ABELIAN VARIETIES HAVING PURELY ADDITIVE REDUCTION

H.W. LENSTRA, Jr.
Mathematisch Instituut, Roetersstraat IS, 1018 WB Amsterdam, The Netherlands

F. OORT
Mathematisch Instituut, Budapestlaan 6, 3584 CD Utrecht, The Netherlands

Communicated by F. Oort
Received 30 November 1983
Revised 11 April 1984

Let E be an elliptic curve over a field K with a discrete valuation v with residue class field k. Suppose E has 'additive reduction' at v, i.e. the connected component A_{0}^{0} of the special fibre A_{0} of the Neron minimal model is isomorphic to \mathbb{G}_{a}. Then the order of $A_{0}(k) / A_{0}^{0}(k)$ is at most 4 as can be seen by inspection of the usual tables, cf. [9, pp. 124-125] and [5, p. 46]. Thus it follows that if the order of the torsion subgroup $\operatorname{Tors}(E(K))$ is at least 5 and prime to $p=\operatorname{char}(k)$, the reduction cannot be additive. This note arose from an attempt to see whether an explicit classification really is necessary to achieve this result. This attempt turned out to be successful: we prove a generalization for abelian varieties (cf. 1.15). The proof does nc use any specific classification, but it relies on monodromy arguments. It explains the special role of prime numbers l with $l \leq 2 g+1$ in relation with abelian varieties of dimension g. Note that Serre and Tate already pointed out the importance of such primes, cf. [14, p. 498, Remark 2]. In their case, and in the situation considered in this paper the representation of the Galois group on $T_{l} A$ has dimension $2 g$, hence primes l with $l \leq 2 g+1$ play a special role.

We give the theorem and its proof in Section 1. Further we show that the bound in the theorem in sharp (Section 2), and we give examples in Section 3 which show that the restriction $l \neq \operatorname{char}(k)$ in the theorem is necessary. In Section 4 we indicate what can happen under the reduction map $E(K) \rightarrow E_{0}(k)$ with points of order p in care of additive reduction.

Ribet made several valuable suggestions on an earlier draft of this paper. The elegant methods of proof in Section 2 were suggested by him. We thank him heartily fo: his interest in our work and for his stimulating remarks.

1. Torsion points on an abelian variety having purely additive reduction

Let K be a field and v a discrete valuation of K. We denote the residue class field of v by k; we assume k is perfect. Let K_{s} be a separable closure of K and \bar{v} an extension of v to K_{s}. We denote the inertia group and first ramification group of \bar{v} by I and J, respectively. These are closed subgroups of the Galois group $\operatorname{Gal}\left(K_{\mathrm{s}} / K\right)$. If the residue characteristic $\operatorname{char}(k)=p$ is positive, then J is a pro-pgroup; if $\operatorname{char}(k)=0$, then J is trivial. The group J is normal in I, and the group I / J is pro-cyclic:

$$
I / J \cong \prod_{i \text { prime }, l \neq \operatorname{char}(k)} \mathbb{Z}_{l}
$$

Let A be an abelian variety of dimension g over K, and \mathscr{A} the Néron minimal model of A at v, cf. [9]. We write A_{0} for the special fibre: $A_{0}=\mathscr{\&} \otimes_{R} k$, where R is the valuation ring of v. We denote by A_{0}^{0} the connected component of A_{0}. Let

$$
0 \rightarrow L_{\mathrm{s}} \oplus L_{\mathrm{u}} \rightarrow A_{0}^{0} \rightarrow B \rightarrow 0
$$

be the 'Chevalley decomposition' of the k-group variety A_{0}^{0}, i.e., B is an abelian variety, L_{s} is a torus, and L_{u} is a unipotent linear group. We write

$$
\alpha=\operatorname{dim} B, \quad \mu=\operatorname{dim} L_{\mathrm{s}} .
$$

We say that A has purely additive reduction at v if $L_{u}=A_{0}^{0}$, so if $\alpha=\mu=0$ (and we say additive reduction if $\operatorname{dim} A=1=\operatorname{dim} L_{u}$).

Throughout this paper, l will stand for a prime number different from char (k). If G is a commutative group scheme over K, and $n \in \mathbb{Z}$, we write $G[n]$ for the group scheme $\operatorname{Ker}\left(n \cdot 1_{G}: G \rightarrow G\right)$, and

$$
T_{l} G=\lim _{\leftarrow} G\left[l^{i}\right]\left(K_{\mathrm{s}}\right)
$$

This is a module over the ring \mathbb{Z}_{l} of l-adic integers, and it has a continuous action of $\operatorname{Gal}\left(K_{\mathrm{s}} / K\right)$. For $G=\mathbb{G}_{\mathrm{m}}$, the multiplicative group, $T_{l} G$ is free of rank 1 over \mathbb{Z}_{l}, and the subgroup $I \subset \operatorname{Gal}\left(K_{\mathrm{s}} / K\right)$ acts trivially on $T_{l} \mathbb{G}_{\mathrm{m}}$. We write

$$
U_{l}=T_{l} A
$$

This is a free module of rank $2 g$ over \mathbb{Z}_{l}.
Let M be a finitely generated \mathbb{Z}_{l}-module. By the eigenvalues of an endomorphism of M we mean the eigenvalues of the induced endomorphism of the vector space $M \otimes_{\mathbb{Z}_{l}} \mathbb{Q}_{l}$ over the field \mathbb{Q}_{l} of l-adic numbers. Suppose now that M has a continuous action of I. If $I^{\prime} \subset I$ is a subgroup, we write

$$
M^{I^{\prime}}=\left\{x \in M: \tau x=x \text { for all } \tau \in I^{\prime}\right\}
$$

We claim that the image J_{0} of J in $\operatorname{Aut}(M)$ is finite. If $\operatorname{char}(k)=0$ this is trivial, so suppose that $\operatorname{char}(k)=p>0$. Then J_{0} is a pro-p-group, and the kernel of the natural map $\operatorname{Aut}(M) \rightarrow \operatorname{Aut}(M / l M)$ is a pro-l-group. From $p \neq l$ it follows that J_{0}
has trivial intersection with this kernel, so J_{0} is isomorphic to a subgroup of $\operatorname{Aut}(M / l M)$ and therefore finite. This proves our claim.

