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Let E be an elliptic curve over a field K with a discrete valuation v with residue 

class field k. Suppose E has 'additive reduction' at o, i.e. the connected component 
A ° of the special fibre A0 of the N6ron minimal model is isomorphic to Q .  Then 
the order of  Ao(k)/A°(k) is at most 4 as can be seen by inspection of the usual 
tables, cf. [9, pp. 124-125] and [5, p. 46]. Thus it follows that if the order of the 
torsion subgroup Tors(E(K)) is at least 5 and prime to p = char(k), the reduction 

cannot be additive. This note arose from an attempt to see whether an explicit 
classification really is necessary to achieve this result. This attempt turned out to be 
successful: we prove a generalization for abelian varieties (cf. 1.15). The proof  does 
nc use any specific classification, but it relies on monodromy arguments. It 
explains the special role of prime numbers l with l<_2g+ 1 in relation with abelian 

varieties of dimension g. Note that Serre and Tate already pointed out the 
importance of  such primes, cf. [14, p. 498, Remark 2]. In their case, and in the 
situation considered in this paper the representation of the Galois group on T~A 
has dimension 2g, hence primes l with l _  2g + 1 play a special role. 

We give the theorem and its proof  in Section 1. Further we show that the bound 
in the theorem in sharp (Section 2), and we give examples in Section 3 which show 
that the restriction l :gchar(k)  in the theorem is necessary. In Section 4 we indicate 
what can happen under the reduction map E(K)--'Eo(k) with points of order p in 
ca~ of additive reduction. 

Ribet made several valuable suggestions on an earlier draft of  this paper. The 
elegant methods of proof  in Section 2 were suggested by him. We thank him heartily 
for his interest in our work and for his stimulating remarks. 
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1. Torsion points on an abelian variety having purely additive reduction 

Let K be a field and o a discrete valuation of K. We denote the residue class field 
of  o by k; we assume k is perfect. Let Ks be a separable closure of K and ~ an 

extension of o to Ks. We denote the inertia group and first ramification group of 
0 by I and J, respectively. These are closed subgroups of  the Galois group 
Gal(Ks/K). If  the residue characteristic cha r (k )=p  is positive, then J is a pro-p. 
group; if char(k)= 0, then J is trivial. The group J is normal  i n / ,  and the group 
I / J  is pro-cyclic: 

I /J~  H Zt. 
/ prime, l:~ char(k) 

Let A be an abelian variety of  dimension g over K, and .~¢ the N6ron minimal 
model of  A at o, cf. [9]. We write A 0 for the special fibre: A0 =.z/®R k, where R 
is the valuation ring of  o. We denote by A0 ° the connected component of  A0. Let 

0-,Ls® Lu- A°-,B 0 

be the 'Chevalley decomposit ion'  of the k-group variety A °, i.e., B is an abelian 
variety, Ls is a torus, and Lu is a unipotent linear group. We write 

a = dim B, p = dim Ls. 

We say that A has purely additive reduction at o i f L u = A  °, so if cz=/~ = 0  (and we 
say additive reduction if dim A = 1 = dim Lu). 

Throughout  this paper, l will stand for a prime number different from char(k). 
If G is a commutative group scheme over K, and n E 77, we write G[n] for the group 
scheme Ker(n- lo  : G~G) ,  and 

TtG = li_m G[li](Ks). 

This is a module over the ring Zl of  l-adic integers, and it has a continuous action 
of  GaI(Ks/K). For G = (13m, the multiplicative group, TtG is free of rank 1 over 7/i, 
and the subgroup ICGaI(Ks/K) acts trivially on Tt~3 m. We write 

lit = TtA. 

This is a free module  of rank 2g over Zt. 
Let M be a finitely generated Zt-module. By the eigenvalues of  an endomor- 

phism of  M we mean the eigenvalues of  the induced endomorphism of  the vector 
space M®z,  ©t over the field Qt of  l-adic numbers. Suppose now that  M has a 
continuous action of  1. If I 'CI  is a subgroup, we write 

M r = { x E M :  rx=x for all r~l ' } .  

We claim that the image J0 of J in Aut(M) is finite. If char(k) = 0 this is trivial, so 
suppose that c h a r ( k ) = p > 0 .  Then Jo is a pro-p-group, and the kernel of the 
natural  map Aut(M)~Aut(M/IM) is a pro-l-group. From p:/:l it follows that Jo 
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has trivial intersection with this kernel, so 3"o is isomorphic to a subgroup of 
Aut(M/IM) and therefore finite. This proves our claim. 

