/Author (David Joyner and William Stein) /Title (SAGE Tutorial)

SAGE Tutorial
Release 2006.07.30

David Joyner and William Stein

July 30, 2006

Email: wdj@usna.edu, wstein@gmail.com

Copyright (©) 2006 William A. Stein. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

SAGE is Software for Algebra and Geometry Experimentation. It is free and open source
software for number theory, algebra, and geometry computations. This tutorial contains an
overview of SAGE.

CONTENTS

1 Introduction 1
1.1 Imstallation e 1
1.2 Waysto Use SAGE 2
1.3 Longterm Goals for SAGE o 2
2 A Guided Tour 5
2.1 Basic, and not-so-basic, Rings Lo 5)
2.2 Polynomials 8
2.3 Number Theory 14
2.4 Linear Algebra 19
2.5 Finite Groups L e 23
2.6 Elliptic Curves e e 25
2.7 Plotting e 28
2.8 Calculus. 30
2.9 Algebraic Geometry Lo 37
2.10 Modular Forms Lo 38
3 The Interactive Shell 41
3.1 Your SAGE session 41
3.2 Logging Input and Output 43
3.3 Paste Ignores Prompts oo 45
3.4 Timing Commands e 45
3.5 Errors and Exceptionso Lo 47
3.6 Reverse Search and Tab Completion 49
3.7 Integrated Help System 50
3.8 Saving and Loading Individual Objects 52
3.9 Saving and Loading Complete Sessions 55
3.10 The Notebook Interface 56
4 Interfaces 59
41 GP/PARI 59
4.2 GAP . e 61

4.3 Singular

4.4 Maxima e e e e
5 Programming
5.1 Loading and Attaching SAGE files
5.2 Creating Compiled Code oo
5.3 Standalone Python/SAGE Scriptso L.
5.4 DataTypes o . . e
5.5 Lists, Tuples, and Sequence
5.6 Dictionaries e e e e
D7 Sets . o . e e
5.8 Tterators. e e e e
5.9 Loops, Functions, Control Statements, and Comparisons
5.10 Adding Your Own Methods to a SAGE Class
511 Profiling o e
6 Afterword
6.1 Why Python?
6.2 I would like to contribute somehow. How can 17
6.3 How do I reference SAGE?
Index

CHAPTER
ONE

Introduction

This tutorial will likely take you about 2-3 hours to work through.

Though much of SAGE is implemented using Python, no Python background is needed to
read this tutorial. (Some background on Python will be needed by the heavy SAGE user,
but this is not the place for that.) If you just want to quickly try out SAGE, this is the place
to start. For example:

sage: 2 + 2

4

sage: factor(2006)
2 x 17 * 59

sage: A = MatrixSpace(QQ, 4)(range(16)); A
L0 1 2 3]

[4 5 6 7]

[8 9 10 11]

[12 13 14 15]

sage: factor(A.charpoly())

x"2 * (x72 - 30*x - 80)

sage: E = EllipticCurve([1,2,3,4,5]);

sage: E

Elliptic Curve defined by y~2 + x*y + 3%y = x"3 + 2%x72 + 4xx + 5
over Rational Field

sage: E.anlist(10)

o, ¢, ¢, o, -1, -3, 0, -1, -3, -3, -3]

1.1 Installation

If you do not have SAGE installed on a computer, and just want to try some SAGE command,
you might try the SAGE online calculator at http://modular.math.washington.edu/calc.

See the document Installing SAGE in the documentation section of the main webpage of
SAGE [SA] for instructions on installing SAGE on your computer. Here we merely make two
comments.

1.

1.2

The SAGE download file comes with “batteries included”. In other words, although
SAGE uses Python, IPython, PARI, GAP, Singular, Maxima, NTL, GMP, and so
on, you do not need to install them separately as they are included with the SAGE
distribution. However, to use certain SAGE features, e.g., Macaulay or KASH, you
must install the relevant optional SAGE package. Macaulay and KASH are SAGE
packages (type sage -optional for a list of available optional packages). For the
exact versions of the standard SAGE packages, go to the SAGE website and choose
“Download” then “standard”.

. The pre-compiled binary version of SAGE (found on the SAGE web site) may be easier

and quicker to install than the source code version. Just unpack the file and run sage.

Ways to Use SAGE

You can use SAGE

1.3

via an interactive shell (Chapter 3),

via the notebook interface (see the section on the Notebook in the reference manual
and §3.10 below),

by writing interpreted and compiled programs in SAGE (see Section 5.1 and 5.2), and

by wring a write stand-alone Python scripts that use the SAGE library (see Section 5.3).

Longterm Goals for SAGE

Useful: SAGE’s intended audience includes not only researchers in mathematics but
also teachers of mathematics. The aim is to provide a software that can be used to
explore and experiment with mathematical constructions in algebra, geometry, number
theory, calculus, etc. SAGE will help make it easier to interactively experiment with
mathematical objects.

Efficient: Be fast. SAGE uses highly-optimized mature software like GMP, PARI,
GAP, and NTL, which is often very fast at certain operations.

Free and open source: The source code must be freely available and readable, so
users can understand what the system is really doing and more easily extend it. Just
as mathematicians gain a deeper understanding of a theorem by carefully reading or at

Chapter 1. Introduction

least skimming the proof, people who do computations should be able to understand
how the calculations work by reading documented source code. If you use SAGE to
do computations in a paper you publish, you can rest assured that your readers will
always have free access to SAGE and all its source code, and you are even allowed to
archive and re-distribute the version of SAGE you used.

e Easy to compile: SAGE should be easy to compile from source for Linux, OS X and
Windows users. This provides more flexibility for users to modify the system.

e Cooperation: Provide robust interfaces to most other computer algebra systems,
including PARI, GAP, Singular, Maxima, KASH, Magma, Maple, and Mathematica.
SAGE is meant to unify existing math software, rather than compete with it. SAGE is
not about reinventing the wheel.

e Well documented: Tutorial, programming guide, reference manual, and how-to, with
numerous examples and discussion of background mathematics.

e Extensible: Be able to define new data types or derive from built-in types, and use
code written in a range of languages.

e User friendly: Easy to understand what functionality is provided for a given object
and view documentation and source code. Also attain a high level of user support
(maybe similar to what GAP currently offers its users).

1.3. Longterm Goals for SAGE 3

CHAPTER
TWO

A Guided Tour

This section is a guided tour of some of what is available in SAGE 1.0. For more examples,
see the SAGE documentation “SAGE constructions”, which is intended to answer the general
question “How do I construct ...7".

2.1 Basic, and not-so-basic, Rings

We illustrate some basic rings in SAGE. For example, the field Q of rational numbers may
be referred to using either RationalField () or QQ:

sage: RationalField()
Rational Field

sage: QQ

Rational Field

sage: 1/2 in QQ

True

The decimal number 1.2 is considered in Q, since there is a coercion map from the reals to
the rationals:

sage: 1.2 in QQ
True

However, the following doesn’t, since there is no coercion:
sage: I = ComplexField().0

sage: I in QQ
False

Also, of course, the symbolic constant 7 is not in Q:

sage: pi in QQ
False

If you use QQ as a variable, you can still fetch the rational numbers using the command
RationalField (). By the way, some other pre-defined SAGE rings include the integers ZZ,
the real numbers RR, the complex numbers CC (which uses I (or i), as usual, for the square
root of —1). We discuss polynomial rings in Section 2.2.

Do not redefine Integer or RealNumber unless you really know what you are doing. They
are used by the SAGE interpreter to wrap integer and real literals. For example, if you type
Integer = int, then integer literals will behave as they usually do in Python, so e.g., 4/3
evaluates to the Python int 1. For example

sage: 4/3

4/3

sage: parent(_)
Rational Field

sage: prev = Integer
sage: Integer = int
sage: 4/3

1

sage: parent(_)
<type ’int’>

sage: Integer = prev
sage: 4/3

4/3

Now we illustrate some arithmetic involving various numbers.

6 Chapter 2. A Guided Tour

sage: a, b = 4/3, 2/3
sage: a + b

2

sage: 2%b == a

True

sage: parent(2/3)
Rational Field

sage: parent(4/2)
Rational Field

sage: 2/3 + 0.1 # automatic coercion before addition
0.76666666666666661
sage: 0.1 + 2/3 # coercion rules are symmetric in SAGE

0.76666666666666661
sage: z = a + bxI

sage: z
1.3333333333333333 + 0.66666666666666663*1

sage: z.real() == a # automatic coercion before comparision
True

sage: QQ(11.1)

111/10

Python is dynamically typed, so the value referred to by each variable has a type associated
with it, but a given variable may hold values of any Python type within a given scope:

sage: a =5

sage: type(a)

<type ’integer.Integer’>
sage: a = 5/3

sage: type(a)

<type ’rational.Rational’>
sage: a = ’hello’

sage: type(a)

<type ’str’>

The C programming language, which is statically typed, is much different; a variable declared
to hold an int can only hold an int in its scope.

The field of p-adic numbers is implements as well:

2.1. Basic, and not-so-basic, Rings 7

sage: K = Qp(11); K.prec(10)

sage: a = K(211/17); a

4 + 4x11 + 1172 + 7%11°3 + 9%11°5 + 5%11°6 + 4%11°7 + 8%11°8 + 7%11°9 +
0(11~10)

sage: a.denominator ()

1

sage: b = K(3211/11°2); b

10%11~-2 + 5x11~-1 + 4 + 2%11 + 0(11-Infinity)
sage: b.denominator()

121

Rings of integers in p-adic fields or number fields other than Q have not yet been imple-
mented. However,a number of related methods are already implemented in the NumberField
class.

sage: x = PolynomialRing(QQ).gen()

sage: K = NumberField(x"3 + x°2 - 2%x + 8, ’a’)

sage: K.integral_basis()

[1, a, 1/2*a~2 + 1/2x*a]

sage: K.galois_group() # requires optional GAP database package
Transitive group number 2 of degree 3

sage: K.polynomial_quotient_ring()

Univariate Quotient Polynomial Ring in a over Rational Field with modulus x°3 + x72 - 2%x +
sage: K.units()

[3*xa~2 + 13*a + 13]

sage: K.discriminant()

-503

sage: K.class_group()

Abelian group on O generators () with invariants []

sage: K.class_number()

1

2.2 Polynomials

In this section we illustrate how to create and use polynomials in SAGE.

2.2.1 Univariate Polynomials

There are three ways to create polynomial rings.

8 Chapter 2. A Guided Tour

sage: R = PolynomialRing(QQ, ’x’)
sage: R
Univariate Polynomial Ring in x over Rational Field

An alternate way is
sage: S = QQ[’x’]

sage: S ==
True

A third very convenient way is

sage: R.<x> = PolynomialRing(QQ)

or

QQ[)X)]

sage: R.<x>

This has the additional side effect that it defines the variable x to be the indeterminate of
the polynomial ring. (Note that the third way is very similar to the constructor notation in
MAGMA, and just as in MAGMA it can be used for a wide range of objects.)

The indeterminate of the polynomial ring is the Oth generator:

sage: R = PolynomialRing(QQ, ’x’)
sage: x = R.0

sage: x in R

True

Alternatively, you can obtain both the ring and its generator, or just the generator during
ring creation as follows:

sage: R, x = QQ[’x’].objgen()
sage: x = QQ[’x’].gen()
sage: R, x = objgen(QQ[’x’])
sage: x = gen(QQ[’x’1)

Finally we do some arithmetic in Q|x].

2.2. Polynomials 9

sage: R, x = QQ[’x’].objgen()

sage: f = 2*%x”~7 + 3*x"2 - 15/19

sage: £°2

4xx~14 + 12%x79 - 60/19*x~7 + 9*x~4 - 90/19*x~2 + 225/361

sage: cyclo = R.cyclotomic_polynomial(7); cyclo

X6 + x5+ x4+ x3+x"2+x+1

sage: g = 7 * cyclo * x°5 * (x°5 + 10*x + 2)

sage: g

T*x~16 + 7*x~15 + 7xx~14 + 7*x"13 + 77*x"12 + 91*%xx~11 + 91%x~10 + 84%*x~9
+ 84xx~8 + 84x%x"7 + 84%x"6 + 14*x"b

sage: F = factor(g); F

(7) * x°5 % (x°5 + 10*%x + 2) * (x"6 + x5 + x74 + x°3 + x°2 + x + 1)

sage: F.unit()

7

sage: list(F)

[(x, B), (x°B5 + 10*x + 2, 1), (x6+ x5 +x"4 +x3+x2+x+1, 1)]

Notice that that the factorization correctly takes into account and records the unit part,
unlike many other programs (e.g., PARI, Magma).

If you were to use, e.g., the R.cyclotomic_polynomial function a lot for some research
project, in addition to citing SAGE you should make an attempt to find out what component
of SAGE is being used to actually compute the cyclotomic polynomial and cite that as well.
In this case, if you type R.cyclotomic_polynomial?? to see the source code, you’ll quickly
see a line f = pari.polcyclo(n) which means that PARI is being used for computation of
the cyclotomic polynomial. Cite PARI in your work as well.

Dividing two polynomials constructs an element of the fraction field.

sage: x = QQ[’x’].0

sage: f =x"3 +1; g =x"2 - 17

sage: h = f/g; h

(x"3 + 1)/(x"2 - 17)

sage: h.parent()

Fraction Field of Univariate Polynomial Ring in x over Rational Field

Using Laurent series, one can compute series expansions in the fraction field of QQ[x]:

sage: R = LaurentSeriesRing(QQ, ’x’); R
Laurent Series Ring in x over Rational Field

sage: x = R.gen()

sage: 1/(1-x) + 0(x~10)
1+x+x"2+x"3+x4+x5+x6+x"7+x"8+ x"9 + 0(x"10)

10 Chapter 2. A Guided Tour

If we name the variable differently, we obtain a different univariate polynomial ring.

sage: R.<x> = PolynomialRing(QQ)
sage: S.<y> = PolynomialRing(QQ)
sage: x ==y

False

sage: R ==

False

sage: R(y)

X

sage: R(y~2 - 17)

x"2 - 17

The ring is determined by the variable. Note that making another ring with variable called
x does return a different ring.

sage: R = PolynomialRing(QQ, "x")
sage: T = PolynomialRing(QQ, "x")
sage: R ==

True

sage: R is T

False

sage: R.0 == T.0

True

SAGE also has support for power series and Laurent series rings over any base ring. In the
following example we create an element of F7[[T]] and divide to create an element of F7((7)).

sage: R = PowerSeriesRing(GF(7), °T’); R

Power Series Ring in T over Finite Field of size 7
sage: T = R.0

sage: £ =T + 3+xT°2 + T3 + 0(T"4)

sage: £°3
T~3 + 2%T~4 + 2%T"5 + 0(T"6)
sage: 1/f

T~-1+4 + T+ 0(T°2)
sage: parent(1/f)
Laurent Series Ring in T over Finite Field of size 7

You can also create power series rings using a double-brackets shorthand:

2.2. Polynomials 11

sage: GF(7)[[’T’1]
Power Series Ring in T over Finite Field of size 7

2.2.2 Multivariate Polynomials

To work with polynomials of several variables, we declare the polynomial ring and variables
first, in one of two ways.

sage: R = MPolynomialRing(GF(5),3,"z")
sage: R
Polynomial Ring in zO, zl, z2 over Finite Field of size 5

Just as for univariate polynomials, there is an alternative more compact notation:

sage: GF(5)[’20, z1, z2’]
Polynomial Ring in z0, zl, z2 over Finite Field of size 5

Also, if you want the variable names to be single letters then you can use the following
shorthand:

sage: MPolynomialRing(GF(5), 3, ’xyz’)
Polynomial Ring in x, y, z over Finite Field of size 5

Next lets do some arithmetic.

sage: z = GF(5)[’20, z1, z2’].gens()

sage: z

(z0, z1, z2)

sage: (z[0]+z[1]+z[2])"2

2272 + 2%zl1xz2 + z17°2 + 2%z0%z2 + 2*z0*zl + z0"2

You can also use more mathematical notation to construct a polynomial ring.

