
Computations About Tate-Shafarevich Groups Using

Iwasawa Theory

William Stein and Christian Wuthrich

25th November 2009

Abstract

We explain how to combine deep results from Iwasawa theory with explicit
computation to obtain information about p-parts of Tate-Shafarevich groups
of elliptic curves over Q. This method provides a practical way to compute
#X(E/Q)(p) in many cases when traditional p-descent methods are com-
pletely impractical and also in situations where results of Kolyvagin do not
apply, like when the rank of the Mordell-Weil group is greater than 1.

1 Introduction

Let E be an elliptic curve defined over Q and let

y2 + a1 x y + a3 y = x3 + a2 x
2 + a4 x + a6 (1)

be a choice of global minimal Weierstrass equation for E. Then Mordell
proved that the set of rational points E(Q) is an abelian group of finite rank
r = rank(E(Q)). Birch and Swinnerton-Dyer then conjectured that r =
ords=1 L(E, s), where L(E, s) is the Hasse-Weil L-function of E (see Conjec-
ture 2 below). We call ran = ords=1 L(E, s) the analytic rank of E.

By an algorithm we mean a finite sequence of steps that, given any valid
input, will terminate in a finite amount of time. There is no known algorithm
that has been proved to be correct that computes r in all cases. One can com-
putationally obtain upper and lower bounds in any particular case. One way
to give a lower bound on r is to search for linearly independent points of small
height via the method of descent, which involves searching for points of even
smaller height on a collection of auxiliary curves. Constructions of complex and
p-adic Heegner points can also be used in some cases to bound the rank from
below. To compute an upper bound on the rank r, in the case of analytic ranks
0 and 1 one can use Kolyvagin’s work on the Euler systems of Heegner points;
in general, the only known method is to do an n-descent for some integer n > 1.
The 2-descents implemented by John Cremona [Cre97], by Denis Simon [Sim02]
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in Pari [PAR06] (and SAGE [Ste09]) and by Geoffe Bailey in Magma, and the
3 and 4 descents in Magma and described in [CFO+08] and [CFO+06] , are
particularly powerful. But they may fail in practice to compute the exact rank
due to the presence of 2 or 3-torsion elements in the Tate-Shafarevich group.

The Tate-Shafarevich group, denoted by X(E/Q), is a torsion abelian
group associated to E/Q. It is the kernel of the localization map

0 −→X(E/Q) −→ H1(Q, E) −→
⊕
υ

H1(Qυ, E),

where the product runs over all places υ in Q. The arithmetic importance
of this group lies in its geometric interpretation. There is a bijection from
X(E/Q) to the Q-isomorphism classes of principal homogeneous spaces C/Q
of E which have points everywhere locally. In particular, such a C is a curve of
genus 1 defined over Q whose Jacobian is isomorphic to E. Nontrivial elements
in X(E/Q) correspond to curves C which defy the Hasse principle, i.e., have
a point over every completion of Q, but have no points over Q.

Conjecture 1. (Shafarevich and Tate) The group X(E/Q) is finite.

These two invariants, the rank r and the Tate-Shafarevich group X(E/Q),
are encoded in the Selmer groups of E. Fix a prime p, and let E(p) denote the
Gal(Q̄/Q)-module of all torsion points of E whose orders are powers of p. The
Selmer group Sp(E/Q) is defined by the following exact sequence:

0 −→ Sp(E/Q) −→ H1(Q, E(p)) −→
⊕
υ

H1(Qυ, E) .

Likewise, for any positive integer m, the m-Selmer group is defined by the exact
sequence

0→ S(m)(E/Q)→ H1(Q, E[m]) −→
⊕
υ

H1(Qυ, E)

where E[m] is the subgroup of elements of order dividing m in E.
It follows from the Kummer sequence that there are short exact sequences

0 −→ E(Q)/mE(Q) −→ S(m)(E/Q) −→X(E/Q)[m] −→ 0

and
0 −→ E(Q)⊗Qp/Zp −→ Sp(E/Q) −→X(E/Q)(p) −→ 0 .

If the Tate-Shafarevich group is finite, then the Zp-corank of Sp(E/Q) is equal
to the rank r of E(Q).

The finiteness of X(E/Q) is only known for curves of analytic rank 0 and
1 in which case computation of Heegner points and Kolyvagin’s work on Euler
systems gives an explicit computable multiple of its order. The group X(E/Q)
is not known to be finite for even a single elliptic curve with ran > 2. In such
cases, the best one can do using current techniques is hope to bound the p-part
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X(E/Q)(p) of X(E/Q), for specific primes p. Even this might not a priori be
possible, since it is not known that X(E/Q)(p) is finite. However, if it were
the case that X(E/Q)(p) is finite (as Conjecture 1 asserts), then this could be
verified by computing Selmer groups S(pn)(E/Q) for sufficiently many n (see,
e.g., [SS04]). Note that practical unconditional computation of S(pn)(E/Q) is
prohibitively difficult for all but a few very small pn.

We present in this paper two algorithms using p-adic L-functions Lp(E, T ).
They are p-adic analogs of the complex function L(E, s) (see Section 3 for
the definition). Both algorithms rely heavily on the work of Kato [Kat04],
which is considered to be a major breakthrough in the direction of a proof
of the p-adic version of the Birch and Swinnerton-Dyer conjecture (see Sec-
tion 5). The possibility of using these results to compute information about
the Tate-Shafarevich group is well known to specialists and was for instance
mentioned in [Col04b] which gives also a nice overview over the p-adic Birch
and Swinnerton-Dyer conjecture. For supersingular primes these methods have
been used by Perrin-Riou in [PR03].

The first algorithm, which we describe Section 10, finds a provable upper
bound for the rank r of E(Q) by simply computing approximations to the p-
adic L-series for various small primes p. Any upper bound on the vanishing of
Lp(E, T ) at T = 0 is known to be an upper bound on the rank r.

The second algorithm, which we discuss in Section 11, gives a new method
for computing bounds on the order of X(E/Q)(p), for specific primes p. We
will exclude p = 2, since traditional descent methods work well at p = 2, and
Iwasawa theory is not as well developed for p = 2. We also exclude some
primes p, e.g., those for which E has additive reduction, since much of the
theory we rely on has not yet been developed in this case yet (see Section 3.6
and 11).

Our second algorithm uses again the p-adic L-functions Lp(E, T ), but also
requires that the full Mordell-Weil group E(Q) is known. Its output, if it yields
any output, is a proven upper bound on the order of X(E/Q)(p); in particular,
it will often prove the finiteness of the p-primary part of the Tate-Shafarevich
group. But it will not be able to give any information about the structure of
X(E/Q)(p) as an abelian group or any information on its elements. For such
finer results on the Tate-Shafarevich group, there is currently no other general
method than to use pn-descents as described above, or use visibility [AS02] to
relate X(E/Q)(p) to Mordell-Weil groups of other elliptic curves or abelian
varieties. The computability of the upper bound on #X(E/Q)(p) relies on
several conjectures, such as the finiteness of X(E/Q)(p) and Conjectures 3
and 4 on the non-degeneracy of the p-adic height on E. Under the assumption
of the so-called main conjecture of Iwasawa theory (see Section 7), the result
of the algorithm is known to be equal to the order of X(E/Q)(p). There are
several cases when this conjecture is known to hold by Greenberg and Vatsal
in [GV00], by Grigorov in [Gri05], and in a forthcoming paper by Skinner and
Urban.
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Note that both algorithms can possibly be implemented also to give bounds
on the rank E(K) and bounds on #X(E/K)(p) for number fields K which
are abelian extensions of Q.

1.1 Overview

The article is structured as follows. We start by recalling the Birch and
Swinnerton-Dyer conjecture and its algorithmic consequences. In Section 3, we
define p-adic L-functions and explain how to compute them. Next we define
the p-adic regulator, treating separately the cases of split multiplicative and
supersingular reduction. This leads to the formulation of the p-adic Birch and
Swinnerton-Dyer conjectures. In Section 6, we recall the basic definitions and
results for the algebraic p-adic L-functions defined using Iwasawa theory. This
leads us naturally to the statement of the main conjecture and the theorem of
Kato. Concrete examples illustrate the theory throughout these sections.

We then explain first the implication of these results in the case the curve
has analytic rank 0, followed by the case of analytic rank 1. Finally we present
in Section 10 and 11 the algorithms for bounding the rank and the order of
the p-primary part of X(E/Q). We conclude the article with a section of
further explicit examples produced by the algorithms. A forthcoming sequence
to this paper will apply the theory in this paper to produce numerous tables
and analyzes of the resulting data.
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2 The Birch and Swinnerton-Dyer conjecture

Let E be an elliptic curve defined over Q. If the Birch and Swinnerton-Dyer
conjecture (Conjecture 2 below) were true, it would yield an algorithm to com-
pute both the rank r and the order of X(E/Q).

Let E be an elliptic curve over Q, and let L(E, s) be the Hasse-Weil L-
function associated to the Q-isogeny class of E. According to [BCDT01] (which
completes work initiated in [Wil95]), the function L(E, s) is holomorphic on
the whole complex plane. Let ωE be the invariant differential dx/(2y+a1x+a3)
of a minimal Weierstrass equation (1) of E. We write ΩE =

∫
E(R)

ωE ∈ R>0

for the Néron period of E.

Conjecture 2. (Birch and Swinnerton-Dyer)
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1. The order of vanishing of the Hasse-Weil function L(E, s) at s = 1 is
equal to the rank r = rank(E(Q)).

2. The leading term L∗(E, 1) of the Taylor expansion of L(E, s) at s = 1
satisfies

L∗(E, 1)
ΩE

=
∏
υ cυ ·#X(E/Q)
(#E(Q)tor)2

· Reg(E/Q) (2)

where the Tamagawa numbers are denoted by cυ and Reg(E/Q) is the
regulator of E, i.e., the discriminant of the Néron-Tate canonical height
pairing on E(Q).

Below we write #X(E/Q)an for the order of X(E/Q) that is predicted by
Conjecture 2.

Cassels proved in [Cas65] that if Conjecture 2 is true for an elliptic curve
E over Q, then it is true for all curves that are Q-isogenous to E.

