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HOW TO DO A p-DESCENT ON AN ELLIPTIC CURVE

EDWARD F. SCHAEFER AND MICHAEL STOLL

ABSTRACT. In this paper, we describe an algorithm that reduces the compu-
tation of the (full) p-Selmer group of an elliptic curve E over a number field to
standard number field computations such as determining the (p-torsion of) the
S-class group and a basis of the S-units modulo pth powers for a suitable set S
of primes. In particular, we give a result reducing this set S of ‘bad primes’ to
a very small set, which in many cases only contains the primes above p. As of
today, this provides a feasible algorithm for performing a full 3-descent on an
elliptic curve over Q, but the range of our algorithm will certainly be enlarged
by future improvements in computational algebraic number theory. When the
Galois module structure of E[p] is favorable, simplifications are possible and
p-descents for larger p are accessible even today. To demonstrate how the
method works, several worked examples are included.

1. INTRODUCTION

Let E/K be an elliptic curve over a number field K and recall the usual exact
sequence related to an m-descent,

0 — E(K)/mBE(K) — Sel'™(K,E) — (K, E)[m] — 0.

We are able to find the middle term for m = 2 in many cases. John Cremona’s
mwrank program (see the description in [9]) has become the standard means of
determining the 2-Selmer group if K = Q and, if HI(Q, F)[2] = 0, the Mordell-Weil
rank. It performs very well on most ‘real life’ elliptic curves. Cremona’s approach
goes back to Birch and Swinnerton-Dyer; it uses the fairly concrete description of
the 2-Selmer group as the set of equivalence classes of certain so-called 2-coverings,
genus 1 curves over the base field that allow certain maps to the elliptic curve.
Although this works very well for 2-descents over the rationals, it suffers from
combinatorial explosion when the base field is enlarged, when higher p-descents are
attempted, or even when the elliptic curve is ‘large’.

There is an alternative method, going back to Mordell [21] and Weil [35]. Tt is
based on the cohomological description of the Selmer group and represents it as a
finite subgroup of L* /(L*)?, where L is (usually) a degree 3 field extension of the
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base field. This method avoids the combinatorial problems of the first approach,
but it requires a thorough knowledge of the arithmetic of L. Detailed modern
descriptions can be found in [28], [33]. It has also been applied to determine the
rank of several elliptic curves over number fields. Simon [31) [32] has a general
description of the algorithm and worked examples.

There are now several reasons why it is desirable to compute the m-Selmer group
for values of m other than 2. The first is that we want to go around the obstruction
III(K, E)[2] for the determination of the rank. The second is that the knowledge
of several Selmer groups for distinct values of m lets us deduce facts about the
Shafarevich-Tate group III( K, E). Selmer groups for arbitrary m are also of interest
in Iwasawa theory as well as in the study of visible parts of Shafarevich-Tate groups
(see Cremona and Mazur [10]).

Algorithms for computing the full m-Selmer group of an ellptic curve for m > 2
have only been described in [A] and [12]. Cassels describes how to compute the
3-Selmer group over Q((3) for an elliptic curve of the form y? = 2 + d where d is a
square. In [12] is a rough algorithm describing the computation of a p-Selmer group
for p a prime (see the end of Section Elfor a discussion). Note that algorithms for
computing the image of the 4-Selmer group in the 2-Selmer group have also been
described (see [4, 19]).

Algorithms for computing a p-isogeny Selmer group have been described for
p = 2 (see [30, Bl 5] among others), p = 3 for j = 0 (see [7} B, 06, 22 27, 34])
and arbitrary j (see [I1]), and p = 5 and 7 when there is a rational 5- or 7-torsion
point, respectively (see [14]).

In this article, we improve on the algorithm in [I2] to derive an algorithm that is
guaranteed to compute the p-Selmer group. Our algorithm gives a feasible reduction
of the p-descent on an elliptic curve to standard computations in number fields.
Since we can expect progress on the latter, p-descent computations will become
more and more feasible. Given the current state of the art in dealing with number
fields, the only computations which are feasible in general at the moment are for
the special case p = 3 over the base field Q (although this will certainly change).
For this case we give a very explicit description of the algorithm in Section [} This
3-descent algorithm has been implemented by the second author in MAGMA [1§],
and proved to work quite well on a number of examples. When the Galois module
structure of E[p] is favorable, simplifications are possible and p-descents for larger p
are accessible even today.

Note also that we give a quite general result on the set of ‘bad primes’ that
have to be considered in a p-descent. It says that it suffices to consider primes
above p, together with primes such that the corresponding Tamagawa number of
the elliptic curve (or one of the two curves involved in case of a descent by p-isogeny)
is divisible by p; see Proposition Since Tamagawa numbers are rarely large,
this leads to a considerable improvement in the efficiency of the algorithm. When
the elliptic curve has a rational p-isogeny h : F — E’, we can use Selmer groups
related to h and the dual isogeny instead of the p-Selmer group. The computation
is considerably simpler and is described in Section

We finish with three examples featuring computations of the various Selmer
groups we describe. In the first, we use a 3-Selmer group to determine the Mordell-
Weil rank of an elliptic curve which cannot be determined from the analytic rank
nor from the 2-Selmer group. In the second, we find the 5-Selmer group of an elliptic
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curve in which 5 splits in the endomorphism ring. In the third, we use two h-Selmer
groups, where h is an isogeny of degree 13, to show that two isogenous elliptic curves
have trivial 13-parts of their Shafarevich-Tate groups over the rationals.

The reader is welcome to contact either author for an expanded version of this
paper that includes some omitted proofs and computations.

2. ETALE ALGEBRAS

An étale algebra D over an infinitd] field K is a K-algebra of the form D =
K[T)/(f(T)), where f(T) € K[T]is a monic polynomial with non-zero discriminant.
Such an algebra decomposes uniquely into a direct product of finite separable field
extensions of K, i.e., D = [[", D;. When K is a number field and S is a finite set
of places of K, we define

m
D(S,p) = {a € D*/(D*)? | a unramified outside S} = HDi(S,p) .
i=1
Here « is called unramified outside S when all the extensions D;( ¢/a;) are unram-
ified at all primes of D, lying above a place outside S; (a1,...,am) is a represen-
tative of «, split into its components according to the splitting of D into number
fields.

We write D = D @ K with K a separable closure of K. A straightforward
generalization of Hilbert’s Theorem 90 shows that H!(K, D*) = 0. By the usual
Kummer sequence, this implies H (K, u,(D)) & D*/(D*)?.

A more abstract definition of an étale algebra is that it is the affine algebra
corresponding to a finite étale scheme X over K. When we look at it this way, D
consists of functions from the points X (K) into K, and D is the subset of Galois-
invariant functions (the Galois group acts both on the points and on the values).
Similarly, D* consists of Galois-invariant functions into K *, and p,(D) consists of
functions into p,. We will use this interpretation frequently in what follows.

Let G denote the absolute Galois group of K. In this setting, we get an anti-
equivalence of categories between the category of finite G k-sets and the category
of étale algebras over K.

3. COMPUTING A SELMER GROUP

Throughout this paper, p will be a fixed odd prime number. Let 6 denote an
isogeny from F to E' over K whose kernel has exponent p. Recall that the 6-Selmer
group, Sel'” (K, E), is isomorphic to

{¢ € HY(K,E[0);S") | res, (£) € 6.0(E'(K,)/0E(K,)) for all v € S'},

where S’ is the set of primes of K including primes above p, infinite primes
and primes of bad reduction and dg, is the co-boundary map from E'(K,) to
HY(K,, E[6]) (for this and other theoretical results in this section, see [30, §X.4]).

Let E be defined by a minimal Weierstrass equation over K,, and let Ey(K,)
denote the points with non-singular reduction. Equivalently, Eo(K,) is isomorphic

Un general, we can define an étale algebra over an arbitrary field K to be a finite product of
finite separable field extensions of K. If K is finite, it is not always possible to find a polynomial f
defining the algebra.
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to the group of sections from Ok, to the open subgroup scheme of the Néron
model of E/Ok, gotten by removing the non-identity components of the special
fiber. The following result looks superficially like Proposition 1.3.8 in [20], but is in
fact different and does not seem to exist in the literature.

