioned above{*(G, M) for an R[G]-moduleM can be calculated as tieh cohomology
group of the complex obtained by applying the fundfom (-, M) to the standard resolution. Let
us point out the following special case:
ZNG, M) = {f : G — M map| f(gh) = g.f(h) + f(g) Vg, h € G},
BYG,M)={f:G — Mmap|3Ime M: f(g) = (1 —g)mVg € G},
HY(G, M) = Z'(G,M)/B"(G, M).

So, if the action of5 on M is trivial, the boundarie®3*(G, M) are zero, and one has:

HY (G, M) = Homgroup(R[G], M).

B.2.1 Exercise. Let (g) be a free group on one generator. Shai((g), M) = M /(1 — g)M (either
using the normalised standard resolution, or the resolutid Exercis€B.T]1, or any other trick).

B.3 Functorial properties

The functorH" (G, -) is apositive cohomologicas-functor for R[G]-modules, by which we mean
the following: For every short exact sequertce-~ A — B — C — 0 of R[G]-modules there
is for everyn a so-calledconnecting homomorphisét : H*(G,C) — H""(G, A) such that the
following hold:

(i) For every commutative diagram

0 A B C 0
N
0 A B c 0

with exact rows, the following diagram commutes, too:

HY(G,0) L H"L(G, A)

e w | ) |
HY(G, ") -2 H™ (G, A
(i) The so-calledong exact sequends exact for alln:

H"(G, A) — H"(G, B) — H"(G,C) —X— H"*(G, A) — H"'(G, B).

By positivewe mean that the grougg™ (G, A) are zero for alh < 0.

The functorH" (G, -) is alsocoeffagablewith respect to the injectivé’[G]-modules, i.e. every
R[G]-module A can be embedded into an injective modillénjective modules are cohomologically
trivial.
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Itis known that coeffagable cohomologicafunctors arainiversal This means by definition that
if S is another cohomologicakfunctor andf® : H°(G,-) — S°(-) is a natural transformation, then
there is a unique natural transformatigh : H"(G,-) — S"(-) for all n extendingf° such that all
properties ob-functors are preserved (all diagrams one would want to bewatative are). A shorter
way to phrase this is that’ extends to a morphism of cohomologidafunctors H*(G, -) — S°.

We now apply the universality. Let: H — G be group homomorphism antlan R[G]-module.
Via ¢ we may considerd also as ank[H|-module. Sores’ : H(G,:) — H°(H,-) is a natural
transformation by the univesality &f*(G, -), so that we get

res" : H"(G, ) — H"(H,").

These maps are calledstrictions On cochains of the standard resolution they can be seemas co
posing mapss — A by ¢. Note that very ofte is just the embedding map of a subgroup.

Assume now that{ is a normal subgroup & and A is an R[G]-module. Then we can consider
¢ : G — G/H and the restriction above gives us natural transformatiests: H"(G/H, (-)7) —
H™(G, (-)"). We define thénflation mapgo be

infl” : H™(G/H, () =5 BH(G, (1)) — H™(G,").

Under the same assumptions, note that by a similar argurppfied to the conjugation by map
H — H, one obtains ati®[G]-action onH™(H, A). As conjugation by, € H is clearly the identity
on H%(G, A), the above action is in fact also &G/ H]-action.

Let now H/ < G be a subgroup of finite index. Then the noivg,;; := >_, € R[G] with {g;}
a system of representatives Gf H gives a natural transformatianres’ : H°(H,-) — H°(G,-)
where- is an R[G]-module. By universality, we obtain

cores" : H"(H,-) — H"(G, ),

the corestriction (transferynaps. It is clear thatores® o res® is multiplication by the indexG : H),
which also extends to all. Hence we have proved the first part of the following proposit

B.3.1 Proposition. (a) LetH < G be a subgroup of finite indefG : H). For all : and all R|G]-
modules)M one has the equality
cores® ores = (G : H)

onall H{(G, M).