We define, in the above situation, the averaging map $N_{J}: M \rightarrow M^{J}$ by

$$
N_{J}(x)=\left(\# J_{0}\right)^{-1} \sum_{\sigma \in J_{0}} \sigma x .
$$

This map is the identity on M^{J}, so gives rise to a splitting

$$
\begin{equation*}
M=M^{J} \oplus \operatorname{ker} N_{J} \tag{1.1}
\end{equation*}
$$

I: Billows that the functor $(\cdot)^{J}$ is exact:

$$
\begin{equation*}
\left(M_{1} / M_{2}\right)^{J}=M_{1}^{J} / M_{2}^{J} \tag{1.2}
\end{equation*}
$$

Notice that M^{J} has a continuous action of the pro-cyclic group I / J. This is in particular the case for

$$
X_{l}=U_{l}^{J} .
$$

We denote by σ a topological generator of I / J.
1.3. Proposition. The multiplicity of 1 as an eigenvalue of the action of σ on $X_{i}=U_{1}^{J}$ is equal to $2 \mu+2 \alpha$. In particular, it does not depend on the choice of the prime number $l \neq \operatorname{char}(k)$.

Proof. We begin by recalling the results from [$S G A, 7 \mathrm{I}$, exp. IX] that we need; see also [11]. Let a polarization of A over k be fixed. Then we obtain a skew-symmetric pairing

$$
\langle\cdot, \cdot\rangle: U_{l} \times U_{l} \rightarrow T_{l} \mathbb{G}_{\mathrm{m}} \cong \mathbb{Z}_{l}
$$

which is separating in the sense that the induced map $U_{i} \rightarrow \operatorname{Hom}_{\mathbb{Z}_{i}}\left(U_{l}, T_{l} \mathbb{G}_{\mathrm{m}}\right)$ becomes an isomorphism when tensored with \mathbb{Q}_{l}. The pairing is Galois-invariant in the sense that

$$
\begin{aligned}
\langle\tau u, \tau v\rangle & =\tau\langle u, v\rangle \quad \text { for } \tau \in \operatorname{Gal}\left(K_{\mathrm{s}} / K\right), u, v \in U_{l}, \\
& =\langle u, v\rangle \text { if } \tau \in I .
\end{aligned}
$$

We write

$$
V=U_{l}^{I}, \quad W=V \cap V^{\perp}
$$

where \perp denotes the orthogonal complement in U_{l} with respect to $\langle\cdot, \cdot\rangle$. We have

$$
\begin{equation*}
\operatorname{rank}_{\mathbb{Z}_{l}} W=\mu, \quad \operatorname{rank}_{\mathbb{Z}_{l}} V / W=2 \alpha . \tag{1.4}
\end{equation*}
$$

Since A has potentially stable reduction, there is an open normal subgroup $I^{\prime} \subset I$ such that the module $V^{\prime}=U_{l}^{I^{\prime}}$ satisfies

$$
\begin{equation*}
V^{\prime \perp} \subset V^{\prime} \tag{1.5}
\end{equation*}
$$

Notice that $V \subset V^{\prime}$.

We now take J-invariants. The Galois-invariance of $\langle\cdot, \cdot\rangle$ implies that $X_{l}=U_{l}^{J}$ is orthogonal to the complement of U_{l}^{J} in U_{l} defined in (1.1). Therefore $\langle\cdot, \cdot\rangle$ gives rise to a separating Galois-invariant pairing

$$
X_{l} \times X_{l} \rightarrow T_{l} \mathbb{G}_{\mathrm{m}}
$$

which will again be denoted by $\langle\cdot, \cdot\rangle$. We let \S denote the orthogonal complement in X_{l} with respect to $\langle\cdot, \cdot\rangle$.

There is a diagram of inclusions

where μ and 2α indicate the \mathbb{Z}_{l}-ranks of the quotients of two successive modules in the diagram; here we use (1.4) and the equalities

$$
\operatorname{rank}_{\mathbb{Z}_{l}}\left(X_{l} / W^{\S}\right)=\operatorname{rank}_{\mathbb{Z}_{l}}(W), \quad \operatorname{rank}_{\mathbb{Z}_{l}}\left(W^{\S} / V^{\S}\right)=\operatorname{rank}_{\mathbb{Z}_{l}}(V / W),
$$

which follow by duality.
All eigenvalues of σ on V are 1 , and by duality the same is true for X_{l} / V^{\S}, hence for X_{i} / W^{\S}. We have

$$
\operatorname{rank}_{\mathbb{Z}_{l}} V+\operatorname{rank}_{\mathbb{Z}_{l}} X_{l} / W^{\S}=2 \mu+2 \alpha
$$

so in order to prove the proposition it suffices to show that
no eigenvalue of σ on W^{\S} / V equals 1 .
Let $Y=V^{\prime J}$. We first prove that
no eigenvalue of σ on Y / V equals 1.
Suppose in fact, that $y \in Y$ satisfies $\sigma y=y+v$ for some $v \in V$. Then $\sigma^{n} y=y+n v$ for all positive integers n. Choosing n such that $\sigma^{n} \in I^{\prime}$ we also have $\sigma^{n} y=y$, since $y \in V^{\prime}$, so we find that $v=0$ and $y \in V$. This proves (1.7).

We have $Y^{\S} \subset Y$, by (1.5), so (1.7) implies that
no eigenvalue of σ on $\left(Y^{\S}+V\right) / V$ equals 1.
By duality, (1.7) implies that no eigenvalue of σ on V^{\S} / Y^{\S} equals 1 , and therefore no eigenvalue of σ on $\left(V^{\S}+V\right) /\left(Y^{\S}+V\right)$ equals 1 .

From $W=V \cap V^{\S}$ it follows that $V^{\S}+V$ is of finite index in W^{\S}, so (1.8) and (1.9) imply the desired conclusion (1.6). This proves Proposition 1.3.
1.10. Corollary. The abelian variety A has purely additive reduction at v if and only if σ has no eigenvalue equal to 1 on X.

Proof. Clear from Proposition 1.3. It is easy to prove the corollary directly, using that rank ${ }_{2,1} V=\mu+2 \alpha$.

Let $I^{\prime} \subset I$ and $Y=\left(U_{l}^{I^{\prime}}\right)^{J} \subset X_{l}$ be as in the proof of Proposition 1.3, and n a pesiave integer for which $\sigma^{n} \in I^{\prime}$. Then σ^{n} acts as the identity on Y, and by duality air: on X_{l} / Y^{\S}. By $Y^{\S} \subset Y$ this implies that all eigenvalues of σ^{n} on X_{l} are 1. Thus we ind that all eigenvalues of σ on X_{l} are roots of unity. These roots of unity are of order not divisible by char $(k)=p$, since the pro-p-part of the group I / J is trivial. Let $a_{l}(m)$ denote the number of eigenvalues of σ on X_{l} that are m-th roots of unity, counted with multiplicities.
1.11. Proposition. For any two prime numbers l, l^{\prime} different from $\operatorname{char}(k)$ and any positive integer m we have $a_{l}(m)=a_{l}(m)$.