Proposition 1. If Conjecture 2 is true, then there is an algorithm to compute r
and #X(E/Q).

Proof. The proof is well known, but we repeat it here since it illustrates several
key ideas. By naively searching for points in E(Q) we obtain a lower bound
on r, which is closer and closer to the true rank r, the longer we run the
search. At some point this lower bound will equal r, but without using further
information we have no way to know if that has occurred. As explained, e.g.,
in [Cre97, Coh07, Dok04], we can for any k compute L(k)(E, 1) to any desired
precision. Such computations yield upper bounds on ran. In particular, if we
compute L(k)(E, 1) and it is nonzero (to the precision of our computation),
then ran < k. Eventually this method will also converge to give the correct
value of ran, though again without further information we do not know when
this will occur. However, if we know Conjecture 2, we know that r = ran,
hence at some point the lower bound on r computed using point searches will
equal the upper bound on ran computed using the L-series. At this point, by
Conjecture 2 we know the true value of both r and ran.

Once r is known, one can compute E(Q) via a point search (as explained
in [Cre97, §3.5] or [Ste07, §1.2]), hence we can approximate Reg(E/Q) to any
desired precision. All other quantities in (2) can also be approximated to
any desired precision. Solving for #X(E/Q) in (2) and computing all other
quantities to large enough precision to determine the integer #X(E/Q)an then
determines #X(E/Q), as claimed.

We wish to emphasize that this algorithm would only produce the order
of X(E/Q) but no information about its structure as an abelian group. One
could in theory compute the structure of X(E/Q) by doing an explicit n-
descent where n2 = #X(E/Q). The two algorithms presented at the end of
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this article will mimic the ideas of the proof of this proposition, but instead of
working with the complex L-function it will be in a p-adic setting.

3 The p-adic L-function

We will assume for the rest of this article that E does not admit complex
multiplication, though curves with complex multiplication are an area of active
research for these methods (see e.g., [Rub99, PR04]).

In order to formulate a p-adic analogue of the conjecture of Birch and
Swinnerton-Dyer, one needs first a p-adic version of the analytic function
L(E, s). Mazur and Swinnerton-Dyer [MSD74] have found such a function. We
refer to [MTT86] for details on the construction and the historic references.

Let π : X0(N) −→ E be the modular parametrization of E and let cπ be
the Manin constant, i.e., the positive integer satisfying cπ · π∗ωE = 2πif(τ)dτ
with f the newform associated to E. Manin conjectured that cπ = 1, and much
work has been done toward this conjecture (see [Edi91, ARS06]).

Given a rational number r, consider the image π∗({r}) in H1(E,R) of the
path joining r to i∞ in the upper half plane. Define

λ+(r) =
cπ
2
·

(∫
π∗({r})

ωE +
∫
π∗({−r})

ωE

)
(3)

= πi ·
(∫ i∞

r

f(τ) dτ +
∫ i∞

−r
f(τ) dτ

)
.

There is a basis {γ+, γ−} of H1(E,Z) such that
∫
γ+
ωE is equal to ΩE if E(R)

is connected and to 1
2 ΩE otherwise. By a theorem of Manin [Man72], we know

that λ+(r) belongs to Q · ΩE. We define the modular symbol [r]+ ∈ Q to be

[r]+ · ΩE = λ+(r)

for all r ∈ Q. In particular we have [0]+ = L(E, 1) · Ω−1
E . The quantity [r]+

can be computed algebraically using modular symbols and linear algebra (see
[Cre97]).

Let p be a prime of semi-stable reduction. We write1 ap for the trace of
Frobenius. Suppose first that E has good reduction at p. Then Np = p+1−ap
is the number of points on Ẽ(Fp). Let X2 − ap · X + p be the characteristic
polynomial of Frobenius and let α ∈ Q̄p be a root of this polynomial such that
ordp(α) < 1. There are two different possible choices if E has supersingular
reduction and there is a single possibility for primes where E has good ordinary
reduction. Now if E has multiplicative reduction at p, then ap is 1 if it is split
multiplicative and ap is −1 if it is non-split multiplicative reduction. In either
multiplicative case, we have to take α = ap.

1The context should make it clear if we speak about ap or a2 and a3 as in (1).
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Define a measure on Z×p with values in Q(α) by

µα(a+ pkZp) =

{
1
αk
·
[
a
pk

]+ − 1
αk+1 ·

[
a

pk−1

]+ if E has good reduction and
1
αk
·
[
a
pk

]+ otherwise.

for any k > 1 and a ∈ Z×p . Given a continuous character χ on Z×p with values
in the completion Cp of the algebraic closure of Qp, we may integrate χ against
µα. Any invertible element x of Z×p can be written as ω(x) · 〈x〉 where ω(x) is
a (p− 1)-st root of unity (or a 4-th root of unity when p = 2) and 〈x〉 belongs
to 1 + 2pZp. We define the analytic p-adic L-function by

Lα(E, s) =
∫

Z×p
〈x〉s−1 dµα(x) for all s ∈ Zp.

where by 〈x〉s−1 we mean expp((s − 1) · logp(〈x〉)). The function Lα(E, s)
extends to a locally analytic function in s on the disc defined by |s − 1| < 1
(see §13 in [MTT86]).

Let ∞G be the Galois group of the cyclotomic extension Q(µp∞) obtained
by adjoining to Q all p-power roots of unity. By κ we denote the cyclotomic
character ∞G −→ Z×p . Because the cyclotomic character is an isomorphism,
choosing a topological generator γ in Γ = ∞G

4(p−1) amounts to picking an
element κ(γ) in 1 + 2pZ×p . With this choice, we may convert the function
Lα(E, s) into a p-adic power series in T = κ(γ)s−1 − 1. We write Lα(E, T ) for
this series in Qp(α)[[T ]]. We have

Lα(E, T ) =
∫

Z×p
(1 + T )

log(x)
log(κ(γ)) dµα(x) . (4)

Recall that ω(a) ∈ Z∗p is the Teichmüller lift of a. For each integer n > 1, define
a polynomial

Pn(T ) =
p−1∑
a=1

pn−1−1∑
j=0

µE
(
ω(a)(1 + p)j + pnZp

)
· (1 + T )j

 .

Proposition 2. We have that the p-adic limit of these polynomials is the p-adic
L-series:

lim
n→∞

Pn(T ) = Lα(E, T ).

This convergence is coefficient-by-coefficient, in the sense that if Pn(T ) =∑
j an,jT

j and Lα(E, T ) =
∑
j ajT

j , then

lim
n→∞

an,j = aj .

We now give a proof of this convergence and in doing so obtain an upper bound
for |aj − an,j |.
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For any choice ζr of pr-th root of unity in Cp, let χr be the Cp-valued
character of Z×p of order pr which factors through 1 + pZp and sends 1 + p to
ζr. Note that the conductor of χr is pr+1.

Lemma 3. Let ζr be a pr-th root of unity with 1 6 r 6 n − 1, and let χr be
the corresponding character of order pr+1, as above. Then

Pn(ζr − 1) =
∫

Z×p
χr dµE .

In particular, note that the right hand side does not depend on n.

Proof. Writing χ = χr, we have

Pn(ζr − 1) =
p−1∑
a=1

pn−1−1∑
j=0

µE
(
ω(a)(1 + p)j + pnZp

)
· ζjr

=
p−1∑
a=1

pn−1−1∑
j=0

µE
(
ω(a)(1 + p)j + pnZp

)
· χ
(
(1 + p)j

)
=

∑
b∈(Z/pnZ)∗

µE (b+ pnZp) · χ(b)

=
∫

Z×p
χ dµE .

In the second to the last equality, we use that

(Z/pnZ)∗ ∼= (Z/pZ)∗ × (1 + p(Z/pnZ))∗

to sum over lifts of b ∈ (Z/pnZ)∗ of the form ω(a)(1 + p)j , i.e., a Teichmüller
lift times a power of (1 + p)j . In the last equality, we use that χ has conductor
pn, so is constant on the residue classes modulo pn, i.e., the last equality is just
the Riemann sums definition of the given integral.

For each positive integer n, let wn(T ) = (1 + T )p
n − 1.

Corollary 4. We have that

wn−1(T ) divides Pn+1(T )− Pn(T ).

Proof. By Lemma 3, Pn+1(T ) and Pn(T ) agree on ζj − 1 for 0 6 j 6 n− 1 and
any choice ζj of pj-th root of unity, so their difference vanishes on every root
of the polynomial wn−1(T ) = (1 +T )p

n−1 − 1. The claimed divisibility follows,
since wn−1(T ) has distinct roots.
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Lemma 5. Let f(T ) =
∑
j bjT

j and g(T ) =
∑
j cjT

j be in O[T ] with O a
finite extension of Zp. If f(T ) divides g(T ), then

ordp(cj) > min
06i6j

ordp(bi).

Proof. We have f(T )k(T ) = g(T ). The lemma follows by using the definition
of polynomial multiplication and the non-archimedean property of ordp on each
coefficient of g(T ).

As above, let an,j be the j-th coefficient of the polynomial Pn(T ). Let

cn = max(0,−min
j

ordp(an,j))

so that pcnPn(T ) ∈ Zp[T ], i.e., cn is the smallest power of p that clears the
denominator. For any j > 0, let

en,j = min
16i6j

ordp

(
pn

i

)
.

be the min of the valuations of the coefficients of wn(T ), as in Lemma 5.

Proposition 6. For all n > 0, we have an+1,0 = an,0, and for j > 0,

ordp(an+1,j − an,j) > en−1,j −max(cn, cn+1).

Proof. Let c = max(cn, cn+1). The divisibility of Corollary 4 implies that there
is a polynomial h(T ) ∈ Qp[T ] with

wn−1(T ) · pch(T ) = pcPn+1(T )− pcPn(T )

and thus (by Gauss’ lemma) pch(T ) ∈ Zp[T ] since the right hand side of the
equation is integral and wn−1(T ) is a primitive polynomial. Applying Lemma 5
and renormalizing by pc gives the result.

