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Elliptic Curves and Analogies Between
Number Fields and Function Fields
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Abstract. Well-known analogies between number fields and function fields
have led to the transposition of many problems from one domain to the
other. In this paper, we discuss traffic of this sort, in both directions, in
the theory of elliptic curves. In the first part of the paper, we consider
various works on Heegner points and Gross–Zagier formulas in the function
field context; these works lead to a complete proof of the conjecture of
Birch and Swinnerton-Dyer for elliptic curves of analytic rank at most 1
over function fields of characteristic > 3. In the second part of the paper,
we review the fact that the rank conjecture for elliptic curves over function
fields is now known to be true, and that the curves which prove this have
asymptotically maximal rank for their conductors. The fact that these
curves meet rank bounds suggests interesting problems on elliptic curves
over number fields, cyclotomic fields, and function fields over number fields.
These problems are discussed in the last four sections of the paper.
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1. Introduction

The purpose of this paper is to discuss some work on elliptic curves over
function fields inspired by the Gross–Zagier theorem and to present new ideas
about ranks of elliptic curves from the function field case which I hope will inspire
work over number fields.

We begin in Section 2 by reviewing the current state of knowledge on the
conjecture of Birch and Swinnerton-Dyer for elliptic curves over function fields.
Then in Section 3 we discuss various works by Rück and Tipp, Pál, and Longhi
on function field analogues of the Gross–Zagier formula and related work by
Brown. We also explain how suitably general Gross–Zagier formulas together
with my “geometric nonvanishing” results lead to a theorem of the form: the
Birch and Swinnerton-Dyer conjecture for elliptic curves over function fields of
curves over finite fields of characteristic > 3 holds for elliptic curves with analytic
rank at most 1.

In Sections 4 and 5 we move beyond rank one and explain that the rank
conjecture holds for elliptic curves over function fields: there are (nonisotrivial)
elliptic curves with Mordell–Weil group of arbitrarily large rank. Moreover, these
curves meet an asymptotic bound due to Brumer for the rank in terms of the
conductor. So in the function field case, we know precisely the asymptotic growth
of ranks of elliptic curves ordered by the size of their conductors. In fact, there
are two bounds, one arithmetic, the other geometric, and both are sharp.

The rest of the paper is devoted to presenting some interesting problems
suggested by the existence and sharpness of these two types of rank bounds. In
Section 6 we state a conjecture which says roughly that Mestre’s bound on the
ranks of elliptic curves overQ and suitable generalizations of it over number fields
are asymptotically sharp. Next, we note that the Mestre bound and even more so
the Brumer bound can be “reformulated as” algebraic statements. For example,
the Brumer bound can be interpreted as a statement about the eigenvalues of
Frobenius on étale cohomology. It is therefore natural to ask for an algebraic
proof; reformulating the bounds into statements that might admit an algebraic
proof leads to interesting questions which are explained in Section 7.

Finally, in Sections 8 and 9 we discuss possible rank bounds over cyclotomic
fields and over function fields over number fields. More precisely, we discuss
pairs of ranks bounds, one “arithmetic” the other “geometric,” for pairs of fields
like Qp-cyc/Q or Q(C)/Q(C) where C is a curve over Q. In both cases, one rank
bound is known (arithmetic in the first case, geometric in the second) and the
other bound has yet to be considered.
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2. Review of the Birch and Swinnerton-Dyer Conjecture
over Function Fields

We assume that the reader is familiar with elliptic curves over number fields,
but perhaps not over function fields, and so in this preliminary section we set
up some background and review the Birch and Swinnerton-Dyer conjecture. For
many more details, examples, etc., we refer to [Ulmb].

Let C be a smooth, geometrically connected, projective curve over a finite
field Fq and set F = Fq(C). Let E be an elliptic curve over F , i.e., a curve of
genus one defined as usual by an affine Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

(ai ∈ F ) with the point at infinity [0, 1, 0] as origin; the discriminant ∆ and
j-invariant are given by the usual formulas (see, e.g., [Tat72]) and we of course
assume that ∆ 6= 0. We say that E is constant if it is defined over Fq, i.e., if it
is possible to choose the Weierstrass model so that the ai ∈ Fq. Equivalently, E

is constant if there exists an elliptic curve E0 defined over Fq such that

E ∼= E0 ×Spec Fq Spec F.

In this case we say that E is based on E0. We say that E is isotrivial if it becomes
isomorphic to a constant curve after a finite extension of F ; this is easily seen to
be equivalent to the condition j(E) ∈ Fq. Finally, we say that E is nonisotrivial
if j(E) 6∈ Fq.

Let n be the conductor of E. This is an effective divisor on C which is divisible
only by the places where E has bad reduction. More precisely, v divides n to
order 1 at places where E has multiplicative reduction and to order at least 2 at
places where E has additive reduction and to order exactly 2 at these places if the
characteristic of F is > 3. The reduction, exponent of conductor, and minimal
model of E at places of F can be computed by Tate’s algorithm [Tat72].

The Mordell–Weil theorem holds for E, namely E(F ) is a finitely generated
abelian group. This can be proven in a manner entirely analogous to the proof
over number fields, using Selmer groups and heights, or by more geometric meth-
ods; see [Nér52]. Also, both the rank conjecture (that for a fixed F , the rank of
E(F ) can be arbitrarily large) and the torsion conjecture (that there is a bound
on the order of the torsion subgroup of E(F ) depending only on the genus of
F ) are known to be true in this context. For the rank conjecture, see [Ulm02]
and Section 4 below. The torsion conjecture was proven by Levin [Lev68], who
showed that there is an explicit bound of the form O(

√
g + 1) for the order of

the torsion subgroup of a nonisotrivial elliptic curve over F , where g is the genus
of F . More recently, Thakur [Tha02] proved a variant bounding the order of
torsion in terms of the gonality of C, i.e., the smallest degree of a nonconstant
map to P1.

The L-function of E is defined by the Euler product
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L(E/F, s) =
∏

v6 |n

(
1− avq−s

v + q1−2s
v

)−1

×
∏

v|n





(1−q−s
v )−1 if E has split multiplicative reduction at v,

(1+q−s
v )−1 if E has nonsplit multiplicative reduction at v,

1 if E has additive reduction at v.

Here qv is the cardinality of the residue field Fv at v and the number of points
on the reduced curve is #E(Fv) = qv +1−av. The product converges absolutely
in the half-plane Re s > 3

2 , has a meromorphic continuation to the s plane, and
satisfies a functional equation for s 7→ 2−s. If E is not constant, then L(E/F, s)
is a polynomial in s of degree 4g − 4 + deg n and thus an entire function of s.
(All this comes from Grothendieck’s analysis of L-functions. See the last section
of [Mil80] for more details.)

The Birch and Swinnerton-Dyer conjecture in this context asserts that

RankE(F )
?= ords=1 L(E/F, s)

and, setting r = ords=1 L(E/F, s), that the leading coefficient is

1
r!

L(r)(E/F, 1)
?=

|X|Rτ

|E(F )tor|2
where X is the Tate–Shafarevitch group, R is a regulator constructed from
heights of a set of generators of E(F ), and τ is a certain Tamagawa number
(an analogue of a period). We will not enter into the details of the definitions
of these objects since they will play little role in what follows; see [Tat66b] for
more details.

Much more is known about this conjecture in the function field case than in
the number field case. Indeed, we have

RankE(F ) ≤ ords=1 L(E/F, s) (2–1)

and the following assertions are equivalent:

1. Equality holds in (2–1).
2. The ` primary part of X is finite for any one prime ` (` = p is allowed).
3. X is finite.

Moreover, if these equivalent conditions are satisfied, then the refined conjecture
on the leading coefficient of the L-series is true. The “prime-to-p” part of this was
proven by Artin and Tate [Tat66b]. More precisely, they showed that equality
holds in (2–1) if and only if the ` primary part of X is finite for any one prime
` 6= p if and only if the ` primary part of X is finite for every ` 6= p, and
that if these conditions hold, the refined formula is correct up to a power of p.
Milne proved the stronger statement above in [Mil75] for p 6= 2; due to later
improvements in p-adic cohomology, his argument applies essentially verbatim
to the case p = 2 as well.
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These results were obtained by considering the elliptic surface E → C attached
to E, which can be characterized as the unique smooth, proper surface over Fq

admitting a flat and relatively minimal morphism to C, with generic fiber E/F .
Another key ingredient is Grothendieck’s analysis of L-functions, which gives a
cohomological interpretation of the ζ-function of E and the L-function of E.

Equality in (2–1), and therefore the full Birch and Swinnerton-Dyer conjec-
ture, is known to hold in several cases (but certainly not the general case!): If
it holds for E/K where K is a finite extension of F , then it holds for E/F (this
is elementary); it holds for constant, and thus isotrivial, E (this follow from
[Tat66a]); and it holds for several cases most easily described in terms of E ,
namely if E is a rational surface (elementary), a K3 surface [ASD73], or if E is
dominated by a product of curves (see [Tat94]). The rational and K3 cases are
essentially those where the base field F is Fq(t) and the coefficients ai in the
defining Weierstrass equation of E have small degree in t.