12 Chapter 2. A Guided Tour

sage: R = GF(5) [’x,y,z’]

sage: x,y,z = R.gens()

sage: QQ[’x’]

Univariate Polynomial Ring in x over Rational Field

sage: QQ[’x,y’].gensQ)

(x, y)

sage: QQ[’x’].objgens()

(Univariate Polynomial Ring in x over Rational Field, (x,))

Multivariate polynomials are implemented in SAGE using the Python dictionaries and the
“distributive representation” of a polynomial. SAGE makes some use of Singular [Si], e.g.,
for computation of ged’s and Grobner basis of ideals.

sage: R, (x, y) = PolynomialRing(RationalField(), 2, ’xy’).objgens()
sage: f = (x°3 + 2%y~2%x)"2

sage: g = x"2%y"2

sage: f.gcd(g)

x"2

Next we create the ideal (f, g) generated by f and g, by simply multiplying (f,g) by R (we
could also write ideal([f,g])) or ideal(f,g).

sage: I = (f, g)*R; I

Ideal (x"2*y~2, 4*x~2*%y~4 + 4*x~4xy~2 + x"6) of Polynomial Ring in x, y over Rational Field
sage: B = I.groebner_basis(); B

[x"2%y~2, 4*x"2%y~4 + 4*x"4*y~2 + x76]

sage: x"2 in I

False

Incidentally, the Groebner basis above is not just a list but an immutable sequence. This
means that it has a universe, parent, and cannot be changed (which is good because changing
the basis would break other routines that use the Groebner basis).

sage: B.parent()

Category of sequences in Polynomial Ring in x, y over Rational Field
sage: B.universe()

Polynomial Ring in x, y over Rational Field

sage: B[1] = x

Traceback (most recent call last):

ValueError: object is immutable; please change a copy instead.

2.2. Polynomials 13

Some (read: not as much as we would like) commutative algebra is available in SAGE,
implemented via Singular. For example, we can compute the primary decomposition and
associated primes of I:

ssage: I.primary_decomposition()
[Ideal (x72) of Polynomial Ring in x, y over Rational Field,
Ideal (y~2, 4*x~2xy~4 + 4xx~4%y~2 + x"6) of Polynomial Ring in x, y over Rational Field]
sage: I.associated_primes()
[Ideal (x) of Polynomial Ring in x, y over Rational Field,
Ideal (y, x) of Polynomial Ring in x, y over Rational Field]

2.3 Number Theory

SAGE has extensive functionality for number theory. For example, we can do arithmetic in
Z/NZ as follows:

sage: R = IntegerModRing(97)
sage: a = R(2) / R(3)

sage: a

33

sage: a.rational_reconstruction()
2/3

sage: b = R(47)
sage: b~20052005

50

sage: b.modulus()
97

sage: b.is_square()
True

SAGE contains standard number theoretic functions. For example,

14 Chapter 2. A Guided Tour

sage: gcd(515,2005)

5
sage: factor(2005)
5 % 401

sage: c¢ = factorial(25); c
15511210043330985984000000

sage: [valuation(c,p) for p in prime_range(2,23)]
(22, 10, 6, 3, 2, 1, 1, 1]

sage: next_prime(2005)

2011

sage: previous_prime(2005)

2003

sage: divisors(28); sum(divisors(28)); 2%28
(1, 2, 4, 7, 14, 28]

56

56

Perfect!

SAGE’s sigma(n,k) function adds up the kth powers of the divisors of n (note the order of
n and k!):

sage: sigma(28,0); sigma(28,1); sigma(28,2)
6

56

1050

We next illustrate the extended Euclidean algorithm, the Euler’s ¢-function, and the Chinese
remainder theorem:

2.3. Number Theory 15

sage: d,u,v = xgcd(12,15)

sage: d == uxl2 + vx*15
True

sage: inverse_mod(3,2005)
1337

sage: 3 * 1337

4011

sage: n = 2005
sage: prime_divisors(n)

[5, 401]

sage: phi = n*prod([1 - 1/p for p in prime_divisors(mn)]); phi
1600

sage: euler_phi(2005)

1600

sage: prime_to_m_part(n, 5)

401

We next verify something about the 3n + 1 problem.

sage: n = 2005
sage: for i in range(1000):
n = 3xodd_part(n) + 1
if odd_part(n)==1:
print i
break
38

Finally we illustrate the Chinese remainder theorem.

16 Chapter 2. A Guided Tour

sage: x
-4
sage: x
2

sage: x
1

b

b

crt(2, 1, 3, 5); x

3 # x mod 3

1]
N

5 # x mod 5

1]
—_

sage: [binomial(13,m) for m in range(14)]

(1, 13, 78, 286, 715, 1287, 1716, 1716, 1287, 715, 286, 78, 13, 1]

sage: [binomial(13,m)%2 for m in range(14)]
(t, 1, 0,0,1,1, 0,0, 1,1, 0, 0, 1, 1]
sage: [kronecker(m,13) for m in range(1,13)]
4, -¢, 1,1, -1, -1, -1, -1, 1, 1, -1, 1]
sage: n = 10000; sum([moebius(m) for m in range(l,n)])

-23

sage: list(partitions(4))
(1, 1, 1, 1, (1, 1, 2>, (2, 2), (1, 3), (4,)]

2.3.1 Dirichlet Characters

A Dirichlet character is the extension of a homomorphism

(Z/NZ)* — R*,

for some ring R, to the map Z/NZ — R obtained by sending those = € Z/NZ with
ged(N,z) > 1 to 0.

sage: G = DirichletGroup(21)
sage: list(G)

(f1, 11,

[-1, 1], [1, zetaB], [-1, zeta6],

(-1, zeta6 - 1], [1, -11, [-1, -1],
[1, -zeta6 + 1], [-1, -zeta6 + 1]]
sage: G.gens()

([-1, 11

b

[1, zeta6])

sage: len(G)

12

[1, -zeta6],

[1, zeta6 - 1],

[-1, -zetab],

Having created the group, we next create an element and compute with it.

2.3. Number Theory

17

sage: chi = G.1; chi

[1, zetab]

sage: chi.values()

[0, 1, zetab6 - 1, 0, -zeta6, -zeta6 + 1, 0, 0, 1, 0, zetab,
-zeta6, 0, -1, 0, 0, zeta6 - 1, zeta6, 0, -zeta6 + 1, -1]

sage: chi.conductor()

7

sage: chi.modulus()
21

sage: chi.order()

6

It is also possible to compute the action of the Galois group Gal(Q((,)/Q) on these char-
acters, as well as the direct product decomposition corresponding to the factorization of the
modulus.

sage: G.galois_orbits()

L
(f1, 111,
(f-1, 111,

[[1, zeta6], [1, -zeta6 + 111,
[[-1, zeta6], [-1, -zeta6 + 117,
[[1, zeta6 - 1], [1, -zeta6l],
[[-1, zeta6 - 1], [-1, -zetab6]],
(r1, -111,
[C-1, -11]
]
sage: G.decomposition()
L
Group of Dirichlet characters of modulus 3 over Cyclotomic Field of order 6 and degree
Group of Dirichlet characters of modulus 7 over Cyclotomic Field of order 6 and degree

1
Next, we construct the group of Dirichlet character mod 20, but with values in Q(7):
sage: G = DirichletGroup(20)
sage: G.list()

[C1, 11, [-1, 11, [1, zeta4d], [-1, zetad], [1, -11,
[-1, -1, [1, -zetad], [-1, -zeta4d]]

We next compute several invariants of G:

18 Chapter 2. A Guided Tour

sage: G.gens()
([_1’ 1]’ [1’ Zeta4])
sage: G.unit_gens()

[11, 17]

sage: G.zeta()

zetad

sage: G.zeta_order()
4

In this example we create a Dirichlet character with values in a number field. We explicitly
specify the choice of root of unity by the third argument to DirichletGroup below.

sage: x = PolynomialRing(QQ).gen()

sage: K = NumberField(x"4 + 1, ’a’); a = K.0
sage: b = K.gen(D; a == b

True

sage: K

Number Field in a with defining polynomial x~4 + 1

sage: G = DirichletGroup(5, K, a); G

Group of Dirichlet characters of modulus 5 over
Number Field in a with defining polynomial x~4 + 1

sage: G.list()

(11, fa~21, [-11, [-a"2]]

Here NumberField(x~4 1, ’a’)+ tells SAGE to use the symbol “a” in printing what K is (a
“Number Field in a with defining polynomial 2% + 17). The name “a” is undeclared at this
point. Once a = K.0 (or equivalently a = K.gen()) is typed, the symbol “a”

a’ represents a
root of the generating polynomial, 2% + 1.

2.4 Linear Algebra

SAGE provides standard linear algebra commands, e.g., characteristic polynomial, echelon
form, trace, decomposition, etc., of a matrix.

We create the space Matgy3(Q):
sage: M = MatrixSpace(QQ,3)

sage: M
Full MatrixSpace of 3 by 3 dense matrices over Rational Field

The space of matrices has a basis:

2.4. Linear Algebra 19

sage: B = M.basis()
sage: len(B)

9

sage: B[1]

[0 1 0]

[0 0 0]

[0 0 0]

We create a matrix as an element of M.

sage: A = M(range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]

Next we compute its reduced row echelon form and kernel.

sage: A.echelon_form()

[1 0 -1]

[0 1 2]

[0 0 0]

sage: A~20

[2466392619654627540480 3181394780427730516992 3896396941200833493504]
[7571070245559489518592 9765907978125369019392 11960745710691248520192]
[12675747871464351496704 16350421175823007521792 20025094480181663546880]
sage: A.kernel()

Vector space of degree 3 and dimension 1 over Rational Field

Basis matrix:

[1-2 1]

Eigenvalues and eigenvectors over Q or R can be computed using maxima (see section 4.4
below).

Next we illustrate computation of matrices defined over finite fields:

20 Chapter 2. A Guided Tour

sage: M = MatrixSpace(GF(2),4,8)

sage: A = M([1,1,0,0,1,1,1,1,0,1,0,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0,1,1,1,1,1,0])
sage: A

[(11001111]

(0100101 1]

(0010110 1]

[00111110]

sage: rows = A.rows()

sage: A.columns()
(1, o, o, 0, (¢, 1, 0, 0), (0, 0, 1, 1), (0, 0, O, 1),
1, 1,1, 1, ¢, 0,1, 1, (1, 1,0, 1, (1, 1, 1, 0]

sage: rows

((t, 1, 0, 0, 1, 1, 1, 1), (0O,

(0, 0, 1,0, 1,1, 0, 1), (

2

We make the subspace over Fy spanned by the above rows.

sage: V = VectorSpace(GF(2),8)

sage: S = V.subspace(rows)

sage: S

Vector space of degree 8 and dimension 4 over Finite Field of size 2
Basis matrix:

(1000010 0]
(0100101 1]
(0010110 1]
[Ooo0o1001 1]
sage: A.echelon_form()
[1t0000100]
(0100101 1]
[Oo10110 1]
[0O0010011]

The basis of S used by SAGE is obtained from the non-zero rows of the reduced row echelon
form of the matrix of generators of S.

2.4.1 Sparse Linear Algebra
SAGE has support for sparse linear algebra over PID’s.
sage: M = MatrixSpace(QQ, 100, sparse=True)

sage: A = M.random_element(prob = 0.05)
sage: E = A.echelon_form()

2.4. Linear Algebra 21

The multi-modular algorithm in SAGE is good for square matrices (but not so good for
non-square matrices):

sage: M = MatrixSpace(QQ, 50, 100, sparse=True)
sage: A = M.random_element(prob = 0.05)

sage: E = A.echelon_form()

sage: M = MatrixSpace(GF(2), 20, 40, sparse=True)
sage: A = M.random_element{)

sage: E = A.echelon_form()

Note that Python is case sensitive:

sage: M = MatrixSpace(QQ, 10,10, Sparse=True)
Traceback (most recent call last):

TypeError: MatrixSpace() got an unexpected keyword argument ’Sparse’

2.4.2 Numerical Linear Algebra

SAGE includes Numeric, which is a standard Python package for numerical linear algebra.
If you have the appropriate numerical libraries installed on your computer when you built
SAGE, then Numeric will use them for highly optimized matrix algorithms. To use Nu-
meric, type import Numeric and proceed as described in the Numeric documentation (type
help(Numeric)). Also, if A is a SAGE matrix, you can obtain the corresponding Numeric
array as follows.

sage: import Numeric
sage: A = Matrix(QQ,3,3,range(9))
sage: N = A.numeric_array(); N
(L o0., 1., 2.,]
[3.,4.,5.,]
[6., 7., 8.,]]
sage: Numeric.matrixmultiply(N,N)
([15., 18., 21.,]
[42., b54., 66.,]
[69., 90., 111.,]]

sage: AxA

[15 18 21]
[42 54 66]
[69 90 111]

22 Chapter 2. A Guided Tour

2.5 Finite Groups

SAGE has some support for computing with permutation groups, most of which is imple-
mented using the interface to GAP. For example, to create a permutation group, give a list
of generators, as in the following example.

sage: G = PermutationGroup([’(1,2,3)(4,5)?, ’(3,4)’])
sage: G

Permutation Group with generators [(1,2,3)(4,5), (3,4)]
sage: G.order()

120

sage: G.is_abelian()

False

sage: G.derived_series() # random-ish output

[Permutation Group with generators [(1,2,3)(4,5), (3,4)],

Permutation Group with generators [(1,5)(3,4), (1,5)(2,4), (1,3,5)]]
sage: G.center()

Permutation Group with generators [()]

sage: G.random()

(1,5,3)(2,4)

sage: print latex(G)

\langle (1,2,3)(4,5), (3,4) \rangle

Also implemented are classical and matrix groups over finite fields:

2.5. Finite Groups 23

sage:
sage:
sage:
sage:
L
(o
(6
(6
(6
(6
(6
(6
[2
[2
(6
[0

sage: G = Sp(4,GF(7))
sage: G._gap_init_()

’Sp(4,
sage:

Symplectic Group of rank 2 over Finite Field of size 7

MS = MatrixSpace(GF(7), 2)

gens = [MS([[1,0],[-1,1]1]1),MS([[1,1],[0,1]1)]
G = MatrixGroup(gens)
G.conjugacy_class_representatives()

1 0]
1],
11,
3],
21,
61,
4],
51,
2],
51,
0],
61]

7)’
G

(o
[0
(o
[0
[0
[0
[0
(o
[0
(6

1]
1]
1]
1]
1]
1]
3]
3]
1]
0]

sage: G.random()

(6555
(026
(501
463

1]
3]
0]
4]

sage: G.order()

276595

You can also compute using abelian groups (infinite and finite):

200

24

Chapter 2. A Guided Tour

sage: A=AbelianGroup(5,[3, 5, 5, 7, 8], names="abcde")
sage: a,b,c,d,e=A.gens()

sage: bl = a~3*b*xc*d"2%e”5

sage: b2 = a”2¥bxc”2*xd"3%e”3

sage: b3 = a~7*b~3xc~5xd~4xe"4

sage: b4 = a~3%b"2*xc”2*d"3*e”5

sage: bd5 = a~2xb~4xc"2*xd"4*e"5

sage: e.word_problem([bl,b2,b3,b4,b5],display=False)
[[b~2%c~2xd"~3*e"5, 245]]

sage: (b~2%c~2xd~3*e"5)"245

e

sage: F = AbelianGroup(5, [5,5,7,8,9], names=’abcde’)
sage: (a, b, ¢, d, e) = F.gens()

sage: d * b**x2 x c*xx3

b~2%c~3*d

sage: F = AbelianGroup(3,[2]*3); F

Multiplicative Abelian Group isomorphic to C2 x C2 x C2
sage: H = AbelianGroup([2,3], names="xy"); H
Multiplicative Abelian Group isomorphic to C2 x C3
sage: AbelianGroup(5)

Multiplicative Abelian Group isomorphic to Z x Z x Z x Z x Z
sage: AbelianGroup(5).order()

Infinity

2.6 Elliptic Curves

Elliptic curves functionality includes most of the elliptic curve functionality of PARI, access to
the data in Cremona’s online tables (requires optional database package), the functionality of
mwrank, i.e., 2-descents with computation of the full Mordell-Weil group, the SEA algorithm,
computation of all isogenies, much new code for curves over Q, and some of Denis Simon’s
algebraic descent software.