For j fixed, en−1,j −max(cn+1, cn) goes to infinity as n grows since the ck
are uniformly bounded (they are bounded by the power of p that divides the
order of the cuspidal subgroup of E). Thus, {an,j} is a Cauchy sequence and
Proposition 6 implies that that

ordp(aj − an,j) > en−1,j −max(cn+1, cn).
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3.1 The p-adic multiplier

For a prime of good reduction, we define the p-adic multiplier by

εp =
(
1− 1

α

)2
. (5)

For a prime of bad multiplicative reduction, we put

εp = 1− 1
α =

{
0 if p is split multiplicative and
2 if p is non-split.

3.2 Interpolation property

The p-adic L-function constructed above satisfies a desired interpolation prop-
erty with respect to the complex L-function. For instance, we have that

Lα(E, 0) = Lα(E, 1) =
∫

Z×p
dµα = εp ·

L(E, 1)
ΩE

.

A similar formula holds when integrating nontrivial characters of Z×p against
µα. If χ is the character on ∞G sending γ to a root of unity ζ of exact order
pn, then

Lα(E, ζ − 1) =
1

αn+1
· pn+1

G(χ−1)
· L(E,χ−1, 1)

ΩE

.

Here G(χ−1) is the Gauss sum and L(E,χ−1, 1) is the Hasse-Weil L-function
of E twisted by χ−1.

3.3 The good ordinary case

Suppose now that the reduction of the elliptic curve at the prime p is good
and ordinary, so ap is not divisible by p. As mentioned before, in this case
there is a unique choice of root α of the characteristic polynomial x2− apx+ p
that satisfies ordp(α) < 1. Since α is an algebraic integer, this implies that
ordp(α) = 0, so α is a unit in Zp. We get therefore a unique p-adic L-function
that we will denote simply by Lp(E, T ) = Lα(E, T ). The following is proved
in [Wut06]:

Proposition 7. Let E be an elliptic curve with good ordinary reduction at a
prime p > 2. Then the series Lp(E, T ) belongs to Zp[[T ]].

Note that ordp(εp) is equal to 2 ordp(Np) where Np = p + 1 − ap is the
number of points in the reduction Ẽ(Fp) at p.

We wish to illustrate the above material with a few numerical examples,
one for each type of reduction. See Section 12 for more examples. Let E0/Q
be the curve

E0 : y2 + x y = x3 − x2 − 4x + 4 (6)
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which is labeled 446d1 in Cremona’s tables [Cre]. The Mordell-Weil group
E0(Q) is isomorphic to Z2 generated by the points (2, 0) and (1,−1). We
consider the prime p = 5 where E0 has good and ordinary reduction. As the
number of points Np = 10 is divisible by p, this is an anomalous prime in the
terminology of [Maz72]. Using [Ste09], we compute an approximation to the
p-adic L-series as explained above with n = 5 to find

L5(E0, T ) = O(54) · T + (5 + 52 + 3 · 53 + O(54)) · T 2

+ (2 · 5 + 3 · 52 + 3 · 53 + O(54)) · T 3 + (4 · 52 + 4 · 53 + O(54)) · T 4

+ (4 · 5 + 4 · 52 + O(53)) · T 5

+ (1 + 2 · 5 + 52 + 4 · 53 + O(54)) · T 6 + O(T 7) .

Note that we claim here directly that the order of vanishing is at least to 1.
This follows from the interpolation formula that L5(E0, 0) = 0 as [0]+ = 0. We
will give an explanation for the vanishing of the term in T 1 later. We remark
that the term in T 2 has valuation 1, but the coefficient of T 6 is a unit.

3.4 Multiplicative case

We have to separate the case of split from the case of non-split multiplicative
reduction. In fact if the reduction is non-split, then the description of the good
ordinary case applies just the same. But if the reduction is split multiplicative
(the “exceptional case” in [MTT86]), then the p-adic L-series must have a
trivial zero, i.e., Lp(E, 0) = 0 because εp = 0. By a result of Greenberg and
Stevens [GS93] (see also [Kob06] for a simple proof using Kato’s Euler system),
we know that

dLp(E, T )
d T

∣∣∣∣
T=0

=
1

logp κ(γ)
·

logp(qE)
ordp(qE)

· L(E, 1)
ΩE

where qE denotes the Tate period of E over Qp. This will replace the interpol-
ation formula. Note that it is now known thanks to [BSDGP96] that logp(qE)
is nonzero. Hence we define the p-adic L -invariant as

Lp =
logp(qE)
ordp(qE)

6= 0 . (7)

We refer to [Col04a] for a detailed discussion of the different L -invariants and
their connections.

3.5 The supersingular case

In the supersingular case, that is when ap ≡ 0 (mod p), we have two roots α
and β both of valuation 1

2 . A careful analysis of the functions Lα and Lβ can
be found in [Pol03]. The series Lα(E, T ) will not have integral coefficients in
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Qp(α). Nevertheless one can still extract two integral series L±p (E, T ). We will
not need this description.

There is a way of rewriting the p-adic L-series which relates more easily to
the p-adic height defined in the next section. We follow Perrin-Riou’s descrip-
tion in [PR03].

As before ωE denotes the chosen invariant differential on E. Let ηE = x·ωE.
The pair {ωE, ηE} forms a basis of the Dieudonné module

Dp(E) = Qp ⊗H1
dR(E/Q).

This Qp-vector space comes equipped with a canonical Frobenius ϕ acting on
it linearly. We normalize it in the following way which makes it equal to 1

p · F
with F being the Frobenius as used in [MST06] or in [Ked01, Ked03, Ked04].
Let t be any uniformizer at OE, like t = −xy . Let ν be a class in Dp(E)
represented by the differential

∑
cn · tn−1 dt with cn ∈ Qp. Then ϕ(ν) can be

represented by the differential
∑
cn · tpn−1 dt. In particular ϕ(dt) ≡ tp−1 dt.

The characteristic polynomial of ϕ is equal to X2 − p−1 apX + p−1.
Write Lα(E, T ) as G(T ) + α ·H(T ) with G(T ) and H(T ) in Qp[[T ]]. Then

we define

Lp(E, T ) = G(T ) · ωE + ap ·H(T ) · ωE − p ·H(T ) · ϕ(ωE) .

This is a formal power series with coefficients in Dp(E)⊗Qp[[T ]] which contains
exactly the same information as Lα(E, T ). See [PR03] for a direct definition.
Since the invariant differential ωE depends on the choice of the Weierstrass
equation (1), the expression Lp(E, T ) is also dependent on this choice. How-
ever, if we write the series in the basis {ωE, φ(ωE)} rather than in {ωE, ηE},
then the coordinates as above are independent. The Dp-valued L-series satisfies
again certain interpolation properties,2 e.g.,

(1− ϕ)−2 Lp(E, 0) =
L(E, 1)

ΩE

· ωE ∈ Dp(E) .

We will present a numerical example in Section 12.2.

3.6 Additive case

The case of additive reduction is much harder to treat, though we are optimistic
that such a treatment is possible. We have not tried to include the possibil-
ity of additive reduction in our algorithm especially because the existence of
the p-adic L-function is not yet guaranteed in general. Note that there are
two interesting papers [Del98] and [Del02] of Delbourgo on this subject. Also
Colmez has recently announced a new construction of the p-adic L-function
which would include the additive case. We will not refer to this case anymore
throughout the paper.

2Perrin-Riou writes in [PR03] the multiplier as (1 − ϕ)−1 · (1 − p−1ϕ−1) and she multiplies the
right hand side with L(E/Qp, 1)−1 = Np · p−1. It is easy to see that (1 − ϕ) · (1 − p−1ϕ−1) =
1 − ϕ+ (ϕ− ap · p−1) + p−1 = Np · p−1.
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3.7 Quadratic twists

When the curve E is not semistable, we can try to use the modular symbols of
a quadratic twist E† of E in the computation of the p-adic L-function for E.
This is useful when the quadratic twist has lower conductor than E.

Suppose that there exists a fundamental discriminant D of a quadratic field
satisfying the following conditions:

• p does not divide D,

• D2 divides N ,

• M = N/D2 is coprime to D, and

• the conductor N† of the quadratic twist E† of E by D is of the form M ·Q
with Q dividing D.

Then ψ = (D· ) is the Dirichlet character associated to the quadratic field
Q(
√
D) over which E and E† become isomorphic. Let f†E be the newform

of level N† associated to the isogeny class of E†. As explained in section II.11
of [MTT86], the twist of f†E by ψ is equal to fE and we can use their for-
mula (I.8.3)

fE(τ) =
1

G(ψ)

∑
u mod |D|

ψ(u) · f†E
(
τ +

u

|D|

)
. (8)

Here G(ψ) is as before the Gauss sum of ψ, whose value we know to be the
square root

√
D of D in R>0 or in i ·R>0. Let cR be the number of connected

components of E(R), which is also the number of connected components of
E†(R). We write Ω−

E†
for cR ·

∫
γ−
ωE, similar to ΩE† = Ω+

E†
= cR ·

∫
γ+ ωE with

the notations from (3). We also put

λ−(r) = πi ·
(∫ i∞

r

−
∫ i∞

−r

)
f(τ) dτ

and [r]− = λ−(r)/Ω−E . As for the modular symbol [r]+, we have [r]− ∈ Q.
Following [MTT86], we define the quantity η such that

√
D · Ω+

E = η · Ωsign(D)

E†
.

It is known that η is either 1 or 2.
Now we can compute the modular symbol [r]+ for the curve E in terms of

13



modular symbols for E†. Suppose first that D > 0.

λ+
E(r) =πi ·

(∫ i∞

r

+
∫ i∞

−r

)
1√
D

D−1∑
u=1

ψ(u)f†E
(
τ +

u

D

)
dτ

=
πi√
D

D−1∑
u=1

ψ(u)
∫ i∞

r+u/D

f†E(τ)dτ +

+
πi√
D

D−1∑
v=1

ψ(D − v)
∫ i∞

−r
f†E

(
τ + 1− v

D

)
dτ

=
πi√
D

D−1∑
u=1

ψ(u)

(∫ i∞

r+u/D

+
∫ i∞

−r−u/D

)
f†E(τ)dτ

=
1√
D

D−1∑
u=1

ψ(u)λ+
E†

(
r +

u

D

)
We used that ψ(u) = sign(D)ψ(D−u), that f†E(τ+1) = f†E(τ) and equation (8).
Similarly for D < 0, we find

λ+
E(r) =

−1√
D

|D|−1∑
u=1

ψ(u)λ−
E†

(
r +

u

D

)
.