Lemma 3.1. Assume v does not lie over p. Let R € E{(K,). Then the image of R
in HY(K,, E[]) is unramified.

Proof. Let k, denote the residue class field of K, and denote by E; and FEf the
kernels of reduction. Note that E{(K,) is contained in Ej(K)""). We show that
E{(KM)/0Ey(K2r) is trivial. To see this, consider the following diagram with
exact rows:

O - El (K’LI;IIII‘) — EO (K:}lnl’) — E(kv)ns — O

ls Js g

0 — B{Ky) — BT — E'(R)™ — 0
Here the superscript ns denotes the smooth part of the reduction. The rightmost
vertical map is surjective since k, is algebraically closed. The leftmost vertical map
is surjective since the kernels of reduction are pro-g groups with ¢ # p. Hence the
middle vertical map is also surjective.
The following diagram commutes:

Ey(K,)/0E(K,) 2  HY(K,,E[)

| e

By (K™ [6Eo(Ky™) 2% H(Ky, Blf)

Since the lower left group is trivial, the image of the upper left group in the lower
right group must be trivial. By definition, this means that its image in the upper
right group is unramified. O

We remark that one can extend this proof to show that the image of E’'(K,)
in H'(I,, E[f]) is isomorphic to the image of ®'(k,) in ®'/0®. Here we use ¢’ to
denote E'(K )/ E{ (K1), the component group of the Néron model, and ®'(k,)
to denote the subgroup fixed under the action of Frobenius. (Similarly for F and .)
This provides an alternative way to prove Proposition[3.2] below.

Let cgn = #E(K,)/Eo(K,) = #®(k,). This is often called the Tamagawa
number. The only possible primes at which the Tamagawa number is not 1 are
those dividing the conductor of E.

Proposition 3.2. Let S be any finite set of places containing the places above p
and the places v such that at least one of cg, and cg , is divisible by p. Then

Sel (K, E)={¢ € H'(K, E[0]; S) | res,(€) € 8p,0(E'(K,)/0E(K,)) for allv € S}.

Proof. Since the degree of 0 is odd, if v is infinite, then E'(K,)/0E(K,) and the un-
ramified subgroup of H'(K,, E'[f]) are both trivial. Using the proof of [29, Lemma
3.1], we see that for finite v, the size of the unramified subgroup of H'(K,, E[f]) is
the same as the size of F(K,)[f]. If v is finite and does not lie over p, then the size
of E'(K,)/0E(K,) is #E(K,)[0] - cg' v/cEv (see [29) Lemma 3.8]).
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Now assume that v is finite and does not lie over p, and cg, and cg/, are
not divisible by p. Since the degree of 8 is a p-power and p does not divide cg,,
and cgr,, they must be the same. Thus the image of E'(K,)/0FE(K,) and the
unramified subgroup have the same size. So it suffices to prove that the image
of E'(K,)/0E(K,) is contained in the unramified subgroup. Since cg, and cgs ,
are not divisible by p, the map from E}(K,)/0Ey(K,) to E'(K,)/0E(K,) is an
isomorphism. So from Lemma B, the image of F'(K,)/0F(K,) is unramified. [J

In order to implement this description, we need a practical representation of
the a priori rather abstractly defined group H' (K, E[f]; S) and the maps d,. Our
approach (based on [2§]) is to identify the cohomology group with a subgroup
of D(S, p) for a suitable étale algebra D over K. It will turn out that the coboundary
maps 0, can then be realized as polynomial (or rational) functions on E with values
inD,.

This leaves the task of determining a basis of D(S,p). Thanks to the advances
in the computational theory of number fields, this is now feasible in many cases.
An algorithm for doing so is described in [24] §12]. It involves determining the
(p-torsion of the) S-class group and a basis of the S-units modulo pth powers.

Now let us proceed to find a suitable algebra D. Let 6’ denote the dual isogeny
over K from E’ to E. Let X be a Galois-invariant subset of E’[¢'] \ {0} spanning
E'[0'], and let D be the étale K-algebra corresponding to X, considered as a finite
étale subscheme of E’. Recall that we interpret elements of D as functions on X.

Let wy denote the map from E[f] to p,(D) which sends R to the function P +—
eg(R, P) (where eg is the Weil pairing). Since X is a spanning set of E’[#'], the map
wg is injective. Let wy denote the induced map from H'(K, E[0]) to H' (K, j1,(D)).
Let k denote the Kummer isomorphism from H'(K, u,(D)) to D*/(D*)P. The
image of H'(K, E[0]; S) under k o @y is contained in D(S, p).

For the method to work, the following two conditions on X have to be satisfied:

(i) The map wp must be injective both globally and locally (i.e., over K,).
(i) We must be able to find the image of H!(K, E[0];S) in D(S,p).

In the cases we present, we will verify both conditions. For the following general
discussion, we simply assume them.

We now find a nice description of the composition kowgodg. We use O to denote
the 0-point of F when it appears in the support of a divisor. For each P € X, choose
a function fp in K(P)(E’) with the property that div(fp) = p P — pO and such
that for 0 € Gg we have ofp = fop. Let F be the rational function from E’ to

D which sends a point R to the function P — fp(R). Put differently, we choose
F € D(E’) such that div(F) corresponds to the function X — Divg (K) given by
P—pP—pO.

We call a degree-0 divisor on E’ good if it is defined over K and its support
avoids X U {O}. Since E’ has a K-rational point, every element of E'(K) can be
represented by a good divisor. We can evaluate F' on a good K-rational divisor
> Q5 to get [[; F(Q;)" € D*. By evaluating on good divisors, the function
F induces a well-defined map from E'(K)/0FE(K) to D*/(D*)P, which is the same
as ko wy o dp (see [28, Thm. 2.3)).

For a place v of K, define D, = D Qg K,. The map F then induces a map
F, from E'(K,)/0E(K,) to D}/(D})P. The maps F and F, are injective by our
assumptions.



1214 EDWARD F. SCHAEFER AND MICHAEL STOLL

We can now reformulate how we compute the Selmer group. Consider the fol-
lowing diagram:

B(K)/0E(K) D(S,p)
l l]_[vres“
[oes B/(K)/0E(K,) 25 1,06 D2/(D3)P

We have

Sel (K, E) = {a € (image of H'(K, E[0]; S) in D(S,p)) |

(3.1) res, () € Fy(E'(K,)/0E(K,)) for all v € S} .

In order to find the image F,(E’'(K,)) in D}/(D))P, we need to know the size
of E'(K,)/0E(K,). If v does not lie over p, then this is given in the proof of
Proposition 3.2l If v does lie over p and 6 = p, then

#E(K,) [pE(K,) = pl @ - 4 B(K.)[p]
(see [28, Prop. 2.4]). If v lies over p and 6 is a p-isogeny, then

BE(K,) 0B (K,) = L FEEO] o,
CEv

where v is the norm of the leading coefficient of the power series representation
of 6 on formal groups (see [29, p. 92]). This computation with formal groups can
sometimes be avoided by combining the result for #E(K,)/pE(K,) and the exact
sequence ([6.I) in Section [@ below.

Once we know the size of E'(K,)/0E(K,), we search for good divisors (here
defined over K, ) whose classes span the group. Since F, is injective by assumption,
it is typically easier to determine the independence of such divisors by looking at
their images in D/(D))P. Though in practice, finding good divisors that span
E'(K,)/0E(K,) is usually not difficult, a deterministic algorithm could be modeled
on that found in [33].

4. FULL p-DESCENT. CONDITION (i)

In this and the following section, we consider the situation where 6 is the
multiplication-by-p map on E. We begin with deriving a sufficient condition on X
for condition (i) in Section [ to hold. Some standard references for the group
cohomology needed are [1] and [2].