The command EllipticCurve for creating an elliptic curve has many forms:

e EllipticCurve(la;,as,as,a4,a6]): Returns the elliptic curve
y? 4 arzy + asy = 1 + aox® + aux + ag,
where the a;’s are coerced into the parent of a;. If all the a; have parent Z, they are
coerced into Q.

e EllipticCurve([ay,as]): Same as above, but a; = ay = az = 0.

e EllipticCurve(label): Returns the elliptic curve over QQ from the Cremona database
with the given (new!) Cremona label. The label is a string, such as "11a" or "37b2".
The letter must be lower case (to distinguish it from the old labeling).

2.6. Elliptic Curves 25

e EllipticCurve(j): Returns an elliptic curve with j-invariant j.

e EllipticCurve(R, [a;,as,as,a4,a6]): Create the elliptic curve over a ring R with
given a;’s as above.

We illustrate each of these constructors:

sage: EllipticCurve([0,0,1,-1,0])
Elliptic Curve defined by y"2 + y = x°3 - x over Rational Field

sage: EllipticCurve([GF(5)(0),0,1,-1,01)
Elliptic Curve defined by y™2 + y = x°3 + 4%x over Finite Field of size 5

sage: EllipticCurve([1,2])
Elliptic Curve defined by y"2 = x"3 + x + 2 over Rational Field

sage: EllipticCurve(’37a’)
Elliptic Curve defined by y"2 + y = x°3 - x over Rational Field

sage: EllipticCurve(5)
Elliptic Curve defined by y~2 + x*y = x~3 + 36/1723*x + 1/1723
over Rational Field

sage: EllipticCurve(GF(5), [0,0,1,-1,01)
Elliptic Curve defined by y™2 + y = x°3 + 4%x over Finite Field of size 5

The pair (0,0) is a point on the elliptic curve E defined by y* +y = 23 — 2. To create this
point in SAGE type E([0,0]). SAGE can add points on such an elliptic curve (recall elliptic
curves support an additive group structure where the point at infinity is the zero element
and three co-linear points on the curve add to zero):

sage: E = EllipticCurve([0,0,1,-1,0]1)

sage: E

Elliptic Curve defined by y"2 + y = x”3 - x over Rational Field
sage: P = E([0,0])

sage: P + P

(1 :0: 1

sage: 10xP

(161/16 : -2065/64 : 1)

sage: 20%xP

(683916417/264517696 : -18784454671297/4302115807744 : 1)
sage: E.conductor()

37

The elliptic curves over the complex numbers are parameterized by the j-invariant. SAGE

26 Chapter 2. A Guided Tour

computes j-invariants as follows:

sage: E = EllipticCurve([0,0,1,-1,0]1); E

Elliptic Curve defined by y™2 + y = x°3 - x over Rational Field
sage: E.j_invariant()

110592/37

If we make a curve with j-invariant the same as that of F, it need not be isomorphic to F. In
the following example, the curves are not isomorphic because their conductors are different.

sage: F = EllipticCurve(110592/37)
sage: factor(F.conductor())
276 * 37

However, the twist of F' by 2 gives an isomorphic curve.
sage: G = F.quadratic_twist(2); G

Elliptic Curve defined by y"2 + y = x°3 - x over Rational Field
sage: G.conductor()

37
sage: G.j_invariant()
110592/37

We can compute the coefficients a,, of the L-series or modular form)~ a,q" attached to
the elliptic curve. This computation uses the PARI C-library:

sage: E = EllipticCurve([0,0,1,-1,0]1)
sage: print E.anlist(30)
o, 1, -2, -3, 2, -2, 6, -1, 0, 6, 4, -5, -6, -2, 2, 6,
-4, 0, -12, 0, -4, 3, 10, 2, 0, -1, 4, -9, -2, 6, -12]
sage: v = E.anlist(10000)

It only takes a second to compute all a,, for n < 10°:
sage: time v = E.anlist(100000)

CPU times: user 0.98 s, sys: 0.06 s, total: 1.04 s
Wall time: 1.06

Elliptic curves can be constructed using their Cremona labels. This pre-loads the elliptic
curve with information about its rank, Tamagawa numbers, regulator, etc.

2.6. Elliptic Curves 27

sage: E = EllipticCurve("37b2")
sage: E

Elliptic Curve defined by y™2 + y
Rational Field

sage: E = EllipticCurve("389a")
sage: E

Elliptic Curve defined by y™2 + y = x°3 + x72 - 2*x over Rational Field
sage: E.rank()

2

sage: E = EllipticCurve("5077a")

sage: E.rank()

3

x"3 + x72 - 1873*%x - 31833 over

We can also access the Cremona database directly.

sage: db = sage.databases.cremona.CremonaDatabase ()
sage: db.curves(37)
{?a1’: [[0, O, 1, -1, O], 1, 11, ’b1’: [[O, 1, 1, -23, -50], O, 31}
sage: db.allcurves(37)
{’a1’: [[0, O, 1, -1, 0], 1, 1],
’b1’: [[O0, 1, 1, -23, -50], O, 3],
’v2°: [[0, 1, 1, -1873, -31833], 0, 1],
’p3’: [[0, 1, 1, -3, 1], O, 31}

b

The objects returned from the database are not of type E11ipticCurve. They are elements
of a database and have a couple of fields, and that’s it. There is a small version of Cremona’s
database, which is distributed by default with SAGE, and contains limited information about
elliptic curves of conductor < 10000. There is also a large optional version, which contains
extensive data about all curves of conductor up to 120000 (as of October, 2005). There is
also a huge (2GB) optional database package for SAGE that contains the hundreds of millions
of elliptic curves in the Stein-Watkins database.

2.7 Plotting

The “Constructions” SAGE documentation has some examples of using SAGE for plotting, as
do sections 2.8.4 and 4.4 below. We shall give some other examples here of using matplotlib.
To view any one of these, after entering the commands below for the picture you want, type
p.save("<path>/my_plot.png") and view the plot in a graphics viewer such as GIMP.

Here’s a yellow circle:

28 Chapter 2. A Guided Tour

sage: L = [[cos(pi*i/100),sin(pi*i/100)] for i in range(200)]
sage: p = polygon(L, rgbcolor=(1,1,0))

A green deltoid:

sage: L = [[-1+cos(pi*i/100)*(1+cos(pi*i/100)),2*sin(pi*i/100)*(1-cos(pi*i/100))] for i in
sage: p = polygon(L, rgbcolor=(1/8,3/4,1/2))

A blue figure 8:

[[2*cos(pi*i/100) *sqrt(1-sin(pi*i/100)~2),2*sin(pi*i/100)*sqrt(1-sin(pi*i/100)"~2)
polygon(L, rgbcolor=(1/8,1/4,1/2))

sage: L
sage: p

A blue hypotrochoid:

[[6xcos(pi*i/100)+5*cos((6/2)*pi*i/100),6*sin(pi*i/100)-5*sin((6/2)*pi*i/100)] fc
polygon(L, rgbcolor=(1/8,1/4,1/2))

sage: L
sage: p

A purple epicycloid:

sage: m = 9; b =1
sage: L = [[m*cos(pi*i/100)+b*cos((m/b)*pi*i/100) ,m*sin(pi*i/100)-b*sin((m/b)*pi*i/100)] fo
sage: p = polygon(L, rgbcolor=(7/8,1/4,3/4))

A blue 8-leaved petal:

[[sin(5*pi*i/100) ~2*cos(pi*1/100)~3,sin(5*pi*i/100) ~2*sin(pi*i/100)] for i in ran
polygon(L, rgbcolor=(1/3,1/2,3/5))

sage: L
sage: p

You can also add text to a plot:

[[cos(pi*i/100)~3,sin(pi*i/100)] for i in range(200)]
line(L, rgbcolor=(1/4,1/8,3/4))

text("a bulb", (-1.7, 0.5))

text("x axis", (2,-0.2))

text ("y axis", (0.6,1.3))

ptttx+y

view(g, xmin=-1.5, xmax=2, ymin=-1, ymax=1.3)

g < K oo
I

2.7. Plotting 29

2.8 Calculus

The “Constructions” SAGE documentation has some examples of using SAGE for calculus
computations, such as integration, differentiation, and Laplace transforms. In this chapter,
we present a few other examples.

2.8.1 Functions

SAGE allows one to construct piecewise-defined functions. To define

1, 0<x<l1,
1—ux, l<z<?2,
flz) = 2z, 2 < x <3,

10z — 2%, 3 <z < 10,
type

sage: x = PolynomialRing(RationalField()).gen()
sage: f1 = x70
sage: f2 = 1-x
sage: f3 = 2x*x
sage: f4 = 10*x-x"2
sage: f = Piecewise([[(0,1),f1],[(1,2),f2],[(2,3),£3],[(3,10),f4]1])
sage: f
Piecewise defined function with 4 parts, [[(0, 1), 1], [(1, 2), -x + 11, [(2, 3), 2%
sage: f.latex()
’\\begin{array}{11} \\left\\{ 1,4 0 < x <1 ,\\-x + 1,& 1 < x <2 \\2%x,& 2 < x < 3

By convention, we assume this takes the average value of the jumps at each of the inner
midpoints.

To compute critical points and function values,

30 Chapter 2. A Guided Tour

sage: f.critical_points()

[5.0]

sage: f£(5)
25

sage: £(1/2)
1

sage: f(1)
1/2

sage: £(0)
1

sage: £(10)
0

Several other methods are available for these functions, such as laplace transforms and
Fourier series.

2.8.2 Elementary functions

Call a univariate function an "elementary function" if it can be written as a sum of functions
of the form "polynomial times and exponential times a sine or a cosine”.

The set E of elementary functions is an algebra over RR. If D is differentiation and A —
RR|D| is the polynomial ring in D over RR, let us define a smooth function f to be finite if
the vector space A(f) is finite dimensional.

Theorem: E is the algebra of all finite functions.

2.8. Calculus 31

sage: R = ElementaryFunctionRing(QQ,"t"); R
ElementaryFunctionRing over Rational Field in t
sage: t = R.polygen(); t

t

sage: f = exponential(2,t); f

Elementary function (1)exp(2#t)

sage: f.diff()

Elementary function (2)exp(2#t)

sage: f.int([])

Elementary function (1/2)exp(2*t)

sage: f.latex()

>(De~{2tF\\cos(0t)’

sage: f(1)

7.3890560989306495

sage: f.laplace_transform("s")

"1/(s - 2)°

sage: £72

Elementary function (1)exp(4*t)

The example below shows how to solve x’’ - x = sin(2t):
sage: DR = PolynomialRing(QQ,"D")

sage: D = DR.gen()
sage: Phi = D2 - 1

sage: R = ElementaryFunctionRing(QQ,"t")

sage: t = R.polygen()

sage: g = ElementaryFunction([(1%t~0,0,0,2)]1)

sage: g.desolve(Phi,"x")

"x(t) = e tx(5*x’(0)) + 5xx(0) + 2)/10 - e~-t*(5*x’(0)) - 5*x(0) + 2)/10 - sin(2*t)/5"

2.8.3 Differentiation, integration, etc

d* sin(2?) |
To compute — 53—
sage: maxima(’sin(x~2)?).diff(’x’,4)
16*x~4*3in(x"2) - 12*sin(x~2) - 48%x"2xcos(x"2)

(@2 +17y%) O(2*+17y%)

To compute, g s oy

32 Chapter 2. A Guided Tour

sage: f = maxima(’x"2 + 17%xy~2?)
sage: f.diff(’x’)

2%x

sage: f.diff(’y?)

34xy

To compute [zsin(z?)dz, fol =t da:

sage: maxima(’x*sin(x~2)’).integrate(’x’)
-cos(x"2)/2

sage: maxima(’x/(x"2+1)’).integral(’x’, 0, 1)
log(2)/2

To compute the partial fraction decomposition of ﬁ:

sage: f = maxima(’1/((1+x)*(x-1))’)

sage: f.partial_fraction_decomposition(’x?’)

1/(2x(x - 1)) - 1/(2x(x + 1))

sage: f.partial_fraction_decomposition(’x’).display2d()

2 (x - 1) 2 (x+ 1)

2.8.4 Systems of DEs using Laplace transforms

In this section, we provide a few details which are useful to teaching a lower level ordinary
differential equatoins course using SAGE.

The displacement from equilibrium (respectively) for a coupled spring attached to a wall on
the left

l------ \/\/N/N/\---Imassl|----\/\/\/\/\/----|mass2]|
springl spring2

is modeled by the system of 2nd order ODEs

myxy + (ki + ko)xy — kowo =0, moxh + ka(xg — x1) = 0,

where ;7 denotes the displacement from equilibrium of mass 1, denoted m;, x5 denotes the
displacement from equilibrium of mass 2, denoted ms, and ki, ko are the respective spring
constants.

2.8. Calculus 33

Example: Use SAGE to solve the above problem with my = 2, my = 1, ky = 4, ky = 2,
21(0) = 3, 1(0) = 0, 22(0) = 3, 25(0) = 0.