Therefore, we have for any fundamental discriminant D

[r]+E =
sign(D)

η

|D|−1∑
u=1

(D
u

)
·
[
r +

u

D

]sign(D)

E†
.

We can also express the unit eigenvalue α of Frobenius in terms of the corres-
ponding α† unit eigenvalue for E† as

α = ψ(p) · α†.

In summary, we can evaluate the approximations to the p-adic L-function of
E using only modular symbols of the curve E† with smaller conductor. The
estimations for the error of these approximations remain exactly the same.

We recalled that the computation of the modular symbols [r]± can be done
purely algebraically. Unfortunately the algebraic computation determines them
only up to sign. If [0]+ is non-zero, we can simply compare the value of the
modular symbol at 0 with L(E, 1)/ΩE > 0 and adjust the sign when needed. If
L(E, 1) = 0, we can use the above formula to compute [0]+

E†
for some quadratic

twist E† with non-vanishing L-value. So we can easily adjust the unknown sign.
Also, if we only know the modular symbols up to a rational multiple, we can
use these formulae to scale them.

We should also add here that we can not possibly do a similar thing with
quartic or sextic twists when they exist. This is due to the fact that the
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extension over which the twists become isomorphic is no longer an abelian
extension. So we would have to twist the modular symbols with a Galois
representation of dimension at least 2. Nevertheless there is a way of using
these twists for computing the p-adic L-function as explained in [CLS09], using
the fact that these curves have complex multiplication.

4 p-adic heights

The second term to be generalized in the Birch-Swinnerton-Dyer formula is the
real-valued regulator. In p-adic analogues of the conjecture it is replaced by a
p-adic regulator, which is defined using a p-adic analogue of the height pairing.
We follow here the generalized version [BPR93] and [PR03].

Let ν be an element of the Dieudonné module Dp(E). We will define a
p-adic height function hν : E(Q) −→ Qp which depends linearly on the vector
ν. Hence it is sufficient to define it on the basis ω = ωE and η = ηE.

If ν = ω, then we define

hω(P ) = logE(P )2

where logE is the linear extension of the p-adic elliptic logarithm

logÊ : Ê(pZp) −→ pZp

defined on the formal group Ê, by integrating our fixed differential ωE.
For ν = η, we define the p-adic sigma function of Bernardi as in [Ber81] to

be the solution σ of the differential equation

−x =
d

ωE

(
1
σ
· dσ
ωE

)
such that σ(OE) = 0, dσ

ω (OE) = 1, and σ(−P ) = −σ(P ). If we denote by
t = −xy the uniformizer at OE, we may develop the sigma-function as a series
in t:

σ(t) = t+
a1

2
t2 +

a2
1 + a2

3
t3 +

a3
1 + 2a1a2 + 3a3

4
t4 + · · · ∈ Q((t)).

As a function on the formal group Ê(pZp), it converges for all t with ordp(t) >
1
p−1 .

We say that a point P in E(Q) has good reduction at a prime p if P reduces
to the identity component of the special fiber of the Néron model of E at p.
Given a point P in E(Q) there exists a multiple m ·P such that σ(P ) converges
and such that m · P has good reduction at all primes. Denote by e(m · P ) ∈ Z
the square root of the denominator of the x-coordinate of m · P . Now define

hη(P ) =
2
m2
· logp

(
e(m · P )
σ(m · P )

)
.
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It is proved in [Ber81] that this function is quadratic and satisfies the parallel-
ogram law.

Finally, if ν = aω + b η then put

hν(P ) = a hω(P ) + b hη(P ) .

Since this function is quadratic and satisfies the parallelogram law, it induces
a bilinear symmetric pairing 〈·, ·〉ν with values in Qp defined by

〈P,Q〉ν =
1
2
·
(
hν(P +Q)− hν(P )− hν(Q)

)
.

Note that all these definitions are dependent on the choice of the Weierstrass
equation. It is easy to verify that the pairing is zero if one of the points is a
torsion point.

4.1 The good ordinary case

Since we have only a single p-adic L-function in the case that the reduction is
good ordinary, we have also to pin down a canonical choice of a p-adic height
function. This was first done by Schneider [Sch82] and Perrin-Riou [PR82].
We refer to [MT91] and [MST06] for more details.

Let να = aω + b η be an eigenvector of ϕ on Dp(E) associated to the
eigenvalue 1

α . The value e2 = E2(E,ωE) = −12 · ab is the value of the Katz
p-adic Eisenstein series of weight 2 at (E,ωE). Then, if a point P has good
reduction at all primes and lies in the range of convergence of σ(t), we define
the canonical p-adic height of P to be

ĥp(P ) =
1
b
· hνα(P )

= −a
b
· logE(P )2 + 2 log

(
e(P )
σ(P )

)
= 2 logp

(
e(P )

exp( e224 logE(P )2) · σ(P )

)
= 2 logp

(
e(P )
σp(P )

)
. (9)

The function σp, defined by the last line, is called the canonical sigma-
function, see [MT91]; it is known to lie in Zp[[t]]. The p-adic height defined here
is up to a factor of 2 the same as in [MST06].3 It is also important to note
that the function ĥp is now independent of the Weierstrass equation.

We write 〈·, ·〉p for the canonical p-adic height pairing on E(Q) associated
to ĥp, and we write Regp(E/Q) for the discriminant of the height pairing on
E(Q)/E(Q)tor.

3This factor is needed if one does not want to modify the p-adic version of the Birch and
Swinnerton-Dyer conjecture (Conjecture 5).
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Conjecture 3. (Schneider [Sch82]) The canonical p-adic height is non-de-
generate on E(Q)/E(Q)tor. In other words, the canonical p-adic regulator
Regp(E/Q) is nonzero.

Apart from the special case treated in [Ber82] of curves with complex mul-
tiplication of rank 1, there are hardly any results on this conjecture. See
also [Wut04].

We return to our example E0 from Section 3.3. The methods of [MST06,
Har08] permit us to compute the p-adic regulator of E0 quite quickly. We have

E2(E0, ωE) = 3 · 5 + 4 · 52 + 53 + 54 + 55 + 2 · 56 + 4 · 57 + 3 · 59 + O(510),

and the regulator associated to the canonical p-adic height is

Regp(E0/Q) = 2 · 5 + 2 · 52 + 54 + 4 · 55 + 2 · 57 + 4 · 58 + 2 · 59 + O(510).

4.2 The multiplicative case

When E has multiplicative reduction at p, we may use Tate’s p-adic uniformiz-
ation (see for instance in [Sil94]). We have an explicit description of the height
pairing in [Sch82]. If one wants to have the same closed formula in the p-adic
version of the Birch and Swinnerton-Dyer conjecture for multiplicative primes
as for other ordinary primes, the p-adic height has to be changed slightly. We
use here the description of the p-adic regulator given in section II.6 of [MTT86].
Alas, their formula is not correct as explained by Werner in [Wer98].

Let qE be the Tate parameter of the elliptic curve over Qp, i.e., we have a
homomorphism ψ : Q̄×p −→ E(Q̄p) whose kernel is precisely qZ

E. The image of
Z×p under ψ is equal to the subgroup of points of E(Qp) lying on the connected
component of the reduction modulo p of the Néron model of E. Now let C be
the constant such that ψ∗(ωE) = C · duu where u is a uniformizer of Q×p at 1.
The value of the p-adic Eisenstein series of weight 2 can then be computed as

e2 = E2(E,ωE) = C2 ·

1− 24 ·
∑
n>1

∑
d|n

d. · qnE

 .

Then we use the formula as in the good ordinary case to define the canonical
sigma function σp(t(P )) = exp( e224 logE(P )2) ·σ(t(P )). We could also have used
directly the formula

σp(u) =
u− 1
u1/2

·
∏
n>1

(1− qnE · u)(1− qnE/u)
(1− qn)2

where u ∈ 1 + pZp is the unique preimage of P ∈ Ê(pZp) under the Tate
parametrization ψ, where Ê is the formal group of E at p.

If the reduction is non-split multiplicative, then we use the same formula (9)
to define the p-adic height as for the good ordinary case.
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Suppose now that the reduction is split multiplicative. Let P be a point in
E(Q) having good reduction at all finite places and with trivial reduction at p.
Then we define

ĥp(P ) = 2 logp

(
e(P )

σp(t(P ))

)
−

logp(u)2

logp(qE)

with u as above. The p-adic regulator is formed as before but with this modified
p-adic height ĥp.

4.3 The supersingular case

In the supersingular case, we cannot find a canonical p-adic height with values
in Qp. Instead, the height will have values in the Dieudonné module Dp(E).
The main references for this height are [BPR93] and [PR03].

First, if the rank of the curve is 0, we define the p-adic regulator of E/Q
to be ω = ωE ∈ Dp(E). Assume for the rest of this section that the rank r of
E(Q) is positive. Let ν = aω+ b η be any element of Dp(E) not lying in Qp ω,
(so b 6= 0). It can be easily checked that the value of

Hp(P ) =
1
b
· (hν(P ) · ω − hω(P ) · ν) ∈ Dp(E)

is independent of the choice of ν. We will call this the Dp-valued height on
E(Q). But note that it depends on the choice of the Weierstrass equation of
E: If we change coordinates by putting x′ = u2 ·x+ r and y′ = u3 · y+ s ·x+ t,
then the Dp-valued height H ′p(P ) computed in the new coordinates x′, y′ will
satisfy H ′p(P ) = 1

u ·Hp(P ) for all points P ∈ E(Q).
On Dp(E) there is a canonical alternating bilinear form [·, ·] characterized

by the property that [ωE, ηE] = 1. Write Regν ∈ Qp for the regulator of hν on
E(Q)/E(Q)tor. Then we have the following lemma which is the correction4 of
Lemme 2.6 in [PR03].