We define, in the above situation, the averaging map Nj: M ~ M  J by 

Nj(x)=(#Jo)-l  ~ ~rx. 
c~ E J o 

This map is the identity on M J, so gives rise to a splitting 

M=MJ@ker Nj. (1.1) 

I: fc~.to ws that the functor (-)J  is exact: 

(MI /M2)J= M/  /M  J. (1.2) 

Notice that M J has a continuous action of the pro-cyclic group I/J. This is in par- 

ticular the case for 

x,= u/. 

We denote by cra  topological generator of I/J. 

1.3. Proposit ion. The multiplicity of 1 as an eigenvalue of  the action of  cr on 
X~ = U~ is equal to 2~ + 2a. In particular, it does not depend on the choice of  the 
prtme number/4:char(k). 

Proof. We begin by recalling the results from [SGA, 7 I, exp. IX] that we need; see 
also [11]. Let a polarization of  A over k be fixed. Then we obtain a skew-symmetric 
pairing 

( - ,  • ) :  UIx Ut--' Tt~3m---- 7/t, 

which is separating in the sense that the induced map Ut--,Homz,(U l, Tt~3m) 
becomes an isomorphism when tensored with ©z. The pairing is Galois-invariant in 
the sense that 

(ru, ro)=r(u,o) for reGal(Ks~K), u ,v~U t, 

=(u,v) if t e L  
We write 

V=U/ ,  W = V N V  1, 

where 3_ denotes the orthogonal  complement in U t with respect to ( . ,  • ). We have 

ranker W=p, ranks, V/W=2a. (1.4) 

Since A has potentially stable reduction, there is an open normal subgroup I 'C  I 
such that the module V'= U/' satisfies 

V'± C V '. (1.5) 

Notice that VC 1/'. 
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We now take J-invariants.  The Galois-invariance of  ( . , . )  implies that  Xt-~ U s 
is orthogonal  to the complement of  U / i n  Ut defined in (1.1). Therefore ( . , . )  
gives rise to a separating Galois-invariant pairing 

Xl x Xl"°  Tl~m 

which will again be denoted by ( - ,  • ). We let § denote the orthogonal complement 
in Art with respect to ( . , - ) .  

There is a diagram of  inclusions 

V 

c /  
OC- /a -~W W §C ,Xt 

V § 

where p and 2a  indicate the 7/Franks of  the quotients of  two successive modules in 
the diagram; here we use (1.4) and the equalities 

rankz, (X t /W § ) = rankz,(W), rankz, ( W ~ / V  ~ ) = rankg, (V/W),  

which follow by duality. 
All eigenvalues of  a on Vare 1, and by duality the same is true for X I / V  §, hence 

for X t / W  §. We have 

rankz, V+ rankz, X t / W  § = 2p + 2a, 

so in order to prove the proposit ion it suffices to show that 

no eigenvalue of  a on W § / V  equals 1. (1.6) 

Let Y= V 'J. We first prove that 

no eigenvalue of a on Y / V  equals 1. (1.7) 

Suppose in fact, that  y e Y satisfies cry =y  + o for some o e V. Then cr"y =y  + no for 
all positive integers n. Choosing n such that cr"e I" we also have crny =y, since 
y e V', so we find that o = 0 and y e V. This proves (1.7). 

We have Y§C Y, by (1.5), so (1.7) implies that 

no eigenvalue of  cr on (Y§+ V ) / V  equals 1. (1.8) 

By duality, (1.7) implies that no eigenvalue of cr on V§/Y§  equals 1, and therefore 

no eigenvalue of  cr on (V § + V ) / ( Y  § + V) equals 1. (1.9) 

From W-- VN V § it follows that V § + V is of  finite index in W ~, so (1.8) and (1.9) 
imply the desired conclusion (1.6). This proves Proposi t ion 1.3. [] 
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1.10. Corollary. The abelian variety A has purely additive reduction at v i f  and only 
i f  a has' no eigenvalue equal to 1 on X.  

Proof. Clear from Proposi t ion 1.3. It is easy to prove the corollary directly, using 

that rankz, V=/t  + 2a. [] 

Let I ' C I  and Y = ( U / ' ) J c x I  be as in the proof  of  Proposit ion 1.3, and n a 
pc~Sve integer for which a " ~  I ' .  Then a"  acts as the identity on Y, and by duality 
ai~; 3n X t / Y  §. By Y§C Y this implies that all eigenvalues of a n on X t are 1. Thus 

we ;:nd that all eigenvalues of a on X l are roots o f  unity. These roots of unity are 
of order not divisible by char(k) =p ,  since the pro-p-part of the group I / J  is trivial. 
Let a[(m) denote the number  of eigenvalues of a on X t that are m-th roots of unity, 

counted with multiplicities. 

1.11. Proposition. For any two prime numbers 1, l' different f r o m  char(k) and any 
positive integer m we have at(m)= ar(m). 