Soln: Take Laplace transforms of the first DE (for simplicity of notation, let z = x1, y = x3):

sage: _ = maxima.eval("x2(t) := diff(x(t),t, 2)")
sage: maxima("laplace(2*x2(t)+6*x(t)-2*y(t),t,s)")
2¢(- at(?diff(x(t),t,1),t = 0) + s~2+laplace(x(t),t,s) - x(0)*s) - 2xlaplace(y(t),t,s) + €

This says —2x(0) +2s%% X (s) —2s21(0) —2X5(s) +2X, (s) = 0 (where the Laplace transform
of a lower case function is the upper case function). Take Laplace transforms of the second
DE:

sage: _ = maxima.eval("y2(t) := diff(y(t),t, 2)")
sage: maxima("laplace(y2(t)+2xy(t)-2*x(t),t,s)")
~at(Pdiff(y(t),t,1),t = 0) + s~2xlaplace(y(t),t,s) + 2xlaplace(y(t),t,s) - 2xlaplace(x(t),

This says s?X,(s) + 2X5(s) — 2X;(s) — 3s = 0. Solve these two equations:

sage: eqns = ["(2%s572+6)*X-2xY=6*g","-2%X +(872+2)*Y = 3*s"]

sage: vars = ["X","Y"]

sage: maxima.solve_linear(eqns, vars)

[X = (3%¥s73 + 9%8) /(874 + b*s~2 + 4),Y = (3*%s~3 + 15%8)/(s8"4 + 5*xs~2 + 4)]

This says X;(s) = (35> +9s)/(s* +5s* +4), Xo(s) = (35 +15s) /(s* + 5s? +4). Take inverse
Laplace transforms to get the answer:

sage: maxima("ilt((3*s~3 + 9%s)/(s"4 + b*s~2 + 4),s,t)")

cos(2xt) + 2%cos(t)

sage: maxima("ilt((3*s~3 + 1B5*s5)/(s"4 + 5*s~2 + 4),s,t)")
4xcos(t) - cos(2#*t)

Therefore, x1(t) = cos(2t) + 2 cos(t), z2(t) = 4cos(t) — cos(2t). This can be plotted para-
metrically using

maxima.plot2d_parametric(["cos(2+t) + 2*cos(t)","4*cos(t) - cos(2+t)"1, "t",[0,11)

and individually using

maxima.plot2d(’cos(2*x) + 2xcos(x)’,’[x,0,1]°)
maxima.plot2d(’4*cos(x) - cos(2%x)’,’[x,0,1]”)

REFERENCES: Nagle, Saff, Snider, Fundamentals of DEs, 6th ed, Addison-Wesley, 2004.

34 Chapter 2. A Guided Tour

(see §5.5).

2.8.5 Euler's method for systems of DEs

Finally, we show how the files in the examples/calculus subdirectory of the main SAGE_HOME
directory can be used. (And please feel free to contribute your own by emailing them to the
SAGE Forum or to William Stein.)

In the next example, we will illustrate Euler’s method for 2nd order ODE’s. We first recall
the basic idea. The goal is to find an approximate solution to the problem

y/ = f(l', y)a y(a) =G (2‘1)

where f(x,y) is some given function. We shall try to approximate the value of the solution
at x = b, where b > a is given.

Recall from the definition of the derivative that

oy Y@+ h) —y(x)
Yy (r) = - :

h > 0 is a given and small. This and the DE together give f(z,y(x)) = w Now

solve for y(z + h):

y(@ +h) =y(@) +h- flz,y(@).
If we call h- f(x,y(z)) the “correction term” (for lack of anything better), call y(x) the “old

value of 37, and call y(x+h) the “new value of 3", then this approximation can be re-expressed
Ynew = Yold + h- f(xa yold)~

Tabular idea: Let n > 0 be an integer, which we call the step size. This is related to the
increment by

pot—
n
This can be expressed simplest using a table.

x y hf(z,y)

a c hf(a,c)
a+h | c+hf(a,c) :
a+ 2h :

b 77?7 XXX

2.8. Calculus 35

The goal is to fill out all the blanks of the table but the xxx entry and find the 77?7 entry,
which is the Euler’s method approximation for y(b).

The idea for systems of ODEs is similar.

Example: Numerically approximate z(t) at ¢ = 1 using 4 steps of Euler’s method, where
2+t +2=0, 2(0)=1, Z(0) =0.

First, you must attach the appropriate file, so we type

sage: attach os.environ[’SAGE_ROOT’] + ’/examples/calculus/eulers_method.sage’
Now one must reduce the 2nd order ODE doewn to a system of two first order DEs (using
x = z,y = 2') and apply Euler’s method:

sage: t,yl,y2 = PolynomialRing(RealField(10),3).gens()

sage: £ =y2; g= -yl - y2 x ¢t
sage: eulers_method_2x2(f,g, 0, 1, 0, 1/4, 1)

t X hx*f (t,x,y) v
0 1 0.00000 0
1/4 1.0000 -0.062500 -0.25000
1/2 0.93750 -0.11719 -0.46875
3/4 0.82031 -0.15381 -0.61523
1 0.66602 -0.16650 -0.66602

Therefore, z(1) ~ 0.75.

2.8.6 Special functions

Several orthogonal polynomials and special functions are implemented, using both pari and
maxima. These are documented in the appropriate section (“Orthogonal polynomials”) of
the reference manual.

sage: x = PolynomialRing(QQ, ’x’).gen()
sage: chebyshev_U(2,x)
4xx~2 - 1

The special functions in SAGE are also documented in the appropriate section (“Special
functions”) of the reference manual.

36 Chapter 2. A Guided Tour

hx

sage: bessel_I(1,1,"pari",500)
0.56515910399248502720769602760986330732889962162109200948029448947925564096437113409266499
sage: bessel_I(1,1)

0.56515910399248503

sage: bessel_I(2,1.1,"maxima") # last few digits are random

0.16708949925104899

Maxima has fixed accuracy, whereas those functions implemented using pari have higher
accuracy.

2.9 Algebraic Geometry

You can define arbitrary algebraic varieties in SAGE, but all too frequently, nontrivial func-
tionality is limited to rings over Q or prime fields. For example, we compute the union of
two affine plane curves, then recover the curves as the irreducible components of the union.

sage: x, y = AffineSpace(2, QQ, ’xy’).gensQ)

sage: C2 = Curve(x"2 + y°2 - 1)
sage: C3 = Curve(x~3 + y~3 - 1)
sage: D = C2 + C3

sage: D

Affine Curve over Rational Field defined by 1 - y"2 - y°3 + y°5 - x72
+ x72%y"3 - x73 + x7"3*%y"2 + x75
sage: D.irreducible_components()
[Closed subscheme of Affine Space of dimension 2 over Rational Field defined by:
-1 +y72 + x72,
Closed subscheme of Affine Space of dimension 2 over Rational Field defined by:
-1 + y°3 + x°3]

We can also find all points of intersection of the two curves by intersecting them and com-
puting the irreducible components.

2.9. Algebraic Geometry 37

sage: V = C2.intersection(C3)
sage: V.irreducible_components()
[Closed subscheme of Affine Space of dimension 2 over Rational Field defined by:

y

-1 + x, Closed subscheme of Affine Space of dimension 2 over Rational Field defined t
X

-1 + y, Closed subscheme of Affine Space of dimension 2 over Rational Field defined t
2+y+x

3 + 4xy + 2xy~2]

Thus, e.g., (1,0) and (0,1) are on both curves (visibly clear), as are certain (quadratic)
points whose y coordinate satisfy 2y? + 4y + 3 = 0.

2.10 Modular Forms

SAGE can do some computations related to modular forms, including dimensions, computing
spaces of modular symbols, Hecke operators, and decompositions.

There are several functions available for computing dimensions of spaces of modular forms.
For example,

sage: dimension_cusp_forms(GammaO(11),2)

1

sage: dimension_cusp_forms(GammaO(1),12)
1

sage: dimension_cusp_forms(Gammal(389),2)
6112

Next we illustrate computation of Hecke operators on a space of modular symbols of level 1
and weight 12.

38 Chapter 2. A Guided Tour

sage: M = ModularSymbols(1,12)

sage: M.basis()

([X~8%Y~2,(0,0)], [X~9x%Y,(0,0)], [X~10,(0,001)
sage: t2 = M.T(2)

sage: t2

Hecke operator T_2 on Modular Symbols space of dimension 3 for Gamma_O(1) of weight 12 with
sage: t2.matrix()

[-24 0 0]

[0 -24 0]

[4860 0 2049]

sage: f = t2.charpoly(); f

x~3 - 2001*x~2 - 97776*x - 1180224

sage: factor(f)

(x - 2049) * (x + 24)"2

sage: M.T(11).charpoly().factor()

(x - 285311670612) * (x - 534612)"2

We can also create spaces for I'g(N) and I'y (V).

sage: ModularSymbols(11,2)

Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign O over Rational
sage: ModularSymbols(Gammal(11),2)

Modular Symbols space of dimension 11 for Gamma_1(11) of weight 2 with sign O and over Rati

Let’s compute some characteristic polynomials and g-expansions.

sage: M = ModularSymbols(Gammal(11),2)
sage: M.T(2).charpoly()
x~11 - 8%x~10 + 20*x"9 + 10*x~8 - 145*x~7 + 229%x"6 + b8*x"5
- 360*%x74 + 70%x~3 - b1b*x~2 + 1804*x - 1452
sage: M.T(2).charpoly().factor()
(x - 3) x (x +2)72 x (x74 - 7#x”3 + 19%x”2 - 23%x + 11)
* (x74 - 2*%x”3 + 4*x~2 + 2%x + 11)
sage: S = M.cuspidal_submodule()
sage: S.T(2).matrix()
[-2 0]
[0 -2]
sage: S.q_expansion_basis(10)
L
q - 2%q72 - @3 + 2%q~4 + q°5 + 2%xq"6 - 2%q"7 - 2%q~9 + 0(q~10)

We can even compute spaces of modular symbols with character.

2.10. Modular Forms 39

sage: G = DirichletGroup(13)

sage: e = G.072

sage: M = ModularSymbols(e,2); M

Modular Symbols space of dimension 4 and level 13, weight 2, character [zeta6], sign 0, ove
sage: M.T(2).charpoly().factor()

(x + -2%zetab - 1) * (x + -zetab - 2) * (x + zetab + 1)°2

sage: S = M.cuspidal_submodule(); S

Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 4 and level 1
sage: S.T(2).charpoly().factor()

(x + zetab + 1)°2

40

Chapter 2. A Guided Tour

CHAPTER
THREE

The Interactive Shell

In most of this tutorial we assume you start the SAGE interpreter using the sage command.
This starts a customized version of the IPython shell, and imports many functions and
classes, so they are ready to use from the command prompt. Further customization is
possible by editing the $SAGE_ROOT/ipythonrc file. Upon starting SAGE you get output
similar to the following:

| SAGE Version 1.0.0.1, Build Date: 2006-02-05-0745 |
| Distributed under the GNU General Public License V2 |
| For help type <object>?, <object>??, Ymagic, or help |

To quit SAGE either press Ctrl-D or type quit or exit.

sage: quit
Exiting SAGE (CPU time Om0.00s, Wall time OmO.89s)

The wall time is the time that elapsed on the clock hanging from your wall. This is relevant,
since CPU time does not track time used by subprocesses like Gap or Singular.

Note: Avoid killing a SAGE process with kill -9 from a terminal, since SAGE might not
kill child processes, e.g., maple processes, or cleanup tempoary files from $HOME/ . sage/tmp.

3.1 Your SAGE session

The session is the sequence of input and output from when you start SAGE until you quit.
SAGE via IPython logs all SAGE input. In fact, at any point, you may type %hist to get a
listing of all input lines typed so far. You can type 7 at the SAGE prompt to find out more
about IPython, e.g., “IPython offers numbered prompts ... with input and output caching.
All input is saved and can be retrieved as variables (besides the usual arrow key recall). The

41

following GLOBAL variables always exist (so don’t overwrite them!)”:

previous input.
__: next previous.

_oh : output entry for all lines that generated input

Here is an example:

sage: factor(100)

_1 =272 % 572

sage: kronecker_symbol(3,5)
2 =-1

sage: %hist

1: factor(100)

2: kronecker_symbol(3,5)

3: %hist

sage: _oh
4 =A{1: 202 x 5°2, 2: -1}
sage: _il

_5 = ’factor(ZZ(100))\n’
sage: eval(_il)

_6 =272 x 572

sage: %hist

: factor(100)

: kronecker_symbol(3,5)
: %hist

_oh

_it

: eval(_il)

: %hist

~N O O W N

We omit the output numbering in the rest of this tutorial and the other SAGE documentation.

You can also store a list of input from session in a macro for that session.

sage: E
sage: M = ModularSymbols(37)
sage: %hist

1: E = EllipticCurve([1,2,3,4,5])

2: M = ModularSymbols(37)
3: %hist
sage: jmacro em 1-2

EllipticCurve([1,2,3,4,5])

Macro ‘em‘ created. To execute, type its name (without quotes).

42

Chapter 3. The Interactive Shell

sage: E

Elliptic Curve defined by y~2 + x*y + 3%y = x73 + 2*x72 + 4*xx + 5 over Rational Field

sage: E =5

sage: M = None
sage: em
Executing Macro...
sage: E

x~3 + 2*¥x~2 + 4xx + 5 over Rational Field

Elliptic Curve defined by y~2 + xx*y + 3%y

Any UNIX shell command can be executed from SAGE by prefacing it by an exclamation
point (!). For example,

sage: !ls

auto example.sage glossary.tex t tmp tut.log tut.tex

returns the listing of the current directory.

The $PATH has the SAGE bin directory at the front, so if you run gp, gap, singular, maxima,
etc., you get the versions included with SAGE.

sage: !gp
Reading GPRC: /etc/gprc ...Done.

GP/PARI CALCULATOR Version 2.2.11 (alpha)
i686 running linux (ix86/GMP-4.1.4 kernel) 32-bit version

sage: !singular

SINGULAR / Development
A Computer Algebra System for Polynomial Computations / version 3-0-1
0<
by: G.-M. Greuel, G. Pfister, H. Schoenemann \ October 2005

FB Mathematik der Universitaet, D-67653 Kaiserslautern \

3.2 Logging Input and Output

Logging your SAGE session is not the same as saving it (see §3.9 for that). To log input (and
optionally output) use the logstart command. Type logstart? for more details. You can
use this command to log all input you type, all output, and even play back that input in a
future session (by simply reloading the log file).

3.2. Logging Input and Output 43

was@form:~$ sage

| SAGE Version 0.10.11, Build Date: 2006-01-28-0723 |
| Distributed under the GNU General Public License V2 |
| For help type <object>?, <object>??, Ymagic, or help |

sage: logstart setup
Activating auto-logging. Current session state plus future input saved.

Filename : setup

Mode : backup

Output logging : False

Timestamping : False

State : active

sage: E = EllipticCurve([1,2,3,4,5]) .minimal_model()
sage: F = QQ~3

sage: x,y = QQ[’x,y’].gens()

sage: G = E.gens()

sage:

Exiting SAGE (CPU time Om0.61s, Wall time Om50.39s).
was@form:~$ sage

| SAGE Version 0.10.11, Build Date: 2006-01-28-0723 |
| Distributed under the GNU General Public License V2 |
| For help type <object>?, <object>??, Ymagic, or help |

sage: load "setup"
Loading log file <setup> one line at a time...
Finished replaying log file <setup>

sage: E

Elliptic Curve defined by y~2 + x*¥y = x"3 - x72 + 4*x + 3 over Rational Field
sage: xX*y

X*y

sage: G

[(2 :3: 1)]

If you use SAGE in the KDE terminal “konsole” then you can save your session as follows:
after starting SAGE in konsole, select “settings”, then “history...”, then “set unlimited”. When
you are ready to save your session, select “edit” then “save history as...” and type in a name
to save the text of your session to your computer. After saving this file, you could then load
it into an editor, such as xemacs, and print it.

