next up previous contents
Next: About this document ... Up: MSRI Modular Forms Summer Previous: Other Projects   Contents

Bibliography

AGM02
Avner Ash, Paul E. Gunnells, and Mark McConnell, Cohomology of congruence subgroups of $ {\rm SL}\sb 4(\Bbb Z)$ , J. Number Theory 94 (2002), no. 1, 181-212.

ARS06
A. Agashe, K.A. Ribet, and W.A. Stein, The Manin Constant, JPAM Coates Volume (2006), http://modular.math.washington.edu/papers/ars-manin/.

AS05
A. Agashe and W. Stein, Visible evidence for the Birch and Swinnerton-Dyer conjecture for modular abelian varieties of analytic rank zero, Math. Comp. 74 (2005), no. 249, 455-484 (electronic), With an appendix by J. Cremona and B. Mazur.

Ash92
Avner Ash, Galois representations attached to mod $ p$ cohomology of $ {\rm GL}(n,{\bf Z})$ , Duke Math. J. 65 (1992), no. 2, 235-255.

BCIO01
Ricardo Baeza, Renaud Coulangeon, Maria Ines Icaza, and Manuel O'Ryan, Hermite's constant for quadratic number fields, Experiment. Math. 10 (2001), no. 4, 543-551.

Bes04
Amnon Besser, The $ p$ -adic height pairings of Coleman-Gross and of Nekovár, Number theory, CRM Proc. Lecture Notes, vol. 36, Amer. Math. Soc., Providence, RI, 2004, pp. 13-25.

CF99
J.B. Conrey and D.W. Farmer, Hecke operators and the nonvanishing of $ L$ -functions, Topics in number theory (University Park, PA, 1997), Math. Appl., vol. 467, Kluwer Acad. Publ., Dordrecht, 1999, pp. 143-150.

Col91
Robert F. Coleman, The universal vectorial bi-extension and $ p$ -adic heights, Invent. Math. 103 (1991), no. 3, 631-650.

Col03
R. Coleman, Approximation of infinite-slope modular eigenforms by finite-slope eigenforms, to appear in the Dwork Proceedings (2003).

CS01
B. Conrad and W.A. Stein, Component groups of purely toric quotients, Math. Res. Lett. 8 (2001), no. 5-6, 745-766.

Dia95
F. Diamond, The refined conjecture of Serre, Elliptic curves, modular forms, & Fermat's last theorem (Hong Kong, 1993) (Cambridge, MA), Internat. Press, 1995, pp. 22-37.

Edi
B. Edixhoven, Point counting after Kedlaya, EIDMA-Stieltjes graduate course, Leiden, September 22-26,2003,
http://www.math.leidenuniv.nl/ edix/oww/mathofcrypt/carls_edixhoven/kedlaya.pdf
.

FJ02
D. W. Farmer and K. James, The irreducibility of some level 1 Hecke polynomials, Math. Comp. 71 (2002), no. 239, 1263-1270 (electronic).

GL01
Josep González and Joan-C. Lario, $ \bold Q$ -curves and their Manin ideals, Amer. J. Math. 123 (2001), no. 3, 475-503.

Gun00
P. E. Gunnells, Computing Hecke eigenvalues below the cohomological dimension, Experiment. Math. 9 (2000), no. 3, 351-367.

Har
G. Harder, Congruences between modular forms of genus 1 and of genus 2, Arbeitstagung.

IW03
Adrian Iovita and Annette Werner, $ p$ -adic height pairings on abelian varieties with semistable ordinary reduction, J. Reine Angew. Math. 564 (2003), 181-203.

Ked01
Kiran S. Kedlaya, Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology, J. Ramanujan Math. Soc. 16 (2001), no. 4, 323-338.

Ked04
K. Kedlaya, Computing zeta functions via $ p$ -adic cohomology, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 3076, Springer, Berlin, 2004, pp. 1-17.

KS00
D.R. Kohel and W.A. Stein, Component Groups of Quotients of $ J_0(N)$ , Proceedings of the 4th International Symposium (ANTS-IV), Leiden, Netherlands, July 2-7, 2000 (Berlin), Springer, 2000.

MM89
R. MacPherson and M. McConnell, Classical projective geometry and modular varieties, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988), Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 237-290.

MM93
to3em, Explicit reduction theory for Siegel modular threefolds, Invent. Math. 111 (1993), no. 3, 575-625.

MST06
B. Mazur, W. Stein, and J. Tate, Computation of $ p$ -adic heights and log convergence, To appear in Documenta Mathematica's Coates Volume.

MT83
B. Mazur and J. Tate, Canonical height pairings via biextensions, Arithmetic and geometry, Vol. I, Progr. Math., vol. 35, Birkhäuser Boston, Boston, MA, 1983, pp. 195-237.

MT87
to3em, Refined conjectures of the ``Birch and Swinnerton-Dyer type'', Duke Math. J. 54 (1987), no. 2, 711-750.

MT91
to3em, The $ p$ -adic sigma function, Duke Math. J. 62 (1991), no. 3, 663-688.

Nek93
Jan Nekovár, On $ p$ -adic height pairings, Séminaire de Théorie des Nombres, Paris, 1990-91, Progr. Math., vol. 108, Birkhäuser Boston, Boston, MA, 1993, pp. 127-202.

Pla94
Andrew Plater, Supersingular $ p$ -adic height pairings on elliptic curves, Arithmetic geometry (Tempe, AZ, 1993), Contemp. Math., vol. 174, Amer. Math. Soc., Providence, RI, 1994, pp. 95-105.

PR03
Bernadette Perrin-Riou, Arithmétique des courbes elliptiques à réduction supersingulière en $ p$ , Experiment. Math. 12 (2003), no. 2, 155-186.

Rib92
K.A. Ribet, Abelian varieties over $ {\bf Q}$ and modular forms, Algebra and topology 1992 (Taejon), Korea Adv. Inst. Sci. Tech., Taejon, 1992, pp. 53-79.

RS01
K.A. Ribet and W.A. Stein, Lectures on Serre's conjectures, Arithmetic algebraic geometry (Park City, UT, 1999), IAS/Park City Math. Ser., vol. 9, Amer. Math. Soc., Providence, RI, 2001, pp. 143-232.

Sch82
Peter Schneider, $ p$ -adic height pairings. I, Invent. Math. 69 (1982), no. 3, 401-409.

Sch85
to3em, $ p$ -adic height pairings. II, Invent. Math. 79 (1985), no. 2, 329-374.

SJ05
W. Stein and D. Joyner, Sage: System for algebra and geometry experimentation, Communications in Computer Algebra (SIGSAM Bulletin) 39 (June 2005), no. 2, http://sage.sourceforge.net/.

Sta79
R. E. Staffeldt, Reduction theory and $ K\sb{3}$ of the Gaussian integers, Duke Math. J. 46 (1979), no. 4, 773-798.

Ste89
G. Stevens, Stickelberger elements and modular parametrizations of elliptic curves, Invent. Math. 98 (1989), no. 1, 75-106.

Ste07
W. Stein, Explicitly computing with modular forms, Graduate Studies in Mathematics, American Math Society, 2007.

SW04
W. Stein and M. Watkins, Modular parametrizations of Neumann-Setzer elliptic curves, Int. Math. Res. Not. (2004), no. 27, 1395-1405.

Zar90
Yuri G. Zarhin, $ p$ -adic heights on abelian varieties, Séminaire de Théorie des Nombres, Paris 1987-88, Progr. Math., vol. 81, Birkhäuser Boston, Boston, MA, 1990, pp. 317-341.



William Stein 2006-10-20