Proof. We may assume that m is not divisible by char(k). Let L be a totally and 

to-  eiy ramified extension of  K of degree m. Replacing K by L has no effect on J, 
b,.: c- should be replaced by am. Since at(m ) is the multiplicity of 1 as an eigenvalue 
of ~-"" on X t, the proposit ion now follows by applying Proposit ion 1.3 with base 

field L. 

1.12. Corollary. The number  rankz~ X z does not depend on I. 

Proof. This follows from Proposit ion 1.11, since 

rank:,  X l = supra al (m). [] 

R~~ark.  Proposit ion 1. l 1 and Corollary 1.12 can also easily be deduced from the 

fact that, for each r ~ I, the coefficients of the characteristic polynomial of the ac- 
tion of r on UI are rational integers independent of l, see [SGA, 7 I, exp. IX, 
Th6or~me 4.3]. 

1.13. Theorem. Suppose that A has purely additive reduction at o. Then f o r  every 
prime number l~:char(k) the number b( l )~ {0, 1, 2 . . . .  , oo} defined by 

sup ;CA [IN](K)  = l °q) 
N>_O 

is •ite, and 

( l -  1)b(l)<_2g. 
I prime,/~:char(k) 
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Proof .  First let 1 be a fixed prime, l~char (k) ,  and let N be a positive integer. We 
have 

# A[IN](K)  < _ # A[lN](Ks) ! 

= #(kernel  of  a -  1 o n  A[IN](Ks) J) 

= # (cokernel of t r -  1 on A [lNl(Ks)J), 

the last equality because A[1N](Ks) is finite. By (1.2) the natural map 

Y t =  U/'-~(UI/INUI) J= A[IN](Ks) J 

is surjective, so the above number is 

<_ # (cokernel of  t r -  1 on Xt). 

Let us write [- [l for the normalized absolute value on an algebraic closure Qt of ©t 
for which lilt = l - I  Then by a well-known and easily proved formula we have 

#(cokernel  of  a -  1 on Xt)= ]det( t r-  1 on Xt)[;  1 

= H  [(-1171 , 

where ( ranges over the eigenvalues of  o" on At. 
Letting N tend to infinity we see that we have proved 

lb(l)<--- 1-[ 1~-- 1171. (1.14) 

By Corollary 1.10 the right hand side of (1.14) is finite. This proves the claim that 
b(l) is finite. 

Next we exploit the fact that the eigenvalues ( of tr are roots of  unity. It is well- 
known that for a root of unity ( ~  1 we have 

1(-- l ll>_l -l/(l-1) if ( has / -power  order, 

[ ( -  1 It = 1 otherwise. 

Write at(l °°) = max N at(IN). Then (1.14) implies that 

b(l) <_ at(l °°)/(1- 1), 

so there is a number d(l) such that 

( l -  l)b(l) < at(latl)). 

Now let q be an arbitrary prime number different from char(k). Using Proposi- 
t ion 1.11 we deduce 

I prime, IS char(kl 
( l -  1)b(l) < ~ at(l d~t)) 

l 

= ~ aq(l d(t)) 
l 

<__ ran kzq (Xq) 

_ rank~_~(Uq) = 2g. 

This completes the proof  of  Theorem 1.13. [] 

(since aq(1) = 0) 
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1.15. Corollary. Suppose that A has purely additive reduction at ~. Denote by m 

the number o f  geometric components  o f  the special f ibre  A o o f  the Ngron minimal 

model o f  A at o. Then 

(1- 1) ordt(m)_<2g 
/pnrne,/~:char(k) 

where ordl(m) denotes the number o f  factors l in m. 

Prs ": Analogous to the proof  of  [11, 2.6]. 

We shall see in Section 3 that the restriction l , c h a r ( k )  is essential in Theorem 
1.13. We do not know whether this is also the case for Corollary 1.15. 

1.16. Remark.  In [17] we find a weaker version of the result mentioned in Corollary 

1.15. 

2. An example which shows the bound in Theorem 1.13 to be sharp 

2.I. Example. Let l be an odd prime number, and g = ( l -  1)/2. We construct an 
abelian variety A of dimension g over a field K with a point of order l rational over 
K such that A has purely additive reduction at a given place of K. 