Proof. We may assume that m is not divisible by $\operatorname{char}(k)$. Let L be a totally and ta". ely ramified extension of K of degree m. Replacing K by L has no effect on J, bc :- should be replaced by σ^{m}. Since $a_{l}(m)$ is the multiplicity of 1 as an eigenvalue of $\sigma^{i r}$ on X_{l}, the proposition now follows by applying Proposition 1.3 with base field L. $]$

1.12. Corollary. The number $\operatorname{rank}_{\mathbb{Z}_{l}} X_{l}$ does not depend on l.

Proof. This follows from Proposition 1.11, since

$$
\operatorname{rank}_{z_{l}} X_{l}=\sup _{m} a_{l}(m)
$$

Raark. Proposition 1.11 and Corollary 1.12 can also easily be deduced from the fact that, for each $\tau \in I$, the coefficients of the characteristic polynomial of the action of τ on U_{l} are rational integers independent of l, see [SGA, 7 I, exp. IX, Théorème 4.3].
1.13. Theorem. Suppose that A has purely additive reduction at v. Then for every prime number $l \neq \operatorname{char}(k)$ the number $b(l) \in\{0,1,2, \ldots, \infty\}$ defined by

$$
\sup _{N \geq 0} \# A\left[l^{N}\right](K)=l^{b(l)}
$$

is 'nite, and

$$
\sum_{l \text { prime. } l \neq \text { char }(k)}(l-1) b(l) \leq 2 g .
$$

Proof. First let l be a fixed prime, $l \neq \operatorname{char}(k)$, and let N be a positive integer. We have

$$
\begin{aligned}
\# A\left[l^{N}\right](K) & \leq \# A\left[l^{N}\right]\left(K_{\mathrm{s}}\right)^{I} \\
& =\#\left(\text { kernel of } \sigma-1 \text { on } A\left[l^{N}\right]\left(K_{\mathrm{s}}\right)^{J}\right) \\
& =\#\left(\text { cokernel of } \sigma-1 \text { on } A\left[l^{N}\right]\left(K_{\mathrm{s}}\right)^{J}\right),
\end{aligned}
$$

the last equality because $A\left[l^{N}\right]\left(K_{\mathrm{s}}\right)$ is finite. By (1.2) the natural map

$$
X_{l}=U_{l}^{J} \rightarrow\left(U_{l} / l^{N} U_{l}\right)^{J}=A\left[l^{N}\right]\left(K_{\mathrm{s}}\right)^{J}
$$

is surjective, so the above number is

$$
\leq \#\left(\text { cokernel of } \sigma-1 \text { on } X_{l}\right)
$$

Let us write $|\cdot|_{l}$ for the normalized absolute value on an algebraic closure $\overline{\mathbb{Q}}_{l}$ of \mathbb{Q}_{l} for which $|l|_{l}=l^{-1}$. Then by a well-known and easily proved formula we have

$$
\text { \# (cokernel of } \begin{aligned}
\left.\sigma-1 \text { on } X_{l}\right) & =\mid\left.\operatorname{det}\left(\sigma-1 \text { on } X_{l}\right)\right|_{l} ^{-1} \\
& =\prod|\zeta-1|_{l}^{-1},
\end{aligned}
$$

where ζ ranges over the eigenvalues of σ on X_{i}.
Letting N tend to infinity we see that we have proved

$$
\begin{equation*}
l^{b(l)} \leq \Pi|\zeta-1|_{l}^{-1} \tag{1.14}
\end{equation*}
$$

By Corollary 1.10 the right hand side of (1.14) is finite. This proves the claim that $b(l)$ is finite.

Next we exploit the fact that the eigenvalues ζ of σ are roots of unity. It is wellknown that for a root of unity $\zeta \neq 1$ we have

$$
\begin{array}{ll}
|\zeta-1|_{l} \geq l^{-1 /(l-1)} & \text { if } \zeta \text { has } l \text {-power order, } \\
|\zeta-1|_{l}=1 & \text { otherwise } .
\end{array}
$$

Write $a_{l}\left(l^{\infty}\right)=\max _{N} a_{l}\left(l^{N}\right)$. Then (1.14) implies that

$$
b(l) \leq a_{l}\left(l^{\infty}\right) /(l-1)
$$

so there is a number $d(l)$ such that

$$
(l-1) b(l) \leq a_{l}\left(l^{d(l)}\right)
$$

Now let q be an arbitrary prime number different from char (k). Using Proposition 1.11 we deduce

$$
\begin{aligned}
\sum_{l \text { prime }, l \neq \text { char }(k)}(l-1) b(l) & \leq \sum_{l} a_{l}\left(l^{d(l)}\right) \\
& =\sum_{l} a_{q}\left(l^{d(l)}\right) \\
& \leq \operatorname{rank}_{\mathbb{Z}_{q}}\left(X_{q}\right) \quad\left(\text { since } a_{q}(1)=0\right) \\
& \leq \operatorname{rank}_{\mathbb{Z}_{q}}\left(U_{q}\right)=2 g .
\end{aligned}
$$

This completes the proof of Theorem 1.13.
1.15. Corollary. Suppose that A has purely additive reduction at v. Denote by m the number of geometric components of the special fibre A_{0} of the Néron minimal model of A at v. Then

$$
\sum_{l \text { prume }, l \neq \text { char }(k)}(l-1) \operatorname{ord}_{l}(m) \leq 2 g
$$

where $\operatorname{ord}_{l}(m)$ denotes the number of factors l in m.
$\operatorname{Prc} \therefore$ Analogous to the proof of $[11,2.6]$.
We shall see in Section 3 that the restriction $l \neq \operatorname{char}(k)$ is essential in Theorem 1.13. We do not know whether this is also the case for Corollary 1.15.
1.16. Remark. In [17] we find a weaker version of the result mentioned in Corollary 1.15.

2. An example which shows the bound in Theorem 1.13 to be sharp

2.1. Example. Let l be an odd prime number, and $g=(l-1) / 2$. We construct an abelian variety A of dimension g over a field K with a point of order l rational over K such that A has purely additive reduction at a given place of K.
Let $\zeta=\zeta$, be a primitive l-th root of unity (in \mathbb{C}), and $F:=\mathbb{Q}(\zeta)$. We write $D=\mathbb{Z}[\zeta]$ for the ring of integers of F. The field $F_{0}:=\mathbb{Q}(\zeta+\bar{\zeta})$ is totally real of degree g over \mathbb{Q} and F is a totally imaginary quadratic extension of F_{0}, i.e. F is a CM field. We choose

$$
\phi_{l}: F \rightarrow \mathbb{C}, \quad \phi_{J}(\zeta)=\mathrm{e}^{/ 2 \pi 1 / l}, \quad 1 \leq j \leq g ;
$$

in this way, cf. [15, 6.2 and $8.4(1)]$, we obtain an abelian variety

$$
B=\mathbb{C}^{g} / \Gamma, \quad \Gamma=\left(\phi_{1}, \ldots, \phi_{g}\right)(D)
$$