3. Function Field Analogues of the Gross–Zagier Theorem

In this section we will give some background on modularity and Heegner
points and then discuss various works on Gross–Zagier formulas in the function
field context. Our treatment will be very sketchy, just giving the main lines of
the arguments, but we will give precise references where the reader may find the
complete story. Throughout, we fix a smooth, proper, geometrically connected
curve C over a finite field Fq of characteristic p and we set F = Fq(C).

3.1. Two versions of modularity. Recall that for elliptic curves over Q there
are two (not at all trivially!) equivalent statements expressing the property that
an elliptic curve E of conductor N is modular:

1. There exists a modular form f (holomorphic of weight 2 and level Γ0(N))
such that L(E, χ, s) = L(f, χ, s) for all Dirichlet characters χ.

2. There exists a nonconstant morphism X0(N) → E (defined over Q).

(We note that over Q, the equalities L(E, χ, s) = L(f, χ, s) in (1) are implied by
the a priori weaker statement that L(E, s) = L(f, s). But this implication fails
over higher degree number fields and over function fields and it is the stronger
assertion that we need.)

In the next two subsections we will explain the analogues of these two state-
ments in the function field context. In this case, the relationship between the two
statements is a little more complicated than in the classical case. For example,
the relevant automorphic forms are complex valued and thus are not functions or
sections of line bundles on the analogue of X0(n), which is a curve over F . Nev-
ertheless, analogues of both modularity statements are theorems in the function
field case.
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3.2. Analytic modularity. We begin with (1). Let AF be the adèle ring
of F and OF ⊂ AF the subring of everywhere integral adèles. Then for us,
automorphic forms on GL2 over F are functions on GL2(AF ) which are invariant
under left translations by GL2(F ) and under right translations by a finite index
subgroup K of GL2(OF ). In other words, they are functions on the double coset
space

GL2(F )\GL2(AF )/K. (3–1)

These functions may take values in any field of characteristic zero; to fix ideas,
we take them with values in Q and we fix embeddings of Q into C and into Q`

for some ` 6= p. The subgroup K is the analogue of the level in the classical
setting and the most interesting case is when K is one of the analogues Γ0(m) or
Γ1(m) of the Hecke congruence subgroups where m is an effective divisor on C. If
ψ : A×/F× → Q`

×
is an idèle class character and f is an automorphic form, we

say f has central character ψ if f(zg) = ψ(z)f(g) for all z ∈ Z(GL2(AF )) ∼= A×F
and all g ∈ GL2(AF ). The central character plays the role of weight: When k is
a positive integer and ψ(z) = |z|−k (where | · | is the adèlic norm), f is analogous
to a classical modular form of weight k. The basic reference for this point of
view is [Wei71]; see Chapter III for definitions and first properties. For a more
representation-theoretic point of view, see [JL70].

If we single out a place ∞ of F and assume that K = Γ0(∞n) where n is
prime to ∞, then there is an analogue of the description of classical modu-
lar forms as functions on the upper half plane. Namely, an automorphic form
f may be viewed as a function (or a section of line bundle if the ∞ compo-
nent of ψ is nontrivial) on a finite number of copies of the homogeneous space
PGL2(F∞)/Γ0(∞) which has the structure of an oriented tree. (Compare with
PGL2(R)/O2(R) ∼= H.) The corresponding functions are invariant under cer-
tain finite index subgroups of GL2(A) ⊂ GL2(F∞) where A ⊂ F is the ring
of functions regular outside ∞. The various copies of the tree are indexed by
a generalized ideal class group of A. This point of view is most natural when
F = Fq(t) and ∞ is the standard place t = ∞, in which case there is just one
copy of the tree and this description is fairly canonical. In the general case, there
are several copies of the tree and choices must be made to identify automorphic
forms with functions on trees. Using this description (or suitable Hecke opera-
tors) one may define the notion of a form being “harmonic” or “special” at ∞.
Namely, sum of the values over edges with a fixed terminus should be zero. This
is an analogue of being holomorphic. See [DH87, Chap. 5], [GR96, Chap. 4], or
[vdPR97, Chap. 2] for details.

Automorphic forms have Fourier expansions, with coefficients naturally in-
dexed by effective divisors on C. There are Hecke operators, also indexed by
effective divisors on C and the usual connection between eigenvalues of Hecke
operators and Fourier coefficients of eigenforms holds. There is a notion of cusp
form and for a fixed K and ψ the space of cusp forms is finite dimensional. An
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automorphic form f gives rise to an L-function L(f, s), which is a complex valued
function of a complex variable s. If f is a cuspidal eigenform, this L-function
has an Euler product, an analytic continuation to an entire function of s, and
satisfies a functional equation. See [Wei71] for all of this except the finite dimen-
sionality, which follows easily from reduction theory. See [Ser80, Chap. II] for
the finite dimensionality when F = Fq(t) and [HLW80] for an explicit dimension
formula in the general case.

The main theorem of [Wei71] is a “converse” theorem which says roughly
that a Dirichlet series with a suitable analytic properties is the L-function of an
automorphic form on GL2. (The function field case is Theorem 3 of Chapter
VII.) The most important requirement is that sufficiently many of the twists
of the given Dirichlet series by finite order characters should satisfy functional
equations. This result was also obtained by representation theoretic methods in
[JL70]. Also, see [Li84] for an improved version, along the lines of [Wei71].

Now let E be an elliptic curve over F . By Grothendieck’s analysis of L-
functions, we know that the Dirichlet series L(E, s) is meromorphic (entire if E

is nonisotrivial) and its twists satisfy functional equations. In [Del73, 9.5–9.7],
Deligne verified the hypotheses of Weil’s converse theorem. The main point is to
check that the functional equations given by Grothendieck’s theory are the same
as those required by Weil. The form fE associated to E is characterized by the
equalities L(E,χ, s) = L(fE , χ, s) for all finite order idèle class characters χ. It
is an eigenform for the Hecke operators and is a cusp form if E is nonisotrivial.
Its level is Γ0(m) where m is the conductor of E and it has central character
| · |−2 (i.e., is analogous to a form of weight 2). If E has split multiplication at
∞, then fE is special at ∞. The construction of fE from E is the function field
analogue of (1) above.

3.3. Geometric modularity. We now turn to Drinfeld modules and (2). There
is a vast literature on Drinfeld modules and we will barely scratch the surface.
The primary reference is [Dri74] and there are valuable surveys in [DH87] and
[GvdPRG97].

Fix a place ∞ of F and define A to be the ring of elements of F regular away
from ∞. Let F∞ denote the completion of F at ∞ and C the completion of the
algebraic closure of F∞. The standard example is when F = Fq(t), ∞ is the
standard place t = ∞, and A = Fq[t].

Let k be a ring of characteristic p equipped with a homomorphism A → k.
Let k{τ} be the ring of noncommutative polynomials in τ , with commutation
relation τa = apτ . There is a natural inclusion ε : k ↪→ k{τ} with left inverse
D : k{τ} → k defined by D(

∑
n anτn) = a0. If R is any k-algebra, we may make

the additive group of R into a module over k{τ} by defining (
∑

n anτn)(x) =∑
n anxpn

.
A Drinfeld module over k (or elliptic module as Drinfeld called them) is a

ring homomorphism φ : A → k{τ} whose image is not contained in k and such
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that D ◦ φ : A → k is the given homomorphism. The characteristic of φ is by
definition the kernel of the homomorphism A → k, which is a prime ideal of A.
It is convenient to denote the image of a ∈ A by φa rather than φ(a). If A = Fq[t]
then φ is determined by φt, which can be any element of k{τ} of positive degree
with constant term equal to the image of t under A → k. For a general A and k

equipped with A → k there may not exist any Drinfeld modules and if they do
exist, they may not be easy to find. As above, a Drinfeld module φ turns any
k-algebra into an A-module by the rule a · x = φa(x).

It turns out that a 7→ φa is always injective and there exists a positive integer
r, the rank of φ, such that pdegτ (φa) = |a|r∞ = #(A/a)r. If φ and φ′ are Drinfeld
modules over k, a homomorphism u : φ → φ′ is by definition an element u ∈ k{τ}
such that uφa = φ′au for all a ∈ A and an isogeny is a nonzero homomorphism.
Isogenous Drinfeld modules have the same rank and characteristic. See [Dri74,
§ 2] or [DH87, Chap. 1].