Lemma 8. Suppose that the rank r of E(Q) is positive. There exists a unique
element Regp(E/Q) in Dp(E) such that for all ν ∈ Dp(E), we have

[Regp(E/Q), ν] =
Regν

[ω, ν]r−1
. (10)

Furthermore, if the rank r is 1, then Regp(E/Q) = Hp(P ) for a generator
P . If the Weierstrass equation is changed as above, the regulator Reg′p(E/Q)
computed in the new equation satisfies Reg′p(E/Q) = 1

u · Regp(E/Q).

4The wrong normalization in [PR03] only influences the computations with curves of rank greater
than 1. It seems that, by chance, the computations in [PR03] were done with a ν in Dp(E) such
that [ω, ν] = 1, so that the normalization did not enter the end results.

18



We call Regp(E/Q) ∈ Dp(E) the Dp-valued regulator of E/Q, or better, of
the chosen Weierstrass equation.

Proof. Since hω is made out of the square of the linear function logE, the matrix
of the associated pairing on a basis {Pi} of E(Q) modulo torsion has entries of
the form logE(Pi) · logE(Pj) and hence has rank 1. Therefore the regulator of
the pairing associated to ν = a · ω + b · η is equal to

Regaω+bη = a · br−1 ·X + br · Y

for some constants X and Y . In fact, we must have X = Regω+η −Regη and
Y = Regη. Therefore the expression on the right hand side of (10) is linear in
ν. More explicitly, we may define

Regp(E/Q) = Y · ω −X · η.

The formula for the case of rank 1 is then also immediate. The variance of the
regulator with the change of the equation can be checked just as for Hp.

Define the fine Mordell-Weil group as in [Wut07] to be the kernel

M(E/Q) = ker
(
E(Q)⊗ Zp −→ E(Qp)p-adic completion

)
which is a free Zp-module of rank r − 1. The bilinear form associated to the
normalized p-adic height

hν(P )
[ω, ν]

,

can be restricted to

〈·, ·〉0 : M(E/Q)× (E(Q)⊗ Zp) −→ Qp .

It is then independent of the choice of ν 6∈ Qpω. We call the regulator of this
bilinear form 〈·, ·〉0 on a basis of M(E/Q) the fine regulator Reg0(E/Q) ∈ Qp,
which is an element of Qp defined up to multiplication by a unit in Zp.

Lemma 9. Let Q be a generator of the orthogonal complement of M(E/Q) in
E(Q)⊗ Zp. Then

Regp(E/Q) ≡ Reg0(E/Q) ·Hp(Q) (mod Z×p ).

Proof. Choose a Zp-basis of E(Q)⊗ Zp containing Q and a basis of M(E/Q).
Then Regν is, up to multiplication by a unit in Zp, equal to Regν(M) · hν(Q),
where Regν(M) is the regulator of 〈·, ·〉ν = 〈·, ·〉0 · [ω, ν] on M(E/Q). Hence

Regν
[ω, ν]r−1

≡ Reg0(E/Q) · hν(Q) (mod Z×p )

and the statement follows from the previous lemma.
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In particular, the Dp-valued regulator is 0 if and only if the fine regulator
vanishes.

Conjecture 4. (Perrin-Riou [PR93, Conjecture 3.3.7.i]) The fine regu-
lator of E/Q is nonzero for all primes p. In particular, Regp(E/Q) 6= 0 for all
primes where E has supersingular reduction.

We have presented here how to compute the p-adic regulator in the basis
{ω, η}, but in order to compare it later to the leading term of the p-adic L-
function, it is better to write it in terms of the basis {ω, ϕ(ω)}. In particular,
we would then have a vector whose coordinates are independent of the chosen
Weierstrass equation.

On page 232 of [BPR93], there is an algorithm for computing ϕ by successive
approximation using the development of ω in terms of a uniformizer t. We can
now replace this by the computation of ϕ using the cohomology of Monsky and
Washnitzer as explained in [Ked01, Ked03, Ked04].

4.4 Normalization

In view of Iwasawa theory, it is actually natural to normalize the heights and
the regulators depending on the choice of the generator γ. In this way the
heights depend on the choice of an isomorphism Γ −→ Zp rather than on
the Zp-extension only. This normalization can be achieved by simply dividing
ĥp(P ) and hν(P ) by κ(γ). The regulators will be divided by logp κ(γ)r where
r is the rank of E(Q). Hence we write

Regγ(E/Q) =
Regp(E/Q)
log(κ(γ))r

5 The p-adic Birch and Swinnerton-Dyer con-
jecture

5.1 The ordinary case

The following conjecture is due to Mazur, Tate and Teitelbaum [MTT86].
Rather than formulating it for the function Lα(E, s), we state it directly for the
series Lp(E, T ). It is then a statement about the development of this function
at T = 0 rather than at s = 1.

Conjecture 5. (Mazur, Tate and Teitelbaum [MTT86]) Let E be an
elliptic curve with good ordinary reduction or with multiplicative reduction at
a prime p.

• The order of vanishing of the p-adic L-function Lp(E, T ) at T = 0 is
equal to the rank r, unless E has split multiplicative reduction at p in
which case the order of vanishing is equal to r + 1.
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• The leading term L∗p(E, 0) satisfies

L∗p(E, 0) = εp ·
∏
υ cυ ·#X(E/Q)
(#E(Q)tor)2

· Regγ(E/Q) (11)

unless the reduction is split multiplicative in which case the leading term
is

L∗p(E, 0) =
Lp

log(κ(γ))
·
∏
υ cυ ·#X(E/Q)
(#E(Q)tor)2

· Regγ(E/Q), (12)

where Lp is as in Equation (7).

The conjecture assert exact equality, not just equality up to a p-adic unit.
However, the current approaches to the conjecture, which go via the main
conjecture of Iwasawa theory, all prove results up to a p-adic unit, since the
characteristic power series is only defined up to a unit, as we will see in Sec-
tion 7.

Again, we consider the curve E0 (see Equation (6)) for an example in the
good ordinary case. For this curve, we have

∏
cυ = 2 and E0(Q)tor = 0. So all

the terms in the expression above can now be computed except for the unknown
size of X(E0/Q). The p-adic Birch and Swinnerton-Dyer conjecture predicts
now that

#X(E0/Q) = 1 + O(53)

just as the complex Birch and Swinnerton-Dyer conjecture claims that the
Tate-Shafarevich group #X(E0/Q) is trivial.

5.2 The supersingular case

The conjecture in the case of supersingular reduction is given in [BPR93]
and [PR03]. The conjecture relates here an algebraic and an analytic value
in the Qp-vector space Dp(E) of dimension 2. The fact that we have two co-
ordinates was used cleverly by Kurihara and Pollack in [KP07] to construct
global points via a p-adic analytic computation.

We say that an element a(T ) · ωE + b(T ) · ηE in Dp(E) ⊗ Qp[[T ]] has order
d at T = 0 if d is equal to the minimum of the orders of a(T ) and b(T ).

Conjecture 6. (Bernardi and Perrin-Riou [BPR93]) Let E be an elliptic
curve with supersingular reduction at a prime p.

• The order of vanishing of the Dp-valued L-series Lp(E, T ) at T = 0 is
equal to the rank r of E(Q).

• The leading term L∗p(E, 0) satisfies

(1− ϕ)−2·L∗p(E, 0) =
∏
υ cυ ·#X(E/Q)
(#E(Q)tor)2

·Regγ(E/Q) ∈ Dp(E) . (13)
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It should be emphasized that both sides of the formula (13) are dependent
of the Weierstrass equation. But under a change of the form x′ = u2 · x + r,
they both get multiplied by 1

u and hence the conjecture is independent of this
choice.

6 Iwasawa theory of elliptic curves

We suppose from now on that p > 2. Let ∞Q be the cyclotomic Zp-extension
of Q, which is a Galois extension of Q whose Galois group is Γ. It is the
unique Zp-extension of Q. Let Λ be the completed group algebra Zp[[Γ]]. We
use a fixed topological generator γ of Γ to identify Λ with Zp[[T ]] by sending
γ to 1 + T . It is well known that any finitely generated Λ-module admits
a decomposition up to quasi-isomorphism as a direct sum of elementary Λ-
modules. Denote by nQ the n-th layer of the Zp-extension, so nQ is a subfield
of ∞Q and Gal(nQ/Q) ∼= Z/pnZ. As before, we may define the p-Selmer group
over nQ by the exact sequence

0 −→ Sp(E/nQ) −→ H1(nQ, E(p)) −→
⊕
υ

H1(nQυ, E)

with the product running over all places υ of nQ. Moreover, over the full Zp-
extension, we define Sp(E/∞Q) to be the direct limit lim−→ Sp(E/nQ) following
the maps induced by the restriction maps H1(nQ, E(p)) −→ H1(n+1Q, E(p)).
The group Sp(E/∞Q) contains essentially the information about the growth of
the rank of E(nQ) and of the size of X(E/nQ)(p) as n tends to infinity. We
will consider the Pontryagin dual

X(E/∞Q) = Hom (Sp(E/∞Q),Qp/Zp)

which is a finitely generated Λ-module (see [CS00]).

6.1 The ordinary case

Assume now that the reduction at p is either good ordinary or of multiplicative
type. Kato’s Theorem 17.4 in [Kat04], which uses the work of Rohrlich [Roh84],
states that X(E/∞Q) is a torsion Λ-module. Hence by the decomposition
theorem, we may associate to it a characteristic series

fE(T ) ∈ Zp[[T ]] (14)

that is well-defined up to multiplication by a unit in Zp[[T ]]×.
In analogy to the zeta-function of a variety over a finite field, one should

think of fE(T ) as a generating function encoding the growth of the rank and
the Tate-Shafarevich group. For instance, the zeros of fE(T ) at T = ζ−1 with
ζ a root of unity whose order is a power of p describe the growth of the rank.
Since a non-zero power series with coefficients in Zp can only have finitely many
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zeros, one can deduce that the rank of E(nQ) has to stabilize in the tower nQ.
In other words, the Mordell-Weil group E(∞Q) is still of finite rank.