with $\operatorname{End}(B)=D$, with a polarization $\lambda: B \rightarrow B^{t}$ (defined by a Riemann form, cf. [15, p. 48]):

$$
\operatorname{Aut}(B, \lambda)=\langle\zeta\rangle \times\{ \pm 1\} \cong \mathbb{Z} / 2 l ;
$$

in fact by a theorem of Matsusaka, cf. [3, VII.2, Proposition 8], we know that $\operatorname{Aut}(B, \lambda)$ is a finite group, hence only the torsion elements of the group of units of $\mathbb{Z}[\zeta]$ can be automorphisms of (B, λ), moreover complex multiplication by ζ leaves the Riemann form invariant (use [15, p. 48, line 8]), and the result follows. Let $P \in B$ be he point

$$
P=\left\{\phi_{j}\left(\frac{1}{1-\zeta}\right): 1 \leq j \leq g\right\} \bmod \Gamma \in \mathbb{C}^{8} / \Gamma ;
$$

note that $1-\zeta$ divides $l \in \mathbb{Z}[\zeta]$, hence P is an l-torsion point; moreover

$$
\zeta \frac{1}{1-\zeta}=-1+\frac{1}{1-\zeta}
$$

hence complex multiplication by ζ leaves P invariant; thus

$$
\operatorname{Aut}(B, \lambda, P)=\langle\zeta\rangle \cong \mathbb{Z} / l .
$$

By [15, p. 109, Proposition 26], we can choose a number field K such that B is defined over K, such that $P \in B(K)$, and such that $\operatorname{Aut}_{K}(B, P) \cong \mathbb{Z} / l$. We choose a prime number p such that

$$
p \equiv 1(\bmod l), \quad \text { and } \quad p \nmid \operatorname{discriminant}(K / \mathbb{Q})
$$

(by Dirichlet's theorem there exist infinitely many prime numbers satisfying the first condition). Let v be a place of K dividing p. If B has bad reduction at v we choose $A=B$; if B has good reduction at v we proceed as follows. We have

$$
\operatorname{Gal}\left(K\left(\zeta_{p}\right) / K\right) \cong(\mathbb{Z} / p)^{*}
$$

thus there exists a (unique) field L with

$$
K \subset L \subset K\left(\zeta_{p}\right), \quad \text { and } \quad \operatorname{Gal}(L / K) \cong \mathbb{Z} / l
$$

We choose an isomorphism

$$
\alpha: \operatorname{Gal}(L / K) \leadsto \operatorname{Aut}_{K}(B, P)=H \cong \mathbb{Z} / l
$$

By [12, p. 121] we know

$$
H^{1}\left(G=\operatorname{Gal}(L / K), H=\operatorname{Aut}_{K}(B, P)\right)=\operatorname{Hom}(G, H)
$$

thus by [13, p. III-6, Proposition 5] this element α corresponds to a pair (A, Q) defined over K such that

$$
(A, Q) \otimes_{K} L \cong(B, P) \otimes_{K} L
$$

We note that A has bad reduction at v : the extension $L \supset K$ is totally ramified at v, we assumed that B has good reduction at v, hence the inertia group I at v operates trivially on $T_{p} B$, and by twisting with (the non-trivial) α we see that I operates nontrivially on $T_{p} A$. Note that $A \otimes_{K} L$ has CM , thus A has potentially good reduction at all places of K. From these facts we deduce that A (in both cases considered) has purely additive reduction at v as follows; let A_{0}^{0} be the connected component of the special fibre of the Néron minimal model of A at v; then

$$
0 \rightarrow L_{\mathrm{s}} \oplus L_{\mathrm{u}} \rightarrow A_{0}^{0} \rightarrow C \rightarrow 0
$$

is exact. It is easily seen that $L_{\mathrm{s}} \neq 0$ leads to a contradiction with the fact that A has potentially good reduction. Because A has bad reduction at v we know $L_{\mathrm{u}} \neq 0$. The special fibre C^{\prime} of the Néron minimal model at a place of L over v of $A \otimes_{K} L$ has $\mathbb{Z}[\zeta] \subset \operatorname{End}\left(C^{\prime}\right)$, thus C^{\prime} is indecomposable, hence $L_{\mathrm{u}} \neq 0$ implies $C=0$; thus $L_{\mathrm{u}}=A_{0}^{0}$, i.e. A has purely additive reduction at v.
2. Remark. One can also construct an example with residue-characteristic zero. onsider (B, P) as constructed above (say over $k=\mathbb{C}$), choose a deformation of this ver $k[[T]]$ on which $H=\mathbb{Z} / l$ acts; then we obtain an abelian variety A defined over $=k((T))^{H}$, and $P \in A(K)$ of order l; it is not difficult to see it has bad reduction $\left.\mathrm{t} T^{l} \mapsto 0\right)$. We leave the details to the reader.
3. Remark. We make (2.1) more explicit. Let l be an odd prime, $l=2 g+1$, let p \geq 江 oid prime, $p \neq l$, let $K=\mathbb{Q}\left(\zeta_{l}\right)$ and suppose a curve C is given by the two afne.\cdots ves defined by the equations

$$
Y^{2}=X^{I}+p^{2}, \quad \eta^{2}=\xi+p^{2} \xi^{I+1}
$$

hich are identified along the open sets $(x \neq 0)$ and $(\xi \neq 0)$ by

$$
X=1 / \xi, \quad Y=\eta / \xi^{g+1} .
$$

hus we have a complete (hyperelliptic) algebraic curve of genus g and

$$
\begin{array}{lll}
X \mapsto \zeta X, & Y \mapsto Y, \quad \zeta=\zeta_{l} \\
\xi \mapsto \xi / \zeta, & \eta \mapsto \zeta^{g} \eta &
\end{array}
$$

ar automorphism ϕ of order l. The points

$$
\alpha=(x=0, y=p), \quad \beta=(\xi=0, \eta=0)
$$

sfine

$$
P:=\mathrm{Cl}(\alpha-\beta) \in A:=\mathrm{Jac}(C)
$$

le see that α and β are invariant under ϕ, thus $P \in \operatorname{Jac}(C)$ is invariant under * $\in \operatorname{Aut}(A)$. Note that $Y-p$ defines a rational function on C; this function has $l \cdot \alpha$; set of zeros, its poles are not on the first affine curve, hence $l \cdot \beta$ is the set of poles; ins ' $\alpha-l \beta \sim 0$, i.e. $l \cdot P=0$. The points of order 2 on A are generated by the points $1(--\beta)$, where $\gamma=(x, 0)$ and $x^{l}+p^{2}=0$; thus we see that

$$
\operatorname{Gal}\left(K\left(\sqrt[l]{-p^{2}}\right) / K\right)
$$

serates non-trivially on points of order 2 on A, and because this extension is mified above each place v dividing p, and because $p \neq 2$, we conclude that A does t have good reduction at v. Moreover

$$
\mathbb{Z}[\zeta] \subset \operatorname{End}_{K}(A)
$$

Id we conclude as before. The last step can also be made explicit; choose a zero c $X^{l}+p^{2}=0$; then $\gamma \in\left\{\zeta^{l} x \mid i=1, \ldots, l\right\}$, write $Q_{l}=\mathrm{Cl}\left(\left(\zeta^{l} x, 0\right)-\beta\right)$, and denote by \therefore : generator

$$
\langle\zeta\rangle=\operatorname{Gal}\left(K\left(\sqrt[l]{-p^{2}}\right) / K\right), \quad \zeta \cdot\left(\zeta^{\prime} x\right)=\zeta^{i+1} x
$$