In [12], it is shown that condition (i) holds when we take X to be E[p] \ {0}.
The following two corollaries follow from the results in [12] §3].

Corollary 4.1. Let My — Ms be a monomorphism of K-Galois modules with
Galois action factoring through a linear action of G C GL(2,F,). We assume
that ol € G acts as multiplication by « on My. If either p t #G or the map
HYW, My) — HYW, My) is injective, where W C G is a p-Sylow subgroup, then
the map on Galois cohomology, H*(L, M) — HY(L, Ms), is also injective for all
field extensions L/K.

Once we choose a basis for E[p], we can identify GL(E[p]) = GL(2,F,).
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Corollary 4.2. Let X be a Galois-invariant spanning set of Elp| and let G be the
image of Gk in GL(E[p]). Then condition (i) is satisfied if either p does not divide
the order of G, or if the induced map

wp : HY (W, Elp]) — H' (W, 11,(D))

is injective, where W is a p-Sylow subgroup of G and D is the étale K -algebra
corresponding to X .

Let us see what properties of X guarantee this injectivity to hold. By changing
the basis of E[p] if necessary, we can assume that W = {(} 1)}

The set X is the union of W-orbits of size p, which we denote S;, and singleton W-
orbits, which we denote Q);. As W-modules, we have the direct sum decomposition

pip(D) = Map(X, ) = @ Map(S;, pp) ® @Map(Qj, fp)

=~ @ Map(W, Z/pZ) & @ Z/vZ,

where if Y is a set with Galois action and M is a Galois module, Map(Y, M) denotes
the Galois module of maps from Y into M. (Note that W acts trivially on p,.)
Hence

H' (W, 1p(D)) = @5 H' (W, Map(W, Z/pZ)) & ) H' (W, Z/pZ) = D Z/pZ
( J J
by Shapiro’s lemma and the explicit description of the cohomology of cyclic groups.
On the other hand,

H'(W,E[p]) = Elpl/(0 - 1)Elp] = Elp]/ E[p]"

(where o is a generator of W) is one-dimensional, so @, cannot be injective when
X has no singleton W-orbits. We thank Hendrik W. Lenstra, Jr. for pointing this
out to us.

If X contains a point () fixed by W, then we see that w,, is injective as follows.
A generator of H'(W, E[p]) is represented by a point P € E[p]\ E[p]", so P and Q
are independent and their Weil pairing e,(Q), P) is non-trivial. Hence the image
of P is non-zero in the component of H(W, u,(D)) corresponding to Q.

Proposition 4.3. Let X be a Galois-invariant subset of Elp|\ {0} spanning E[p],
and let G = Gal(K (E[p])/K). Then X satisfies condition (i) of Section[3if p t #G
orpt #X.

Proof. We have seen earlier that it is sufficient to have p { #G.

Now suppose that p | #G and p f #X. Then X must contain a point fixed
by W (in fact, since #(E[p]"Y \ {0}) = p — 1, we have X N E[p|V # 0 <+
p 1 #X). In the discussion preceding the proposition, we have seen that w, is
injective on H(W, E[p]) in this case. By Corollary[X2 the result follows. O

As a kind of converse to this result, we can state that if the sufficient conditions
are not satisfied, w, will fail to be injective on H'(L, E[p]) for any field extension
L of K such that G = Gal(L(E[p])/L) satisfies H*(G, E[p]) # 0 and contains W as
a normal subgroup.

Dokchitser independently proved that if G acts irreducibly on E[p], then w, is
injective (see [I3], §6.1]). Note that in this case, D corresponds to all of E[p]\ {0}
and is a field.
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5. FULL p-DESCENT. THE GENERIC CASE

For the rest of this paper, A will be the étale algebra corresponding to the finite
étale subscheme E[p] \ {0} of E. For an example where we use a smaller Galois-
invariant spanning set of E[p], see Section B2l

Our goal in this section is to prove that the conditions (i) and (ii) of Section [3
are satisfied when 6 is the multiplication-by-p map and X = E[p]\ {0} (so D = A).
This is the generic case, since usually the action of the absolute Galois group Gg
is transitive on E[p] \ {0}.

Since X = E[p]\{0}, GL(2,F,) acts on X and acts linearly on all modules derived
from it, and the Galois action on them factors through a subgroup of GL(2,F,).
We will call modules of this type Galois modules with GL(2)-action. Similarly, a
Gr-set Y with Galois action factoring through an action of GL(2,F,) on Y is called
a Gk -set with GL(2)-action.

Recall the notation A = A @k K and that elements of AX can be regarded as
functions E[p] \ {0} — K. In order to simplify some statements below, we will
extend these functions to all of E[p] by defining their value at 0 to be 1. So with
this convention, we have

A ={p: E[p] = K* | ¢(0) = 1}.

Corollary 5.1. The cohomology group H' (K, E[p]) embeds into A*/(A*)P. (See
Section [3 for an explicit description of the embedding map.) In the same way,
the local cohomology group H'(K,, E[p]) embeds into AX/(AX)P. In other words,
condition (i) holds.

When S is a finite set of places of K, then H' (K, E[p]; S) embeds into A(S,p).

Proof. The first statements follow from Proposition 3], since #(E[p]\{0}) = p?>—1
is not divisible by p.

The statement H'(K, E[p]; S) — A(S,p) then follows from the definitions of
HY(K, E[p]; S) and A(S, p); more precisely, we have that

H'(K, B[p]; S) = H' (K, E[p]) N A(S, p),
where we identify H'(K, E[p]) with its image in A*/(A*)P. O

We have now exhibited H'(K, E[p]) as a subgroup of AX/(AX)P. It remains to
determine precisely which subgroup it is. The following lemma provides a first step
towards this goal. First we define some notation.

Any finite-dimensional F,-vector space M with (linear) GL(2,F,)-action splits
as a representation of the center Z = )\ I of GL(2,F,) into a direct sum

M=MDasMDg...q0 Mr-2

of subspaces, where M) (for v € Z/(p — 1)Z) is the subspace of M on which a
matrix af (with a € FS) acts as multiplication by o”. This direct sum decompo-
sition is compatible with the GL(2)-action. In particular, the action on E[p] is the
standard one, so E[p] = E[p]("). The notation Z/pZ will denote a one-dimensional
space with trivial action, so Z/pZ = (Z/pZ)®). We let E[p]Y = Hom(E[p|, Z/pZ),
with the induced GL(2)-action. In particular, E[p]¥ = (E[p]¥)(~". There is the
Weil pairing e, : E[p] x E[p] — p,, a perfect, alternating, Galois-equivariant pair-
ing of E[p] with itself into the pth roots of unity, 1. The fact that e, is alternating
implies that the action of Gal(K (E[p])/K) on u, is given by the determinant of the
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corresponding 2-by-2 matrix. Thus we have p), = u,(,z). Note also that it suffices to
specify the action of gI, where g is a primitive root mod p, in order to define M ).

Lemma 5.2. Let D be an étale algebra over K corresponding to a G -set X with
GL(2)-action. Assume that the stabilizers in GL(2,F,) of points in X meet the
center Z of GL(2,F,) trivially.

Then there is an étale subalgebra Dy of D corresponding to the orbits in X
of Z=F;1; D is an extension of degree p—1 of D, and the automorphism group
of D/Dy is cyclic of order p— 1.

Let py(D)Y) be the Galois submodule of p,(D) consisting of the elements on
which the action of a central element ol is multiplication by o. Then

HY (K, j1,(D)Y) = ker(g — 0, : D*/(D*)P — D*/(D*)P),

where g is a primitive root mod p, and o4 is the automorphism of D/Dy corre-
sponding to the action of gl on the set X.
If p = 3, this simply means

H (K, 13(D)") 2 ker(Np,p, : D*/(D*)* — D3/(D)?).