Let ~'--,,/r be a primitive /-th root of unity (in C), and F ' = © ( O .  We write 
D= Y[~] for the ring of integers of  F. The field F 0 := ©(r + ~) is totally real of 
degree g over © and F is a totally imaginary quadratic extension of F 0, i.e. F is a 
CM field. We choose 

q~/"F-+C, q~j(~') = e s2~n/l, 1 <_j<_g; 

in tkis way, cf. [15, 6.2 and 8.4(1)], we obtain an abelian variety 

B = Cg/F, F =  (q~l,  - . . ,  (/)g)(O), 

with E n d ( B ) = D ,  with a polarization 2" B ~ B  t (defined by a Riemann form, cf. 
[15, p. 481): 

Au t (B ,2 )= ( ( )  × { +l}_~Z/21; 

in fact by a theorem of Matsusaka, cf. [3, VII.2, Proposition 8], we know that 
Aut(B, 2) is a finite group, hence only the torsion elements of the group of units of 
2~[(] can be automorphisms of (B, 2), moreover complex multiplication by ~ leaves 
the Riemann form invariant (use [15, p. 48, line 8]), and the result follows. Let P e B  
be he point 

1 modr c Jr  
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note that 1 -  ( d ivides/e77[(] ,  hence P is an / - to rs ion  point; moreover 

l 1 
1 - (  - - I +  1 - ( '  

hence complex multiplication by ( leaves P invariant; thus 

Aut(B, 2 ,P)  = ( ( ) = Z / / .  

By [15, p. 109, Proposi t ion 26], we can choose a number field K such that B is defin- 
ed over K, such that  PeB(K) ,  and such that AUtK(B,P)=Y_/1. We choose a prime 
number p such that  

p - -  1 (mod/ ) ,  and p~(discriminant(K/©) 

(by Dirichlet 's theorem there exist infinitely many prime numbers satisfying the f'wst 
condition).  Let o be a place of K dividing p. If B has bad reduction at o we choose 
A = B; if B has good reduction at v we proceed as follows. We have 

GaI(K( ~p) /K  ) = (Z /p) *, 

thus there exists a (unique) field L with 

KCLCK( (p ) ,  and GaI(L/K)=Z/I .  

We choose an isomorphism 

a : GaI(L/K)-~ Autx-(B, P) = H = Z//. 

By [12, p. 121] we know 

H ~ (G = Gal(L/K), H= Autx(B, P)) - Horn(G, H),  

thus by [13, p. III-6, Proposit ion 5] this element a corresponds to a pair (A, Q) 
defined over K such that 

(A, Q)(~K L-~ (B, P ) @ K  L. 

We note that A has bad reduction at o: the extension L D K  is totally ramified at 
o, we assumed that  B has good reduction at o, hence the inertia group I at o operates 
trivially on TpB, and by twisting with (the non-trivial) a we see that I operates non- 
trivially on TpA. Note that  A ®K L has CM, thus A has potentially good reduction 
at all places of  K. From these facts we deduce that  A (in both cases considered) has 
purely additive reduction at v as follows; let A ° be the connected component  of the 
special fibre of  the N~ron minimal model of A at o; then 

O~ Ls ~ Lu-~ A°o-~C ~ O 

is exact. It is easily seen that  Ls ~ 0 leads to a contradiction with the fact that A has 
potentially good reduction. Because A has bad reduction at v we know Lu ~: 0. The 
special fibre C'  of  the N6ron minimal model at a place of  L over u of  A ®KL has 
Z [ ( ] c E n d ( C ' ) ,  thus C' is indecomposable, hence L u g 0  implies C = 0 ;  thus 
Lu=A °, i.e. A has purely additive reduction at v. 
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2. Remark .  One  can also construct  an example with residue-characterist ic  zero. 

onsider (B, P )  as const ructed  above (say over k = C), choose  a de fo rma t ion  of  this 
mr k[[T]] on  which H =  Z /1  acts; then  we obtain  an abelian variety A defined over 
= k( (T) )  H, and  P e A ( K )  of  order l; it is not  difficult to  see it has bad reduct ion  

t T t~0 ) .  We leave the details to the reader. 

3. Remark .  We make (2.1) more  explicit. Let / be an odd  prime,  1 = 2g + 1, let p 

; ac o5d prime,  p :g l, let K =  ©((t) and  suppose a curve C is given by the two af- 

ne _:::yes def ined by the equat ions 

y 2 = X t  + p2, rl2 = ~ + p2 ~ t + l , 

hich are ident i f ied along the open sets (x:g0) and (~:g0) by 

X = 1/~, Y "= g I /~g  + 1 

hus we have  a complete  (hyperelliptic) algebraic curve o f  genus g and 

X , . - , ( X ,  Y ~ Y ,  ~=~t  

an a u t o m o r p h i s m  O~ of  order  l. The points 

a = ( x = O , y = p ) ,  f l = ( ~ = O ,  q=O)  

;fine 
P := Cl(a - fl) e A := Jac(C).  

re see that  oe and fl are invariant under  q~, thus P e Jac(C)  is invariant  under  