We will only consider Drinfeld modules of rank 2. These objects are in many
ways analogous to elliptic curves. For example, if k is an algebraically closed
field and p ⊂ A is a prime ideal, then we have an isomorphism of A-modules

φ[p](k) := {x ∈ k|φa(x) = 0 for all a ∈ p} ∼= (A/p)e

where 0 ≤ e ≤ 2 and e = 2 if the characteristic of φ is relatively prime to
p. A second analogy occurs with endomorphism rings: End(φ), the ring of
endomorphisms of φ, is isomorphic as A-module to either A, an A-order in an
“imaginary” quadratic extension K of F , or an A-order in a quaternion algebra
over F . Here “imaginary” means that the place∞ of F does not split in K and an
A-order in a division algebra D over F is an A-subalgebra R with Frac(R) = D.
The quaternion case can occur only if the characteristic of φ is nonzero, in which
case the quaternion algebra is ramified precisely at ∞ and the characteristic of
φ. A third analogy is the analytic description of Drinfeld modules over C: giving
a Drinfeld module of rank 2 over C up to isomorphism is equivalent to giving a
rank 2 A-lattice in C up to homothety by elements of C×. If φ corresponds to
the lattice Λ, there is a commutative diagram

0 // Λ //

a

²²

C
expΛ //

a

²²

C

φa

²²

// 0

0 // Λ // C
expΛ // C // 0

where expΛ : C → C is the Drinfeld exponential associated to Λ. See [Dri74,
§ § 2–3] or [DH87, Chaps. 1–2].

There is a natural generalization of all of the above to Drinfeld modules over
schemes of characteristic p. Given an effective divisor n on C relatively prime to
∞ (or equivalently, a nonzero ideal of A), there is a notion of “level n structure”
on a Drinfeld module. Using this notion, one may construct a moduli space Y0(n)
(a scheme if n is nontrivial and a stack if n is trivial) parameterizing Drinfeld
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modules of rank 2 with level n structure, or equivalently, pairs of rank 2 Drinfeld
modules connected by a “cyclic n-isogeny” u : φ → φ′. (The notions of level
n structure and cyclic are somewhat subtle and a significant advance over the
naive notions. Analogues of Drinfeld’s notions were used in [KM85] to completely
analyze the reduction of classical modular curves at primes dividing the level.)
The curve Y0(n) is smooth and affine over F and may be completed to a smooth,
proper curve X0(n). The added points (“cusps”) can be interpreted in terms
of certain degenerations of Drinfeld modules. The curve X0(n) carries many of
the structures familiar from the classical case, such as Hecke correspondences
(indexed by effective divisors on C) and Atkin–Lehner involutions. See [Dri74,
§ 5] and [DH87, Chap. 1, § 6]. The construction of the moduli space (or stack)
is done very carefully in [Lau96, Chap. 1] and the interpretation of the cusps is
given in [vdPT97].

The analytic description of Drinfeld modules over C yields an analytic de-
scription of the C points of Y0(n). Namely, let Ω denote the Drinfeld upper half
plane: Ω = P1(C) \ P 1(F∞). Then Y0(n)(C) is isomorphic (as rigid analytic
space) to a union of quotients of Ω by finite index subgroups of GL2(A). The
components of Y0(n)(C) are indexed by a generalized ideal class group of A.
More adelically, we have an isomorphism

Y0(n) ∼= GL2(F )\(GL2(Af
F )× Ω

)
/Γ0(n)f

where Af
F denotes the “finite adèles” of F , namely the adèles with the component

at ∞ removed, and similarly with Γ0(n)f . See [Dri74, § 6] or [DH87, Chap. 3].
This description reveals a close connection between Y0(n) and the description

of automorphic forms as functions on trees (cf. (3–1)). Namely, there is a map
between the Drinfeld upper half plane Ω and a geometric realization of the tree
PGL2(F∞)/Γ0(∞). Using this, Drinfeld was able to analyze the étale cohomol-
ogy of X0(n) as a module for Gal(F/F ) and the Hecke operators, in terms of
automorphic forms of level Γ0(n∞) which are special at ∞. (Drinfeld used an ad
hoc definition of étale cohomology; for a more modern treatment, see [vdPR97].)
This leads to one form of the Drinfeld reciprocity theorem: if f is an eigenform of
level Γ0(n∞) which is special at ∞, then there exists a factor Af of the Jacobian
J0(n) of X0(n), well-defined up to isogeny, such that

L(f, χ, s) = L(Af , χ, s)

for all finite order idèle class characters χ of F . If the Hecke eigenvalues of f

are rational integers, then Af is an elliptic curve, and if f is a new, then E has
conductor n∞ and is split multiplicative at ∞. See [Dri74, § § 10–11], [DH87,
Chaps. 4–5], and [GR96, Chap. 8].

So, starting with an elliptic curve E over F of level m = n∞ which is split
multiplicative at ∞, Deligne’s theorem gives us an automorphic form fE on GL2

over F of level m which is special at ∞ and which has integer Hecke eigenvalues.
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From fE , Drinfeld’s construction gives us an isogeny class of elliptic curves AfE

appearing in the Jacobian of X0(n). Moreover, we have equalities of L-functions:

L(E, χ, s) = L(fE , χ, s) = L(AfE
, χ, s).

But Zarhin proved that the L-function of an abelian variety A over a function
field (by which we mean the collection of all twists L(A,χ, s)) determines its
isogeny class. See [Zar74] for the case p > 2 and [MB85, XXI.2] for a different
proof that works in all characteristics. This means that E is in the class AfE

and therefore we have a nontrivial modular parameterization X0(n) → E.
In [GR96, Chap. 9] Gekeler and Reversat completed this picture by giving a

beautiful analytic construction of J0(N)(C) and of the analytic parameterization
X0(n)(C) → E(C). This is the analogue of the classical parameterization of an
elliptic curve by modular functions. Recently, Papikian has studied the degrees
of Drinfeld modular parameterizations and proved the analogue of the degree
conjecture. See [Pap02] and forthcoming publications.

3.4. Heegner points and Brown’s work. It was clear to the experts from
the beginning that Heegner points, the Gross–Zagier formula, and Kolyvagin’s
work could all be extended to the function field case, using the Drinfeld modular
parameterization, although nothing was done for several years. The first efforts
in this direction were made by Brown in [Bro94].

Fix as usual F , ∞, A, and n, so we have the Drinfeld modular curve X0(n).
Let K/F be an imaginary quadratic extension and let B be an A-order in K. A
Drinfeld–Heegner point with order B (or Heegner point for short) is by definition
a point on X0(n) corresponding to a pair φ → φ′ connected by a cyclic n isogeny
such that End(φ) = End(φ′) = B. These will exist if and only if there exists a
proper ideal n′ of B (i.e., one such that {b ∈ K|bn′ ⊂ n′} = B) with B/n′ ∼= A/n.
The simplest situation is when every prime dividing n splits in K and B is the
maximal A-order in K, i.e., the integral closure of A in K. Assuming B has
such an ideal n′, we may construct Heegner points using the analytic description
of Drinfeld modules over C as follows. If a ⊂ B is a nonzero proper ideal then
the pair of Drinfeld modules φ and φ′ corresponding to the lattices n′a and a

in K ↪→ C satisfy End(φ) = End(φ′) = B and they are connected by a cyclic
n-isogeny. The corresponding point turns out to depend only on B, n′, and the
class of a in Pic(B) and it is defined over the ring class field extension KB/K

corresponding to B by class field theory. The theory of complex multiplication
of Drinfeld modules implies that Gal(KB/K) ∼= Pic(B) acts on the Heegner
points through its natural action on the class of a. Applying an Atkin–Lehner
involution to a Heegner point is related to changing the choice of ideal n′ over
n. All of this is discussed in [Bro94, § 2] in the context where A = Fq[t].

Taking the trace from KB to K of a Heegner point and subtracting a suitable
multiple of a cusp, we get a K-rational divisor of degree 0, and so a point
J0(n)(K). We write QK for the point so constructed when K is an imaginary
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quadratic extension of F in which every prime dividing n splits and B is the
maximal A-order in K. The point QK is well-defined, independently of the
other choices (n′ and a), up to a torsion point of J0(n)(K). If E is an elliptic
curve over F of level n∞ with split multiplicative reduction at ∞, then using
the modular parameterization discussed above one obtains a point PK ∈ E(K),
well-defined up to torsion.

Brown purports to prove, by methods analogous to those of Kolyvagin [Kol90],
that if PK is nontorsion, then the Tate–Shafarevitch group of E is finite and the
rank of E(K) is one. (He gives an explicit annihilator of the `-primary part
of X for infinitely many `.) As we have seen, this implies that the Birch and
Swinnerton-Dyer conjecture holds for E over K.

Unfortunately, Brown’s paper is marred by a number of errors, some rather
glaring. For example, the statement of the main theorem is not in fact what
is proved and it is easily seen to be false if taken literally. Also, he makes the
strange hypothesis that q, the number of elements in the finite ground field, is
not a square. The source of this turns out to be a misunderstanding of quadratic
reciprocity in the proof of his Corollary 3.4. In my opinion, although something
like what Brown claims can be proved by the methods in his paper, a thorough
revision is needed before his theorem can be said to have been proven.