(b) LetG be a finite group of order. and R a ring in whichn is invertible. ThenH?(G, M) = 0 for
all i and all R[G]-modulesM .

Proof. Part (b) is an easy consequence wWith= 1, since
i resg i COI'eS% i
HY(G, M) —% H (1, M) —% HY(G, M)
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is trivially the zero map, but it also is multiplication by O

Let H < G be a normal subgroup andl an R[G]-module. Grothendieck’s theorem on spectral
seqguences associates to the composition of functors

(A AT (AYG/H) = (A AC)
a spectral sequence. This is the contents of the followiagrdm (see [Weibel], 6.8.2).
B.3.2 Theorem. (Hochschild-Serre)There is a convergent first quadrant spectral sequence
EXY . HP(G/H,HY(H, A)) = H’ (G, A).
In particular, one has the exact sequence:

0— HYG/H, ATy 2L gY@, A) 2 HYG, A)YH - H2(G/H, AT) 2% H2(G, A).

B.4 Coinduced modules and Shapiro’s Lemma

Let H < G be a subgroup and be anR[H]-module. TheR[G]-module
Coind% (A) := Homp (R[G], A)

is called thecoinduction fromH to GG of A.

B.4.1 Proposition. (Shapiro’'s Lemma) We have
H™(G,Coind%(A)) = H"(H, A)

for all n > 0.

B.5 Mackey’s formula and stabilisers

We now prove Mackey’s formula for coinduced modulesHIf< G are groups and’ is an R[H |-
module, the coinduced moduléind%V can be described a$om g (R[G], V).

B.5.1 Proposition. Let R be a ring,G be a group andd, K subgroups of7. Let furthermoreV be
an R[H]-module. TheMackey’s formula

Res%Coind%V = H Coindgmg,ngg(ResgmgKg,l V)
geH\G/K

holds. Heré’(ResgmgKg,IV) denotes thé?[K Ng~! H g]-module obtained froriy via the conjugated
actiong~'hg.,v := h.wforv € Vandh € H such thaty~'hg € K.
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Proof. We consider the commutative diagram

RGS%HOI’HH(R[G], V) HgEH\G/K HOHleg—ng(R[K], g(R‘eSgﬁgKg_l V))

\

e cx Hompngrg-1 (RlgK g™, Resgmgl(g*1 V)).

~

The vertical arrow is just given by conjugation and is cheamh isomorphism. The diagonal map is
the product of the natural restrictions. From the bijection

gkg~Y—Hgk
_—

(Hn gKg*l)\gKg*1 H\HgK

it is clear that also the diagonal map is an isomorphism,ipgothe proposition. |

From Shapiro’s Lemma we directly get the following.
B.5.2 Corollary. In the situation of Propositioh B:3.1 one has

H'(K,CoindfV) =[] H(KNg'Hg,'Resfp,1V)
geH\G/K

H HY(H ﬂgKg_l,ResgmgKg,IV)
geH\G/K

I

forall : € N.

B.6 Free products and the Mayer-Vietoris exact sequence

Let us that the group- is the free product of two finite groups; and G, for which we use the
notationG = G * Gs.

B.6.1 Proposition. The sequence
0 — R[G] = R[G/G1]® R[G/G5] = R — 0

with a(g) = (¢G1, —gG2) ande(gG1,0) = 1 = €(0, gG2) is exact.

For the proof, which is completely elementary, we folldwéH]. Let G be a group and/ an
R[G]-module. Recall that a map: G — M is called aderivationif

d(zy) = d(x) + zd(y)

(these are precisely tHecochains of the standard resolution!). Denote blye mapR|G| — R given
by g — 1. Then it is easy to check thdtextends to ariz-linear map

d : R[G] — M, satisfyingd(ab) = d(a)e(b) + ad(b).
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Let ' be a free group on generatdrf }. Since there are no relations, it is clear that the assighmen