$A[2](\bar{K}) \cong(\mathbb{Z} / 2)^{2 g}$ is generated by Q_{1}, \ldots, Q_{l} and the only relation is $Q_{1}+\cdots+Q_{l}=0$. Thus the action of ζ on $A[2](\bar{K})$ is given by

$$
\begin{aligned}
& Q_{t} \mapsto Q_{i+1}, \quad 1 \leq i \leq 2 g-1=l-2 \\
& Q_{l-1} \mapsto Q_{l}=-\left(Q_{1}+\cdots+Q_{2 g}\right)
\end{aligned}
$$

the matrix

$$
\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & -1 \\
1 & 0 & \cdots & 0 & -1 \\
0 & 1 & \cdots & 0 & -1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & -1
\end{array}\right)
$$

has no eigenvalues equal to +1 and by Corollary 1.10 (applied with the prime 2) we conclude that A has purely additive reduction.

3. Points of order \boldsymbol{p} on elliptic curves having additive reduction

Let K, v, and k be as in Section 1, and suppose $\operatorname{char}(k)=p>0$. Let A be an abelian variety over K having additive reduction at v; we have seen in Theorem 1.13 that the prime-to- p torsion in $A(K)$ is very limited in this case. What about the p-power torsion in this case? With the help of some examples we show this torsion can be arbitrarily large.

First we give equal-characteristic examples.
3.1. Example. Let $p \equiv 5(\bmod 6)$ and suppose given an integer $i \geq 1$. We construct K, v, k, E such that $\operatorname{char}(K)=p=\operatorname{char}(k), E$ has additive reduction at v and

$$
p^{\prime} \text { divides } \#\left(E\left[p^{\prime}\right](K)\right)
$$

Consider $k=\mathbb{F}_{p}$ and $L=k(t)$, define an elliptic curve C over L by the equation

$$
Y^{2}=X^{3}+a X+a, \quad a=\frac{27}{4} \frac{t}{1728-t} ;
$$

note that

$$
j(C)=1728 \frac{4 a^{3}}{4 a^{3}+27 a^{2}}=t
$$

and that its discriminant equals

$$
\Delta=-16\left(4 a^{3}+27 a^{2}\right)=\alpha t^{2}
$$

here w is the valuation on L with $w(t)=1$, with valuation ring $R=k[t]_{(t)}$ and $\alpha \in R^{*}$ (note that 2 and 3 are invertible in k); thus C has potentially good reduction at w
(its j-invariant being integral), and it has bad reduction at w, because its discriminant satisfies

$$
0<w(\Delta)=2<12 ;
$$

note further that for any extension $K \supset L$ of degree not divisible by 6 and for any extension v of w to K the reduction at v is additive (note that C is of type $\mathrm{II}=C_{1}$ at *. cf. [5, p. 46]). Let ϕ be the i-th iterate of the Frobenius homomorphism, and b... A be its kernel:

$$
0 \rightarrow M \rightarrow C \xrightarrow{\phi} E:=C^{\left(p^{\prime}\right)} \rightarrow 0,
$$

thus E is given by the equation

$$
Y^{2}=X^{3}+a^{q} X+a^{q}, \quad q=p^{l},
$$

and M is a local group scheme of rank q. Note that C is not a super-singular elliptic curve (because its j-invariant is not algebraic over k), thus

$$
M \otimes_{L} L_{\mathrm{s}} \cong \mu_{q}
$$

B; duality we obtain

$$
M^{D}=N \subset E, \quad N \otimes_{L} L_{\mathrm{s}} \cong \mathbb{Z} / q
$$

We take for $K \supset L$ the smallest field of rationality for the points in N, and we extend w to a discrete valuation v on K. Note that $K \supset L$ is a Galois extension and the degree

$$
[K: L] \text { divides } \#(\operatorname{Aut}(\mathbb{Z} / q))=(p-1) p^{t-1}
$$

thus 3 does not divide [$K: L$], we conclude $E \otimes_{L} K$ has additive reduction at v; moreover

$$
\mathbb{Z} / p^{\prime} \subset E(K)
$$

by construction, and the Example 3.1 is established.
3.2. Example. Take $p=2$, the other data as in Example 3.1, and we construct E so that

$$
2^{l} \text { divides } \#\left(E\left[2^{l}\right](K)\right) .
$$

Define C over $L=k(t), k=\mathbb{F}_{2}$, by the equation

$$
Y^{2}+t X Y=X^{3}+t^{5}
$$

sill-known formulas (cf. [5, p. 36]) yield:

$$
\Delta=t^{11}, \quad j=t
$$

note that 3 does not divide

$$
\#\left(\operatorname{Aut}\left(\mathbb{Z} / 2^{i}\right)\right)=2^{i-1}, \quad i \geq 1,
$$

and the methods of the previous example carry over.
Now we construct some examples in which $\operatorname{char}(K)=0<p=\operatorname{char}(k)$.
3.3. Example. Take $p=2$, let $i \geq 1$ be an integer. We construct K, v, k, E as before, such that E has additive reduction at v, and such that $\operatorname{char}(K)=0, \operatorname{char}(k)=2$, and

$$
E\left[2^{\prime}\right] \subset E(K)
$$

Let $m \geq 1$ be an integer, define

$$
L=\mathbb{Q}(\pi), \quad \pi^{m+1}=2, \quad w(\pi)=1,
$$

choose $a \in L$, and let E be given over L by the equation

$$
Y^{2}+\pi^{m} X Y=X^{3}+\pi^{2} a X^{2}+a X
$$

the point

$$
P=\left(-1 / \pi^{2}, 1 / \pi^{3}\right) \in E(L)
$$

is a point of order 2 , because it is on the line $2 Y+\pi^{m} X=0$, and the same holds for $(0,0) \in E(L)$; thus $E[2] \subset E(L)$.

