Next: About this document ...
 Up: MSRI Modular Forms Summer
 Previous: Other Projects
     Contents 
- AGM02
 - 
Avner Ash, Paul E. Gunnells, and Mark McConnell, Cohomology of congruence
  subgroups of 
, J. Number Theory 94 (2002),
  no. 1, 181-212.
 - ARS06
 - 
A. Agashe, K.A. Ribet, and W.A. Stein, The
  Manin Constant, JPAM Coates Volume (2006),
  http://modular.math.washington.edu/papers/ars-manin/.
 - AS05
 - 
A. Agashe and W. Stein, Visible evidence for the Birch and
  Swinnerton-Dyer conjecture for modular abelian varieties of analytic rank
  zero, Math. Comp. 74 (2005), no. 249, 455-484 (electronic), With
  an appendix by J. Cremona and B. Mazur. 
 - Ash92
 - 
Avner Ash, Galois representations attached to mod 
 cohomology of
  
, Duke Math. J. 65 (1992), no. 2, 235-255.
 - BCIO01
 - 
Ricardo Baeza, Renaud Coulangeon, Maria Ines Icaza, and Manuel O'Ryan,
  Hermite's constant for quadratic number fields, Experiment. Math.
  10 (2001), no. 4, 543-551.
 - Bes04
 - 
Amnon Besser, The 
-adic height pairings of Coleman-Gross and of
  Nekovár, Number theory, CRM Proc. Lecture Notes, vol. 36, Amer. Math.
  Soc., Providence, RI, 2004, pp. 13-25. 
 - CF99
 - 
J.B. Conrey and D.W. Farmer, Hecke operators and
  the nonvanishing of 
-functions, Topics in number theory (University
  Park, PA, 1997), Math. Appl., vol. 467, Kluwer Acad. Publ., Dordrecht, 1999,
  pp. 143-150. 
 - Col91
 - 
Robert F. Coleman, The universal vectorial bi-extension and 
-adic
  heights, Invent. Math. 103 (1991), no. 3, 631-650. 
 - Col03
 - 
R. Coleman, Approximation of infinite-slope modular eigenforms by
  finite-slope eigenforms, to appear in the Dwork Proceedings (2003).
 - CS01
 - 
B. Conrad and W.A. Stein, Component groups of purely toric
  quotients, Math. Res. Lett. 8 (2001), no. 5-6, 745-766.
 - Dia95
 - 
F. Diamond, The refined conjecture of Serre, Elliptic curves,
  modular forms, & Fermat's last theorem (Hong
  Kong, 1993) (Cambridge, MA), Internat. Press, 1995, pp. 22-37.
 - Edi
 - 
B. Edixhoven, Point counting after Kedlaya, EIDMA-Stieltjes
  graduate course, Leiden, September 22-26,2003,
  http://www.math.leidenuniv.nl/ edix/oww/mathofcrypt/carls_edixhoven/kedlaya.pdf.
 - FJ02
 - 
D. W. Farmer and K. James, The irreducibility of some level 1 Hecke
  polynomials, Math. Comp. 71 (2002), no. 239, 1263-1270
  (electronic). 
 - GL01
 - 
Josep González and Joan-C. Lario, 
-curves and their
  Manin ideals, Amer. J. Math. 123 (2001), no. 3, 475-503.
 - Gun00
 - 
P. E. Gunnells, Computing Hecke eigenvalues below the cohomological
  dimension, Experiment. Math. 9 (2000), no. 3, 351-367. 
 - Har
 - 
G. Harder, Congruences between modular forms of genus 1 and of genus 2,
  Arbeitstagung.
 - IW03
 - 
Adrian Iovita and Annette Werner, 
-adic height pairings on abelian
  varieties with semistable ordinary reduction, J. Reine Angew. Math.
  564 (2003), 181-203. 
 - Ked01
 - 
Kiran S. Kedlaya, Counting points on hyperelliptic curves using
  Monsky-Washnitzer cohomology, J. Ramanujan Math. Soc. 16
  (2001), no. 4, 323-338. 
 - Ked04
 - 
K. Kedlaya, Computing zeta functions via 
-adic cohomology,
  Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 3076,
  Springer, Berlin, 2004, pp. 1-17.