There is another difficulty, namely that Brown’s theorem does not give a
very direct approach to the Birch and Swinnerton-Dyer conjecture. This is be-
cause it is rather difficult to compute the modular parameterization and thus
the Heegner point, and so the hypotheses of Brown’s theorem are hard to ver-
ify. (The difficulty comes from the fact that nonarchimedean integration seems
to be of exponential complexity in the desired degree of accuracy, in contrast
to archimedean integration which is polynomial time.) On the other hand it is
quite easy to check whether the L-function of E vanishes to order 0 or 1, these
being the only cases where one expects Heegner points to be of help. In fact the
computation of the entire L-function of E is straightforward and (at least over
the rational function field) can be made efficient using the existence of an auto-
morphic form corresponding to E. See [TR92]. This situation is the opposite of
that in the classical situation; cf. the remarks of Birch near the end of § 4 of his
article in this volume [Bir04].

In light of this difficulty, a more direct and straightforward approach to the
Birch and Swinnerton-Dyer conjecture for elliptic curves of rank ≤ 1 is called
for. My interest in function field analogues of Gross–Zagier came about from an
effort to understand Brown’s paper and to find a better approach to BSD in this
context.
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3.5. Gross–Zagier formulas. Let us now state what the analogue of the
Gross–Zagier formula [GZ86] should be in the function field context. Let E be
an elliptic curve over F of conductor n∞ and with split multiplicative reduction
at ∞. Then for every imaginary quadratic extension K of F satisfying the
Heegner hypotheses (namely that every prime dividing n is split in K), we have
a point PK ∈ E(K) defined using Heegner points on X0(n) and the modular
parameterization. The desired formula is then

L′(E/K, 1) = a〈PK , PK〉 (3–2)

where 〈 , 〉 is the Néron–Tate canonical height on E and a is an explicit nonzero
constant. Because equality of analytic and algebraic ranks implies the refined
BSD conjecture, the exact value of a is not important for us.

The left hand side of this formula is also a special value of the L-function
of an automorphic form (namely, the f such that L(E, χ, s) = L(f, χ, s)) and
Equation (3–2) is a special case of a more general formula which applies to auto-
morphic forms without the assumption that their Hecke eigenvalues are integers.
Let S be the vector space of complex valued cuspidal automorphic forms on GL2

over F which have level Γ0(n∞), central character | · |−2, and which are special
at ∞. (As discussed in Section 3.2, this is the analogue of S2(Γ0(N)).) Then we
have a Petersson inner product

( , ) : S × S → C

which is positive definite Hermitian. For f ∈ S, let LK(f, s) be the L-function of
the base change of f to a form on GL2 over K. (This form can be shown to exist
using a Rankin–Selberg integral representation and Weil’s converse theorem.)
Then the function f 7→ L′K(f, 1) is a linear map S → C and so there exists a
unique element hK ∈ S such that

(f, hK) = L′K(f, 1)

for all f ∈ S.
For h ∈ S, let c(h, m) be the m-th Fourier coefficient of h. Then a formal Hecke

algebra argument, as in the classical case, shows that the desired Gross–Zagier
formula (3–2) (and its more general version mentioned above) follows from the
following equalities between Fourier coefficients and heights on J0(n):

c(hK , m) = a〈QK , TmQK〉 (3–3)

for all effective divisors m prime to n∞. Here Tm is the Hecke operator on J0(n)
indexed by m and 〈 , 〉 is the canonical height pairing on J0(n).

From now on, by “Gross–Zagier formula” we will mean the sequence of equal-
ities (3–3).
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3.6. Rück–Tipp. Rück and Tipp were the first to write down a function field
analogue of the Gross–Zagier formula [RT00]. They work over F = Fq(t) with q

odd, and ∞ the standard place at infinity t = ∞ (so their ∞ has degree 1). They
assume that n is square free and that K = F (

√
D) where D is an irreducible

polynomial in Fq[t]. Under these hypotheses, they checked the equalities (3–3) for
all m prime to n∞, which yields the formula (3–2). This gives some instances of
the conjecture of Birch and Swinnerton-Dyer, under very restrictive hypotheses.

Their paper follows the method of Gross and Zagier [GZ86] quite closely
(which is not to say that the analogies are always obvious or easy to implement!).
They use the Rankin–Selberg method and a holomorphic projection operator to
compute the Fourier coefficients of hK . The height pairing is decomposed as a
sum of local terms and, at finite places, the local pairing is given as an intersection
number, which can be computed by counting isogenies between Drinfeld modules
over a finite field. The local height pairing at ∞ is also an intersection number
and one might hope to use a moduli interpretation of the points on the fiber at∞
to calculate the local height. But to my knowledge, no one knows how to do this.
Instead, Rück and Tipp compute the local height pairing using Green’s functions
on the Drinfeld upper half plane. This is a very analytic way of computing a
rational number, but it matches well with the computations on the analytic side
of the formula.

3.7. Pál and Longhi. Pál and Longhi worked (independently) on function
field analogues of the Bertolini–Darmon [BD98] p-adic construction of Heegner
points. Both work over a general function field F of odd characteristic. Let E

be an elliptic curve over F with conductor n∞ and which is split multiplicative
at ∞. Let K be a quadratic extension in which ∞ is inert and which satisfies
the Heegner hypotheses with respect to E. Also let Hn be the ring class field of
K of conductor ∞n and set G = lim←−Gal(Hn/K).

Pál [Pál00] used “Gross–Heegner” points, as in Bertolini–Darmon (following
Gross [Gro87]), to construct an element L(E/K) in the completed group ring
Z[[G]] which interpolates suitably normalized special values L(E/K,χ, 1) for fi-
nite order characters χ of G. It turns out that L(E/K) lies in the augmentation
ideal I of Z[[G]] and so defines an element L′(E/K) in I/I2 ∼= O×K∞/O×F∞ ∼=
O×K∞,1. (Here F∞ and K∞ are the completions at ∞ and O×K∞,1 denotes the
1-units in OK∞ .) Since E is split multiplicative at ∞, we have a Tate parame-
terization K×

∞ → E(K∞) and Pál shows that the image of L′(E/K) in E(K∞)
is a global point. More precisely, if E is a “strong Weil curve,” then Pál’s point
is PK −PK where PK is the Heegner point discussed above and PK is its “com-
plex conjugate.” It follows that if L′(E/K) is nonzero, then the Heegner point
is of infinite order and so RankZ E(K) is at least one. One interesting difference
between Pál’s work and [BD98] is that in the latter, there are 2 distinguished
places, namely ∞, which is related to the classical modular parameterization,
and p, which is related to the Tate parameterization. In Pál’s work, the role of
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both of these primes is played by the prime ∞ of F . This means that his result
is applicable in more situations than the naive analogy would predict— E need
only have split multiplicative reduction at one place of F .

Longhi [Lon02] also gives an∞-adic construction of a Heegner point. Whereas
Pál follows [BD98], Longhi’s point of view is closer to that of [BD01]. His ∞-adic
L-element L(E/K) is constructed using ∞-adic integrals, following the approach
of Schneider [Sch84] and a multiplicative version of Teitelbaum’s Poisson formula
[Tei91]. Unfortunately, there is as yet no connection between his∞-adic L(E/K)
and special values of L-functions.

Both of these works have the advantage of avoiding intricate height compu-
tations on Drinfeld modular curves, as in [GZ86]. (Pál’s work uses heights of
the much simpler variety considered in [Gro87].) On the other hand, they do
not yet have any direct application to the conjecture of Birch and Swinnerton-
Dyer, because presently we have no direct link between the ∞-adic L-derivative
L′(E/K) and the classical L-derivative L′(E/K, 1).

3.8. My work on BSD for rank 1. My interest in this area has been
less in analogues of the Gross–Zagier formula or Kolyvagin’s work over function
fields per se, and more in their applications to the Birch and Swinnerton-Dyer
conjecture itself. The problem with a raw Gross–Zagier formula is that it only
gives the BSD conjecture with parasitic hypotheses. For example, to have a
Drinfeld modular parameterization, and thus Heegner points, the elliptic curve
must have split multiplicative reduction at some place and the existence of such
a place presumably has nothing to do with the truth of the conjecture. Recently,
I have proven a nonvanishing result which when combined with a suitable Gross–
Zagier formula leads to a clean, general statement about Birch and Swinnerton-
Dyer: “If E is an elliptic curve over a function field F of characteristic > 3 and
ords=1 L(E/F, s) ≤ 1, then the Birch and Swinnerton-Dyer conjecture holds for
E.” In the remainder of this section I will describe the nonvanishing result, and
then give the statement and status of the Gross–Zagier formula I have in mind.