Proof. The assumption implies that the canonical map X — X/Z has fibers of
size p — 1. Hence the corresponding injection D, —— D of étale algebras has
degree p — 1. Since Z acts transitively and faithfully on each fiber, the covering
X — X/Z is Galois with cyclic Galois group Z, and this carries over to the
extension D/D,.

For a Galois module M with GL(2)-action, recall the notation M) for the sub-
module on which gl acts as multiplication by ¢g”. By the elementary representation
theory of finite abelian groups, we have a splitting M = @, .4 (r—1) M® as Ga-
lois modules, and M) = ker(g-1—1-(gI) : M — M) (the element g-1—1-(gI) is in
the group ring F,[Z]). Since H' is an additive functor, this implies the claim. O

Since X = E|p] \ {0} satisfies the assumptions in the preceding lemma, we can
apply it to A. In particular, Ay denotes the subalgebra corresponding to P(E[p]),
the set of lines through the origin in the F,-vector space E[p]. If p = 3, this is
simply the étale algebra corresponding to the 3-division polynomial of E (since the
z-coordinate takes the same value on P and on —P = 2P, but distinct values on
distinct pairs of inverse points). In general, Ay can be defined by a polynomial of
degree p + 1.

Corollary 5.3. H'(K, E[p]) embeds into ker(g — o4 : AX/(AX)P — A*/(A*)P),
where g is a primitive oot mod p and o4 is the corresponding automorphism

of AJA, .

Proof. Since E[p] = E[p]V), the image of E[p] under w, must be contained in
pp(A)P) . Hence the claim follows from Corollary F.1] and Lemma O

Note that in the interpretation of the elements of A* as functions on E[p], the
automorphism oy is given by (o4¢)(P) = ¢(g - P).

Dokchitser independently proved that when A is a field, the image of E(K)
in AX/(A*)P is contained in the kernel of the norm to M*/(M*)P for any proper
subfield M of A (see [13, Cor. 6.5.2]).

The following lemma is an analogue of Corollary EI] but for a longer exact
sequence.
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Lemma 5.4. Let
0O — My — My — My — My — 0
be an exact sequence of K-Galois modules with GL(2)-action. Assume further that
My = MQ(D, Let W be a p-Sylow subgroup of GL(2,F,) and suppose that
(i) HY(W,M;) — HY(W, M) is injective, and
(i) HO(W,M3) — H°(W, M,) is surjective.
Then the following sequence of Galois cohomology groups is exact:

(5.1) 0 — HYK,M,) — HYK,M;) — HY (K Mj).
Proof. By Corollary B, assumption (i) implies that the sequence is exact
at Hl(K, Ml)

Now let M be the image of My in Ms3; then we have two short exact sequences
O — M — My — M — 0and 0O — M — M3 — My — 0.

The long exact sequence of group cohomology with respect to W then shows that
assumption (ii) implies that H'(W, M) — H'(W, M3) is injective. Corollary ATl
again then tells us that H'(K, M) — H!(K, Ms) is injective, too. Hence the
map H'(K,M;) — HY(K,M) — H'(K,Mj) is injective on the cokernel of
HY(K,M;) — H'(K, Ms), and this means that the sequence (51]) is also exact
at H'(K, Ms). O

It is now clear what we have to do. We have to find a suitable Galois module M
that makes the sequence

0 — Ep] = m@AY»Y — M

exact (and then we have to check that the sequence stays exact when we apply
H'(K,-)). Now p,(A) is the same as the module of u,-valued functions on E|[p]
taking the value 1 at 0, whereas the image of w, consists exactly of those functions
that are homomorphisms. The submodule up(f_l)(l) contains the functions ¢ that
satisfy p(aP) = ¢(P)%, but in order to be a homomorphism, ¢ has to satisfy more
relations, namely that (P + Q) = ¢(P)¢(Q) for all points P, @ € E[p|] such that

P,Q, P+ @ are non-zero. We can write this more symmetrically in the form

o(P1) o(P,) p(P3) =1
for all P, P, P EE[p]\{O} with Py + P, + P3 = 0.

To carry through this approach would require considering the étale algebra cor-
responding to the set of all the unordered triples as above. This algebra splits into
a direct product of the algebra corresponding to triples lying on a line through
the origin in E[p] and the algebra corresponding to triples spanning E[p]. The
first part is not really needed, since we have already restricted to up(fl)(l). Since
to each basis v,w of E[p|, we can associate the triple {v,w,—v — w}, and each
triple is associated to six bases, the other factor of the algebra would have degree
%# GL(2,F,) = %(p —1)%p(p + 1); this is too large to be useful in practice, when
p>3.

But we can do better. In any F,-vector space (with p odd), the points on an
affine line sum to zero. Hence every ¢ € p,(A)M) that is in the image of w, must
satisfy the conditions

[[eP)=1

Pet
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for all affine lines ¢ in E[p] = F2 missing the origin. We will see below that this is
indeed sufficient.

Lemma 5.5. The set of affine lines in E[p| missing the origin is in natural cor-
respondence with the points in E[p]Y \ {0}, where E[p]¥ = Hom(E|p],Z/pZ). The
bijection is given by

l—— ¢ <= {={P€E[p|o(P)=1}.
Proof. Easy. O

So let us take the étale algebra B over K that corresponds to the Gi-set with
GL(2)-action consisting of the lines as above, or equivalently, of the points in E[p]¥\
{0}. Note that B has the same degree as A, namely p? — 1. Note also that
E[p]Y = (E[p]Y)Y. We will use the same convention for B as we use for 4, i.e.,
we identify

BY = {6 Blp) — KX | 6(0) = 1}

Lemma 5.6. The following is an exact sequence of Galois modules with GL(2)-
action:

0 — Elp] % (DY 5y (BYY L B @y — 0.
The map u is given by
pr—(t— [ e(P),
Pct
and the map w;,/ s given by

pr— > U= > L@,
L:p(0)=¢ (€YEP(E[p])
where ¢ € p, is some generator. In the second sum, ¢ runs through a set of repre-
sentatives of the lines through the origin in E[pl]".

Note that since E[p]Y = (E[p]¥)~" and ¢ € pu,(B)™"), the element £ ® ¢(¢) does
not depend on the representative chosen. The image wz\,/ (¢) can also be written as
an element of Hom(E[p], 1p) as follows:

Note also that Hom(E[p], p) = E[p] by the Weil pairing.

Proof. We know that w, is injective and that u o w, = 0. It is easy to see that
w,ou = 0, too, as follows. Let ¢ € pp(A)M) . Then w)/ (u(p)) € Hom(E(p], up) maps
a point P to [], pes[Ige, 9(Q). In this product, the value ¢(P) occurs p times
(once for every line ¢ through P that misses the origin), and no other multiple of P
shows up. On the other hand, for each Q € E[p]\ (P), we get ¢(Q) exactly once. In
total, we have w) (u(¢))(P) = [gerpp) #(Q) =1, since []pe gy oy P(R) =1
for all Q.

Furthermore, wg is surjective. In order to get ¢ ® { in the image, we take ¢ as
the representative of (¢) and choose ¢ to map ¢ to ¢ and to map all elements in
Elp)" \ (6) to 1.

So we only have to show that the kernel of u is contained in the image of w,.
Abstractly, this means that any map ¢ : Ff, — I, that satisfies the following two
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conditions is a homomorphism:
(i) ¢(av) = ap(v) for allv € F2, o € .
(i) >, (v) = 0 for all affine lines ¢ contained in F2\ {0}. (For the lines
containing the origin, this follows already from (i).)
This is shown in Lemma (.7 below. g

Our first proof of the following result was fairly involved. During a conference
in Oberwolfach in July 1999, we asked for a better one. The proof given below has
evolved from ideas that emerged from discussions between Bjorn Poonen, Harold
Stark, Don Zagier and the second author.

Lemma 5.7. Let p be an odd prime, and let ¢ : IFIQJ — ), be a map. Then ¢ is
linear if and only if it satisfies the following two conditions:

(i) ¢ is homogeneous of degree 1;
(i) Y, 0(v) =0 for all affine lines £ C F \ {0}.