 - KS00
 - 
D.R. Kohel and W.A. Stein, Component Groups of
  Quotients of 
, Proceedings of the 4th International
  Symposium (ANTS-IV), Leiden, Netherlands, July 2-7, 2000 (Berlin), Springer,
  2000.
 - MM89
 - 
R. MacPherson and M. McConnell, Classical projective geometry and modular
  varieties, Algebraic analysis, geometry, and number theory (Baltimore, MD,
  1988), Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 237-290.
 - MM93
 - 
to3em, Explicit reduction theory for Siegel modular threefolds,
  Invent. Math. 111 (1993), no. 3, 575-625.
 - MST06
 - 
B. Mazur, W. Stein, and J. Tate, Computation of 
-adic heights and log
  convergence, To appear in Documenta Mathematica's Coates Volume.
 - MT83
 - 
B. Mazur and J. Tate, Canonical height pairings via biextensions,
  Arithmetic and geometry, Vol. I, Progr. Math., vol. 35, Birkhäuser Boston,
  Boston, MA, 1983, pp. 195-237. 
 - MT87
 - 
to3em, Refined conjectures of the ``Birch and Swinnerton-Dyer
  type'', Duke Math. J. 54 (1987), no. 2, 711-750. 
 - MT91
 - 
to3em, The 
-adic sigma function, Duke Math. J. 62
  (1991), no. 3, 663-688. 
 - Nek93
 - 
Jan Nekovár, On 
-adic height pairings, Séminaire de
  Théorie des Nombres, Paris, 1990-91, Progr. Math., vol. 108, Birkhäuser
  Boston, Boston, MA, 1993, pp. 127-202. 
 - Pla94
 - 
Andrew Plater, Supersingular 
-adic height pairings on elliptic
  curves, Arithmetic geometry (Tempe, AZ, 1993), Contemp. Math., vol. 174,
  Amer. Math. Soc., Providence, RI, 1994, pp. 95-105. 
 - PR03
 - 
Bernadette Perrin-Riou, Arithmétique des courbes elliptiques à
  réduction supersingulière en 
, Experiment. Math. 12
  (2003), no. 2, 155-186. 
 - Rib92
 - 
K.A. Ribet, Abelian varieties over 
 and modular
  forms, Algebra and topology 1992 (Taejon), Korea Adv. Inst. Sci. Tech.,
  Taejon, 1992, pp. 53-79. 
 - RS01
 - 
K.A. Ribet and W.A. Stein, Lectures on Serre's
  conjectures, Arithmetic algebraic geometry (Park City, UT, 1999), IAS/Park
  City Math. Ser., vol. 9, Amer. Math. Soc., Providence, RI, 2001,
  pp. 143-232. 
 - Sch82
 - 
Peter Schneider, 
-adic height pairings. I, Invent. Math.
  69 (1982), no. 3, 401-409. 
 - Sch85
 - 
to3em, 
-adic height pairings. II, Invent. Math. 79
  (1985), no. 2, 329-374. 
 - SJ05
 - 
W. Stein and D. Joyner, Sage: System for algebra and geometry
  experimentation, Communications in Computer Algebra (SIGSAM Bulletin)
  39 (June 2005), no. 2, http://sage.sourceforge.net/.
 - Sta79
 - 
R. E. Staffeldt, Reduction theory and 
 of the Gaussian
  integers, Duke Math. J. 46 (1979), no. 4, 773-798. 
 - Ste89
 - 
G. Stevens, Stickelberger elements and modular parametrizations of
  elliptic curves, Invent. Math. 98 (1989), no. 1, 75-106.
 - Ste07
 - 
W. Stein, Explicitly computing with modular forms, Graduate Studies in
  Mathematics, American Math Society, 2007.
 - SW04
 - 
W. Stein and M. Watkins, Modular parametrizations of Neumann-Setzer
  elliptic curves, Int. Math. Res. Not. (2004), no. 27, 1395-1405.
 - Zar90
 - 
Yuri G. Zarhin, 
-adic heights on abelian varieties, Séminaire de
  Théorie des Nombres, Paris 1987-88, Progr. Math., vol. 81, Birkhäuser
  Boston, Boston, MA, 1990, pp. 317-341. 
 
William Stein
2006-10-20