*e  Aut(A) .  Note  that Y - p  defines a rat ional  funct ion on  C; this funct ion has I. a 

; se: of  zeros,  its poles are not  on the first aff ine curve, hence  l .  fl is the set of  poles; 

m~. '~ - lfl ~ O, i.e. I- P = 0. The points  of  order 2 on A are genera ted  by the points 
l (  --fl), where  ? = ( x , 0 )  and x l + p 2 = O ;  thus we see that  

t r - - - - -  5 
GaI(K(V - p -  ) / K )  

~erates non-tr ivial ly on points of  order  2 on A,  and because this extension is 
Lmified above  each place v dividing p,  and  because p :g2, we conclude  that  A does 
~t have g o o d  reduct ion at v. Moreover  

[(] C EndK (A) 

ld we conc lude  as before.  The last step can also be made  explicit; choose a zero 
c X l + p 2  = 0; then ), e {( 'x[ i = 1, . . . ,  l }, write Q, = Cl((( 'x, 0) - fl), and denote  by 
: -.e genera tor  

l 2 
( ( )  = G a I ( K ( ~ - ~ ) / K ) ,  ( .  ( ( 'x)  = ('+ ~x; 
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A[2](K)=_(Z/2) 2g is generated by Q1,...,Qt and the 

Q I + . . . + Q t = 0 .  Thus the action of  ( o n  A[2](/() is given by 

Q,~Qi+l, 1<i<_2g-1=l-2 

only relation is 

the matrix 

Qt - l  ~ Qt = - ( Q I  +'-" + Q2g); 

'-0 0 . - -  0 -1-" 
1 0 . . - 0  - 1  
0 1 . - . 0  -1  
.. . . .  • . 

~.0 0 "" 1 - 1  

has no eigenvalues equal to +1 and by Corollary 1.10 (applied with the prime 2) we 

conclude that  A has purely additive reduction. 

3. Points of  order p on elliptic curves having additive reduction 

Let K, v, and k be as in Section 1, and suppose char(k) = p  > 0. Let A be an abelian 
variety over K having additive reduction at o; we have seen in Theorem 1.13 that 
the prime-to-p torsion in A(K) is very limited in this case. What  about the p-power 
torsion in this case? With the help of some examples we show this torsion can be 

arbitrarily large. 
First we give equal-characteristic examples. 

3.1. Example. Let p - 5  (rood 6) and suppose given an integer i_> 1. We construct 
K, o, k, E such that c h a r ( K ) = p = c h a r ( k ) ,  E has additive reduction at u and 

p' divides # (E[p'](K)). 

Consider k =  ~p and L = k(t), define an elliptic curve C over L by the equation 

27 t y2=X3+aX+a, a -  
4 1728-  t 

note that 

4 a  3 

j(C) = 1728 4a 3 +27a  z = t, 

and that its discriminant equals 

A = -16(4a  3 + 27a 2) = at2; 

here w is the valuation on L with w(t) = 1, with valuation ring R = k[t]tt) and a ~ R* 
(note that 2 and 3 are invertible in k); thus C has potentially good reduction at w 
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(its j - invariant  being integral), and it has bad reduction at w, because its discrimi- 

nant satisfies 

O< w ( A ) = 2 <  12; 

note further that for any extension K DL of degree not divisible by 6 and for any 
extension u of w to K the reduction at u is additive (note that C is of type II = C~ 
a,~ ',~. cf. [5, p. 46]). Let ~ be the i-th iterate of the Frobenius homomorphism,  and 
~:~ .4  be its kernel: 

O --+ M --. C ~--~ E : = C ( p' ) --. O , 

thus E is given by the equation 

y 2 = x  3 + a q X + a q  ' q = p ' ,  

M ® L  L~ = pq. 

B3 duality we obtain 

M D = N c E ,  N ® L  Ls=7//q .  

We take for K DL the smallest field of rationality for the points in N, and we extend 

w to a discrete valuation v on K. Note that K DL is a Galois extension and the degree 

[K : L] divides # (Aut(Z/q)) = (p - 1)p'-  1 ; 

thus 3 does not divide [ K : L ] ,  we conclude E @  L K has additive reduction at t); 
moreover 

7/ / f f  C E(K) 

by construction, and the Example 3.1 is established. 

3.2. Example. Take p = 2, the other data as in Example 3.1, and we construct E so 
that 

2' divides #(E[2 ' ] (K)) .  

Define C over L = k(t), k = []22, by the equation 

y 2 +  t X Y =  X 3 + ts; 

ell-known formulas (cf. [5, p. 36]) yield: 

A = i l l ,  j = t ;  

and M is a local group scheme of rank q. Note that C is not a super-singular elliptic 
curve (because its j - invar iant  is not algebraic over k), thus 
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note that  3 does not divide 

# ( A u t ( Z / 2 ' ) ) = 2  i - l ,  i_> 1, 

and the methods of  the previous example carry over. 