Proof. Note first that ¢ can be written in a unique way as a polynomial in two
variables of degree at most p — 1 in each of the variables,

p—1
plr,y) = Y apaly”.
4,k=0
Our first claim is that ¢ satisfies condition (i) if and only if a;, = 0 for all (j, k) with
j+k#1mod (p—1). This is easily seen by comparing coefficients in ¢(ax, ay) =
ap(z,y) and by noting that ™ = o™ for all « € F; if and only if n = m mod (p—1).
Our second claim is that ¢ satisfies condition (ii) if and only if aj; = 0 for all
(j, k) with j+ &k > p— 1. Obviously, the two claims together prove the lemma. Let
us prove the second claim. Take any line ¢ as in condition (ii). It can be defined
by an equation ax + by = 1 with (a,b) € F2\ {0}. Let ¢y (a,b) = >, o, ¢(v) and
set ¢,(0,0) = 0. Then the map ¢ — ¢, is an endomorphism of the space of maps
from IE‘IQ) to F,. Let us see what a monomial z7y* maps to. Assume that b # 0, so
y=b"1(1 —ax) on £. Unless we have j = k =p — 1, we get

Z iy = Z 2 (b7 (1 — ax))®

(z,y)€l zeFp

—p Y zk: (:) (—a)haith

x h=0

S (o e

- (p - I; - j> (ay

Cn( E N
p—1-7

This is because ), 2™ is non-zero if and only if m is a positive multiple of (p — 1),
when the sum equals —1. When b = 0, we must have a # 0, and we get the same
result. (Note that (—1)7+1 (p_’f_j) = (—1)k+1(p_{_k) inF,.) When j =k=p—1,
the result is 1 — 2aP~1 — 2bP~! + (ab)?~! by direct calculation. Since the binomial
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coefficient vanishes precisely when j + k < p — 1, the kernel of the map ¢ — ¢,
contains the monomials 27y* with j + k < p — 1. Since the images of the other
monomials are linearly independent, the claim follows. U

Now we know that we have an exact sequence
0 — Bl — @Y — (B
as required. It remains to show that the induced sequence on H' is also exact.

Proposition 5.8. The sequence

Wp

0 — H'(K, E[p]) H'(K,uy (DY) 5 HY(K, py(B)V)

s exact.
Proof. By Lemmas and [5.4], it suffices to show that
H\(W, Elp]) -2 HY(W, 1, (A)V)

is injective and that

HOW, 1y (B)V) 220 HOW, Efp]” © 1)

is surjective. The first condition was already dealt with in Corollary 5.1l The
second condition is also easily checked. O

Now we have found the description of H'(K, E[p]).
Corollary 5.9. We have
HY(K, Elp]) 2 ker (g — 0 : A¥/(A%)P —» A%/(A%)P) A kerd,
where U is the map induced by u on H',
AJA = HY(K, 1y (A)) — (K, 1y(B)) = BY/(B*)".
With this identification, we have H*(K, E[p]; S) = H' (K, E[p]) N A(S, p).

In order to make this completely explicit, we still need a good description of
u: AX/(A*)P — B*/(B*)P. This can be obtained in the following way. Let
Y denote the Gk-set consisting of all pairs (P,¢) € (E[p] \ {0}) x (E[p]¥ \ {0})
such that P € /¢, and let D be the étale algebra corresponding to Y. The two
projections give us canonical maps m; : Y — E[p]\ {0} and w2 : Y — E[p]¥ \ {0}
and corresponding inclusions ip,4 : A — D and B — D. The effect of u is
to take a function ¢ on E[p] \ {0}, pull it back to a function ¢ o7 on Y, and
to produce a function on E[p]Y \ {0} by multiplying over the fibers of m,. This
last step corresponds exactly to taking the norm Np,p. Hence we have proved the
following result.

Proposition 5.10. The map u: A*/(A*)P — B*/(B*)P is induced by the com-
position Np,poip/a: A — B.

In practice, we choose a basis of D over B and express the multiplication-by-«
map of D as a p-by-p matrix M, over B, where « is (the image in D of) a generator
of A. Any given element of A can be written as a polynomial h(«), and then we
have @(h(a)) = det(h(M,)). See Section [1 for an example. In any case, we can
now claim condition (ii) of Section B to hold.
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In [I2], the authors were not able to determine the image of H!(K, E[p]) in
A*/(A*)P explicitly. Therefore their algorithm was only able to find the following
group Z |1 which was shown to contain the Selmer group:

Z ={&e€ AX/(AX)P | res,(§) € Fy(E(K,)/pE(K,)) for all v}.

Our characterization of the image of H*(K, E[p]) in AX/(AX)P now implies the
following result, which gives some justification for the algorithm in [12].

Proposition 5.11. We have Z = Sel'” (K, E).

Proof. By the definitions of Z and of the Selmer group, we certainly must have
that Z N HY(K, Ep]) = Sel® (K, E) (considering H'(K, E[p]) as a subgroup of
A*/(A*)P). We therefore have to show that Z is contained in H'(K, E[p]) =
ker(g — o4) Nkera. Now we certainly have that this holds locally, i.e., if { € Z,
then (g — 04)(&) € (AX)P and u(€) € (B,)? for all places v of K. But an element
that is a pth power everywhere locally must be a global pth power, hence ¢ €
ker(g — o4) Nker @, proving the claim. O

6. p-DESCENT BY ISOGENY

When the elliptic curve has a K-rational subgroup of order p, we can perform a
descent via p-isogeny. This can be done by essentially the same method as for a full
p-descent, but is considerably simpler, both in theory and in practical computation.
In this section, we describe this type of descent and relate it to the full p-descent
discussed in the preceding sections. Descent by 3-isogeny has been well described
and descents by 5- and 7-isogeny have also been described for the case of a rational
5- or 7-torsion point (see the Introduction for references). However, we will see that
the generic case is not a straightforward generalization of these.

Let E be an elliptic curve over K, with a K-defined isogeny h of degree p onto the
elliptic curve E’ over K. Let h' be the dual isogeny, defined over K, from E’ to E.
Let Cy and Cy be the étale K-algebras corresponding to E[h]\ {0} and E’[h']\ {0},
respectively. Note that C; has degree p — 1 over K and the dimension of j,(Ch)
is p — 1. The map wy, gives an isomorphism E[h] = pp(C1)D. Here, M) (for
v € Z/(p — 1)Z) is the subspace of M on which a € F;' acts as multiplication
by a”. The composition of w, and the Kummer map induces an isomorphism of
H'(K, E[h]) and ker(g — o, : C;/(C;)P — C7/(Cy)P), where g is a primitive root
mod p and o, is the corresponding automorphism of C; /K.

If C; splits over K, then we can replace it by one of its factors. This amounts to
replacing the set E'[h] \ {0} by a smaller Galois-invariant subset X. Let C; be this
factor (all the factors are isomorphic since they are permuted by the automorphism
og of C1/K). Similarly, we let C2 be one of the factors of C. Note that both Cq
and Cy are cyclic Galois extensions of K. This fact can sometimes be exploited if
one wants to find the dimension of C1(S,p)™ or Co(S,p)!); compare example

If (K, E)[h] = 0 and II(K, E')[W] = 0, then Sel (K, E) and Sel®) (K, E')
are isomorphic to E'(K)/hE(K) and E(K)/IWE'(K), respectively. We can get
E(K)/pE(K) from E'(K)/hE(K) and E(K)/h E'(K) using the exact sequence

E'(K)[M] EK) w  E(K) E(K)
— — —
h(E(K)]p]) hE(K) PE(K) WE'(K)

(6.1) 0 — — 0

2Actua11y, they also require NA/K(f) to be a pth power, but this leads to the same group, as
Proposition [6.11] shows.
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(see [30, p. 301]; a proof can be found in [28, Prop. 2.6]). Computing Sel™ (K, E)
and Sel™) (K, E') typically involves working in two extensions of K of degree p—1,
whereas computing Sel” (K, E) directly typically involves working in extensions of
degrees p— 1 and p? — p, which in this case would clearly be disadvantageous. How-
ever, in the case that HI(K, F)[p] = 0 and II(K, E')[h'] # 0, it may be necessary
to compute Sel™ (K, E) in order to find E(K)/pE(K).