The following result is due to Schneider [Sch85] and Perrin-Riou [PR82].
The multiplicative case is due to Jones [Jon89]. Note that he uses the analytic
and algebraic p-adic height defined by Schneider in [Sch82]; with the mentioned
correction by Werner they agree with our definition in Section 4.2.

Theorem 10 (Schneider, Perrin-Riou, Jones).
The order of vanishing of fE(T ) at T = 0 is at least equal to the rank r. It
is equal to r if and only if the p-adic height pairing is non-degenerate (Con-
jecture 3) and the p-primary part of the Tate-Shafarevich group X(E/Q)(p) is
finite (Conjecture 1). In this case the leading term of the series fE(T ) has the
same valuation as

εp ·
∏
υ cυ ·#X(E/Q)(p)

(#E(Q)(p))2
· Regγ(E/Q)

unless the reduction is split multiplicative in which case the same formula holds
with εp replaced by Lp/ log(κ(γ)).

Let us consider again the curve E0. We have computed the 5-adic regulator
and found that it is non-zero. The above theorem shows now that the order of
vanishing of fE0(T ) is at least equal to the rank. The finiteness of X(E0/Q)(5)
is now equivalent to the statement that the order of vanishing is equal to the
rank. If it is the case then the leading coefficient has valuation equal to

ord5(f∗E0
(0)) = 1 + ord5(#X(E0/Q)(5)) .

If the valuation of the leading term of fE0(T ) is positive we call p an irregular
prime for E. For irregular primes either the Mordell-Weil rank of E over ∞Q
is larger than the rank of E(Q) or the Tate-Shafarevich group X(E/∞Q) is
no longer finite. We will later determine exactly what happens for E0.

6.2 The supersingular case

The supersingular case is more complicated, since the Λ-module X(E/∞Q) is
not torsion. A very beautiful approach to the supersingular case has been found
by Pollack [Pol03] and Kobayashi [Kob03]. As mentioned above there exists
two p-adic series L±p (E, T ) to which will correspond two new Selmer groups
X±(E/∞Q) which now are Λ-torsion. Despite the advantages of this ±-theory,
we are using the approach of Perrin-Riou here. See Section 3 in [PR03].

Let TpE be the Tate module and define H1
loc to be the projective limit of the

cohomology groups H1(nQp, TpE) with respect to the corestriction maps. Here
nQp is the localization of nQ at the unique prime p above p. Perrin-Riou [PR94]
has constructed a Λ-linear Coleman map Col from H1

loc to a sub-module of
Qp[[T ]]⊗Dp(E).
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Define the fine Selmer group to be the kernel

R(E/nQ) = ker (S(E/nQ) −→ E(nQp)⊗Qp/Zp) .

It is again a consequence of the work of Kato, namely Theorem 12.4 in [Kat04],
that the Pontryagin dual Y (E/∞Q) of R(E/∞Q) is a Λ-torsion module. Denote
by gE(T ) its characteristic series.

Let Σ be any finite set of places in Q containing the places of bad reduction
for E and the places ∞ and p. By GΣ(nQ), we denote the Galois group of
the maximal extension of nQ unramified at all places which do not lie above
Σ. Next we define H1

glob as the projective limit of H1(GΣ(nQ), TpE). It is a
Λ-module of rank 1 and it is actually independent of the choice of Σ.

By Kato again, the Λ-module H1
glob is torsion-free and H1

glob⊗Qp has Λ⊗Qp-
rank 1. Choose now any element ∞c in H1

glob such that Zc = H1
glob/(Λ · ∞c)

is Λ-torsion. Typically such a choice could be the “zeta element” of Kato, i.e.
the image of his Euler system in H1

glob. Write hc(T ) for the characteristic series
of Zc. Then we define an algebraic equivalent of the Dp(E)-valued L-series by

fE(T ) = Col(∞c) · gE(T ) · hc(T )−1 ∈ Qp[[T ]]⊗Dp(E)

where by Col(∞c) we mean the image under the Coleman map Col of the
localization of ∞c to H1

loc. The resulting series fE(T ) is independent of the
choice of ∞c. Of course, fE(T ) is again only defined up to multiplication by a
unit in Λ×.

Again we have an Euler-characteristic result due to Perrin-Riou [PR93]:

Theorem 11 (Perrin-Riou).
The order of vanishing of fE(T ) at T = 0 is at least equal to the rank r. It is
equal to r if and only if the Dp(E)-valued regulator Regp(E/Q) is nonzero (Con-
jecture 4) and the p-primary part of the Tate-Shafarevich group X(E/Q)(p) is
finite (Conjecture 1). In this case the leading term of the series (1−ϕ)−2 fE(T )
has the same valuation as∏

υ

cυ ·#X(E/Q)(p) · Regp(E/Q) .

Note that the proof of this theorem in the appendix of [PR03] for the
supersingular case uses the formula in lemma 9 rather than the wrong definition
of the regulator. Also we simplified the right hand term in comparison to (13),
because Np ≡ 1 (mod p) and hence #E(Q)tor must be a p-adic unit, since the
reduction at p is supersingular.

7 The Main Conjecture

The main conjecture links the two p-adic power series (4) and (14) of the pre-
vious sections. We formulate everything now simultaneously for the ordinary
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and the supersingular case, even if they are of quite different nature. We still
assume that p 6= 2.

Conjecture 7. (Main conjecture of Iwasawa theory for elliptic curves)
If E has good or non-split multiplicative reduction at p, then there exists an
element u(T ) in Λ× such that Lp(E, T ) = fE(T ) · u(T ). If the reduction of E
at p is split multiplicative, then there exists such a u(T ) in T · Λ×.

The statement of the main conjecture for supersingular primes is known
to be equivalent to Kato’s formulation in Conjecture 12.10 in [Kat04] and to
Kobayashi’s version in [Kob03]. In the notations of the previous section, it can
be reformulated by saying that gE(T ) = hc(T ) when c is Kato’s zeta element.

Much is now known about this conjecture. To the elliptic curve E we attach
the mod-p representation

ρ̄p : Gal(Q̄/Q) −→ Aut(E[p]) ≈ GL2(Fp)

of the absolute Galois group of Q. Serre proved that ρ̄p is almost always sur-
jective (note that by hypothesis E does not have complex multiplication) and
that for semi-stable curves surjectivity can only fail when there is an isogeny
of degree p defined over Q. See [Ser72] and [Ser96].

Kato’s Theorem 12.
Suppose that E has semi-stable reduction at p and that ρ̄p is either surjective or
that its image is contained in a Borel subgroup. Then there exists a series d(T )
in Λ such that Lp(E, T ) = fE(T ) · d(T ). If the reduction is split multiplicative
then T divides d(T ).

The main ingredient for this theorem is in Theorem 17.4 in [Kat04] for
the good ordinary case when ρ̄p is surjective, or in [Wut06] when there is a
p-isogeny. For the exceptional case we refer to [Kob06].

In particular, the theorem applies to all odd primes p if E is a semi-stable
curve. For the remaining cases, e.g., if the image of ρ̄p is contained in the
normalizer of a Cartan subgroup, one obtains only a weaker statement:

Kato’s Theorem 13.
Suppose the image of ρ̄p is not contained in a Borel subgroup of GL2(Fp) and
that ρ̄p is not surjective. Then there is an integer m > 0 such that fE(T )
divides pm · Lp(E, T ).

Greenberg and Vatsal [GV00] have shown that in certain cases the main
conjecture holds. There is hope that the main conjecture will be proved soon
for primes p subject to certain conditions. We are awaiting the forthcoming
paper of Skinner and Urban.
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7.1 The examples

Consider again the curve E0 (see Equation (6)) and the good ordinary prime
p = 5. The theorem of Kato shows that fE0(T ) divides Lp(E0, T ). Since we
have found two linearly independent points of infinite order on E0(Q), we know
that the rank of E0(Q) is at least 2. Hence the order of vanishing of fE0(T )
at T = 0 is at least 2 and, by the above theorem, so is the order of vanishing
for Lp(E0, T ). But we have computed an approximation to Lp(E0, T ) showing
that the order of vanishing cannot be larger than 2. Therefore the rank of
E0(Q) is equal to the order of vanishing of the p-adic L-series.

But we know more now. The fact that the order of vanishing of fE0(T )
is equal to 2 shows that the 5-primary part of X(E0/Q) cannot be infinite.
Comparing the leading term of Lp(E0, T ), which has valuation 1, and the
leading term of fE0(T ), which has valuation 1 + ord5(#X(E0/Q)(5)), shows
that the 5-primary part of X(E0/Q) is trivial.

Moreover, the series fE0(T ) and Lp(E0, T ) have now the same leading term.
This implies that the main conjecture holds, i.e. fE0(T ) ∈ Lp(E0, T ) · Λ×. By
analyzing the series Lp(E0, T ), it can be shown that

fE(T ) = T · ((T + 1)5 − 1) · u(T )

for a unit u(T ) ∈ Λ×. Let 1Q be the first layer of the Z5-extension of Q. Unless
the Tate-Shafarevich group X(E/1Q)(5) is infinite, Iwasawa theory predicts
now that the rank of the Mordell-Weil group E0(1Q) is 6. Doing a quick
search it is easy to find points of infinite order in E(1Q) which are not defined
over Q. Therefore, we know that the rank of E(1Q) and of E(∞Q) is 6 and
that X(E0/1Q)(5) and X(E0/∞Q)(5) are finite. For more examples of such
factorizations of p-adic L-series we refer to [Pol].

8 If the L-series does not vanish

Suppose the Hasse-Weil L-function L(E, s) does not vanish at s = 1. In this
case Kolyvagin proved that E(Q) and X(E/Q) are finite. In particular Con-
jecture 1 is valid; also, Conjectures 3 and 4 are trivially true in this case.

Let p > 2 be a prime of semi-stable reduction such that the representation
ρ̄p is either surjective or has image contained in a Borel subgroup of GL2(Fp).
By the interpolation property, we know that Lp(E, 0) is nonzero, unless E has
split multiplicative reduction.