Suppose $w(a) \geq 1$; because

$$
\Delta=\left(\pi^{2 m}+4 \pi^{2} a\right)^{2} a^{2}-64 a^{3}
$$

we conclude $w(\Delta)=4 m+2 w(a)$; suppose

$$
m=1 \quad \text { and } \quad w(a)=2, \quad \text { thus } \quad w(\Delta)=8 \quad \text { and } \quad w(j)=0
$$

or

$$
m=2 \text { and } w(a)=1, \text { thus } w(\Delta)=10 \text { and } w(j)>0 ;
$$

then the equation is minimal, the curve E has additive reduction at w and the reduction is potentially good. Let $K \supset L$ be the smallest field of rationality for the points of $E\left[2^{i}\right]$; note that

$$
\operatorname{Gal}(K / L) \subset \operatorname{Aut}\left(\left(\mathbb{Z} / 2^{i}\right)^{2}\right)=\mathrm{GL}\left(2, \mathbb{Z} / 2^{i}\right)
$$

is in the kernel of

$$
\mathrm{GL}\left(2, \mathbb{Z} / 2^{i}\right) \rightarrow \mathrm{GL}(2, \mathbb{Z} / 2)
$$

(because $E[2] \subset E(K)$ by construction), thus the degree $[K: L]$ is a power of 2 , hence it is not divisible by 3 . This implies that $v(\Delta)$ is not divisible by 12 (where v is some extension of w to K), thus the reduction of $E \otimes_{L} K$ at v is additive (because of $w(j) \geq 0$ it cannot become \mathbb{G}_{m}-type). Hence over K we have
$E\left[2^{i}\right] \subset E(K)$, and E has additive reduction at v.
3.4. Example. Let $p \equiv 5(\bmod 6)$, and let $i \geq 1$ be an integer. We construct K, v, k, E as above with $\operatorname{char}(K)=0<\operatorname{char}(k)=p$, with E having additive reduction at v, and

$$
E\left[p^{i}\right] \subset E(K)
$$

Consider over \mathbb{Q} the modular curve $X_{0}(p)_{\mathbb{Q}}$; this is a coarse moduli scheme of pairs $N \subset E$ where E is an elliptic curve and N a subgroup scheme over a field K such that $N\left(K_{s}\right) \cong \mathbb{Z} / p$; consider the scheme $M_{0}(p)$ over $\operatorname{Spec}(\mathbb{Z})$ (cf. [4, p. DeRa-94, $T \ldots$, rème 1.6] and $[6, \mathrm{p} .63])$, and consider the point $x_{0} \in M_{0}(p)\left(\mathbb{F}_{p}\right)$ given by $j=0$. Nor that $p \equiv 2(\bmod 3)$ implies that the curve E_{0} with $j=0$ is supersingular in characteristic p, hence it has a unique subgroup scheme $\alpha_{p} \cong N_{0} \subset E_{0}$, the kernel of Frobenius on E_{0}. Let $\left(\right.$ be the local ring of $M_{0}(p) \otimes_{\mathbb{Z}} W$ at x_{0}, where $W=W_{\infty}\left(F_{p^{2}}\right)$ (i.e. W is the unique unramified quadratic extension of \mathbb{Z}_{p}). We know: the local deformation space of $\alpha_{p}=N_{0} \subset E_{0}$ is isomorphic to the formal spectrum of

$$
\mathbb{Z}_{p}[[X, Y]] /(X Y-p)
$$

the automorphism group $\operatorname{Aut}\left(E \otimes \mathbb{F}_{p^{2}}\right)=A^{\prime}$ acts via

$$
A^{\prime} / \pm 1=\mathbb{Z} / 3
$$

or " $[[X, Y]] /(X Y-p)$, and the completion of C is canonically isomorphic to the rins of invariants

$$
\bar{\prime} \cong W[[S, T]] /\left(S T-p^{3}\right), \quad S=X^{3}, \quad T=Y^{3} .
$$

(cf. [6, p. 63] and [4, VI.6]). Let L be the field of fractions of W (i.e. L is the unramified quadratic extension of \mathbb{Q}_{p}), and construct

$$
\| \rightarrow \hat{\lambda} \rightarrow L \quad \text { by } \quad S \mapsto p^{2}, T \mapsto p
$$

this is a point $x \in X_{0}(p)(L)$; by results by Serre and Milne (cf. [4, p. DeRa-132. Proposition 3.2]) we know there exists a pair
$N \subset E$ defined over $L, \quad N \otimes L_{\mathrm{s}} \cong \mathbb{Z} / p$,
wi:- moduli-point x. Let K be the smallest field containing L such that all points of $E\left[p^{t}\right]$ are rational over K. Note that the degree [$K: L$] divides $(p-1)^{2} p^{?}$, thus it is not divisible by 3 ; hence

the pair $(N \subset E) \otimes K$ does not extend to a deformation of $\alpha_{p} \subset E_{0}$; it follows that E dc .5 not have good reduction at the discrete valuation v of K (if so, N would extend flai: y , reduce to a subgroup scheme of rank p of E_{0}, hence to $\alpha_{p}=N_{0} \subset E_{0}$). Thus E has additive reduction at v, and by construction

$$
E\left[p^{\prime}\right] \subset E(K)
$$

3.4 bis. Example. Consider $p=11$, take $121 . \mathrm{H}$ of [5, p. 97]. This is a curve E over $L=\mathbb{Q}$ with additive reduction at $w=v_{11}$, with $w(\Delta)=2$, with $w(j) \geq 0$ and which has a subgroup scheme of order 11 . Now proceed as before: $K=L\left(E\left[11^{l}\right]\right)$, etc., and we obtain a curve E over K with additive reduction at v (a valuation lying over $w)$, and with $E\left[11^{t}\right] \subset E(K)$.
3.5. Remark. We have not been able to produce examples analogous to Example 3.4 in case $p \equiv 1(\bmod 3)$. Hence for these primes the situation is not clear; we did not get beyond an example of the following type:
3.6. Example. Take $p=7$, consider a curve with conductor 49 over \mathbb{Q}, cf. [5, p. 86]. Then $w(\Delta)=3$ or $w(\Delta)=9$ (with $w=v_{7}$), and the curve has potentially good reduction (because of CM); furthermore it has a subgroup scheme $N \subset E$ over \mathbb{Q} of rank 7. Thus $K:=\mathbb{Q}(N)$ has degree dividing 6 , we see that $v(\Delta)$ is not divisible by 12 (where v lies over w) thus E has additive reduction at v and

$$
\mathbb{Z} / 7 \subset E(K)
$$

3.7. Example. Consider $p=3$, and let $i \geq 1$ be an integer. We constuct K, v, k, E as before with $\operatorname{char}(K)=0, \operatorname{char}(k)=3$ and $E\left[3^{i}\right] \subset E(K)$. We start with $L=\mathbb{Q}, w=v_{3}$, and we choose an elliptic curve E over \mathbb{Q} with minimal equation f such that:

$$
\begin{aligned}
& E \text { has additive reduction at } w, \quad w(j) \geq 0, \\
& w\left(\Delta_{f}\right) \equiv 1(\bmod 2), \quad \text { and }(\mathbb{Z} / 3) \subset E(\mathbb{Q})
\end{aligned}
$$

such examples exist, e.g. see [5, p. 87], the curve 54.A has $w(\Delta)=3, w(j) \geq 0$, and $\mathbb{Z} / 3 \cong E(\mathbb{Q})$. Let $K=\mathbb{Q}\left(E\left[3^{\prime}\right]\right)$, then $[K: \mathbb{Q}]$ divides $2 \cdot 3^{?}$, thus $v(\Delta) \neq 0(\bmod 4)$ for any v lying over $w=v_{3}$; thus:
E has additive reduction at v, and $E\left[3^{i}\right] \subset E(K)$.