Now we construct some examples in which char(K)= 0 <  p = char(k). 

3.3. Example. Take p = 2, let i _  1 be an integer. We construct K, o, k, E as before, 
such that  E has additive reduction at o, and such that char(K)= 0, char(k)= 2, and 

El2']  C E(K). 

Let m _  1 be an integer, define 

L = ©(n),  n m + 1 = 2, w(n) = 1, 

choose a ~ L, and let E be given over L by the equation 

y2  + 7r ,nXy= X 3 + nZaX2 + aX;  

the point 

P =  ( - 1 / n  2, 1 / n S ) 6 E ( L )  

is a point of  order 2, because it is on the line 2Y+ n m x = o ,  and the same holds for 
(0, 0) ~ E(L); thus E[2] c E (L) .  

Suppose w(a) >__ 1; because 

A = (n 2m + 4n2a)2a 2 - 64a 3 

we conclude w(A) = 4m + 2w(a); suppose 

m = l  and w(a)=2,  thus w(A)=8 and w ( j ) = 0 ,  

o r  

m = 2  and w ( a ) = l ,  thus w(A)=10 and w ( j ) > 0 ;  

then the equation is minimal,  the curve E has additive reduction at w and the reduc- 
t ion is potentially good. Let K DL be the smallest field of  rationality for the points 

of  E[2'] ;  note that 

GaI(K/L)  C Aut((7//2 i)z ) = GL(2, 7//2') 

is in the kernel of  

GL(2, 7 / /2  i) --* GL(2, Z/2)  

(because E[2] CE(K)  by construction), thus the degree [K : L] is a power of  2, hence 
it is not divisible by 3. This implies that o(A) is not divisible by 12 (where o is some 
extension of w to K), thus the reduction of E ® L  K at o is additive (because of 
w(j)>_O it cannot become ®m-type). Hence over K we have 

E[2'] c E ( K ) ,  and E has additive reduction at o. 
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3.4. Example. Let p -  5 (rood 6), and let i_> 1 be an integer. We construct K, v, k, E 
as above with char (K)= 0 < char (k)=p ,  with E having additive reduction at v, and 

E[p'ICE(K). 

Consider over © the modular  curve X0(P)©; this is a coarse moduli scheme of pairs 
N c E  where E is an elliptic curve and N a subgroup scheme over a field K such 
tha: N(KO=7,/P; consider the scheme Mo(P) over Spec(Z) (cf. [4, p. DeRa-94, 
Tk ~_ .r~me 1.6] and [6, p. 63]), and consider the point xoeMo(p)(g:p)given by j = 0 .  
No,~ that p----2 (mod 3) implies that the curve E 0 with j = 0  is supersingular in 
characteristic p, hence it has a unique subgroup scheme ap=NoCEo, the kernel of 
Frobenius on E0. Let t', be the local ring of M0(p)®~ W at x0, where W= W=(~p2) 
(i.e. W is the unique unramified quadratic extension of  72p). We know: the local 
deformation space of  ~Zp=NoCE o is isomorphic to the formal spectrum of  

Zp[[x, r]]/(XY-p), 

the automorphism group A u t ( E ®  Fp-,) = A '  acts via 

A' /+I  = Z / 3  

or. . ' [ [X,  YI] / (XY-p) ,  and the completion of ~ is canonically isomorphic to the 

rin~ of invariants 

(7_~ W[[S, T]]/(ST-p3), S = X  3, T= y3. 

(cf. [6, p. 63] and [4, VI.6]). Let L be the field of fractions of W (i.e. L is the 
unramified quadratic extension of ©t~), and construct 

~ 9 ~ F ~ L  by S,-.p 2, T,---,p; 

this is a point xeXo(P)(L); by results by Serre and Milne (cf. [4, p. DeRa-132, 
Proposition 3.2]) we know there exists a pair 

N C E  defined over L, N(DLs=-Z/p, 

w;.:.: moduli-point x. Let K be the smallest field containing L such that all points 
of E[p ' ]  are rational over K. Note that the degree [K : L] divides ( p -  1)2p ?, thus 
it is not divisible by 3; hence 

f/ ' L  

I ,I  
W[[X, Y]] / (XY-p)  ......... -> K 

the pair ( N c E ) ® K  does not extend to a deformation of  apCEo; it follows that E 
dc :s not have good reduction at the discrete valuation u of  K (if so, N would extend 
fia:~y, reduce to a subgroup scheme of rank p of  E 0, hence to ap =NoCE0).  Thus 
E has additive reduction at u, and by construction 

E[ P;] C E(K). 
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3.4 bis. Example. Consider p = 11, take 121 .H of  [5, p. 97]. This is a curve E OVer 
L = ©  with additive reduction at w=oll, with w(A)=2 ,  with w(j)>_O and which 
has a subgroup scheme of order 11. Now proceed as before: K=L(E[ll~]), etc., 
and we obtain a curve E over K with additive reduction at v (a valuation lying OVer 
w), and with E[I I ' ] C E ( K ) .  