Thus, let E be an elliptic curve over F with ords=1 L(E/F, s) ≤ 1; for pur-
poses of BSD we may as well assume that ords=1 L(E/F, s) = 1 and that E is
nonisotrivial. Because j(E) 6∈ Fq, it has a pole at some place of F , i.e., E is
potentially multiplicative there. Certainly we can find a finite extension F ′ of
F such that E has a place of split multiplicative reduction and it will suffice
to prove BSD for E over F ′. But, to do this with Heegner points, we must
be able to choose F ′ so that ords=1 L(E/F ′, s), which is a priori ≥ 1, is equal
to 1. This amounts to a nonvanishing statement for a (possibly nonabelian)
twist of L(E/F, s), namely L(E/F ′, s)/L(E/F, s). Having done this, a similar
issue comes up in the application of a Gross–Zagier formula, namely, we must
find a quadratic extension K/F ′ satisfying the Heegner hypotheses such that
ords=1 L(E/K, s) = ords=1 L(E/F ′, s) = 1. This amounts to a nonvanishing
statement for quadratic twists of L(E/F ′, s) by characters satisfying certain lo-
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cal conditions. This issue also comes up in the applications of the classical
Gross–Zagier formula and is dealt with by automorphic methods. Recently, I
have proven a very general nonvanishing theorem for motivic L-functions over
function fields using algebro-geometric methods which when applied to elliptic
curves yields the following result:

Theorem 3.8.1. [Ulm03] Let E be a nonconstant elliptic curve over a function
field F of characteristic p > 3. Then there exists a finite separable extension F ′

of F and a quadratic extension K of F ′ such that the following conditions are
satisfied :

1. E is semistable over F ′, i .e., its conductor is square-free.
2. E has split multiplicative reduction at some place of F ′ which we call ∞.
3. K/F ′ satisfies the Heegner hypotheses with respect to E and ∞. In other

words, K/F ′ is split at every place v 6= ∞ dividing the conductor of E and it
is not split at ∞.

4. ords=1 L(E/K, s) is odd and at most ords=1 L(E/F, s) + 1. In particular , if
ords=1 L(E/F, s) = 1, then ords=1 L(E/K, s) = ords=1 L(E/F ′, s) = 1.

This result, plus a suitable Gross–Zagier formula, yields the desired theorem.
Indeed, by point (2), E admits a Drinfeld modular parameterization over F ′ and
by point (3) we will have a Heegner defined over K. Point (4) (plus GZ!) guaran-
tees that the Heegner point will be nontorsion and so we have RankE(K) ≥ 1.
As we have seen, this implies BSD for E over K and thus also over F . Point
(1) is included as it makes the needed GZ formula a little more tractable. Also,
although it is not stated in the theorem, it is possible to specify whether the
place ∞ of F ′ is inert or ramified in K and this too can be used to simplify the
Gross–Zagier calculation.

Thus, the Gross–Zagier formula we need is in the following context: the base
field F ′ is arbitrary but the level n is square-free and we may assume that ∞
is inert (or ramified) in K. It would perhaps be unwise to write too much
about a result which is not completely written and refereed, so I will just say
a few words. The proof follows closely the strategy of Gross and Zagier, with
a few simplifications due to Zhang [Zha01]. One computes the analytic side of
(3–3) using the Rankin–Selberg method and a holomorphic projection and the
height side is treated using intersection theory at the finite places and Green’s
functions at ∞. Because we work over an arbitrary function field, our proofs are
necessarily adelic. Also, in the analytic part we emphasize the geometric view of
automorphic forms, namely that they are functions on a moduli space of rank 2
vector bundles on C. The full details will appear in [Ulma].
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4. Ranks over Function Fields

We now move beyond rank 1 and consider the rank conjecture for elliptic
curves over function fields. Recall from Section 2 the notions of constant, isotriv-
ial, and nonisotrivial for elliptic curves over function fields. Our purpose in this
section is to explain constructions of isotrivial and nonisotrivial elliptic curves
over Fp(t) whose Mordell–Weil groups have arbitrarily large rank. These curves
turn out to have asymptotically maximal rank, in a sense which we will explain
in Section 5.

4.1. The Shafarevitch–Tate construction. First, note that if E is a con-
stant elliptic curve over F = Fq(C) based on E0, then E(F ) ∼= MorFq

(C, E0)
(morphisms defined over Fq) and the torsion subgroup of E(F ) corresponds to
constant morphisms. Since a morphism C → E is determined up to translation
by the induced map of Jacobians, we have E(F )/tor ∼= HomFq (J(C), E) where
J(C) denotes the Jacobian of C.

The idea of Shafarevitch and Tate [TS67] was to take E0 to be supersingular
and to find a curve C over Fp which is hyperelliptic and such that J(C) has a
large number of isogeny factors equal to E0. If E denotes the constant curve
over Fp(t) based on E0, then it is clear that E(Fp(t)) has rank 0. On the other
hand, over the quadratic extension F = Fp(C), E(F )/tor ∼= HomFq (J(C), E0)
has large rank. Thus if we let E′ be the twist of E by the quadratic extension
F/Fq(t), then E′(Fq(t)) has large rank. Note that E′ is visibly isotrivial.

To find such curves C, Tate and Shafarevitch considered quotients of the
Fermat curve of degree pn + 1 with n odd. The zeta functions of Fermat curves
can be computed in terms of Gauss sums, and in the case of degree of the form
pn+1, the relevant Gauss sums are easy to make explicit. This allows one to show
that the Jacobian is isogenous to a product of supersingular elliptic curves over
Fp and has a supersingular elliptic curve as isogeny factor to high multiplicity
over Fp.

We remark that the rank of the Shafarevitch–Tate curves goes up considerably
under extension of the finite ground field: if the rank of E′(Fp(t)) is r, then the
rank of E′(Fp(t)) is of the order 2 logp(r)r.

It has been suggested by Rubin and Silverberg that one might be able to carry
out a similar construction over Q(t), i.e., one might try to find hyperelliptic
curves C defined over Q whose Jacobians have as isogeny factor a large number
of copies of some elliptic curve. The obvious analogue of the construction above
would then produce elliptic curves over Q(t) of large rank. In [RS01] they use
this idea to find many elliptic curves of rank ≥ 3. Unfortunately, it is not at
all evident that curves C such that J(C) has an elliptic isogeny factor to high
multiplicity exist, even over C.

Back to the function field case: We note that isotrivial elliptic curves are
very special and seem to have no analogue over Q. Thus the relevance of the
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Shafarevitch–Tate construction to the rank question over Q is not clear. In the
next subsection we explain a construction of nonisotrivial elliptic curves over
Fp(t) of arbitrarily large rank.

4.2. Nonisotrivial elliptic curves of large rank. In [Shi86], Shioda showed
that one could often compute the Picard number of a surface which is dominated
by a Fermat surface. He applied this to write down elliptic curves over Fp(t) (with
p ≡ 3 mod 4) of arbitrarily large rank, using supersingular Fermat surfaces (i.e.,
those whose degrees divide pn+1 for some n). I was able to use the idea of looking
at quotients of Fermat surfaces and a different method of computing the rank
to show the existence of elliptic curves over Fp(t) (any p) with arbitrarily large
rank. Here is the precise statement:

Theorem 4.2.1. [Ulm02] Let p be a prime, n a positive integer , and d a divisor
of pn +1. Let q be a power of p and let E be the elliptic curve over Fq(t) defined
by

y2 + xy = x3 − td.

Then the j-invariant of E is not in Fq, the conjecture of Birch and Swinnerton-
Dyer holds for E, and the rank of E(Fq(t)) is

∑

e|d
e6 |6

φ(e)
oe(q)

+
{

0 if 2 6 | d or 4 6 | q − 1

1 if 2|d and 4|q − 1
+





0 if 3 6 | d
1 if 3|d and 3 6 | q − 1

2 if 3|d and 3|q − 1.

Here φ(e) is the cardinality of (Z/eZ)× and oe(q) is the order of q in (Z/eZ)×.

In particular, if we take d = pn +1 and q = p, then the rank of E over Fp(t) is at
least (pn− 1)/2n. On the other hand, if we take d = pn + 1 and q to be a power
of p2n, then the rank of E over Fq(t) is d− 1 = pn if 6 6 | d and d− 3 = pn − 2 if
6|d. Note that the rank may increase significantly after extension of Fq.