4. The image of a point of order p under the reduction map

Let A be an abelian variety over a field K, let $R \subset K$ be the ring defined by a discrete valuation v on K, and let $\nexists \mathcal{\prime}$ be the Néron minimal model of A over $\operatorname{Spec}(R)$. At first suppose $n \geq 1$ is an integer such that $\operatorname{char}(k)$ does not divide n (here k is the residue class field of v, i.e. $k=R / \mathfrak{m}$). Let $\mathscr{A}[n]$ denote the kernel of multiplication by n on \mathscr{S}. Note that

$$
. z[n] \rightarrow \operatorname{Spec}(R)
$$

is étale and quasi-finite. Thus we see that $A(K)[n]$ injects in $A_{0}(k)$ (here $A_{0}=$.$S \otimes_{R} k$ is the special fibre), and all torsion points of $A_{0}(\bar{k})$ lift to torsion points of A defined over an extension of K which is unramified at v. In short: for n-torsion the relation between $A(K)$ and $A_{0}(\bar{k})$ is clear (as long as char (k) does not divide n).

We give some examples what happens if we consider points whose order is divisible by $\operatorname{char}(k)=p>0$. Also in case of stable reduction it is not so difficult to describe the situation $(\%[p] \rightarrow \operatorname{Spec}(R)$ is quasi-finite in that case). Thus we suppose the reduction is purely additive; in that case all points on the connected component A_{0}^{0} of the special fibre A_{0} are p-power torsion, and $\mathscr{y}[p] \rightarrow \operatorname{Spec}(R)$ need not be quasi-finite. We use the filtration on $E(K)$ as introduced in [5, Section 4],

$$
\begin{array}{ll}
& E(K) \supset E(K)_{0} \supset E(K)_{1} \\
& E(K)_{m}=\{(x, y) \in E(K) \mid v(x) \leq-2 m, v(y) \leq-3 m\}
\end{array}
$$

after having chosen a minimal equation for E.
4.1.1. Remark. We take $p>3$. If $P \in E(K)$ (and $\operatorname{ord}(P)=p=\operatorname{char}(k)$, and E has additive reduction at v), then $P \in E(K)_{0}$ (because $p>3$ does not divide the number of connected components of E_{0}, and $E(K)_{0} \rightarrow E_{0}^{0}(k)$, use p. 46, table of [5]). We show that both cases $P \notin E(K)_{1}$ and $P \in E(K)_{1}$ indeed occur:
4.1.2. Example. Take $p>3$, we construct $P \in E(K)$, ord $(P)=p$ and $P \notin E(K)_{1}$. Let E :e the curve 150.C (cf. [5, p. 103]), thus the curve given by the minimal equation

$$
Y^{2}+X Y=X^{3}-28 X+272
$$

it has additive reduction at $v=v_{5}$ (because 5^{2} divides its conductor 150), and it has a point of order 5 (indeed $\# E(\mathbb{Q})=10$). We claim

$$
P \in E(\mathbb{Q})_{0}, \quad P \notin E(\mathbb{Q})_{1}
$$

(relative the valuation v_{5}). This we can prove as follows: by Remark 4.1.1 we know $P \in E(Q)_{0}$, thus the group $\langle P\rangle=N \subset E$ extends flatly to a finite group scheme . $\subset \delta$ over $\operatorname{Spec}\left(\mathbb{Z}_{(5)}\right)$ (one can work with the Néron minimal model $\%$, but also v the (plane) Weierstrass minimal model, and then,$\otimes \mathbb{F}_{5}$ is not the singular wint because of $\left.P \in E(\mathbb{Q})_{0}\right)$. If we would have $P \in E(\mathbb{Q})_{1}$, then it would follow $c_{5} \cong 1 \otimes \mathbb{F}_{5}$ (because of additive reduction), but α_{5} over \mathbb{F}_{5} does not lift to the unramified situation $\mathbb{Z}_{(5)} \rightarrow \mathbb{F}_{5}$ (cf. [18, Section 5]), thus

$$
P \boxminus E(\mathbb{Q})_{1} .
$$

One can avoid the abstract proof by an explicit computation:

$$
P=(-4,20) \in E(\mathbb{Q}), \quad P \notin E(\mathbb{Q})_{1},
$$

the tangent line at P is $y=20$, so $-2 P=(8,20)$; the tangent line at $-2 P$ is $3 X-Y-4=0$, so $4 P=(-4,-16)=-P$, thus $\langle P\rangle \cong \mathbb{Z} / 5$; the singular point on $E \bmod 5$ is $(x=2, y=-1) \bmod 5$, thus $P \in E(\mathbb{Q})_{0}$, and the example is established.
4.1.3. Remark. Take $p>3$, and construct $Q \in E(K)_{1}$ with $\operatorname{ord}(Q)=p$. Indeed, take $i>1$, and use Example 3.4; then $\operatorname{ord}(P)=p^{\prime}$, and $P \in E(K)_{0}$ (because of Remark
4.1.1), thus $p \cdot P \in E(K)_{1}$ (because E has additive reduction), thus $Q:=p^{1-1} P \in$ $E(K)_{1}$ and $\operatorname{ord}(Q)=p$.