8.1 The good ordinary case

In the ordinary case we have

ε−1
p · Lp(E, 0) =

L(E, 1)
ΩE

= [0]+,
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which is a nonzero rational number by [Man72]. In the following inequality, we
use Theorem5 10 of Perrin-Riou and Schneider for the first equality and Kato’s
Theorem 12 on the main conjecture for the inequality in the second line.

ordp

(
εp ·

∏
υ cυ ·#X(E/Q)(p)

(#E(Q)(p))2

)
= ordp(fE(0))

6 ordp(Lp(E, 0))

= ordp

(
L(E, 1)

ΩE

)
+ ordp(εp)

Hence, we have the following upper bound on the p-primary part of the Tate-
Shafarevich group, which is sharp under the assumption of the main conjecture:

ordp (#X(E/Q)(p)) 6 ordp

(
L(E, 1)

ΩE

)
− ordp

( ∏
cυ

(#E(Q)tor)2

)
= ordp(#X(E/Q)an). (15)

This bound agrees with the Birch and Swinnerton-Dyer conjecture.

8.2 The multiplicative case

If the reduction is not split, then the above holds just the same, because in all
the theorems involved the non-split case never differs form the good ordinary
case (only the split multiplicative case is exceptional). If instead the reduction
is split multiplicative, we have that Lp(E, 0) = 0 and

L′p(E, 0) =
Lp

log κ(γ)
· L(E, 1)

ΩE

=
Lp

log κ(γ)
· [0]+ 6= 0 .

Since the p-adic multiplier is the same on the algebraic as on the analytic side,
we can once again compute it as above to obtain the same bound (15) again.

8.3 The supersingular case

For the supersingular Dp(E)-valued series, we have

(1− ϕ)−2 · Lp(E, 0) =
L(E, 1)

ΩE

· ωE = [0]+ · ωE

which is a nonzero element of Dp(E). The Dp(E)-valued regulator Regp(E/Q)
is equal to ωE. We may therefore concentrate solely on the coordinate in ωE.

5In the case of analytic rank 0, the theorem is actually relatively easy and well explained
in [CS00].
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Write ordp(fE(0)) for the p-adic valuation of the leading coefficient of the ωE-
coordinate of fE(T ). Again we obtain an inequality by using Theorem 11

ordp

(∏
υ

cυ ·#X(E/Q)(p)

)
= ordp((1− ϕ)−2 fE(0))

6 ordp((1− ϕ)−2 Lp(E, 0))

= ordp

(
L(E, 1)

ΩE

)
.

So we have once again that #X(E/Q)(p) is bounded from above by the highest
power of p dividing #X(E/Q)an.

8.4 Conclusion

Summarizing the above computations, we have

Theorem 14 (Kato, Perrin-Riou, Schneider).
Let E be an elliptic curve such that L(E, 1) 6= 0. Then X(E/Q) is finite and

#X(E/Q)
∣∣∣ C · L(E, 1)

ΩE

· (#E(Q)tor)2∏
cυ

where C is a product of a power of 2 and of powers of primes of additive reduc-
tion and of powers of primes for which the representation ρ̄p is not surjective
and there is no isogeny of degree p on E defined over Q.

In particular, if E is semi-stable, then C is a power of 2.

This improves Corollary 3.5.19 in [Rub00].

9 If the L-series vanishes to the first order

We suppose for this section that E has good and ordinary reduction at p and
that the complex L-series L(E, s) has a zero of order 1 at s = 1. The method
of Heegner points and the theorem of Kolyvagin show again that X(E/Q) is
finite and that the rank of E(Q) is equal to 1. Let P be a choice of generator
of the free part of the Mordell-Weil group (modulo torsion). Suppose that the
p-adic height ĥp(P ) is nonzero. Thanks to a theorem of Perrin-Riou in [PR87],
we must have the following equality of rational numbers

1
Reg(E/Q)

· L
′(E, 1)
ΩE

=
1

Regp(E/Q)
·

L′p(E, 0)
(1− 1

α )2 · log(κ(γ))

where, on the left hand side, we have the canonical real-valued regulator
Reg(E/Q) = ĥ(P ) and the leading coefficient of L(E, s), while, on the right
hand side, we have the p-adic regulator Regp(E/Q) = ĥp(P ) and the leading
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term of the p-adic L-series. By the conjecture of Birch and Swinnerton-Dyer (or
its p-adic analogue), this rational number should be equal to

∏
cυ ·#X(E/Q) ·

(#E(Q)tor)−2. By Kato’s theorem, one knows that the characteristic series
fE(T ) of the Selmer group divides Lp(E, T ), at least up to a power of p. Hence
the series fE(T ) has a zero of order 1 at T = 0 and its leading term divides the
above rational number in Qp (here we use that E(Q) has rank 1 so T | fE(T )).
We thus arrive at the following theorem.

Theorem 15 (Kato, Perrin-Riou).
Let E/Q be an elliptic curve with good ordinary reduction at the odd prime p.
Assume that the p-adic regulator of E is nonzero. Suppose that the representa-
tion ρ̄p is surjective onto GL2(Fp) or that the curve admits an isogeny of degree
p defined over Q. If L(E, s) has a simple zero at s = 1, then the p-primary
part of X(E/Q) is finite and its valuation is bounded by

ordp(#X(E/Q)(p)) 6 ordp

(
(#E(Q)tor)2∏

cυ
· 1

Reg(E/Q)
· L
′(E, 1)
ΩE

)
.

In other words the upper bound asserted by the Birch and Swinnerton-Dyer
conjecture is true up to a factor involving only bad and supersingular primes,
and primes for which the representation is neither surjective nor has its image
contained in a Borel subgroup.

The above theorem is valid only under the assumption that the reduction
is good ordinary. This is only this case when we know a proof of the p-adic
Gross-Zagier formula. It would be very interesting to obtain a generalization
of this formula to the supersingular case.

10 The algorithm for an upper bound of the
rank

Let E/Q be an elliptic curve. We now have a possibility of computing upper
bounds on the rank r of the Mordell-Weil group E(Q). For this purpose, we
choose a prime p satisfying the following conditions:

• p > 2,

• E has good reduction at p.

By computing the analytic p-adic L-function Lp(E, T ) to a certain precision,
we find an upper bound, say b, on the order of vanishing of Lp(E, T ) at T = 0.
Note that a theorem of Rohrlich [Roh84] guarantees that Lp(E, T ) is not zero.
Then

b > ordT=0 Lp(E, T ) > ordT=0 fE(T ) > r

by Kato’s Theorems 12 and 13 and by the theorems 10 and 11. Hence we have
an upper bound on the rank r.
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Proposition 16. The computation of an approximation of the p-adic L-series
of E for an odd prime p of good reduction produces an upper bound on the rank
r of the Mordell-Weil group E(Q).

By searching for points of small height on E at the same time, one also
obtains a lower bound on the rank r. Simultaneously one can increase the
precision of the computation of the p-adic L-function in order to try to lower
the bound b. Eventually the lower bound is equal to the upper bound, unless
the p-adic Birch and Swinnerton-Dyer Conjecture 5 or 6 is false. This is very
similar to the algorithm described in Proposition 1, except that we do know
here that our upper bounds are unconditional. But we do not know if the
algorithm terminates after finitely many steps. Summarizing we can claim the
following.

Proposition 17. Let E be an elliptic curve, and assume that there is a prime
p of good reduction such that the p-adic Birch and Swinnerton-Dyer conjecture
is true. Then there is an algorithm that computes the rank r of E using p-adic
L-functions.

Of course, the algorithm for computing bounds on the rank r using m-
descents has the same properties: it tries to determine the rank by searching
for points and by bounding r from above by the rank of the various m-Selmer
groups. Unless all the p-primary parts of the Tate-Shafarevich group are infinite
this algorithm returns the rank r after a finite number of steps.

But the two algorithms are fundamentally different, since the m-descent
algorithm is fast and there are optimized implementations for m = 2, 3, 4, but it
would be extremely time-consuming for larger m, e.g., m > 7. (In fact, nobody
has yet implemented and run a program that computes general 7-descents.)

10.1 Technical remarks

The second condition on the prime p is too strict. We may actually allow primes
of multiplicative reduction, too. Of course in the exceptional case, when E has
split multiplicative reduction, the upper bound b on the order of vanishing of
the p-adic L-function Lp(E, T ) at T = 0 satisfies b > r + 1.

Note that, assuming that the p-adic Birch and Swinnerton-Dyer conjecture
holds, it is easy to predict the needed precision in the computation of the p-adic
L-series. So one can actually compute immediately with the precision which
should be sufficient and concentrate on the search for points of small heights.

For all practical purposes, one has to take p as small as possible. The
computation of the leading term of Lp(E, T ) for curves of higher rank r is very
time-consuming for large p. Also one should avoid primes p with supersingular
or split multiplicative reduction as there the needed precision is much higher
and the computation of b is much slower.

Also the speed of the computation of Lp(E, T ) using modular symbols de-

30



pends on the size of the conductor. As the conductor grows, the determination
of the rank, when it is larger than 1, using the descent method becomes much
more efficient than the use of p-adic L-series. However, using p-adic L-series
may provide an advantage when considering families of quadratic twists.

Another advantage to the descent method is that the determination of the
m-Selmer group for some m > 1 can be used for the search of points of infinite
order. If the elements of the Selmer group can be expressed as coverings, it is
much more efficient to search for rational points on the coverings rather than
on the elliptic curve itself.

11 The algorithm for the Tate-Shafarevich group

The second algorithm that we are presenting here takes as input an elliptic
curve E and a prime p and tries to compute an upper bound on the p-primary
part of X(E/Q). To be able to apply the results in the previous section, we
need the following conditions on (E, p):

• p > 2,

• E does not have additive reduction at p,

• and the image of ρ̄p is either the full group GL2(Fp) or it is contained in
a Borel subgroup of GL2(Fp).

Note that, for any given curve E, these conditions apply to all but finitely
many primes p.

Algorithm 18. Given an elliptic curve E/Q and a prime p satisfying the above
conditions, this procedure either gives an upper bound for #X(E/Q)(p) or ter-
minates with an error.

1. Determine the rank r and the full Mordell-Weil group E(Q). Exit with an
error if we fail to do this.

2. Compute the p-adic regulator of E over Q using the efficient algorithm
in [MST06]. Exit with an error if the p-adic height pairing cannot be shown
to be non-degenerate.