3.5. Remark. We have not been able to produce examples analogous to Example 
3.4 in case p-= 1 (mod 3). Hence for these primes the situation is not clear; we did 
not get beyond an example of the following type: 

3.6. Example. Take p = 7, consider a curve with conductor  49 over ©, cf. [5, p. 86]. 

Then w(d)= 3 or w(A)= 9 (with w=  07), and the curve has potentially good reduc- 
t ion (because of  CM); furthermore it has a subgroup scheme N c E  over © of rank 
7. Thus K := ©(N) has degree dividing 6, we see that  o(A) is not divisible by 12 
(where o lies over w) thus E has additive reduction at o and 

Z /7  C E(K). 

3.7. Example. Consider p = 3, and let i >_ 1 be an integer. We constuct K, o, k, E as 

before with char(K) = 0, char(k) = 3 and E[3 i] CE(K).  We start with L = ©, w = 03, 
and we choose an elliptic curve E over © with minimal equation f such that: 

E has additive reduction at w, w(j)>_O, 

w(Af)=-I (mod2),  and (7/ /3)CE(Q);  

such examples exist, e.g. see [5, p. 87], the curve 54.A has w(A)= 3, w(j)>_O, and 
Z /3  =E(©).  Let K =  ©(E[3']), then [K : ©] divides 2 . 3  ?, thus o(A) ~0 (mod 4) for 

any o lying over w =  o3; thus: 

E has additive reduction at u, and E[3 i] CE(K) .  

4. The image of a point of order p under the reduction map 

Let A be an abelian variety over a field K, let R C K be the ring defined by a 
discrete valuation o on K, and let ~ be the N6ron minimal model of A over Spec(R). 
At first suppose n _> 1 is an integer such that char(k) does not divide n (here k is the 
residue class field of u, i.e. k = R/m). Let ,J[n] denote the kernel of  multiplication 
by n on ~z/. Note that 

.~[n] ---, Spec(R) 

is 6tale and quasi-finite. Thus we see that A(K)[n] injects in Ao(k) (here A0= 
• ~' ®n k is the special fibre), and all torsion points of A0(k: ) lift to torsion points of 
A defined over an extension of K which is unramified at u. In short: for n-torsion 
the relation between A(K) and Ao(k') is clear (as long as char(k) does not divide n). 
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We give some examples what happens if we consider points whose order is di- 
visible by c h a r ( k ) = p > 0 .  Also in case of stable reduction it is not so difficult to 
describe the situation (:,/[p] ~Spec(R)  is quasi-finite in that  case). Thus we suppose 
the reduction is purely additive; in that case all points on the connected component  
A0 ° of the special fibre A0 are p-power torsion, and .~e[p]~Spec(R) need not be 
quasi-finite. We use the filtration on E(K) as introduced in [5, Section 4], 

E( K ) D E(K )o D E(K)~ 

E(K)m = {(x, y)~ E(K)[v(x)<_ -2m, v(y)<_ -3m} 

after having chosen a minimal equation for E. 

4.1.1. Remark. We take p >  3. If  Pc  E(K) (and o r d ( P ) = p  = char(k), and E has ad- 
ditive reduction at v), then Pc  E(K)o (because p > 3 does not divide the number of 
connected components of  E 0, and E(K) o-oE°(k), use p. 46, table of [5]). We show 
that both cases P~E(K)I and P~E(K)I indeed occur: 

4.!.2. Example. Take p >  3, we construct P c  E(K), ord(P)  = p  and PcE(K)~. Let 
£ !;e ~he curve 150.C (cf. [5, p. 103]), thus the curve given by the minimal equation 

y2 + XY= X 3 - 28X+ 272; 

it has additive reduction at u = us (because 5 z divides its conductor 150), and it has 
a point of order 5 (indeed # E ( Q ) =  10). We claim 

POE(©)0, P~E(©)I  

(relative the valuation vs). This we can prove as follows: by Remark 4.1.1 we know 
POE(©)0, thus the group ( P ) = N c E  extends flatly to a finite group scheme 

' C ~, over Spec(7/(s)) (one can work with the N6ron minimal model ~, but also 
,'~th the (plane) Weierstrass minimal model, and t hen ,  1, @ IF s is not the singular 
~.o!nt because of  PoE(Q)0) .  If we would have P o E ( Q )  1, then it would follow 
c . ~  ~ @~s (because of additive reduction), but a5 over ~s does not lift to the 
cnramified situation ~(s)--'Fs (cf. [18, Section 5]), thus 

PCE(Q)I .  