Here is a sketch of the proof: by old work of Artin and Tate [Tat66b], the
conjecture of Birch and Swinnerton-Dyer of E is equivalent to the Tate conjecture
for the elliptic surface E → P1 over Fq attached to E. (The relevant Tate
conjecture is that − ords=1 ζ(E , s) = RankZ NS(E) where NS(E) denotes the
Néron–Severi group of E .) The equation of E was chosen so that E is dominated
by the Fermat surface of the same degree d. (The fact that the equation of
E has 4 monomials is essentially enough to guarantee that E is dominated by
some Fermat surface; getting the degree right requires more.) Since the Tate
conjecture is known for Fermat surfaces, this implies it also for E (and thus BSD
for E). Next, a detailed analysis of the geometry of the rational map Fd99KE
allows one to calculate the zeta function of E in terms of that of Fd, i.e., in terms
of Gauss and Jacobi sums. Finally, because d is a divisor of pn + 1, the relevant
Gauss sums are all supersingular (as in the Shafarevitch–Tate case) and can be
made explicit. This gives the order of pole of ζ(E , s) at s = 1 and thus the order
of zero of L(E/Fq(t), s) at s = 1, and thus the rank.
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We note that the proof does not explicitly construct any points, although it
does suggest a method to do so. Namely, using the large automorphism group
of the Fermat surface, one can write down curves which span NS(Fd) and use
these and the geometry of the map Fd99KE to get a spanning set for NS(E)
and thus a spanning set for E(Fq(t)). It looks like an interesting problem to
make this explicit, and to consider the heights of generators of E(Fq(t)) and its
Mordell–Weil lattice.

4.3. Another approach to high rank curves. The two main parts of the
argument of Section 4.2 could be summarized as follows: (i) one can deduce the
Tate conjecture for E and thus the BSD conjecture for E from the existence of
a dominant rational map from the Fermat surface Fd to the elliptic surface E
attached to E; and (ii) a detailed analysis of the geometry of the map Fd99KE
allows one to compute the zeta function of E and thus the L-function of E,
showing that it has a large order zero at s = 1.

Ideas of Darmon give an alternative approach to the second part of this ar-
gument (showing that the L-function has a large order zero at s = 1) and may
lead (subject to further development of Gross–Zagier formulas in the function
field case) to an alternative approach to the first part of the argument (the proof
of BSD). Darmon’s idea is quite general and leads to the construction of many
elliptic curves over function fields of large rank (more precisely, provably of large
analytic rank and conjecturally of large algebraic rank.) Here we will treat only
the special case of the curve considered in Section 4.2 and we refer to his article
in this volume [Dar04] for details of the general picture.

Let q = pn (p any prime), d = q + 1, and define F = Fq(u), K = Fq2(u), and
H = Fq2(t) where u = td. Then H is Galois over F with dihedral Galois group.
Indeed Gal(H/K) is cyclic of order d and because q ≡ −1 mod d, the nontrivial
element of Gal(K/F ) ∼= Gal(Fq2/Fq) acts on Gal(H/K) by inversion. Let E be
the elliptic curve over F defined by the equation

y2 + xy = x3 − u.

Over H, this is the curve discussed in Section 4.2.
The L-function of E over H factors into a product of twisted L-functions over

K:

L(E/H, s) =
∏

χ∈Ĝ

L(E/K, χ, s)

where the product is over the d characters of G = Gal(H/K). Because H/F is a
dihedral extension and E is defined over F , we have the equality L(E/K, χ, s) =
L(E/K,χ−1, s). Thus the functional equation

L(E/K,χ, s) = W (E/K, χ, )qsdE,χL(E/K, χ−1, 2− s)

= W (E/K, χ)qsdE,χL(E/K, χ, 2− s)
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(where W (E/K,χ) is the “root number” and dE,χ is the degree of L(E/K,χ, s)
as a polynomial in q−2s) may force a zero of L(E/K,χ, s) at the critical point
s = 1. This is indeed what happens: A careful analysis shows that W (E/K, χ)
is +1 if χ is trivial or of order exactly 6 and it is −1 in all other cases. Along the
way, one also finds that dE,χ is 0 if χ is trivial or of order exactly 6 and is 1 in all
other cases. Thus L(E/K, χ, s) is equal to 1 if χ is trivial or of order exactly 6
and is equal to (1− q−2s) and vanishes to order 1 at s = 1 if χ is nontrivial and
not of order exactly 6. We conclude that ords=1 L(E/H, s) is d − 3 if 6 divides
d and d− 1 if not.

Of course one also wants to compute the L-function of E over H0 = Fp(t).
In this case, the L-function again factors into a product of twists, but the twists
are by certain, generally nonabelian, representations of the Galois group of the
Galois closure of Fp(t) over Fp(u). (The Galois closure is H and the Galois group
is the semidirect product of Gal(H/K) with Gal(Fq2(u)/Fp(u)). See [Ulm03, § 3]
for more on this type of situation.) We will not go into the details, but simply
note that in order to compute the L-function L(E/H0, s) along the lines above,
one needs to know the root numbers W (E/Fr(u), χ) where r = poe , oe is the
order of p in Z/eZ, and e is the order of the character χ. It turns out that each
of the twisted L-functions has a simple zero at s = 1.

This calculation of L(E/H, s) and L(E/Fp(t), s) seems to be of roughly the
same difficulty as the geometric one in [Ulm02] because the “careful analysis” of
the root numbers W (E/K, χ) and W (E/Fr(u), χ) is somewhat involved, espe-
cially if one wants to include the cases p = 2 or 3. (I have only checked that the
answer agrees with that in [Ulm02] when p > 3.) Calculation of the root num-
bers requires knowing the local representations of decomposition groups on the
Tate module at places of bad reduction and eventually boils down to analyzing
some Gauss sums. The Shafarevitch–Tate lemma on supersingular Gauss sums
(Lemma 8.3 of [Ulm02]) is a key ingredient.

Regarding the problem of verifying the BSD conjecture for E/H, note that
K/F may be viewed as an “imaginary” quadratic extension, and H/K is the ring
class extension of conductor n = (0)(∞). Because most of the twisted L-functions
L(E/K,χ, s) vanish simply, we might expect to construct points in (E(H)⊗C)χ

using Heegner points and show that they are nontrivial using a Gross–Zagier
formula. But the relevant Gross–Zagier formula here would involve Shimura
curve analogs of Drinfeld modular curves (since the extension K/F does not
satisfy the usual Heegner hypotheses) and such a formula remains to be proven.
Perhaps Darmon’s construction will provide some motivation for the brave soul
who decides to take on the Gross–Zagier formula in this context! On the other
hand, Darmon’s paper has examples of curves where Heegner points on standard
Drinfeld modular curves should be enough to produce high rank elliptic curves
over Fp(t).
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5. Rank Bounds

We now return to a general function field F = Fq(C) and a general nonisotriv-
ial elliptic curve E over F . Recall that the conductor n of E is an effective divisor
on C which is supported precisely at the places where E has bad reduction.

It is natural to ask how quickly the ranks of elliptic curves over F can grow
in terms of their conductors. As discussed in Section 2, we have the inequality

RankZ E(F ) ≤ ords=1 L(E/F, s).

Also, one knows that that L(E/F, s) is a polynomial in q−s of degree 4g−4+deg n

where g is the genus of C. (This comes from Grothendieck’s cohomological ex-
pression for the L-function and the Grothendieck–Ogg–Shafarevitch Euler char-
acteristic formula.) Thus we have a bound

RankZ E(F ) ≤ ords=1 L(E/F, s) ≤ 4g − 4 + deg n. (5–1)

This bound is geometric in the sense that it does not involve the size of the
finite field Fq; the same bound holds for RankZ E(Fq(C)). On the other hand,
as we have seen above, the rank can change significantly after extension of Fq.
It is thus natural to ask for a more arithmetic bound, i.e., one which is sensitive
to q.

Such a bound was proven by Brumer [Bru92], using Weil’s “explicit formula”
technique, along the lines of Mestre’s bound for the rank of an elliptic curve over
Q. Brumer’s result is

RankZ E(F ) ≤ ords=1 L(E/F, s) ≤ 4g − 4 + deg(n)
2 logq deg(n)

+ C
deg(n)

(logq deg(n))2
(5–2)

Note that this bound is visibly sensitive to q and is an improvement on the
geometric bound when deg n is large compared to q.