We can compute the size of Sel(h/)(K, E') from the size of Sel™ (K, E) using a
result of Cassels’ in [6]. When K = Q, this result is as follows. Let

/2 / 3 /2 !
yot+ar 2y +azy =27 +asx’” +agx’ + ag

be a minimal Weierstrass equation for F, and let Qg denote the integral over E(R)
of |dz'/(2y’ + a12’ + ag)|. This is the real period if F(R) has one component and
twice the real period otherwise. Recall that cg , denotes the Tamagawa number
of E at the prime ¢ (see Section B). Then we have

#8e1"(Q,E)  #EQ)M] Qp - [],cpq
#Sel™(Q,E)  #E'(Q)IN]-Qp-[l,ceq

Systems like PARI [23] or Magma [I8] can compute all terms on the right-hand
side. Using this to compute the size of the second Selmer group will often be easier
than a direct computation. For an example, see Section B3l

There are maps between the three Selmer groups we are describing.

(6.2)

Lemma 6.1. The following sequence is exact:

BEW] s

0 — Sel (K, E —  Sel” (K, E)
B e E,){}j} (
h h') / )
L sk, E 2 0
: WK, E) )
Proof. This is a straightforward diagram chase. O

Now let us see what these maps between Selmer groups look like in the étale
algebra interpretation. Let D be the étale K-algebra corresponding to Elp| \ Elh].
We have A = D x Cy. Since there is the map h : E[p] \ E[h] — E[R'] \ {0},
we can embed C;7 in D. Let us describe the desired embedding and denote it
t. For (z,y) € E, let h(z,y) = (ha(z,y), hy(z,y)). Let ¥(x) and ¥ (z) be the
polynomials whose roots are the z-coordinates of the points in E[p] \ Elh] and
E'[R']\ {0}, respectively. Let gg(z,y) and gg/(x,y) denote the polynomials of the
form 2% + az + b — y? (where a and b are in Ok) defining E and E’, respectively.
We have D = K[U,V]/(¥(U),gr(U,V)) and C; = Klu,v]/(¢¥(u), g (u,v)). The
embedding ¢ from C; to D maps a polynomial r(u,v) to r(hy (U, V), hy (U, V)).

We prefer to define these algebras in terms of a single variable. We have
D = K[T]/(fp(T)), where fp(T) = [Ipeppppp (T — ¢(P)) and ¢ is the K-
defined function on E used to define A. The isomorphism of K[T|/(fp(T)) and
K[U,V]/(¥(U), gr(U,V)) should be chosen so that T +— ¢(U,V). We can simi-
larly use a K-defined function ¢’ on E’ to note that C; = K|t]/(fc, (t)), where
feit) = pep oyt — ¢'(P)). Then the isomorphism of K[t]/(fc,(t)) and
Klu,v]/(¢(u), gg: (u,v)) should be chosen so that t — ¢'(u,v). To describe ¢ from
C1 to D, defined in terms of single variables, it suffices to find the image of ¢ by
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letting r(u,v) = ¢’ (u,v). This maps to ¢'(hy(U, V), hy(U,V)). Thus it is necessary
to find the images of U and V in K[T]/(fp(T)).

By abuse of notation, let ¢ also denote the map C‘/(C{ )P — AX/(AX)P =
D*/(D*)P x C5/(C5)P given by ¢ — (i(c),1). Let m denote the projection map
from A =2 D x Cs to Co. A straightforward diagram chase shows that the following
is commutative:

E'(K)[N]
On,

e Sel™(K,E) — Sel®(K,B) > Sel™) (K, E'
WCEEK) ) %, B) 2 & F)

F
v | |
CY/(CY)y  —  A(AXp (G5
Note that the lower sequence is not exact unless we restrict to the images of the
HYs.

7. EXPLICIT 3-DESCENT

In this section, we describe an explicit algorithm that computes the 3-Selmer
group of an elliptic curve
E:y’=234ax+Db

over Q, where a and b are integers. We use the notations of Section [l

7.1. The algorithm for a # 0. Let us first assume that a # 0. Then the poly-
nomial that has as its roots the y-coordinates of the 3-torsion points on E is a
separable polynomial of degree eight and therefore defines the étale algebra A. We
let A = —4a® — 2702 be the discriminant of the right-hand side in the equation
for E. Then the defining polynomial of A is given by

Fly) = 9" +8by® — FAy" — £ A%
The algebra Ay is defined by the 3-division polynomial
p(z) = 2t 4+ 20 2% + 4bx — %aQ ,

and y is related to x by the equation of E.

The algebra B corresponds to all lines in E[3]\ {0}; by the geometric description
of the group law on E, they correspond to all lines in the projective plane containing
E that intersect E in three distinct 3-torsion points. There are 8 such lines. If (as
we still assume) a # 0, then the slopes of these lines are all distinct, and so we can
use them to get a defining polynomial for B. The polynomial we get is as follows:

s(m) = m8® + 2am* — 4bm? — %a2.
From this it is obvious that By = A, as abstract algebras and that the relation
is simply m? = —z. The reason behind this is the fact that when we have a line
of slope m joining three distinct 3-torsion points on E with coordinates (x;,y;)

(j =1,2,3), then
(7.1) B(x) = (@ — 21)(@ — 22)(& — 73)(& + m?)

The algebra D can be described as A[m| = B[y|, and we have to bear in mind
that —m? is a zero of ¢ different from the z-coordinate of the generic 3-torsion
point (x,y). (This means that A and By are not the same as subalgebras of D.)

We take y to be the generator of A and want to find the characteristic polynomial
of y € D over B. So we take a line of slope m. It contains the three 3-torsion points
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(xj,y;) (j = 1,2,3), and the characteristic polynomial of y has coefficients given
by the elementary symmetric polynomials in the y;. From relation (TI]), we can
extract expressions for the elementary symmetric polynomials in the x;, namely,
Ty + o + x5 = m?,
(7.2) T1To + Toxs + x3x1 = m* + 2a,
r17973 = m® + 2am? — 4b = a*/(3m?) .
Let y = max 4+t be the equation of the line. We can express t in terms of m if we
first square this equation to get x? +azj+b=m? a:? +2mt z;+t2 for all j; then we
take differences and divide by z; — x;; finally, we sum the three equations obtained
in this way. This results in
3m’ 4+ 7am> —12bm B m*+a
2a N 2m

Using y; = ma; +t and equations (IL2), we obtain
Y1+ yo +ys =m> + 3t,
Yiy2 + yoys + ysy1 = m*(m* + 2a) + 2m3t + 3%,
y1y2y3 = a’m 4+ m?(m* + 2a)t + m3: + .

This gives us the characteristic polynomial of y over B and then also the matrix M,,.

We get the following algorithm for the computation of the 3-Selmer group of an
elliptic curve E : y?> = 23 + ax + b over Q, where a and b are integers with a # 0.
We recall the notations A, = A ®g Qq and F, : E(Qq) — AY/(AX)>.

1. Let S be the (finite) set of prime numbers ¢ such that the Tamagawa number
CE,q is divisible by 3, together with ¢ = 3.

2. Let ¢(z) = 2*+2a2®+4bx—1a?, and let A, = Q[z]/(¢(x)) be the corresponding
étale algebra.

3. Let f(y) =y® +8by® + (3a® + 18b%) y* — 32a° — 8a®b? — 27b*, and let A be the
étale algebra defined by f. Find its S-unit and S-class groups and construct the
F3-vector space A(S, 3).