44 Chapter 3. The Interactive Shell

3.3 Paste Ignores Prompts

Suppose you are reading a session of SAGE or Python computations and want to copy them
into SAGE. But there are annoying >>> or sage: prompts to worry about. In fact, you can
copy and paste an example, including the prompts if you want, into SAGE. In other words,
by default the SAGE parser strips any leading >>> or sage: prompt before passing it to
Python. For example,

sage: 2710

1024

sage: sage: sage: 2710
1024

sage: >>> 2710

1024

3.4 Timing Commands

If you place the time command at the beginning of an input line, the time the command
takes to run will be displayed after the output. For example, we can compare the running
time for a certain exponentiation operation in several ways. The timings below will probably
be much different on your computer, or even between different versions of SAGE. First, native
Python:

sage: time a = int(1938)~int(99484)
CPU times: user 0.66 s, sys: 0.00 s, total: 0.66 s
Wall time: 0.66

This means that 0.66 seconds total were taken, and the “Wall time”, i.e., the amount of time
that elapsed on your wall clock, is also 0.66 seconds. If your computer is heavily loaded with
other programs the wall time may be much larger than the CPU time.

Next we time exponentiation using the native SAGE Integer type, which is implemented (in
Pyrex) using the GMP library:

sage: time a = 1938799484
CPU times: user 0.04 s, sys: 0.00 s, total: 0.04 s
Wall time: 0.04

Using the PARI C-library interface:

3.3. Paste Ignores Prompts 45

sage: time a = pari(1938) pari(99484)
CPU times: user 0.05 s, sys: 0.00 s, total: 0.05 s
Wall time: 0.05

GMP is better, but only slightly (as expected, since the version of PARI built for SAGE uses
GMP for integer arithmetic).

You can also time a block of commands using the cputime command, as illustrated below:

sage: t = cputime()

sage: a = int(1938) ~int (99484)

sage: b = 1938799484

sage: ¢ = pari(1938)-pari(99484)

sage: cputime(t) # somewhat random output
0.64

sage: cputime?

Return the time in CPU second since SAGE started, or with optional
argument t, return the time since time t.

INPUT:

t -- (optional) float, time in CPU seconds
OUTPUT:

float -- time in CPU seconds

The walltime command behaves just like the cputime command, except that it measures
wall time.

We can also compute the above power in some of the computer algebra systems that SAGE
includes. In each case we execute a trivial command in the system, in order to start up
the server for that program. The most relavant time is the wall time. However, if there
is a significant difference between the wall time and the cpu time then this may indicate a
performanve issue worth looking into.

46 Chapter 3. The Interactive Shell

sage: gp(0)

0

sage: time g=gp(’1938°99484’)

CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
Wall time: 0.09

sage: maxima(0)

0

sage: time g=maxima(’1938°99484’)

CPU times: user 4.91 s, sys: 0.27 s, total: 5.18 s
Wall time: 24.93

sage: kash(0)

0

sage: time g=kash(’1938°99484’)

CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
Wall time: 0.07

sage: mathematica(0)

0

sage: time g=mathematica(’1938°99484’)

CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
Wall time: 0.07

sage: maple(0)

0

sage: time g=maple(’1938~99484’)

CPU times: user 3.74 s, sys: 0.04 s, total: 3.79 s
Wall time: 5.25

sage: gap(0)

0

sage: time g=gap.eval(’a:=1938"99484;; 1;’)

CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
Wall time: 8.84

Note that Gap and Maxima are slow at this test (maybe they should have been compiled
differently?). The problem with Maple is that they try to print the number out internally.
The call to gap is different to avoid any chance that the number is being expanded in decimal.

3.5 Errors and Exceptions

When something goes wrong, you will usually see a Python “exception”. Python even tries to
suggest what it is that it that raised the exception. Often you see the name of the exception,
e.g., NameError or ValueError (see the Python Reference Manual [Py| for a complete list
of exceptions). For example,

3.5. Errors and Exceptions 47

File "<console>", line 1
ZZ(3)_2

SyntaxError: invalid syntax
Traceback (most recent call last):

TypeError: Unable to coerce Infinity (<class ’sage...Infinity’>) to Rational

The interactive debugger is sometimes useful for understanding what went wrong. You can
toggle it being on or off using %pdb (the default is off). The prompt (Pdb) appears if an
exception is raised and the debugger is on. From within the debugger, you can print the
state of any local variable, and move up and down the execution stack. For example,

sage: %pdb

Automatic pdb calling has been turned ON
sage: EllipticCurve([1,infinity])
Traceback (most recent call last):

TypeError: Unable to coerce Infinity (<class ’sage.rings.infinity.Infinity’>) to Rational

> /home/was/sage/sage-doc/tut/_rational.pyx(147) _rational.Rational.__set_value()
(Pdb)

For a list of commands in the debugger type 7 at the (Pdb) prompt:
(Pdb) 7

Documented commands (type help <topic>):

EQF break condition disable help list q step W

a bt cont down ignore n quit tbreak whatis
alias ¢ continue enable j next r u where
args cl d exit jump P return unalias

b clear debug h 1 PP s up

Type Ctrl-D or quit to return to SAGE.

48 Chapter 3. The Interactive Shell

3.6 Reverse Search and Tab Completion

First create the three dimensional vector space V = Q? as follows:

sage: V = VectorSpace(QQ,3)
sage: V
Vector space of dimension 3 over Rational Field

You can also use the following more concise notation:

sage: V = QQ~3

Type the beginning of a line, then Ctrl-p to go back to each line you have entered that
begins in that way. This works even if you completely exit SAGE and restart later. You can
also do a reverse search through the history using Ctrl-r. You can also hit the up arrow
key to go back though previous commands (even if you completely exit SAGE and restart).
All these features use the readline package, which is available on most flavors of linux.

It is easy to list all member functions for V' using tab completion. Just type V., then type
the [tab keyl] key on your keyboard:

sage: V. [tab key]
V._VectorSpace_generic__base_field

V.ambient_space
V.base_field
V.base_ring
V.basis

V.coordinates

V.zero_vector
If you type the first few letters of a function, then [tab key], you get only functions that
begin as indicated.

sage: V.i[tab keyl

V.is_ambient V.is_dense V.is_full V.is_sparse

If you wonder what a particular function does, e.g., the coordinates function, type
V.coordinates? for help or V.coordinates?? for the source code, as explained in the
next section.

3.6. Reverse Search and Tab Completion 49

3.7 Integrated Help System

SAGE features an integrated help facility. Type a function name followed by ? for the
documentation for that function.

sage: V = QQ~3
sage: V.coordinates?

Type: instancemethod
Base Class: <type ’instancemethod’>
String Form: <bound method FreeModule_ambient_field.coordinates of Vector
space of dimension 3 over Rational Field>
Namespace: Interactive
File: /home/was/s/local/lib/python2.4/site-packages/sage/modules/free_module.py
Definition: V.coordinates(self, v)
Docstring:

Write v in terms of the basis for self.
Returns a list ¢ such that if B is the basis for self, then
sum c_i B_i = v.

If v is not in self, raises an ArithmeticError exception.

EXAMPLES:
sage: M = FreeModule(IntegerRing(), 2); MO,M1=M.gens()
sage: W = M.submodule([MO + M1, MO - 2xM1])

sage: W.coordinates(2*MO-M1)
[2’ _1]

As shown above, the output tells you the type of the object, the file in which it is defined,
and a useful description of the function with examples that you can paste into your current
session. Almost all of these examples are regularly automatically tested to make sure they
work and behave exactly as claimed.

Another feature that is very much in the spirit of the open source nature of SAGE is that if £
is a Python function, then typing £77 displays the source code that defines £. For example,

50 Chapter 3. The Interactive Shell

sage: V = QQ°3
sage: V.coordinates??
Type: instancemethod

Source:
def coordinates(self, v):

Write v in terms of the basis for self.

return self.coordinate_vector(v).list()

This tells us that all the coordinates function does is call the coordinate_vector function
and change the result into a list. What does the coordinate_vector function do?

sage: V = QQ~3
sage: V.coordinate_vector??

def coordinate_vector(self, v):

return self.ambient_vector_space() (v)

The coordinate_vector function coerces its input into the ambient space, which has the
affect of computing the vector of coefficients of v in terms of V. The space V is already
ambient since it’s just Q3. There is also a coordinate_vector function for subspaces, and
it’s different. We create a subspace and see:

sage: V = QQ~3; W = V.span_of_basis([V.0, V.1])
sage: W.coordinate_vector??

def coordinate_vector(self, v):

First find the coordinates of v wrt echelon basis.

w = self.echelon_coordinate_vector(v)

Next use transformation matrix from echelon basis to
user basis.

T = self.echelon_to_user_matrix()

return T.linear_combination_of_rows(w)

(If you think the implementation is inefficient, please sign up to help optimize linear algebra.)

You may also type help(command_name) or help(class) for a manpage-like help file about
a given class.

3.7. Integrated Help System 51

sage: help(VectorSpace)
Help on class VectorSpace ...

class VectorSpace(__builtin__.object)
| Create a Vector Space.

I
| Two create an ambient space over a field with given dimension
| wusing the calling syntax ...

When you type q to exit the help system, your session appears just as it was. The help
listing does not clutter up your session, unlike the output of function_name? sometimes
does. It’s particularly helpful to type help(module_name). For example, vector spaces
are defined in sage .modules.free_module, so type help(sage.modules.free_module) for
documentation about that whole module. When viewing documentation using help you can
search by typing / and in reverse by typing 7.

3.8 Saving and Loading Individual Objects

Suppose you compute a matrix or worse, a complicated space of modular symbols, and would
like to save it for later use. What can you do? There are several approaches that computer
algebra systems take to saving individual objects.

1. Save your Game: Only support saving and loading of complete sessions (e.g., Gap,
MAGMA).

2. Unified Input/Output: Make every object print in a way that can be read back in
(GP/PARI).

3. Eval: Make it easy to evaluate arbitrary code in the interpreter (e.g., Singular, PARI).

Because SAGE uses Python it takes a different approach, which is that every object can
be serialized, i.e., turned into a string from which that object can be recovered. This is in
spirit similar to the unified I/O approach of PARI, except it doesn’t have the drawback that
objects print to screen in too complicated of a way. Also, support for saving and loading is
(in most cases) completely automatic, requiring no extra programming; it’s simply a feature
of Python that was designed into the language from the ground up.

Almost all SAGE objects x can be saved in compressed form to disk using save(x, filename)
(or in many cases x.save(filename)). To load the object back in use load(filename).

52 Chapter 3. The Interactive Shell

sage: A = MatrixSpace(QQ,3) (range(9))~2

sage: A

[15 18 21]
[42 54 66]
[69 90 111]

sage: save(4, ’A’)

You should now quit SAGE and restart. Then you can get A back:

sage: A = load(’A’)

sage: A

[156 18 21]
[42 54 66]
[69 90 111]

You can do the same with more complicated objects, e.g., elliptic curves. All data about the
object that is cached is stored with the object. For example,

sage: E = EllipticCurve(’1la’)

sage: v = E.anlist(100000) # takes a while
sage: save(E, ’E?)

sage: quit

The saved version of E takes 153 kilobytes, since it stores the first 100000 a,, with it.

~/tmp$ 1ls -1 E.sobj

-rw-r--r-- 1 was was 153500 2006-01-28 19:23 E.sobj
~/tmp$ sage [...]

sage: E = load(’E’)

sage: v = E.anlist(100000) # instant!

Note: In Python saving and loading is accomplished using the cPickle module. In partic-
ular, a SAGE object x can be saved via cPickle.dumps(x, 2). Note the 2!

SAGE cannot save and load individual objects created in some other computer algebra sys-
tems, e.g., GAP, Singular, Maxima, etc. They reload in a state marked “invalid”. In GAP,
though many objects print in a form from which they can be reconstructed, many don’t, so
reconstructing from their print representation is purposely not allowed.

3.8. Saving and Loading Individual Objects 53

sage: a = gap(2)

sage: a.save(’a’)

sage: load(’a’)

Traceback (most recent call last):

ValueError: The session in which this object was defined is no longer running.

GP/PARI objects can be saved and loaded since their print representation is enough to
reconstruct them.

sage: a = gp(2)
sage: a.save(’a’)
sage: load(’a’)

2

Saved objects can be re-loaded later on computers with different architectures or operating
systems, e.g., you could save a huge matrix on 32-bit OS X and reload it on 64-bit Linux,
find the echelon form, then move it back. Also, in many cases you can even load objects
into version of SAGE that are different than they were saved in, as long as the code for that
object isn’t too different. All the attributes of the objects are saved, along with the class
(but not source code) that defines the object. If that class no longer exists in a new version
of SAGE, then the object can’t be reloaded in that newer version. But you could load it in
an old version, get the objects dictionary (with x.__dict__), and save the dictionary, and
load that into the newer version.

3.8.1 Saving as text
You can also save the ASCII text representation of objects to a plane text file by simply

opening a file in write mode and writing the string representation of the object (you can
write many objects this way as well). When you're done writing objects, close the file.

sage: R.<x,y> = PolynomialRing(QQ,2)
sage: f = (x+y)~7

sage: o = open(’file.txt’,’w’)

sage: o.write(str(f))

sage: o.close()

54 Chapter 3. The Interactive Shell

3.9 Saving and Loading Complete Sessions

SAGE has very flexible support for saving and loading complete sessions.

The command save_session(sessionname) saves all the variables you've defined in the
current session as a dictionary in the given sessionname. (In the rare case when a variable
does not support saving, it is simply not saved to the dictionary.) The resulting file is an
.sobj file and can be loading just like any other object that was saved. When you load
the objects saved in a session, you get a dictionary whose keys are the variables names and
whose values are the objects.

You can use the load_session(sessionname) command to load the variables defined in
sessionname into the current session. Note that this does not wipe out variables you've
already defined in your current session; instead, the two sessions are merged.

First we start SAGE and define some variables.

~/tmp$ sage

sage: E = EllipticCurve(’1la’)

sage: M = ModularSymbols(37)

sage: a = 389

sage: t = M.T(2003) .matrix(); t.charpoly().factor()

4= (x - 2004) * (x - 12)72 * (x + 54)~2

Next we save our session, which saves each of the above variables into a file. Then we view
the file, which is about 3K in size.

sage: save_session(’misc?)

Saving a

Saving M

Saving t

Saving E

sage: quit

was@form:~/tmp$ 1ls -1 misc.sobj

-rw-r--r-- 1 was was 2979 2006-01-28 19:47 misc.sob]j

Finally we restart SAGE, define an extra variable, and load our saved session.

3.9. Saving and Loading Complete Sessions 55

Each

~/tmp$ sage

[...]

sage: b = 19

sage: load_session(’misc?)
Loading a

Loading M

Loading E

Loading t

saved variable is again available. Moreover, the variable b was not overwritten.

sage: M
Full Modular Symbols space for Gamma_0(37) of weight 2 with sign O
and dimension 5 over Rational Field

sage: E

Elliptic Curve defined by y™2 + y = x°3 - x72 - 10*x - 20 over Rational Field
sage: b

19

sage: a

389

3.10 The Notebook Interface

This

section is based on a talk "The SAGE notebook interface”" by William Stein, SAGE

seminar, 6-9-2006 (notes by D. Joyner).
The SAGE notebook is run by typing

sage: notebook()

on the command line of SAGE. Other options are:

sage: notebook("My worksheet")

which (a) starts a new worksheet (as opposed to the default behaviour of loading the
previously used worksheet) and (b) places the banner "My worksheet" at the top of
the page. (It does not name or save your worksheet into a file though.)