Here is a sketch of Brumer’s proof: let Λ(s) = qDs/2L(E/F, s) where D = 4g−
4+deg n. Then Λ(s) is a Laurent polynomial in q−s/2 and so is periodic in s with
period 4πi/ ln q; moreover, we have the functional equation Λ(s) = ±Λ(2 − s).
Our task is to estimate the order of vanishing at s = 1 of Λ or equivalently, the
residue at s = 1 of the logarithmic derivative Λ′/Λ with respect to s. Let us
consider the line integral

I =
∮

Φd log Λ =
∮

Φ
Λ′

Λ
ds
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where Φ is a suitable test function to be chosen later and the contour of integra-
tion is

Re s=0

²²

Im s= πi
ln qoo

· s=1

Im s=− πi
ln q

//

Re s=2

OO

(Note that d log Λ is periodic with period 2πi/ ln q. Also, we would have to shift
the contour slightly if L(E/F, s) has a zero at 1±πi/ ln q.) We assume that Φ(s)
is nonnegative on the line Re s = 1. By the Riemann hypothesis for L(E/F, s),
all the zeroes of Λ(s) lie on this line and so

Φ(1) ords=1 L(E/F, s) = Φ(1) Ress=1
Λ′

Λ
≤

∑
ρ

Φ(ρ) = I

where ρ runs over the zeroes of L(E/F, s) inside the contour of integration
counted with multiplicities. Now we assume in addition that Φ is a Laurent
polynomial in q−s (so periodic with period 2πi/ ln q) and that it satisfies the
functional equation Φ(s) = Φ(2− s). Using the functional equation and period-
icity of the integrand, the integral I is equal to

2
∫ 2+πi/ ln q

2−πi/ ln q

Φ
Λ′

Λ
ds. (5–3)

Now the integration takes place entirely in the region of convergence of the Euler
product defining L(E/F, s) and so we can expand the integrand in a series and
estimate the terms using the Riemann hypothesis for curves over finite fields.
Finally, Brumer makes a clever choice of test function Φ which yields the desired
estimate. (More precisely, he considers a sequence of test functions satisfying
the hypotheses which when restricted to Re s = 1 converge to the Dirac delta
function at s = 1 — up to a change of variable, this is essentially the Fejér
kernel—and then chooses Φ to be a suitable element of this sequence.)

Note the strongly analytic character of this proof. For example, it does not
use the fact that there is massive cancellation in the series for L(E/F, s) so that
the L-function is really a polynomial in q−s of degree D!

Let En be the curve of Theorem 4.2.1 with d = pn +1. Then it turns out that
the degree of the conductor of En is pn + 2 if 6|d and pn + 4 if 6 6 | d. One sees
immediately that the geometric bound is sharp when q is a power of p2n and the
main term of the arithmetic bound is met when q = p. Thus both the geometric
and arithmetic bounds give excellent control on ranks.
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The rest of this paper is devoted to considering various questions which arise
naturally by analogy from the existence and sharpness of these two types of
bounds, geometric and arithmetic.

6. Ranks over Number Fields

We now turn to analogous situations, starting with the case where the ground
field F is either Q or a number field. Throughout, we assume that the L-series
of elliptic curves have good analytic properties, namely analytic continuation,
boundedness in vertical strips, and the standard functional equation. (This is of
course now known for elliptic curves over Q by the work of Wiles and others, but
is still open for a general number field F .) We also assume the conjecture of Birch
and Swinnerton-Dyer so that “rank” can be taken to mean either analytic rank
(ords=1 L(E/F, s)) or algebraic rank (RankZ E(F )); alternatively the reader may
interpret each question or conjecture involving an unqualified “rank” to be two
statements, one about analytic rank, the other about algebraic rank.

The Brumer bound discussed in the last section was modeled on work of
Mestre [Mes86], who proved, along lines quite similar to those sketched above, a
bound on analytic ranks of the following form:

ords=1 L(E/Q, s) = O

(
log N

log log N

)
(6–1)

where E is an elliptic curve over Q of conductor N . To see the analogy, note
that the degree function on divisors is a kind of logarithm and so deg n is an
analogue of log N . To obtain this bound, Mestre assumes the Generalized Rie-
mann Hypothesis for L(E/Q, s) and he actually proves a more general statement
about orders of vanishing for L-series of modular forms. Assuming good ana-
lytic properties and the generalized Riemann hypothesis, his argument extends
readily to elliptic curves over number fields; in this case N should be replaced
with the norm from F to Q of the conductor of E times the absolute value of
the discriminant of F .

There is some evidence that the Mestre bound should be asymptotically sharp.
First of all, it gives excellent results for small N . Secondly, in the function field
case, the analogous bound is sharp. Moreover, the proof of the bound in the
function field case does not use strongly any special features of that situation,
such as the fact that the L-function is really a polynomial. Motivated by these
facts, I make the following conjecture about the sharpness of the Mestre bound.

Conjecture 6.1. Fix a number field F and for each positive integer N , define
rF (N) by

rF (N) = max{RankZ(E(F ))|E/F with NormF/Q(nE) = N}
where the maximum is taken over all elliptic curves E over F with conductor
nE satisfying NormF/Q(n) = N ; if there are no such curves, we set rF (N) = 0.
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Then we have

lim sup
N

rF (N)
log N/ log log N

> 0

By the generalization of the Mestre bound to number fields, the limit in the
conjecture is finite.

If E is an elliptic curve over Q, let NQ(E) be its conductor and let NF (E)
be the norm from F to Q of the conductor of E viewed as elliptic curve over F .
Then there is a constant C depending only on F such that

1 ≤ NQ(E)[F :Q]

NF (E)
≤ C

for all elliptic curves E over Q. Indeed, if N is an integer, then NormF/Q(N) =
N [F :Q] and since the conductor of E over F is a divisor of NQ(E) (viewed as
an ideal of F ), we have 1 ≤ NQ(E)[F :Q]/NF (E). Since NQ(F ) divided by the
conductor of E over F is divisible only by ramified primes and these occur with
bounded exponents [BK94], there is a constant C such that

NQ(E)[F :Q]/NF (E) ≤ C.

These inequalities show that a sequence of elliptic curves proving the conjecture
over Q also proves the conjecture for a general number field F .

Finally, let us remark that there are experts who are skeptical about this
conjecture. Certain probabilistic models predict that the denominator should be
replaced by its square root, i.e., that the correct bound is

ords=1 L(E/Q, s)
?= O

((
log N

log log N

)1/2
)

.

On the other hand, certain random matrix models suggest that the Mestre bound
is sharp. See the list of problems for the workshop on random matrices and L-
functions at AIM, May 2001 (http://aimath.org) for more on this question.

7. Algebraic Rank Bounds

The Mestre and Brumer bounds are analytic in both statement and proof. It
is interesting to ask whether they can be made more algebraic. For example,
the Brumer bound is equivalent to a statement about the possible multiplicity
of q as an eigenvalue of Frobenius on H1(C,F) for a suitable sheaf F , namely
R1π∗Q` where π : E → C is the elliptic surface attached to E/F . It seems that
statements like this might admit more algebraic proofs.

There is one situation where such algebraic proofs are available. Namely, con-
sider an elliptic curve E over a number field or a function field F such that E has
an F -rational 2-isogeny φ : E → E′. Then the Selmer group for multiplication
by 2 sits in an exact sequence

Sel(φ) → Sel(2) → Sel(φ̌)
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where φ̌ : E′ → E is the dual isogeny. The orders of the groups Sel(φ) and
Sel(φ̌) can be crudely and easily estimated in terms of ω(N), the number of
primes dividing the conductor N of E, and a constant depending only on F

which involves the size of its class group and unit group. This yields a bound on
the rank of the form

RankZ E(F ) ≤ C + 2ω(N).

Note that this bound deserves to be called arithmetic because, for example, in
the function field case F = Fq(C), ω(N) is sensitive to Fq since primes dividing N

may split after extension of Fq. Note also that it is compatible with the Mestre
and Brumer bounds, since ω(N) = O(log N/ log log N) [HW79, p. 355] in the
number field case and ω(N) = O(deg N/ log deg N) in the function field case.

It is tempting to guess that a similar bound (i.e., RankE(F ) = O(ω(N)))
might be true in general, but there are several reason for skepticism. First of
all, the estimation of the Selmer group above breaks down when there is no F -
rational 2-isogeny. In this case, one usually passes to an extension field F ′ where
such an isogeny exists. But then the “constant” C involves the units and class
groups of F ′ and these vary with E since F ′ does. Given our current state of
knowledge about the size of class groups, the bounds we obtain are not as good
as the Mestre/Brumer bounds. This suggests that what is needed is a way to
calculate or at least estimate the size of a Selmer group Sel(`) without passing
to an extension where the multiplication by ` isogeny factors.

The second reason for skepticism is that such a bound would imply, for ex-
ample, that there is a universal bound on the ranks of elliptic curves over Q of
prime conductor. Although we have little information on the set of such curves
(for example, it is not even known that this set is infinite), the experts seem to
be skeptical about the existence of such a bound. One fact is that there is an
elliptic curve over Q with prime conductor and rank 10 [Mes86], and so the con-
stant in a bound of O(ω(N)) would have to be at least 10, which does not seem
very plausible. Also, in [BS96], Brumer and Silverman make a conjecture which
contradicts an O(ω(N)) bound —their conjecture implies that there should be
elliptic curves with conductor divisible only by 2, 3, and one other prime and
with arbitrarily large rank. There is no substantial evidence one way or the other
for their conjecture, so some caution is necessary.

Lastly, wild ramification may have some role to play. Indeed, for p = 2 or 3
the curves of Section 4 have conductor which is divisible only by two primes
(t = 0 and t = ∞) and yet their ranks are unbounded.