One can avoid the abstract p roof  by an explicit computat ion:  

P =  ( -4 ,  20) cE(Q) ,  PCE(Q)~, 

the tangent line at P is y = 2 0 ,  so - 2 P = ( 8 , 2 0 ) ;  the tangent line at - 2 P  is 
3 X - Y - 4 = 0 ,  so 4 P =  ( -4 ,  -16)  = - P ,  thus ( P ) ~ Z / 5 ;  the singular point on 

rood 5 is (x=2,  y = - 1 )  mod 5, thus PeE(Q)0 ,  and the example is established. 

~.1.3. Remark. Take p > 3 ,  and construct QcE(K)~ with o r d ( Q ) = p .  Indeed, take 
i >  I, and use Example 3.4; then o r d ( P ) = p ' ,  and PcE(K)o (because of  Remark 
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4.1.1), thus p. PeE(K)~ (because E has additive reduction), thus Q:=p,-ip¢ 
E(K)1 and o r d ( Q ) = p .  

Next we choose p = 3, and we show various possibilities indeed occur: 

4.2.1. Example. We construct P~E(©), with o rd (P )=  3, P¢E(©)o. Let E be given 
by the equation 

y2+ 3aXY+ 3bY=X3; 

by well-known formulas (cf. [5, p. 36]) one computes 

,4 = 36b3(a 3 - 3b). 

If 36 does not divide b3(a 3 - 3b), this equation is minimal (e.g. take a = 1 = b). Fur- 
thermore P = (0, 0) is a flex on E (hence ord(P) = 3), and E mod 3 has a cusp at (0, 0). 

Thus P¢E(©)o. 

4.2.2. Example. It is very easy to give P~E(K) with o rd (P )=3 ,  P~E(K)o and 
P e~ E(K)~ . E.g. 

P = ( 0 , 2 )  on Y 2 = X 3 + 4  

(cf. 108.A in [5, p. 95]) has this property, because ( x = - l ,  y = 0 )  mod 3 is the 
singular point on E mod 3, thus P reduces to a point on E ° but not to the identity. 
Another  example: 

P = ( 0 , 0 )  on y2+  y = x  3 

(cf. 27.A in [5, p. 83]) is a flex, which does not reduce to the cusp (x= 1, y =  1) 

mod  3 on E mod 3. 

4.2.3. Exam01e. We construct Pc E(K) with o rd (P )=  9, P CE(K)o and 3P¢  E(K)i. 
Indeed consider K =  ©, o = 03, and take 54.B (cf. [5, p. 87]), a curve which has ad- 
ditive reduction at 3 such that # E(©) = 9. Note that © does not contain a primitive 
cube root of  unity, thus E(©) does not contain (7//3)× (7//3), hence 

E(©)_= 27_/9; 

let P be a generator for this group. Note that aB over IF B does not lift to 7/(3 ), thus 
P and 3P do not reduce to the identity under reduction modulo 3, hence 

is injective, thus 

ord(P)  =9 ,  3PCE(©)~, P¢E(©)o, 

and note that the extension 

O~E(Q)o--*E(©)~ 7//3 -*0 

is non-split. 
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4.2.4. Remark. Take i=  3 in Example 3.7; then 

p = 3, P ~ E ( K ) ,  ord(P) = 3 3 

and E has additive reduction at ~J. Then 

3P~E(K)  o, O~:9P~E(K)I,  

thus Q := 9P has the property 

ord(Q) =3,  Q ~ E ( K )  I. 

4.3. Example. We conclude by an example with p = 2. Consider 48.E (cf. [5, p. 86]), 

i.e. 

YZ=X3 + X 2 +  16X+ 180; 

the right hand side factors over © in the irreducible factors 

(X+ 5)(X 2 - 4 X +  36), 

hence E[2](Q) = Z/2.  Because # E ( Q )  = 8 we conclude 

E(Q)_-- z /8 

(o ~ course it is well-known that  such examples exist, e.g. cf. [6, p. 35, Theorem 8]). 

Thus 

E(Q)I =0,  E(Q)o=7/ /2=(Q=(5,0))  
and 

E(Q)/E(Q)o-~2~/4 

(because (0, 0) mod 2 is the cusp on E mod 2, and Q mod 2 is smooth on E mod 2). 
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