56

Chapter 3. The Interactive Shell

sage: notebook(open_viewer=True)

which (a) starts the SAGE server running (loading the previously used worksheet, if
any) and (b) opens the firefox browser (or starts a new tab if it is already open) and
displaces the SAGE notebook webpage.

. does
sage: notebook("gap",open_viewer=True,system="gap")

three things:

(1) puts the banner "gap" on your worksheet (it does not save or name your worksheet
"gap" though),

(2) opens firefox (or a new tab if firefox is already running) and starts a sage notebook
interface running there,

(3) makes every input box "gap command only".

What data structures does the notebook depend on? The notebook creates:

nb.sobj (the notebook SAGE object file)
objects/ (a directory containing SAGE objects)
worksheets/ (a directory containing SAGE worksheets).

A "notebook" is a collection of worksheets. You can create your worksheet within the
notebook by using the "add" link in the left-hand panel.

Your worksheet can be emailed to someone else, how can open it up in their copy of SAGE.
The entire worksheet can now be executed.

How does the notebook interface work?

3.10. The Notebook Interface 57

firefox

| |
| |
| |
| |
| javascript |
| |
| |
| |

program
| -
| AJAX |
v I
| |
| web | SAGE process 1
I | ———-mm - > SAGE process 2 (Python processes)
| server pexpect SAGE process 3
|
|

For help on a SAGE command, <cmd>, in the notebook browser box, type "<cmd>?" and
now hit <esc> (not <shift-enter>).

58 Chapter 3. The Interactive Shell

CHAPTER
FOUR

Interfaces

A central facet of SAGE is that it supports computation with objects in many different
computer algebra systems “under one roof” using a common interface and clean programming
language.

The console and interact methods of an interface do very different things. For example, using

gap as an example:

1. gap.console(): You are completely using another program, e.g., gap/magma/gp Here
SAGE is serving as nothing more than a convenient program launcher, similar to bash.

2. gap.interact(): This is a convenient way to interact with a running gap instance
that may be "full of" SAGE objects. You can import SAGE objects into this gap
(even from the interactive interface), etc.

4.1 GP/PARI

PARI is a compact, very mature, highly optimized C program whose primary focus is number
theory. There are two very distinct interfaces that you can use in SAGE:

e gp — the “Go PARI” interpreter, and

e pari — the PARI C library.

For example, the following are two ways of doing the same thing. They look identical, but
the output is actually different, and what happens behind the scenes is drastically different.

sage: gp(’znprimroot(10007)?)
Mod (5, 10007)

sage: pari(’znprimroot(10007)?)
Mod (5, 10007)

In the first case a separate copy of the GP interepreter is started as a server, and the string

59

>znprimroot (10007) ’ is sent to it, evaluated by GP, and the result is assigned to a variable
in GP (which takes up space in the child GP processes memory that won’t be freed). Then
the value of that variable is displayed. In the second case, no separate program is started,
and the string ’znprimroot (10007)’ is evaluated by a certain PARI C library function. The
result is stored in a piece of memory on the Python heap, which is freed when the variable
is no longer referenced. The objects have different types:

sage: type(gp(’znprimroot (10007)’))
<class ’sage.interfaces.gp.GpElement’>
sage: type(pari(’znprimroot(10007)’))
<type ’gen.gen’>

So which should you use? It depends on what you're doing. The GP interface can do
absolutely anything you could do in the usual GP/PARI command line program, since it
is running that program. In particular, you can load complicated PARI programs and run
them. In contrast, the PARI interface (via the C library) is much more restrictive; first
not all member functions have been implemented. Second; a lot of code, e.g., involving
numerical integration, won’t work via the PARI interface. That said, the PARI interface can
be significantly faster and more robust then the GP one.

Note: If the GP interface runs out of memory evaluating a given input line, it will silently
and automatically double the stack size and retry that input line. Thus your computation
won’t crash if you didn’t correctly anticipate the amount of memory that would be needed.
This is a nice trick the usual GP interpreter doesn’t seem to provide. Regarding the PARI
C-library interface, it immediately copies each created object off of the PARI stack, hence
the stack never grows. However, each object must not exceed 100MB in size, or the stack
will overflow when the object is being created. This extra copying does impose a slight
performance penalty.

In summary, SAGE uses the PARI C library to provide functionality similar to that provided
by the GP/PARI interpreter, except with different sophisticated memory management and
the Python programming language.

First we create a PARI list from a Python list.

sage: v = pari([1,2,3,4,5])
sage: v

(1, 2, 3, 4, 5]

sage: type(v)

<type ’gen.gen’>

Every PARI object is of type py_pari.gen. The PARI type of the underlying object can be
obtained using the type member function.

60 Chapter 4. Interfaces

sage: v.type()
’t_VEC’

In PARI, to create an elliptic curve we enter ellinit([1,2,3,4,5]). SAGE is similar,
except that ellinit is a method that can be called on any PARI object, e.g., our t_VEC v.

sage: e = v.ellinit()

sage: e.type()

’t_VEC’

sage: pari(e)[:13]

(1, 2, 3, 4, 5, 9, 11, 29, 35, -183, -3429, -10351, 6128487/10351]

Now that we have an elliptic curve object, we can compute some things about it.

sage: e.elltors()

(1, 01, 0]

sage: e.ellglobalred()

(10351, [1, -1, 0, -1]1, 1]

sage: f = e.ellchangecurve([1,-1,0,-1])
sage: f[:5]

(1, -1, 0, 4, 3]

42 GAP

SAGE comes with GAP 4.4.7 for computational discrete mathematics, especially group the-

ory.

Here’s an example of GAP’s IdGroup function, which uses the optional small groups database
that has to be installed separately, as explained below.

sage: G = gap(’Group((1,2,3)(4,5), (3,4)))
sage: G

Group([(1,2,3)(4,5), (3,4) 1)

sage: G.Center()

Group(())

sage: G.IdGroup() # requires optional database_gap package
[120, 34]

sage: G.Order()

120

4.2.

GAP 61

We can do the same computation in SAGE without explicitly invoking the GAP interface as
follows:

sage: G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)11)
sage: G.center()
Permutation Group with generators [()]

sage: G.group_id() # requires optional database_gap package
[120, 34]

sage: n = G.order(); n

120

Note: For some GAP functionality, you should install two optional SAGE packages. Type
sage -optional for a list and choose the one that looks like gap_packages-x.y.z, then type
sage -1 gap_packages-x.y.z. Do the same for database_gap-x.y.z. Some non-GPL’d
GAP packages may be installed by downloading them from the GAP web site [GAPkg], and
unpacking them in $SAGE_RO0T/local/lib/gap-4.4.7/pkg.

4.3 Singular

Singular provides a massive and mature library for Grobner bases, multivariate polynomial
geds, bases of Riemann-Roch spaces of a plane curve, and factorizations, among other things.
We illustrate multivariate polynomial factorization using the SAGE interface to Singular:

sage: Rl = singular.ring(0, ’(x,y)’, ’dp’)
sage: R1

// characteristic : 0

// number of vars : 2

// block 1 : ordering dp
// : names Xy
// block 2 : ordering C

sage: f = singular(’9*y~8 - 9*x"24y~7 - 18%x"3%y~6 - 18*x"b*y~6 + 9%x"6xy~4 + 18*x"7*y~5 +

Now that we have defined f, we print it and factor.

62 Chapter 4. Interfaces

sage: f
9*x716-18*x"13%y~2-9%x"12xy~3+9*x~10%y~4-18*x~11xy~2+36*x"8*y~4+18*x~7*y~5-18*x"5xy~6+9*x~¢€
sage: f.parent()
Singular
sage: F = f.factorize(); F
[1]:
_[11=9
_[2]=x"6-2%x"3*y~2-x" 2%y~ 3+y~4
_[3]1=-x"5+y~2
[2]:
1,1,2
sage: F[1][2]
X"6-2%x" 3%y 2-x" 2%y 3+y~4

As with the GAP example in Section 4.2, we can compute the above factorization without
explicitly using the Singular interface (however, behind the scenes SAGE uses the Singular
interface for the actual computation).

sage: x, y = QQ[’x, y’].gens()

sage: £ = 9%y™8 - 9*x"2xy~7 - 18%x"3*%y"6 - 18*x"bxy~6 + 9xx"6*y~4 + 18*x"7*y~5 + 36*x"8%y~4
sage: factor(f)

9 % (y72 - x°5)72 * (y~4 - x"2%y"3 - 2%x"3*%y~2 + x76)

4.4 Maxima

Maxima is included with SAGE, as is clisp (a version of the Lisp language) and the gnuplot
package (which Maxima uses for plotting). Among other things, Maxima does symbolic
manipulation. Maxima can integrate and differentiate functions symbolically, solve 1st order
ODEs, most linear 2nd order ODEs, and has implemented the Laplace transform method for
linear ODEs of any degree. Maxima also knows about a wide range of special functions, has
plotting capabilities via gnuplot, and has methods to solve and manipulate matrices (such
as row reduction, eigenvalues and eigenvectors), and polynomial equations.

We illustrate the SAGE /Maxima interface by constructing the matrix whose 4, j entry is i/7,
fori,j=1,...,4.

4.4. Maxima 63

sage:
sage:

sage:
0
sage:

f = maxima.eval(’f[i,j] :=

i/j?)

A = maxima(’genmatrix(f,4,4)’); A
matrix([1,1/2,1/3,1/4]1,[2,1,2/3,1/2],1(3,3/2,1,3/4]1,[4,2,4/3,1])

A.determinant ()

A.echelon()

matrix([1,1/2,1/3,1/4],[0,0,0,0],[0,0,0,0],[0,0,0,0])

sage:

A.eigenvalues()

(0,41, [3,1]]

sage:

A.eigenvectors()

[[[0,4])[3,1]],[1:030’ - 4]’[011101 - 2];[0’031, - 4/3],[1:2:3:4]]

We can also compute the echelon form in SAGE:

sage:
sage:

B = matrix(4, QQ)
B.echelon_form()

[11/2 1/3 1/4]

[O
[O
[O
sage:

0 0 0]
0 o0 0]
0 0 0]

B.charpoly() .factor()

(x - 4) * x°3

Here’s another example:

sage:
sage:
sage:
sage:
(L[-
sage:
sage:
sage:
sage:
sage:
sage:
True
sage:
True
sage:
True

A = maxima("A: matrix ([1, O, 0], [1,

eigh = A.eigenvectors()
V = VectorSpace(QQ,3)
eigh

-1, 01, [1, 3,

2) - 1,1]:[151’1]]y[0’0’1]1[0’1’311[1,1/2,5/6]]

vl = V(sage_eval(eighA[1]));
v2 = V(sage_eval(eighA[2]));
v3 = V(sage_eval(eighA[3]1));

M = MatrixSpace(QQ,3,3)

lambdail
lambda?2
lambda3

eigh[0] [0][0]
eigh[0][0][1]
eigh[0] [0] [2]

AA = M([[1,0,0],[1, - 1,01,[1,3, - 2]11)

AAxv1l == lambdalx*vl

AAxv2 == lambda2*v2

AA*v3 == lambda3*v3

-21)")

Finally, we give an example of using SAGE to compute the image under the Riemann zeta
function of an interval of the the critical line C(% + it), for 80 sampled values of 7 <t < 15,

64

Chapter 4.

Interfaces

saving the real and imaginary points into lists, then using Maxima (which calls gnuplot) to
plot these points and save the resulting graph into the current directory.

sage: Z = [(1/2 + n*I/10).zeta() for n in range(70,150)]
[w.real() for w in Z]
[w.imag() for w in Z]

sage: Z_X
sage: Z_y

We first make the graph appear in a pop-up window.

sage: maxima.plot_list(Z_x, Z_y)

We can also save the graph a file.

sage: opts=’[gnuplot_preamble, "set nokey"], [gnuplot_term, ps], [gnuplot_out_file, "zeta.e
sage: maxima.plot_list(Z_x, Z_y, opts)

4.4. Maxima 65

66

CHAPTER
FIVE

Programming

5.1 Loading and Attaching SAGE files

Next we illustrate how to load programs written in a separate file into SAGE. Create a file
called example.sage with the following content:

print "Hello World"
print 273

You can read in and execute example.sage file using the load command.

sage: load "example.sage"
Hello World
8

You can also attach a SAGE file to a running session using the attach command:

sage: attach "example.sage"
Hello World
8

Now if you change example.sage and enter one blank line into SAGE (i.e., hit “return”),
then the contents of example.sage will be automatically reloaded into SAGE.

In particular, attach has the side effect of (auto-reload), very handy when debugging code,
while load does not.

When SAGE loads example.sage it converts it to Python, which is then executed by the
Python interpreter. This conversion is minimal; it mainly involves wrapping integer literals
in ZZ(), floating point literals in RR(), replacing ~’s by **’s, and replacing e.g., R.2 by
R.gen(2). The converted version of example.sage is contained in the same directory as
example.sage and is called example.sage.py. This file contains the following code:

67

print "Hello World"
print ZZ(2)**ZZ(3)

-~

Integer literals are wrapped and the ~ is replaced by a **. (In Python ~ means “exclusive

or” and ** means “exponentiation”.)
Note: This preparsing is implemented in sage/misc/interpreter.py.

You can paste multi-line indented code into SAGE as long as there are newlines to make new
blocks (this is not necessary in files). However, the best way to enter such code into SAGE
is to save it to a file and use attach, as described above.

5.2 Creating Compiled Code

Speed is crucial in mathematical computations. Though Python is a convenient very high-
level language, certain calculations can be several orders of magnitude faster than in Python
if they are implemented using static types in a compiled language. It is virtually impossible
to write serious competitive computer algebra software if one restricts oneself to interpreted
Python code.

To deal with this problem, SAGE supports a compiled “version” of Python called Pyrex (see
[Pyr]). Pyrex is simultaneously similar to both Python and C. List comprehensions are not
allowed and expressions like += are not allowed, but most other Python constructions are
allowed, such as importing code that you have written in other Python modules. Morever,
one can declare arbitrary C variables and arbitrary C library calls can be made directly. The
resulting code is converted to C and compiled using a C compiler.

In order to make your own compiled SAGE code, give the file an .spyx extension (instead
of .sage). You can attach and load compiled code exactly like with interpreted code. The
actual compilation is done “behind the scenes” without your having to do anything explicitly.
See SAGE_ROOT/examples/pyrex/factorial.spyx for an example of a very fast compiled
implementation of the factorial function that directly uses the GMP C library. To try this
out for yourself, cd to SAGE_ROOT/examples/pyrex/, then do the following:

sage: load "factorial.spyx"
sk stk sk sk sk sk ok sksk ok o sksk sk ok sksk sk ok sk ok sk sk sk sk sk sk sk sk ok skok ok ok
Recompiling factorial.spyx
stk sk stk sk stk sk stk sk sk sk ok sksk sk ok sk sk ok sk skt sk skt sk sk ok skok ok skok ok ok
sage: factorial(50)
1520704660085668902180630408303238442218882078448025600000000000000L
sage: time n = factorial(10000)
CPU times: user 0.06 s, sys: 0.00 s, total: 0.06 s
Wall time: 0.06

Here the trailing L indicats a Python long integer (see 6.1.2).