Next we choose $p=3$, and we show various possibilities indeed occur:
4.2.1. Example. We construct $P \in E(\mathbb{Q})$, with $\operatorname{ord}(P)=3, P \notin E(\mathbb{Q})_{0}$. Let E be given by the equation

$$
Y^{2}+3 a X Y+3 b Y=X^{3}
$$

by well-known formulas (cf. [5, p. 36]) one computes

$$
\Delta=3^{6} b^{3}\left(a^{3}-3 b\right)
$$

If 3^{6} does not divide $b^{3}\left(a^{3}-3 b\right)$, this equation is minimal (e.g. take $a=1=b$). Furthermore $P=(0,0)$ is a flex on E (hence $\operatorname{ord}(P)=3)$, and $E \bmod 3$ has a cusp at $(0,0)$. Thus $P \notin E(\mathbb{Q})_{0}$.
4.2.2. Example. It is very easy to give $P \in E(K)$ with $\operatorname{ord}(P)=3, P \in E(K)_{0}$ and $P \notin E(K)_{1}$. E.g.

$$
P=(0,2) \quad \text { on } \quad Y^{2}=X^{3}+4
$$

(cf. 108.A in [5, p. 95]) has this property, because ($x=-1, y=0$) mod 3 is the singular point on $E \bmod 3$, thus P reduces to a point on E_{0}^{0} but not to the identity. Another example:

$$
P=(0,0) \quad \text { on } \quad Y^{2}+Y=X^{3}
$$

(cf. 27.A in [5, p. 83]) is a flex, which does not reduce to the cusp ($x=1, y=1$) $\bmod 3$ on $E \bmod 3$.
4.2.3. Example. We construct $P \in E(K)$ with $\operatorname{ord}(P)=9, P \boxminus E(K)_{0}$ and $3 P \boxminus E(K)_{1}$. Indeed consider $K=\mathbb{Q}, v=v_{3}$, and take 54.B (cf. [5, p. 87]), a curve which has additive reduction at 3 such that $\# E(\mathbb{Q})=9$. Note that \mathbb{Q} does not contain a primitive cube root of unity, thus $E(\mathbb{Q})$ does not contain $(\mathbb{Z} / 3) \times(\mathbb{Z} / 3)$, hence

$$
E(\mathbb{Q}) \cong \mathbb{Z} / 9
$$

let P be a generator for this group. Note that α_{3} over \mathbb{F}_{3} does not lift to $\mathbb{Z}_{(3)}$, thus P and $3 P$ do not reduce to the identity under reduction modulo 3 , hence

$$
E(\mathbb{Q}) \rightarrow E(\mathbb{Q}) / E(\mathbb{Q})_{1}
$$

is injective, thus

$$
\operatorname{ord}(P)=9, \quad 3 P \notin E(\mathbb{Q})_{1}, \quad P \notin E(\mathbb{Q})_{0}
$$

and note that the extension

$$
0 \rightarrow E(\mathbb{Q})_{0} \rightarrow E(\mathbb{Q}) \rightarrow \mathbb{Z} / 3 \rightarrow 0
$$

is non-split.

4.2.4. Remark. Take $i=3$ in Example 3.7; then

$$
p=3, \quad P \in E(K), \quad \operatorname{ord}(P)=3^{3}
$$

and E has additive reduction at v. Then

$$
3 P \in E(K)_{0}, \quad 0 \neq 9 P \in E(K)_{1},
$$

thus $Q:=9 P$ has the property

$$
\operatorname{ord}(Q)=3, \quad Q \in E(K)_{1} .
$$

4.3. Example. We conclude by an example with $p=2$. Consider 48.E (cf. [5, p. 86]), i.e.

$$
Y^{2}=X^{3}+X^{2}+16 X+180 ;
$$

the right hand side factors over \mathbb{Q} in the irreducible factors

$$
(X+5)\left(X^{2}-4 X+36\right)
$$

hence $E[2](\mathbb{Q})=\mathbb{Z} / 2$. Because $\# E(\mathbb{Q})=8$ we conclude

$$
E(\mathbb{Q}) \cong \mathbb{Z} / 8
$$

(0° course it is well-known that such examples exist, e.g. cf. [6, p. 35, Theorem 8]). Thus

$$
E(\mathbb{Q})_{1}=0, \quad E(\mathbb{Q})_{0}=\mathbb{Z} / 2=\langle Q=(5,0)\rangle
$$

and

$$
E(\mathbb{Q}) / E(\mathbb{Q})_{0} \cong \mathbb{Z} / 4
$$

(because $(0,0) \bmod 2$ is the cusp on $E \bmod 2$, and $Q \bmod 2$ is smooth on $E \bmod 2$).

$R \approx$ ferences

ii A. Frohlich, Local fields, in: J.W.S. Cassels and A. Frohlich, eds., Algebraic Number Theory (Academic Press, New York, 1967).
[2] A. Grothendieck, M. Raynaud and D.S. Rim, Séminaire de Géométrie Algébrique, SGA 7 I, 1967-1969, Lecture Notes in Math. 288 (Springer, Berlin, 1972).
[3] S. Lang, Abelian Varieties (Interscience, New York, 1959).
[4] Modular functions of one variable II (Antwerp, 1972), Lecture Notes in Math. 349 (Springer, Berlın, 1973). Especially: P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptiques, pp. 143-316.
[5] Modular functions of one variable IV (Antwerp, 1972), Lecture Notes in Math. 476 (Springer, Berlin, 1975). Especially: J. Tate, Algorithm for determining the type of a singular fibre in an elliptic pencil, pp. 33-52; Table 1, pp. 81-113.
B B. Mazur, Modular curves and the Eisenstein ideal, Publ. Math. IHES 47 (1978).

- D. Mumford, Geometric Invariant Theory, Ergebnisse 34 (Springer, Berlin, 1965).
[8] M. Nagata, Complete reducibility of rational representations of a matrix group, J. Math. Kyoto Unu. 1 (1961) 87-99.
[9] A. Néron, Modèles minimaux des variétés abéliennes sur les corps locaux et globaux. Publ. Math. No. 21, IHES 1964.
[10] F. Oort, Finite group schemes, local moduli for abelian varieties and lifting problems, Compositio Math. 23 (1971) 265-296. Also in: Algebraic Geometry, Oslo 1970 (Wolters-Noordhoff, Groningen, 1972).
[11] F. Oort, Good and stable reduction of abelian varieties, Manuscr. Math. 11 (1974) 171-197.
[12] J.-P. Serre, Corps Locaux, Act. Sc. Ind. 1296 (Hermann, Paris, 1962).
[13] J.-P. Serre, Cohomologie Galoisienne. Lecture Notes in Math. 5 (Springer, Berlin, 1964).
[14] J.-P. Serre and J. Tate, Good reduction of abelian varieties, Ann. of Math. 88 (1968) 492-517.
[15] G. Shimura and Y. Taniyama, Complex multiplication of abelian varieties and its applications to number theory, Math. Soc. Japan (1961).
[16] G. Shimura, On the field of rationality for an abelian variety, Nagoya Math. J. 45 (1972) 167-178.
[17] J.H. Silverman, The Néron fiber of abelian varieties with potential good reduction, Math. Ann. 264 (1983) 1-3.
[18] J. Tate and F. Oort, Group schemes of prime order, Ann. Sc. École Norm. Sup. 4me série, 3 (1970) 1-21.