3. Using modular symbols, compute an approximation of the leading term
L∗p(E, 0) of the p-adic L-function Lp(E, T ). If the order of vanishing

ordT=0 Lp(E, T )

is equal to r (or r+1 if E has split multiplicative reduction at p), then we print
that X(E/Q)(p) is finite, otherwise we have to increase the precision of the
computation of Lp(E, T ). It this fails to prove that ordT=0 Lp(E, T ) = r
(or r + 1), then exit with an error.

4. Now compute the remaining information, including the Tamagawa numbers
cυ and the p-adic multiplier εp. If p is an good ordinary prime or a prime at
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which E has non-split multiplicative reduction, then let

bp = ordp(L∗p(E, 0)) + 2 · ordp(#(E(Q)(p)))− ordp(εp)

−
∑
υ

ordp(cυ)− ordp(Regγ(E/Q)) ,

if p is supersingular, let

bp = ordp((1− ϕ)−2 L∗p(E, 0))− ordp(Regp(E/Q))−
∑
υ

ordp(cυ) ,

and finally if E has split multiplicative reduction at p, let

bp = ordp(L∗p(E, 0)) + 2 · ordp(#(E(Q)(p))− ordp(Lp)

−
∑
υ

ordp(cυ)− ordp(Regγ(E/Q)) .

5. Output that #X(E/Q)(p) is bounded by pbp .

Proof. When arriving at Step 4, we have shown that Conjecture 3 (or Conjec-
ture 4 in the supersingular case) on the non-degeneracy of the p-adic regulator
holds and that X(E/Q)(p) is indeed finite by Theorem 10 (or Theorem 11 in
the supersingular case). Moreover this theorem shows that

ordp(#X(E/Q)(p)) = ordp(f∗E(0)) + ordp

(
(#E(Q)(p))2

εp ·
∏
υ cυ

· 1
Regγ(E/Q)

)
in the ordinary case (or the same formula where εp replaces by Lp in the split
multiplicative case) and

ordp(#X(E/Q)(p)) = ordp((1−ϕ)−2 f∗E(0))−ordp(Regp(E/Q))−
∑
υ

ordp(cυ)

in the supersingular case. Finally use Kato’s Theorem 12 stating that

ordp(f∗E(0)) 6 ordp(L∗p(E, 0))

to prove that bp is indeed an upper bound on ordp(#X(E/Q)(p)).

In the next proposition we summarize the discussion of this section.

Proposition 19. Let E be an elliptic curve and p > 2 a prime for which E
has semi-stable reduction. If Conjectures 3 and 4 hold and if we are able to
determine the Mordell-Weil group of E, then there is a algorithm to verify
that the p-primary part of X(E/Q) is finite. If moreover the representation
ρ̄p is either surjective or has its image contained in a Borel subgroup, then the
algorithm produces an upper bound on #X(E/Q)(p). If the main Conjecture 7
holds then the result of the algorithm is equal to the order of X(E/Q)(p).
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11.1 Technical remarks

In Step 1 we may use several ways to determine the rank and the Mordell-Weil
group. E.g., first compute the modular symbol [0]+. If it is not zero, we have
that L(E, 1) 6= 0 and the rank has to be 0. If the order of vanishing of L(E, s)
at s = 1 is 1, we may use Heegner points to find the full Mordell-Weil group,
which then is of rank 1. Otherwise we have to use descent methods or the
algorithm in the previous section to bound the rank from above and a search
for points to find a lower bound. When enough points are found to generate
a group of finite index, one has to saturate the group using infinite descent in
order to find the full group E(Q). In practice this step does not create any
problems as Step 3 is usually computationally more difficult.

In Step 3, it is easy to determine the precision that will be needed to
compute the p-adic valuation of the leading term L∗p(E, 0) if one assumes the
complex and the p-adic version of the conjecture of Birch and Swinnerton-Dyer.
Hence it is easy to decide when to exit at this step.

The algorithm exits with an error only if the Mordell-Weil group could not
be determined (in Step 1), if Conjecture 3 or 4 is wrong (in Step 2), if the
p-primary part of X(E/Q) is infinite or if the main conjecture is false (both in
Step 3). Hence only weaker variants of the p-adic Birch and Swinnerton-Dyer
conjecture are needed.

Another application of the algorithm is the following remark. If, for a given
elliptic curve E and a prime p, the algorithm yields the answer that the p-
primary part of X(E/Q) is trivial, then the algorithm has actually also proved
the main conjecture for E and p. Because we know by then that Lp(E, T ) and
the characteristic series fE(T ) of the Selmer group have the same order of
vanishing at T = 0 and the leading terms have the same valuation. Since,
by Kato’s theorem fE(T ) divides Lp(E, T ), we know then that the quotient
is a unit in Zp[[T ]]. Such calculations and especially this remark on how to
verify the main conjecture in special cases are already contained in [PR03] for
supersingular primes p.

12 Numerical results

The algorithms described above are implemented in Sage (see [Ste09]), which is
a free open source mathematics software package. All of the calculations given
below can be carried out using Sage.

12.1 A split multiplicative example

To give an example of a curve with split multiplicative reduction, we use the
same curve as before (see Equation (6))

E0 : y2 + x y = x3 − x2 − 4x + 4
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but with the prime p = 223. Of course, there is no hope in practice that a
223-descent could be used to compute the order of X(E0/Q)(223). We can
compute the p-adic regulator and the L-invariant to high precision very quickly
using Tate’s parametrization of E:

Regp(E0/Q) = 153 · 2232 + 125 · 2233 + 124 · 2234 + O(2235),

L = 179 · 223 + 85 · 2232 + 30 · 2233 + O(2234).

The computation of the p-adic L-series is more time consuming. But as we
only need the first p-adic digit to prove the triviality of X(E0/Q)(223), we
only need to sum over 222 modular symbols. This yields

Lp(E0, T ) = O(2234)+O(2231) ·T+O(2231) ·T 2 +(139+O(223)) ·T 3 +O(T 4).

In fact, we know that the first three coefficients vanish as we are in the excep-
tional case, so the leading term has valuation 0. From these computations, we
see that the p-adic Birch and Swinnerton-Dyer conjecture predicts that

#X(E0/Q) ≡ 1 (mod 223);

in particular we may conclude that X(E0/Q)(223) = 0.

12.2 A supersingular example

Let E be the elliptic curve

E : y2 + x = x3 + x2 + 2 · x + 2

listed as curve 1483a1 in Cremona’s tables. The curve has rank 2 generated by
(−1, 0) and (0, 1). The reduction of E at p = 5 is supersingular. The p-adic
L-function equals

Lp(E, T ) =
(
(1 + O(5)) · T 2 + (1 + O(5)) · T 3 + O(T 4)

)
· ωE

+
(
(4 · 5 + O(52)) · T 2 + (4 · 5 + O(52)) · T 3 + O(T 4)

)
· ϕ(ωE)

where we have already taken in account that the first two terms vanish. We
compute the normalized Dp-valued regulator

Regγ(E/Q) =
(
1 + 2 · 5 + 3 · 52 + 53 + O(55)

)
· ωE

+
(
4 · 5 + 4 · 52 + 4 · 53 + 54 + 2 · 55 + O(56)

)
· ϕ(ωE) .

Hence the p-adic Birch and Swinnerton-Dyer conjecture predicts that(
1 + O(5)

)
ωE +

(
4 · 5 + O(52)

)
ϕ(ωE) =

#X(E/Q) ·
((

1 + O(5)
)
ωE +

(
4 · 5 + O(52)

)
ϕ(ωE)

)
.

In particular, we have shown that X(E/Q)(5) is trivial. It follows from
Iwasawa-theoretic consideration as in [PR03] that, if #X(E/nQ)(5) = 5en
then

en =
p

p2 − 1
· pn + O(1) .
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12.3 An example whose Tate-Shafarevich group is non-
trivial

Let E be the elliptic curve given by

E : y2 + x y = x3 + 16353089x − 335543012233

which is labeled 858k2 in [Cre]. The curve has rank 0 and is semi-stable, and the
full Birch and Swinnerton-Dyer conjecture predicts that the Tate-Shafarevich
group X(E/Q) consists of two copies of Z/7Z.

We may compute the 7-adic L-series, which yields

L7(E, T ) =72 · (2 · 72 + 73 + 74 + 3 · 75 + O(76) + (5 · 72 + O(73)) · T
+ (3 + 4 · 7 + 5 · 72 + O(73)) · T 2 + O(T 3))

On the algebraic side, we find that the constant term of the characteristic
series of E has valuation 2 + ord7(#X(E/Q)). So our algorithm yields the
correct upper bound, that #X(E/Q)(7) 6 72. We can change to the curve
858k1 with a 7-isogeny and prove there directly that the upper bound on the
7-primary part of the Tate-Shafarevich group is 1, so by isogeny invariance of
the Birch and Swinnerton-Dyer conjecture it follows that #X(E/Q)(7) = 72.
(Of course, this can be shown with other methods for this curve of rank 0,
e.g. by using Heegner points.) Since we know the exact order of X(E/Q), we
deduce that the main conjecture holds.

Once again we learn even more from the computation of the p-adic L-
series. Iwasawa theory tells us now that the order of the Tate-Shafarevich
group grows very quickly (for an ordinary prime) in the Z7-extension. Namely
if #X(E/nQ) = 7en then en = 2 · 7n + 2 · n+ O(1).

12.4 Future Tables

We intend to write a follow-up paper to the present article that contains ex-
tensive tables, analysis of the resulting data, and more detailed discussion of
computational complexity and implementation issues. These tables will in-
clude p-adic regulators, and the p-adic analytic order of the Tate-Shafarevich
group X(E/Q) for various small primes and a large number of curves of vari-
ous ranks. In particular, we will compute the upper bound on the order of
X(E/Q)(p) for many pairs (E, p) where we expect to have nontrivial elements
X(E/Q)(p).
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Birkhäuser Boston, 1981, pp. 1–14.

[Ber82] Daniel Bertrand, Valuers de fonctions thêta et hauteur p-adiques,
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