4. Let Ty C A(S,3) be the subspace of elements 7 such that Ny, (7) is a third
power in A, (or, equivalently, in A).

5. For each ¢ € S, compute the local image Fy(E(Q,)) C AY/(AX)?* as described
below.

6. Let T, C T3 be the subspace of elements mapping into F,(E(Q,)) under the
‘restriction map’ A*/(A%)? — AX/(AY)? forallg € S.

7. Let s(m) = ¢(—m?), and let B be the étale algebra defined by s. Find its unit
and class groups and construct B(), 3) if this is feasible.

8. Let T' C T be the subspace of elements 7 such that @(7) (as defined above) is a
third power in B. (Note that @(7) will be in B(0,3).)

9. Finally, the Selmer group Se1(3)((@, E) is isomorphic to T

The reason behind the parenthesized remark in step 8 is the following. Since @
commutes with the restriction map H'(Q,—) — H'(I,,—) (where I, C Gg is an
inertia subgroup at ¢ of the absolute Galois group of Q), it follows that elements
unramified at some prime g are mapped to elements that are again unramified at g.
Hence the image lies in B(S,3). But at a prime ¢ € S, we know that the elements
considered map into the local image at ¢q. Since in the cohomology sequence this
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lands in H'(Qg, E[3]), it must be in the kernel of 1, : A/ (AX )3 — B;/(B;)‘?’.
This means that the image is even trivial at ¢, and unramified in particular.

We remark that it is not strictly necessary to find the class and unit groups
of B in step 7. It is possible to find the kernel of @ in step 8 by checking directly
whether @(7) is a cube in B or not. The advantage of having the class and unit
group information is that we can construct B(),3) and reduce step 8 to linear
algebra over Fs.

We now give a more detailed description of how one can perform step 5. Let
(0,7) € E(A) denote a generic 3-torsion point. By [12], the map Fj is then given
by evaluating the function

F=2r(y—7)— (36> +a)(x —0) =27y — (30% + a)x +0° — ac — 2b € A(E)

on a degree zero divisor D representing the given point P € E(Qq) such that the
support of D does not meet E[3]. In this way, we get a well-defined map

Fy : Pic(E)(Qq) ®z Z/3Z — A/ (AX)?.

Let O € F denote the 0-point. We want to find the image of the class of —O.
This is the same as the image of the class of 20, and since 20 ~ D, where D =
(0,vb) + (0, —v/b), it suffices to find the image of D. Now

F(D) = 27Vb + 0® — ao — 2b)(—27Vb 4 0° — ao — 2b)
= (0% — ao — 2b)* — 4b7?
= —12b03 + %aQUQ + 16abo — %a3 €Ay
Let c= F(D) € Ay. If P € E(Q,) is not a 3-torsion point, then
Fy(P) = F(P —0)=c- F(z(P),y(P)) (mod (47)%).

On the other hand, if P € F(Q,)[3], then A, = Q, x Q, x Ajf, splits, and the first
two factors correspond to P and to —P. The image in the first factor is not defined
if we just evaluate F' on P, but we can use the condition that the product of the
first two components must be a cube in ;. Hence the image is

Fy(P) = () F'(x(P),y(P))*, ¢ F'(x(P),y(P)),¢"F" (x(P),y(P)))

where F’ is F with (o,7) = (2(P),—y(P)) and F" is F with (o,7) = its image
in A} (and analogously with ¢’ and ¢”).
Since we can determine the dimension of F,(E(Q,)) beforehand—we have

dimp, E(Qq)[3] if ¢ # 3,

dimp, F,(E(Qq)) = {dim& E@Qg)B]+1  ifg=3,

we now simply find points in E(Q,) (in a random or systematic way, compare [33]
for a description in the case of a 2-descent) until their images under F, generate a
space of the correct size.

7.2. The algorithm for a = 0. In [5], Cassels gives an algorithm for computing
the 3-Selmer group over Q((3) for an elliptic curve of the form y? = 2® + b, where
b is a square. A description of the algorithm for general b over Q can be obtained
from the authors.



p-DESCENT ON AN ELLIPTIC CURVE 1227

8. EXAMPLES

In this section we present three worked examples covering the various cases
discussed in this paper. The first example shows a full 3-descent in the generic case
where one has to deal with an octic number field. The second example shows a full
5-descent in the special case where the curve has CM by Z[i] and so 5 splits in the
endomorphism ring. This also leads to an octic number field. The last example
shows a descent by 13-isogeny, where we can show that III[13] is trivial for two
isogenous curves of rank one.

When dealing with concrete examples, it is often possible to exploit bounds like

dim E(Q)[p] 4 rank E(Q) < dim Sel”(Q, E) < dim A(S, p)® .

If upper and lower bounds coincide, the dimension of the Selmer group is deter-
mined, and some of the computations (like finding local images or determining the
kernel of @) can be avoided. This is demonstrated in some of the examples below.

8.1. An example of a generic full 3-descent. Let E be the elliptic curve over Q
given by the equation

P =a%—2222 421z +1.

One easily finds the two independent points P = (0,1) and @ = (1,1), so E has
Mordell-Weil rank at least 2.

A 2-descent gives 4 as the 2-Selmer rank. The analytic rank is 2, and (assuming
P, Q to be a basis of the Mordell-Weil group) the analytic size of the Shafarevich-
Tate group is 4 (to many decimal digits; thanks to John Cremona for his help with
the computation). So we conjecture that the rank is 2 and that #I1(Q, E) = 4.

We will show (assuming GRH, as is usually done in practical computations like
this) that the rank is indeed 2 and that #1I(Q, E)[2] = 4. One could try to use
a 4-descent to prove this, but we will use a 3-descent. The curve has no rational
isogenies and is not CM, therefore we have to do a generic full 3-descent.

The conductor is 1685192 = 23 - 313 - 673; the Tamagawa numbers are c; = 2,
¢313 = ¢cg73 = 1. This means that we can take S = {3}.

We find that A, has signature (2,1), whereas A has signature (2,3). (This is
always the case for elliptic curves over Q.) Furthermore, all the primes above 3
in A are in A/A, either ramified or inert. From this, we conclude for the S-units
Us of A that

dim(Us/U2)M = 2.

(This comes from the ‘new units’ in A/A,; the primes above S do not contribute,
since they ‘come from A, ’.)

Using KANT/KASH [17] or MAGMA [Ig], we find that the class group of A
is cyclic of order 24, whereas the class group of A, has order 2 (this part of the
computation is not strictly proven to be correct, since it assumes GRH). This
implies that Clg(A)(") is one-dimensional, and so

dim A(S,3) = 3.

We can find explicit generators by using KASH again.
We have E(Q3)[3] = 0, so the image of E(Qs3) in H'(Qs, E[3]) is one-dimensional.
We find that the restriction map

resz : A(S,3)Y —  AX/(AY)3
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has one-dimensional kernel. We now have
2 < rank E(Q) < dim Sel®® (Q, E) < dimker(ress) 4 dim image(ds) = 1 +1 = 2.

So we can conclude that the rank is indeed 2. Together with the result of the
2-descent, this then also shows that #I1I(Q, E)[2] = 4 (and III(Q, E)[3] = 0).

8.2. An example of a full 5-descent in a special case. Let E be the elliptic
curve given by

y? =2 — 1483z

over Q. The endomorphism ring is isomorphic to Z[i]. The prime 5 splits as
5= (2+1)(2 —i) in the endomorphism ring. We have E(Q) = Z/2Z; therefore, the
two groups Sel®(Q, E) and III(Q, E)[5] are isomorphic. We will show that they
have dimension 2 over F5. Note that this is in accordance with the analytic size
of II(Q, E) predicted by the Birch and Swinnerton-Dyer conjecture, which is 25.

Since E has complex multiplication, our result (and much more) also follows from
work of Coates and Wiles and of Rubin (see for example [25] and the references
given there). We thank Karl Rubin for pointing this out to us. The reason for
including this example here is to demonstrate the technique. Our approach is also
applicable when the rank is at least two or when there is a Galois-conjugate pair
of cyclic subgroups and the curve does not have CM.