0
a_fz(fj) = 04,5

extends to a derivatioh” — R[F] (we defined; ; = 1if i = j andd,; ; = 0if ¢ # j). Next, for any
derivationd : F' — M one puts

d:F— M, dw Zaf

A short calculation shows thatis also a derivation. Moreovei( f;) = d(f;), whenced = d. In
other words,

We now specialise to the derivatiah: ' — R[F] given byd(w) = w — 1. Moreover, we also
suppose that : FF — G is a free presentation of the groapby the free groupF discussed so far.
We denoter(f;) by g; and extendr linearly tor : R[F] — R[G]. From the above, we immediately
get the formula

A=) = Zw(?—%)(m - 1) (2.20)

for A € R[F] with w(A) = A. It will be the main input in the following proof.

Proof of Proposition[B.6.1. Suppose that7; is generated by the (minimal) s€t;} andGs by
{7;}. Let F' be the free group on symbo{s:;,y;} so thatr : ' — G is given byz; — 7; and
Yi = Yi-

Clearly, e is surjective and alseo o = 0. Next we compute exactness at the centre. The image of
Equatiof 220 ilR[G/G1] = R[G]/(R[G](1 — h)|h € G1) is

3G = 061) = Y (a5 75 - 1

for A € R[F] with 7(A) = A. In the same way we have

MGy — €(AGa) = > (w(

Suppose now that
G(AGl,/LGg) = E(AGl) + E(MGQ) =0
and choose\, M € R[F] with 7(A) = A andn(M) = u. We directly get
ON oM __
Q(Z(W(a—y)(yj -1) - Z(W(%)(% — 1) +€(N) = (AG1, pG2)
j J i ’

and hence the exactness at the centre.
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It remains to prove that is injective. Note that we have not yet used the freenessegbithduct;
the discussion above would remain valid if there were aoldfi relations inG. Now we do use the
freeness, namely as follows. Every elemént g € G has a unique representation as products of the
form g = a1baasby - - - ag_1bg, Or g = a1basby - - - by_1a; Where either all the,; € G; — {1} and
allb; € Gy — {1} or all thea; € G5 — {1} and allb; € G; — {1}. The integerk is defined to be the
length ofg, denoted by(g). We leti(1) = 0. For cosetgG; € G/G1 we letl(gG1) := I(g) wheng
is represented by a product as above ending in an elemént. Ve definel(gG) similarly.

Let A = >, a,w € R[G] be an element in the kernel of. Hence,) a,wG; = 0 =
> w awwGse. Let us assume that # 0. It is clear that\ cannot just be a multiple of € G, as
otherwise it would not be in the kernel af Now pick theg € G with a, # 0 having maximal length
l(g) (among all thd(w) with a,, # 0). It follows thati(g) > 0. Assume without loss of generality
that the representation gfends in a non-zero element 6f,. Theni(¢G2) = I(g). Further, since
ag # 0and0 = > a,wGs, there must be ah € G with g # h, gGo = hG2 anday, # 0. Asg
does not end iidr2, we must havé, = gy for some0 # y € Gs. Thus,i(h) > I(g), contradicting the
maximality and proving the proposition. O

B.6.2 Proposition. (Mayer-Vietoris) Let M be a left R[G]-module. Then the Mayer-Vietoris se-
guence gives the exact sequences

0— MY — M oM - M- HY(G,M) — H' (G, M) ® H (G2, M) — 0.
and for all¢ > 2 an isomorphism
HY(G, M) = H (G, M) ® H(Go, M).

Proof. We see that all terms in the exact sequence of Propoéifiodl Bré freeR-modules. We
now apply the functoHomp(-, M) to this exact sequence and obtain the exact sequenBeGjt
modules

0 — M — Hompq,)(R[G], M) ® Hompgq,)(R[G], M) — Hompg(R[G], M) — 0.

The central terms, as well as the term on the right, can bdifiehwith coinduced modules. Hence,
the statements on cohomology follow by taking the long egagtience of cohomology and invoking
Shapiro’s LemmaB.4l1. O
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