Despite all these reasons for skepticism about the existence of a bound of the
form RankZ E(F ) ≤ O(ω(N)), it is interesting to ask about the possibility of
estimating ranks or Selmer groups directly, i.e., without reducing to isogenies
of prime degree. It seems to me that there is some hope of doing this in the
function field case, at least in the simplest context of a semistable elliptic curve
over the rational function field. In this case, ideas from étale cohomology (e.g.,
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[Mil80, pp. 211–214]) allow one to express a cohomology group closely related to
the Selmer group as a product of local factors where the factors are indexed by
the places of bad reduction of the elliptic curve.

Another approach over function fields is via p-descent. In this case, there is
always a rational p-isogeny, namely Frobenius, but, in contrast to an `-descent,
the places of (good) supersingular reduction play a role more like places of bad
reduction for `-descents. This means that the output of a p-descent does not a
priori give a bound for the rank purely in terms of the conductor and invariants
of the ground field. More work will be required here to yield interesting results.
See [Vol90] and [Ulm91] for foundational work on p-descents in characteristic p.

8. Arithmetic and Geometric Bounds I: Cyclotomic Fields

We now turn to some questions motivated by the existence of a pair of
bounds, one geometric, one arithmetic. Let Qn ⊂ Q(µpn+1) be the subfield
with Gal(Qn/Q) = Z/pnZ and set Qp-cyc =

⋃
n≥0Qn. This is the cyclotomic

Zp-extension of Q. As is well-known, the extension Qp-cyc/Q may be thought
of as an analogue of the extension Fq(C)/Fq(C), and this analogy, noted by Weil
[Wei79, p. 298], was developed by Iwasawa into a very fruitful branch of modern
number theory. There has also been some traffic in the other direction, e.g.,
[MW83]. Let us consider the rank bounds of Section 5 in this light.

Mazur [Maz72], in analogy with Iwasawa’s work, asked about the behavior of
the Mordell–Weil and Tate–Shafarevitch groups of an elliptic curve (or abelian
variety) defined over Q as one ascends the cyclotomic tower. For example, he
conjectured that if E is an elliptic curve with good, ordinary reduction at p,
then E(Qp-cyc) should be finitely generated. This turns out to be equivalent to
the assertion that RankZ E(Qn) is bounded as n →∞, i.e., it stabilizes at some
finite n.

Today, by work of Rohrlich [Roh84], Kato [Kat00], Rubin [Rub98], and others,
this is known to hold even without the assumption that E has ordinary reduction
at p. (But we do continue to assume that E has good reduction, i.e., that p does
not divide the conductor of E.)

Rohrlich proved the analytic version of this assertion, namely that the analytic
rank ords=1 L(E/Qn, s) is bounded as n → ∞. (Rohrlich’s paper is actually
about the L-functions of modular forms, but by the work of Wiles and his school,
it applies to elliptic curves.) Note that

L(E/Qn, s) =
∏
χ

L(E/Q, χ, s)

where χ ranges over characters of Gal(Qn/Q). So Rohrlich’s theorem is that
for any finite order character χ of Gal(Qp-cyc/Q) of sufficiently high conductor,
L(E/Q, χ, 1) 6= 0. He proves this by considering the average of special values for
conjugate characters L(E/Q, χσ, 1) as σ varies over a suitable Galois group and
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showing that this average tends to 1 as the conductor of χ goes to infinity. Since
L(E/Q, χσ, 1) 6= 0 if and only if L(E/Q, χ, 1) 6= 0, this implies L(E/Q, χ, 1) 6= 0.

Work of Rubin, Rubin–Wiles, and Coates–Wiles in the CM case and work of
Kato in the non-CM case (see [Rub98, § 8.1] and the references there) allows us
to translate this analytic result into an algebraic result. Namely, these authors
show that L(E/Q, χ, 1) 6= 0 implies that (E(Qn)⊗C)χ = 0 where χ is a character
of Gal(Qn/Q). This, together with Rohrlich’s theorem implies that the rank of
E(Qn) stabilizes for large n.

Thus for an elliptic curve E over Q with good reduction at p, RankZ E(Qp-cyc)
is finite and we may ask for a bound. Since there are only finitely many E of
a given conductor, there is a bound purely in terms of p and N . The question
then is what is the shape of this bound. For a fixed p, the results of Section 5
might lead one to guess that RankZ E(Qp-cyc) = O(log N) (where the constant
of course depends on p), but this is nothing more than a guess.

Rohrlich mentions briefly the issue of an effective bound for the smallest q

such that L(E/Q, χ, 1) 6= 0 for all χ of conductor pn > q. He obtains a bound of
the form q = CN170. Combined with the Mestre bound (6–1), this implies that
ords=1 L(E/Qn, s) is bounded for all n by a polynomial in N (which of course
depends on p). This bound has recently been improved by Chinta [Chi02]. He
points out that his Theorem 3 (or his Proposition 1 combined with Rohrlich’s ar-
guments) implies the following: If p is an odd prime where E has good reduction,
then for every ε > 0 there exist constants Cε and eε such that

ords=1 L(E/Qn, s) ≤ Cεp
eεN1+ε

for all n. The exponent eε may be taken to be linear in 1/ε. This is of course
a weaker bound than the guess O(log N); it might be interesting to try to es-
tablish the stronger bound on average. We remark that Chinta also shows the
remarkable result that there exists an n0 depending on E but independent of p

such that L(E/Q, χ, 1) 6= 0 for all χ of conductor pn, n > n0.

9. Arithmetic and Geometric Bounds II: Function Fields over
Number Fields

Let K be a number field and C a smooth, proper, geometrically connected
curve over K. Let E be a nonisotrivial elliptic curve over F = K(C) (i.e.,
j(E) 6∈ K). It is known that E(F ) is finitely generated [Nér52].

This finite generation, as well as a bound on the rank, can be obtained by
considering the elliptic surface π : E → C attached to E/F . As in Section 2, E
is the unique elliptic surface over C which is smooth and proper over K, with
π flat, relatively minimal, and with generic fiber E/F . There is a close connec-
tion between the Mordell–Weil group E(F ) and the Néron–Severi group NS(E).
Using this, the cycle class map NS(E) → H2(E ×K,Q`) and an Euler character-
istic formula, one obtains the same bound as in the positive characteristic case,
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namely:

RankZ E(F ) ≤ 4g − 4 + deg n (9–1)

where g is the genus of C and n is the conductor of E.
This bound is geometric in that the number field K does not appear on the

right hand side. In particular, the bound still holds if we replace K by K:

RankZ E(K(C)) ≤ 4g − 4 + deg n.

Using Hodge theory, this bound can be improved to 4g−4+deg n−2pg where pg

is the geometric genus of E , but this is again a geometric bound. It is reasonable
to ask if there is a more arithmetic bound, improving (9–1).

There is some evidence that such a bound exists. Silverman [Sil00] considered
the following situation: Let E be an elliptic curve over F = K(t) and define
N∗(E) to be the degree of the part of the conductor of E which is prime to 0
and ∞. Alternatively, N∗(E) is the sum of the number of points t ∈ K× where
E has multiplicative reduction and twice the number of points t ∈ K× where E

has additive reduction. Clearly 0 ≤ deg n−N∗(E) ≤ 4 and so the bound (9–1)
gives RankZ E(F ) ≤ N∗(E).

Now define En as the elliptic curve defined by the equation of E with t replaced
by tn. This is the base change of E by the the field homomorphism K(t) → K(t),
t 7→ tn. Clearly N∗(En) = nN∗(E) and so the geometric bound (9–1) gives
RankZ En(F ) ≤ nN∗(E).

Assuming the Tate conjecture (namely the equality − ords=2 L(H2(E), s) =
RankZ NS(E)), Silverman proves by an analytic method that

RankZ En(F ) ≤ dK(n)N∗(E)

where

dK(n) =
∑

d|n

φ(d)
[K(µd) : K]

.

So, when µd ⊂ K, dK(n) = n whereas if K ∩ Q(µn) = Q, then dK(n) is the
number of divisors of n. Thus Silverman’s theorem gives an arithmetic bound
for ranks of a very special class of elliptic curves over function fields over number
fields. I believe that there should be a much more general theorem in this
direction.

There has been recent further work in this direction. Namely, Silverman
[Sil03] has proven an interesting arithmetic bound on ranks of elliptic curves
over unramified, abelian towers, assuming the Tate conjecture. In the special case
where the base curve is itself elliptic and the tower is defined by the multiplication
by n isogenies, he obtains a very strong bound, stronger than what is conjectured
below. (See his Theorem 2.)

Silverman also formulates a beautiful and precise conjecture along the lines
suggested above. Namely, he conjectures that there is an absolute constant C
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such that for every nonisotrivial elliptic curve over F = K(C) with conductor n,

Rank E(F )
?≤ C

4g − 4 + deg n

log deg n
log |2Disc(K/Q)|.

This conjecture is yet another instance of the fruitful interplay between function
fields and number fields.
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