68 Chapter 5. Programming

Note that SAGE will not recompile factorial.spyx unless you change it, even if you quit
and restart SAGE. The compiled shared object library is stored under $HOME/ . sage/spyx.

Full SAGE preparsing is applied to spyx files unless they contain the string __no_preparse__.
If foo is a function in the SAGE library, it is available in an spyx file via sage.foo(...).

5.3 Standalone Python/SAGE Scripts

The following standalone SAGE script factors integers, polynomials, etc:
#!/usr/bin/env sage-python

import sys
from sage.all import *

if len(sys.argv) != 2:
print "Usage: %s <n>"Ysys.argv[0]
print "Outputs the prime factorization of n."
sys.exit (1)

print factor(sage_eval(sys.argv[1]))

In order to use this script your SAGE_ROOT must be in your PATH. If the above script is
called factor, here is an example usage:

bash $./factor 2006

2 % 17 * 59

bash $./factor "32*x~5-1"

(2%x - 1) * (16%x74 + 8%x~3 + 4*x"2 + 2%x + 1)

54 Data Types

Every object in SAGE has a well-defined type. Python has a wide range of basic built-in
types, and the SAGE library adds many more. Some built-in Python types include strings,
lists, tuples, ints and floats, as illustrated:

5.3. Standalone Python/SAGE Scripts 69

sage: s = "sage"; type(s)
<type ’str’>

sage: s = ’sage’; type(s) # you can use either single or double quotes
<type ’str’>

sage: s = [1,2,3,4]; type(s)
<type ’list’>

sage: s = (1,2,3,4); type(s)
<type ’tuple’>

sage: s = int(2006); type(s)
<type ’int’>

sage: s = float(2006); type(s)
<type ’float’>

To this SAGE adds many other types. E.g., vector spaces:

sage: V = VectorSpace(QQ, 1000000); V

Vector space of dimension 1000000 over Rational Field

sage: type(V)

<class ’sage.modules.free_module.FreeModule_ambient_field’>

Only certain functions can be called on V. In other math software systems, these would be
called using the “functional” notation foo(V,...). In SAGE, certain functions are attached
to the type (or class) of V', and are called using an object-oriented syntax like in Java or
C++, e.g.,V.foo(...). This helps keep the global namespace from being polluted with tens
of thousands of functions, and means that many different functions with different behavior
can be named foo, without having to use type-checking of arguments (or case statements) to
decide which to call. Also, if you reuse the name of a function, that function is still available
(e.g., if you call something zeta, then want to compute the value of the Riemann-Zeta
function at 0.5, you can still type s=.5; s.zeta()).

sage: zeta = -1
sage: s=.5; s.zeta()
-1.4603545088095868

In some very common cases the usual functional notation is also supported for convenience
and because mathematical expressions might look confusing using object-oriented notation.
Here are some examples.

70 Chapter 5. Programming

sage: n = 2; n.sqrt()
1.4142135623730951
sage: sqrt(2)
1.4142135623730951
sage: V = VectorSpace(QQ,2)
sage: V.basis()

L

(1, 0),

(0, 1

]
sage: basis(V)

[

(1, 0,

(0, 1

]
sage: M = MatrixSpace(GF(7), 2); M
Full MatrixSpace of 2 by 2 dense matrices over Finite Field of size 7
sage: A = M([1,2,3,4]); A
[1 2]
[3 4]
sage: A.charpoly()
X"2 + 2%x + b5
sage: charpoly(4)
X"2 + 2%x + b5

To list all member functions for A, use tab completion. Just type A., then type the [tab]
key on your keyboard, as explained in Section 3.6.

5.5 Lists, Tuples, and Sequence

The list data type stores elements of arbitrary type. Like in C, C++, etc. (but unlike most
standard computer algebra systems), the elements of the list are indexed starting from 0:

sage: v = [2, 3, 5, ’x’, SymmetricGroup(3)]; v

[2, 3, 5, ’x’, Symmetric group of order 3! as a permutation group]
sage: type(v)

<type ’list’>

sage: v[0]
2
sage: v[2]
5

5.5. Lists, Tuples, and Sequence 71

Note: When indexing into a list, the index must be a Python int! A SAGE Integer will not
work. The preparser doesn’t change integer literals to Python ints when they are indexing
lists. However, if you index a list with a variable, you must be careful.

sage: v = [1,2,3]

sage: v[2]

3

sage: n = 2 # SAGE Integer
sage: v[n] # bad

Traceback (most recent call last):

TypeError: list indices must be integers
sage: v[int(n)] # good
3

(This is annoying, but it is good from a performance point of view.)

The range function creates a list of Python int’s (not SAGE Integers):

sage: range(l, 15)
(1, 2, 3, 4, 5,6, 7,8, 9, 10, 11, 12, 13, 14]

This is useful when using list comprehensions to construct lists:

sage: L = [factor(n) for n in range(1l, 15)]

sage: print L

[1, 2, 3, 272, 5, 2 % 3, 7, 273, 32, 2 x 5, 11, 2°2 % 3, 13, 2 * 7]
sage: L[12]

13

sage: type(L[12])

<class ’sage.structure.factorization.Factorization’>

sage: [factor(n) for n in range(l, 15) if is_odd(n)]

(1, 3, 5, 7, 372, 11, 13]

For more about how to create lists using list comprehensions, see [PyT].

List slicing is a wonderful feature. If L is a list, then L[m:n] returns the sublist of L obtained
by starting at the mth element and stopping at the (n — 1)st element, as illustrated below.

72 Chapter 5. Programming

sage: L = [factor(n) for n in range(1l, 20)]
sage: L[4:9]

5, 2 %3, 7, 273, 3°2]

sage: print L[:4]

(1, 2, 3, 2°2]

sage: L[14:4]

(]

sage: L[14:]

[3 x5, 274, 17, 2 * 372, 19]

Tuples are similar to lists, except they are ¢mmutable, meaning once they are created they
can’t be changed.

sage: v = (1,2,3,4); v

(1, 2, 3, 4)

sage: type(v)

<type ’tuple’>

sage: v[1] =5

Traceback (most recent call last):

TypeError: object does not support item assignment

Sequences are a third list-oriented SAGE type. Unlike lists and tuples, Sequence is not built—
in Python type. By default, a sequence is mutable, but using the Sequence class method
set_immutable, it can be set to be immutable, as the following example illustrates. All
elements of a sequence have a common parent, called the sequences universe.

sage: v = Sequence([1,2,3,4/5])
sage: v

(1, 2, 3, 4/5]

sage: type(v)

<class ’sage.structure.sequence.Sequence’>
sage: type(v[1])

<type ’rational.Rational’>

sage: v.universe()

Rational Field

sage: v.is_immutable()

False

sage: v.set_immutable()

sage: v[0] = 3

Traceback (most recent call last):

ValueError: object is immutable; please change a copy instead.

5.5. Lists, Tuples, and Sequence 73

Sequences derive from lists and can be used anywhere a list can be used:

sage: v = Sequence([1,2,3,4/5])
sage: isinstance(v, list)

True

sage: list(v)

(1, 2, 3, 4/5]

sage: type(list(v))

<type ’list’>

As another example, basis for vector spaces are immutable sequences, since it’s important
that you don’t change them.

sage: V = QQ~3; B = V.basis(); B

L

(1, 0, 0),
(0, 1, 0),
(0, 0, 1)
]

sage: type(B)

<class ’sage.structure.sequence.Sequence’>
sage: B[0] = B[1]

Traceback (most recent call last):

ValueError: object is immutable; please change a copy instead.

sage: B.universe()
Vector space of dimension 3 over Rational Field

5.6 Dictionaries

A dictionary (also sometimes called an associative array) is a mapping from hashable objects
to arbitrary objects.

74 Chapter 5. Programming

sage: d = {1:5, ’sage’:17, ZZ:GF(7)}
sage: type(d)

<type ’dict’>

sage: d.keys()

[Integer Ring, 1, ’sage’]

sage: d[’sage’]

17

sage: d[ZZ]

Finite Field of size 7
sage: d[1]

5

The third key illustrates that the indexes of a dictionary can be complicated, e.g., the ring
of integers.

You can turn the above dictionary into a list with the same data:

sage: d.items()
[(Integer Ring, Finite Field of size 7), (1, 5), (’sage’, 17)]

A common idiom is to iterate through the pairs of in a dictionary:

sage: d = {2:4, 3:9, 4:16%}
sage: [a*b for a, b in d.iteritems()]
[8, 27, 64]

A dictionary is unordered, as the last output illustrates.

5.7 Sets

Python has a built-in set type. The main feature it offers is very fast lookup of whether an
element is in the set or not, along with standard set-theoretic operations.

5.7. Sets 75

sage: X = set([1,19,’a’]); Y = set([1,1,1, 2/31)

sage: X
set([’a’, 1, 191)
sage: Y

set([1, 2/31)

sage: ’a’ in X

True

sage: ’a’ in Y

False

sage: X.intersection(Y)

set ([11)

SAGE also has its own set type that is (in some cases) implemented using the built-in Python
set type, but has a little bit of extra SAGE-related functionality. Create a SAGE set using
Set(...). For example,

sage: X = Set([1,19,’a’]); Y = Set([1,1,1, 2/31)

sage: X

{’a’, 1, 19}

sage: Y

{1, 2/3}

sage: X.intersection(Y)
{1}

sage: print latex(Y)

\left\{1, \frac{2}{3}\right\}
sage: Set(ZZ)

Set of elements of Integer Ring

5.8 lterators

Iterators are a recent addition to Python that are particulary useful in mathematics appli-
cations. Here are several examples; see |[PyT| for more details. We make an iterator over
the squares of the nonnegative integers up to 10000000.

76 Chapter 5. Programming

sage: v = (n~2 for n in xrange(10000000))
sage: v.next()

0

sage: v.next()

1

sage: v.next()

4

We create an iterate over the primes of the form 4p + 1 with p also prime, and look at the
first few values.

sage: w = (4%p + 1 for p in Primes() if is_prime (4*p+1))
sage: w # random Ox number

<generator object at 0xb0853d6c>

sage: w.next()

13
sage: w.next()
29
sage: w.next()
53

Certain rings, e.g., finite fields and the integers have iterators associated to them:

sage: [x for x in GF(7)]

o, 1, 2, 3, 4, 5, 6]

sage: W = ((x,y) for x in ZZ for y in ZZ)
sage: W.next()

(0, 0)

sage: W.next()

(0, 1)

sage: W.next()

(0, -1)

5.9 Loops, Functions, Control Statements, and Comparisons

We have seen a few examples already of some common uses of for loops. In Python, a for
loop has an indented structure, such as

5.9. Loops, Functions, Control Statements, and Comparisons 77

>>> for i in range(5):
print (i)

B W N = O

Note the colon at the end of the for statement (there is no “do” or “od” as in GAP or Maple),
and the indentation before the “body” of the loop, namely print(i). This indentation is
important. In SAGE, the indentation is automatically put in for you when you hit enter

@,

after a .7, as illustrated below.

sage: for i in range(5):
print(i) # now hit enter twice

B W NN - O

sage:

The symbol = is used for assignment. The symbol == is used to check for equality:

sage: for i in range(15):
if ged(i,15) == 1:
print (i)

Keep in mind how indentation determines the block structure for if, for, and while state-
ments:

78 Chapter 5. Programming

sage: def legendre(a,p):
is_sqr_modp=-1
for i in range(p):
if a¥hp==1i"2 % p:
is_sqr_modp=1
return is_sqr_modp

sage: legendre(2,7)
1
sage: legendre(3,7)
-1

Of course this is not an efficient implementation of the Legendre symbol! It is meant to
illustrate various aspects of Python/SAGE programming. The function kronecker, which
comes with SAGE, computes the Legendre symbol efficiently via a C-library call to PARI.

Finally, we note that comparisons, such as ==, 1=, <= >= > < between numbers will
automatically convert both numbers into the same type if possible:

sage: 2 < 3.1; 3.1 <=1

True

False

sage: 2/3 < 3/2; 3/2 < 3/1
True

True

Almost any two objects may be compared; there is no assumption that the objects are
equipped with a total ordering.

sage: 2 < 3.140.0%I; 3.1+2%xI<4+3*I; 4+3*I < 3.1+2*I
True

True

False

sage: 5 < VectorSpace(QQ,3)

True

When comparing objects of different types in SAGE, in most cases SAGE tries to find a
canonical coercion of both objects to a common parent, and if successful the comparison
is performed between the coerced objects; if not successful the objects are considered not
equal. For testing whether two variables reference the same object use is. For example:

5.9. Loops, Functions, Control Statements, and Comparisons 79

sage: 1 is 2/2

False

sage: 1 is 1
False

sage: 1 == 2/2
True

In the following two lines the first equality is False because there is no canonical morphism
Q — F5, hence no canonical way to compare the 1 in F5 to the 1 € Q. In contrast, there
is a canonical map Z — F5, hence the second comparison is True. Note also that the order
doesn’t matter.

sage: GF(5) (1) == QQ(1); QQ(1) == GF(5) (1)
False

False

sage: GF(5) (1) == ZZ(1); ZzZ(1) == GF(5) (1)
True

True

sage: ZZ(1) == QQ(1)

True

WARNING: Comparison in SAGE is more restrictive than in Magma, which declares the
1 € F5 equal to 1 € Q.

sage: magma(’GF(5)!1 eq Rationals()!1’) # optional magma required
true

5.10 Adding Your Own Methods to a SAGE Class

Section Author: Martin Albrecht (malb@informatik.uni-bremen.de)

If you want to extend SAGE by adding your own methods to a SAGE class there is a convenient
way built into Python. You should understand the basics of object-oriented programming
in Python in order to understand how to override class methods (see, e.g., the excellent free
Python tutorial [PyT]). In Python nearly everything is changeable, so for instance you can
alter class functions on the fly. We will use this by adding a rather silly method to the
Matrix class in the following example. We start by writing a MatrixMixIn class:

80 Chapter 5. Programming

class MatrixMixIn:
def ncols_plus_nrows(self):

Return the number of rows plus the number of colummns.
mmn

return self.ncols() + self.nrows()

Now we load the file where we defined this class into SAGE and add this class as a superclass
to the Matrix class (you could also just paste the above code into your SAGE session).
The superclasses are stored in an attribute called __bases__ for every class (except builtin
compiled extension classes). It is a tuple of classes, so we just add our class to this tuple:

sage: sage.matrix.matrix.Matrix.__bases__ += (MatrixMixImn,)

You can also get the class of an object using the __class__ attribute of any object of that
class:

sage: A = Matrix(Integers(8),2,2,[1,2,3,4])
sage: A.__class__
<class ’sage.matrix.matrix.Matrix_generic_dense’>

But note that we cannot write Matrix.__bases__ above as Matrix is a function to construct
matrices and not the Matrix class. This is not always the case, but it’s just the way Matrices
are treated in SAGE:

sage: type(Matrix)

<type ’function’>

sage: type(sage.matrix.matrix.Matrix)
<type ’type’>

sage: type(Integer)

<type ’type’>

Now every instance of this class and every instance of any class inheriting from this class
has our new method.

5.10. Adding Your Own Methods to a SAGE Class 81

sage: A = Matrix(GF(2%%8),10,10,)
sage: A.ncols_plus_nrows()

20

sage: A.ncols_plus_nrows?

