next up previous contents
Next: Invariants of Modular Abelian Up: Level Raising and Lowering Previous: Level Raising and Lowering   Contents

Problems

Let $ f$ be a newform in $ S_2(\Gamma_0(N))$ (or, more generally, in $ S_k(\Gamma_1(N))$ ). Let $ \lambda$ be a prime ideal in the ring generated by the Fourier coefficients of $ f$ . Let $ n\geq 1$ be a positive integer.

Problem 7.1.1   Let $ E$ be the elliptic curve 11a given by the equation

$\displaystyle y^2 + y = x^3 - x^2 - 10x - 20,
$

and let $ f=f_E=q - 2q^{2} - q^{3} + \cdots \in S_2(\Gamma_0(11))$ be the corresponding newform. For

$\displaystyle r = 9, \quad 27,\quad 7^2$

compute all newforms $ g \in S_2(\Gamma_0(11q))$ with $ q<500$ prime and $ g\equiv
f\pmod{r}$ . Is there a pattern?

Problem 7.1.2   Formulate a level raising conjecture modulo $ \lambda^n$ . Provide computational and theoretical evidence.

Problem 7.1.3   Formulate a level lowering conjecture modulo $ \lambda^n$ . Provide computational and theoretical evidence.



William Stein 2006-10-20