Type: instancemethod

Base Class: <type ’instancemethod’>

String Form:
<bound method Matrix_generic_dense_field.ncols_plus_nrows of [0 0 0 0 0 0 0 0 0 0]
[00000000<...>000 0]

[000000000 0]

[00000000 0 0]

[00000000 0 0]

[0000000000]>
Namespace: Interactive
File: /home/martin/Uni-Bremen/BES/trunk/.test.sage.py
Definition: A.ncols_plus_nrows(self)

Docstring:
Return the number of rows plus the number of columns.

When you restart SAGE the new method will be gone and you will have to mix it in again. So
this is a non intrusive way to patch SAGE temporarily. (And you could make it permanent
for your personal use by putting the above code in a file and loading it when you start SAGE.)

If you add any functionality which might be of general interest, please consider sending it
to William Stein or posting it to sage-forum@lists.sourceforge.net, so he can include
it into the main SAGE distribution (see Section 6.2 later in this tutorial).

5.11 Profiling

Section Author: Martin Albrecht (malb@informatik.uni-bremen.de)
“Premature optimization is the root of all evil.” — Donald Knuth

Sometimes it is useful to check for bottlenecks in code to understand which parts take the
most computational time; this can give a good idea of which parts to optimize. Python and
therefore SAGE offers several profiling—as this process is called—options.

The simplest to use is the prun command in the interactive shell. It returns a summary
describing which functions took how much computational time. To profile (the currently
slow! - as of version 1.0) matrix multiplication over finite fields, for example, do:

sage: k, a = GF(2**8) .objgen()
sage: A = Matrix(k,10,10, [k.random_element() for _ in range(10%10)])

82 Chapter 5. Programming

sage: prun B = AxA
32893 function calls in 1.100 CPU seconds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)
12127 0.160 0.000 0.160 0.000 :0(isinstance)

2000 0.150 0.000 0.280 0.000 matrix.py:2235(__getitem__)
1000 0.120 0.000 0.370 0.000 finite_field_element.py:392(__mul__)
1903 0.120 0.000 0.200 0.000 finite_field_element.py:47(__init__)
1900 0.090 0.000 0.220 0.000 finite_field_element.py:376(__compat)
900 0.080 0.000 0.260 0.000 finite_field_element.py:380(__add__)
1 0.070 0.070 1.100 1.100 matrix.py:864(__mul__)
2105 0.070 0.000 0.070 0.000 matrix.py:282(ncols)

Here ncalls is the number of calls, tottime is the total time spent in the given function
(and excluding time made in calls to sub-functions), percall is the quotient of tottime
divided by ncalls. cumtime is the total time spent in this and all sub-functions (i.e., from
invocation until exit), percall is the quotient of cumtime divided by primitive calls, and
filename:lineno(function) provides the respective data of each function. The rule of
thumb here is: The higher the function in that listing the more expensive it is. Thus it is
more interesting for optimization.

As usual, prun? provides details on how to use the profiler and understand the output.

The profiling data may be written to an object as well to allow closer examination:

sage: prun -r AxA
sage: stats = _
sage: 7stats

Please note that you cannot do a stats = prun -r A*A for some internal reason.

For a nice graphical representation of profiling data you can use the hotshot profiler, a small
script called hotshot2cachetree and the program kcachegrind (Unix only). The same
example with the hotshot profiler:

sage: k, a = GF(2**8) .objgen()

sage: A = Matrix(k,10,10, [k.random_element() for
sage: import hotshot

sage: filename = "pythongrind.prof"

sage: prof = hotshot.Profile(filename, lineevents=1)

in range(10%10)])

5.11. Profiling 83

sage: prof.run("A*A")
<hotshot.Profile instance at Ox414cllec>
sage: prof.close()

This results in a file pythongrind.prof in the current working directory. It can now be
converted to the cachegrind format for visualization.

On a system shell type

hotshot2calltree -o cachegrind.out.42 pythongrind.prof

The output file cachegrind.out.42 can now be examined with kcachegrind. Please note
that the naming convention cachegrind.out.XX needs to be obeyed.

84 Chapter 5. Programming

CHAPTER
SIX

Afterword

6.1 Why Python?

6.1.1 Advantages to Python

The primary implementation language of SAGE is Python (see [Py]), though code that must
be fast is implemented in a compiled language. Using Python has several advantages:

e Object saving is well-supported in Python. There is extensive support in Python for
saving (nearly) arbitrary objects to disk files or a database.

e Excellent support for documentation of functions and packages in the source code,
including automatic extraction of documentation and automatic testing of all examples.
The examples are automatically tested regularly and guaranteed to work as indicated.

e Memory management: Python now has a well thought out and robust memory
manager and garbage collector that correctly deals with circular references, and allows
for local variables in files.

e Python has many packages available now that might be of great interest to users of
SAGE: numerical analysis and linear algebra, 2D and 3D visualization, networking (for
distributed computations and servers, e.g., via twisted), database support, etc.

e Portability: Python is easy to compile from source on most platforms in minutes.

e Exception handling: Python has a sophisticated and well thought out system of
exception handling, whereby programs gracefully recover even if errors occur in code
they call.

e Debugger: Python includes a debugger, so when code fails for some reason, the user
receives an error message, extensive stack trace, and can inspect the state of all relevant
variables and move up and down the stack.

e Profiler: There is a Python profiler, which runs code and creates a report detailing
how many times and for how long each function was called.

85

e A Language: Instead of writing a new language for mathematics as was done for

MAGMA, Maple, Mathematica, MATLAB, GP/PARI, GAP, Macaulay 2, SIMATH,
etc., we use the Python language, which is a popular and well thought-out computer
language that is being actively developed and optimized by hundreds of skilled software
engineers. Python is a major open-source success story with a mature development
process (see [PyDev]).

6.1.2 How Some Python Annoyances are Resolved in SAGE

People who do research mathematics and use Python often run into a few problems:

e Notation for exponentiation: ** versus ~. In Python, ~ means “xor”, not exponen-

tiation, so in Python we have

>>> 278

10

>>> 372

1

>>> 3%%2
9

This might be easy for some people to get used to, but for a person used to typing
ETEX this appears odd; it is also inefficient for pure math research, since exclusive
or is rarely used. For convenience, SAGE pre-parses all command lines before passing
them to Python, replacing instances of ~ that are not in strings with *x:

sage: 278
256

sage: 372

9

sage: "372"
73"27

Integer division: The expression 2/3 has much different behavior in Python than
in any standard math system. In Python, if m and n are ints then m/n is also an
int, namely the quotient of m divided by n. Therefore 2/3 = 0. This illustrates how
Python is similar to C in many ways (arrays are also indexed starting at 0). There has
been talk in the Python community about changing Python so 2/3 returns the floating
point number 0.6666. .., and making 2//3 return 0.

We deal with this in the SAGE interpreter, by wrapping integer literals in ZZ() and
making division a constructor for rational numbers. For example:

86

Chapter 6. Afterword

sage: 2/3

2/3

sage: 2//3

0

sage: int(2)/int(3)
0

e Long integers: Python has native support for arbitrary precision integers, in addition
to C-int’s. These are significantly slower than what GMP provides, and have the
extremely annoying property that they print with an L at the end to distinguish them
from int’s (and this won’t change any time soon). SAGE also implements arbitrary
precision integers, using the GMP C-library, and these print without an L.

Rather than modifying the Python interpreter (as I've heard some people have done for
internal projects), we use the Python language exactly as is, and write a pre-parser for
[Python so that the command line behavior of IPython is what a mathematician expects.
This means any existing Python code can be used in SAGE. However, one must still obey
the standard Python rules when writing packages that will be imported into SAGE.

Note: To install a random Python library that you find on the internet, follow the direc-
tions, but run sage-python instead of python. Very often this means typing sage-python
setup.py install.

6.2 | would like to contribute somehow. How can 17

If you would like to contribute to SAGE, your help will be greatly appreciated! It can range
from substantial code contributions to simply adding to the SAGE documentation. Just email
William Stein at wstein@gmail.com or post it to sage-forum@lists.sourceforge.net.
Also look at the SAGE web site, where there is a long list of SAGE-related projects ordered
by priority and category.

SAGE is now sufficiently mature that there are tons of projects to work on that involve
exposing more functionality of the included backend systems (Gap, PARI, Singular, etc.).
This is mostly fun design work, since the really hard nitty gritty algorithmic implementation
details and optimization has already been done, e.g., in Gap or PARI or Singular.

If you submit or post your code, put a copyright notice on the code that makes clear that
you are releasing it under the GPL or a more liberal license. I cannot include any code with
SAGE that doesn’t have an explicitly stated GPL-compatible copyright.

For example, you could put the following at the top of your source file.

6.2. | would like to contribute somehow. How can 1?7 87

S S R R R R R
SAGE: System for Algebra and Geometry Experimentation

Copyright (C) 2006 Your name <your email>
Copyright (C) 2006 William Stein <wstein@gmail.com> (optional)

#
#
#
#
#
Distributed under the terms of the GNU General Public License (GPL)
#

#

http://www.gnu.org/licenses/
HudHHatH ARG GG R R R S R A RS R R R R R S R SRR

Note: It is not required for you to share the copyright with me, though I prefer it since it
gives me flexibility regarding the code.

6.3 How do | reference SAGE?

If you write a paper using SAGE, please reference computations done with SAGE by including
[SJ] in your bibliography. Moreover, please attempt to track down what components of SAGE
are used for your computation, e.g., PARI?, Gap?, Singular? Maxima? and also cite those
systems. If you are in doubt about what software your computation uses, feel free to contact
me (wstein@gmail.com) and I'll try to figure it out. See Section 2.2.1 for further discussion
of this point.

If you happen to have just read straight through this tutorial, and have some sense of how
long it took you, please let me know (email wstein@gmail.com).

Have fun with SAGE!

88 Chapter 6. Afterword

BIBLIOGRAPHY

[GAP| The GAP Group, GAP - GROUPS, ALGORITHMS, AND PROGRAMMING, Version
4.4; 2005, http://www.gap-system.org

[GAPkg| GAP Packages, http://www.gap-system.org/Packages/packages.html
|GP| PARI/GP http://pari.math.u-bordeaux.fr/.

[Ip] The IPython shell http://ipython.scipy.org.

[Ma] MAGMA http://magma.maths.usyd.edu.au/magma/.

[M| Maxima http://maxima.sf.net/

[Py| The Python language http://www.python.org/
Reference Manual http://docs.python.org/ref/ref.html.

[PyDev| Guido, Some Guys, and a Mailing List: How Python is Developed,
http://www.python.org/dev/dev _intro.html.

[Pyr] Pyrex, http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex/.
[PyT| The Python Tutorial http://www.python.org/.
[SA] SAGE web site http://modular.ucsd.edu/sage/ and http://sage.sf.net/.

[Si] G.-M. Greuel, G. Pfister, and H. Schénemann. SINGULAR 3.0. A Computer Algebra Sys-
tem for Polynomial Computations. Center for Computer Algebra, University of Kaiser-
slautern (2005). http://www.singular.uni-kl.de.

[SJ] William Stein, David Joyner, SAGE: System for Algebra and Geometry Experimentation,
Comm. Computer Algebra 39(2005)61-64.

89

90

adding methods, 80
attach, 68
attach into SAGE, 67

CC, 6

Chinese remainder theorem, 16
classes in SAGE, 80

command line, using SAGE in, 41
cPickle, 53

Cremona database, 25, 28

data type in SAGE, 69
def, example of, 78
dictionary
creating a, 74
Dirichlet characters, 17
docstring for SAGE functions, 50
documentation, viewing inline, 52

eigenvalues, 63

eigenvectors, 63

elliptic curves, 25
associated L-series, 27
conductor, 26
j-invariant, 27

error mesaages in SAGE, 47

Euclidean algorithm, 15

Euler phi-function, 15

Euler’s method for 1st order DEs, 35

exitting, 41

for loops, 77

INDEX

GAP, 61

ged, 14

goals for SAGE, 2

GP/PARI, 59

groups
permutation, 23

help, 50
history of SAGE commands, 42

I, 6

if-then statements, 77

immutable, 73

installation, 1

interactive shell, using SAGE in, 41

Laplace transform solution of DEs, 33
Laurent series, 11
list
creating a, 71
slicing, 72
load into SAGE, 67
logging your session, 43

macro, SAGE, 42
matrix
creating a, 19
echelon form, 20
numerical computations with, 22
row reduction, 20
Maxima, 63
mixins, 80
modular
form, 38
symbols, 39

notation

91

functional, 70
object oriented, 70

PARI, 59
polynomial
ring of multivariate, 12
polynomials
cyclotomic, 10
ideal of, 14
ring of univariate, 8
SAGE, 8
prun, 82
pyrex, 68
Python and SAGE, 69, 85

QQ, 6
quitting, 41

rational functions, 10
readline commands, 49
rings in SAGE, 5

RR, 6

save
SAGE objects, 52
SAGE session, 43, 55

sequence
creating a, 73
session, 41
log, 43
pasting into, 45
SAGE, 41

saving in konsole, 44
set

creating a, 75
Singular, 62
spyx files, 68

tab completion, 49
time

with prun, 82
time, cpu, 46
time, wall, 46
timing in SAGE, 45
tuple

creating a, 73

unix escape, 43

27, 6

92

Index

	1 Introduction
	1.1 Installation
	1.2 Ways to Use SAGE
	1.3 Longterm Goals for SAGE

	2 A Guided Tour
	2.1 Basic, and not-so-basic, Rings
	2.2 Polynomials
	2.2.1 Univariate Polynomials
	2.2.2 Multivariate Polynomials

	2.3 Number Theory
	2.3.1 Dirichlet Characters

	2.4 Linear Algebra
	2.4.1 Sparse Linear Algebra
	2.4.2 Numerical Linear Algebra

	2.5 Finite Groups
	2.6 Elliptic Curves
	2.7 Plotting
	2.8 Calculus
	2.8.1 Functions
	2.8.2 Elementary functions
	2.8.3 Differentiation, integration, etc
	2.8.4 Systems of DEs using Laplace transforms
	2.8.5 Euler's method for systems of DEs
	2.8.6 Special functions

	2.9 Algebraic Geometry
	2.10 Modular Forms

	3 The Interactive Shell
	3.1 Your SAGE session
	3.2 Logging Input and Output
	3.3 Paste Ignores Prompts
	3.4 Timing Commands
	3.5 Errors and Exceptions
	3.6 Reverse Search and Tab Completion
	3.7 Integrated Help System
	3.8 Saving and Loading Individual Objects
	3.8.1 Saving as text

	3.9 Saving and Loading Complete Sessions
	3.10 The Notebook Interface

	4 Interfaces
	4.1 GP/PARI
	4.2 GAP
	4.3 Singular
	4.4 Maxima

	5 Programming
	5.1 Loading and Attaching SAGE files
	5.2 Creating Compiled Code
	5.3 Standalone Python/SAGEScripts
	5.4 Data Types
	5.5 Lists, Tuples, and Sequence
	5.6 Dictionaries
	5.7 Sets
	5.8 Iterators
	5.9 Loops, Functions, Control Statements, and Comparisons
	5.10 Adding Your Own Methods to a SAGEClass
	5.11 Profiling

	6 Afterword
	6.1 Why Python?
	6.1.1 Advantages to Python
	6.1.2 How Some Python Annoyances are Resolved in SAGE

	6.2 I would like to contribute somehow. How can I?
	6.3 How do I reference SAGE?

	Index