Let A; be the étale algebra corresponding to (E[2+i]UFE[2—1])\{0}; the algebra
A; can be defined by

T8 + 32626 T* 4+ 274911125 .

Since E has complex multiplication, the Tamagawa numbers cannot be divisible by
5 so we can take S = {5}. Since the dimension of us(A;)) is 2, like E[5], it follows
that the group H(Q, E[5]; S) is then isomorphic to A;(S,5)™).

Assuming GRH, KANT [17] computes the class group of A; to be isomorphic to
Z/57Z & Z/60Z. Since the quartic subfield of A; has class number prime to 5, we
have

CI(Ay)[5] = C1(A1)[5] & Cl(A1)[5]®)

and we find that both summands are one-dimensional. Since E(Q5)[5] = 0, we get
from Theorem Bl below that dimg, A;({5},5)") = 2 and that the dimension of
the Selmer group is either 1 or 2. With the help of Claus Fieker, we were able to
use KASH to find explicit generators of A;({5},5)™).

We now proceed to find the image of F5. The group F(Qs)/5E(Qs5) is generated
by the divisor class [(50,y1) — (1/25,y2)], where y; = 10 mod 25 and y, = 1/125
mod 5.

We have the point

P = (—=2/37075T°% — 19/25T2,9/370750 T" 4 73/250 T*)

in (E[2+i]UE[2—14])\{0}. Following the algorithm in [12], we find a function F', over
B, with divisor 5 P — 50. Both generators of A;(S,5)*) map locally to the group
generated by F(P). Thus the groups 4,(S,5)1, Sel®(Q, E) and II(Q, E)[5] are
all isomorphic, and each has F5-dimension 2.

A more careful analysis (which we will not give here) provides the following
result, which is essentially the first part of Theorem 1 in [26] in the split case. (But
note that we do not require E to have good reduction at p.)
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Theorem 8.1. Let E be an elliptic curve over Q with complex multiplication by
an order O in the imaginary quadratic field K, and let p be an odd prime such that
p is split in O and does not divide any of the Tamagawa numbers cg 4 for ¢ # p
(this last condition is automatic for p > 5).

Let Ay = K(Ep]) = Q(E[p] U E[y’]), where p is a prime in O above p. Then
Ai 4 =K. Let r = dimp, CI(4;)[p]V and t = dimg, E(Q,)[p] € {0,1}. Then we
have

r+1<dimA ({p},p)V <r+t+1
and r —t < dimp, SelP(Q,E) <r+t+1.

8.3. An example of a 13-isogeny descent. Let E and E’ be the following elliptic
curves over Q (curves 441F1 and 441F2 in Cremona’s list, see [9]):
E:y?+y=2a®—21x+40,
E' :y? 4y =23 — 8211z — 286610.
From the list, we see that they are related by a 13-isogeny and that they both have
Mordell-Weil rank 1. In fact it is easy to spot the point P = (1,4) on FE of infinite

order. The analytic sizes of IITI(Q, E) and of III(Q, E’) are both 1. We will show
by a 13-isogeny descent that

I(Q, £)[13] = I(Q, E)[13] = 0.

All the Tamagawa numbers are prime to 13, so we take S = {13} for both

Selmer group computations. Let us first consider Sel(h/)((@, E'). The factor of the
13-division polynomial of E corresponding to the kernel of h is

(z° — 212 —7)(2x* — 21 2% + 842 — 91).

We see that the algebra Csy will split into two copies of a sextic field Co. We have
(unconditionally)
dimCy(S,13)M) =1
and therefore
dim Sel™)(Q, E') < 1.

Now since Qg = 13Qp (as computed by PARI), Cassels’ formula (6.2)) tells us

that
0 < dim Sel™(Q, E) = dim Sel " (Q, E') -1 <0,

so we must have equality throughout.

By Lemma 1], we now get the following inequalities (note that neither E nor E’
have non-trivial rational torsion):

1 < dim Sel™(Q, E) < dim Sel™(Q, E) + dim Sel™)(Q, E') = 1,
1 < dimSel™(Q, E) < dim Sel™(Q, E') + dim Sel™(Q, E) = 1.

Hence dim Sel™® (Q, E) = dim Sel*® (Q, E’) = 1, and since this equals the Mordell-
Weil rank, we get

I1(Q, E)[13] = II(Q, E')[13] = 0.



1230

[1]

[2]
(3]

[4]
[5]
[6]
[7]
(8]
[9)
(10]
(11]
(12]
(13]

(14]
(15]

(16]
(17]

(18]

19]

20]
(21]

(22]

23]
[24]

25]

(26]

27]

(28]

EDWARD F. SCHAEFER AND MICHAEL STOLL

REFERENCES

M.F. Atiyah and C.T.C. Wall, Cohomology of groups, in: Algebraic Number Theory, Ed.
J.W.S. Cassels and A. Frohlich, Academic Press, London, 1967, pp. 94-115. MR 36:2593
K.S. Brown, Cohomology of groups, Springer, GTM vol. 87, 1982. MR |83k:20002

N. Bruin, Chabauty methods and covering techniques applied to generalised Fermat equations,
Ph.D. dissertation, Leiden, 1999. MR 12003i:11042

J.W.S. Cassels, Second descents for elliptic curves, J. reine angew. Math. 494 (1998), 101—
127. MR 99d:11058

J.W.S. Cassels, Arithmetic on curves of genus 1. I. On a conjecture of Selmer, J. reine angew.
Math. 202 (1959), 52-99. MR [22:24

J.W.S. Cassels, Arithmetic on curves of genus 1. VIII. On conjectures of Birch and
Swinnerton-Dyer, J. reine angew. Math. 217 (1965), 180-199. MR 31 420

Y-M.J. Chen, The Selmer groups and the ambiguous ideal class groups of cubic fields, Bull.
Austral. Math. Soc. 54 (1996), 267-274. MR [98a:11072

Y-M.J. Chen, The Selmer groups of elliptic curves and the ideal class groups of quadratic
fields, Comm. Algebra 25 (1997), 2157-2167. MR 98d:11058

J.E. Cremona, Algorithms for modular elliptic curves, 2*4 ed., Cambridge University Press,
1997. MR 199e:11068

J.E. Cremona and B. Mazur, Visualizing elements in the Shafarevich-Tate group, Experi-
ment. Math. 9 (2000), 13-28. MR |2001g:11083

M. DeLong, A formula for the Selmer group of a rational three-isogeny, Acta Arith. 105
(2002), 119-131. MR [2008i:11069

Z. Djabri, E.F. Schaefer and N.P. Smart, Computing the p-Selmer group of an elliptic curve,
Trans. Amer. Math. Soc. 352 (2000), 5583-5597. MR [2001b:11047

T. Dokchitser, Deformations on p-divisible groups and p-descent on elliptic curves, Ph.D.
dissertation, Universiteit Utrecht, 2000.

T. Fisher, On 5 and 7 descents for elliptic curves, Ph.D. thesis, Cambridge, UK, 2000.
E.V. Flynn and J.L. Wetherell, Finding rational points on bielliptic genus 2 curves, Manuscr.
Math. 100 (1999), 519-533. MR [2001g:11098

G. Frey, Die Klassengruppen quadratischer und kubischer Zahlkvrper und die Selmergruppen
gewisser elliptischer Kurven, Manuscripta Math. 16 (1975), 333-362. MR [52:409
KANT/KASH is described in M. Daberkow, C. Fieker, J. Kliiners, M. Pohst, K. Roegner and
K. Wildanger, KANT V4, J. Symbolic Comp. 24 (1997), 267-283. MR [99g:11150

MAGMA is described in W. Bosma, J. Cannon and C. Playoust, The Magma algebra system
I: The user language, J. Symb. Comp. 24 (1997), 235-265. (Also see the Magma home page
at http://www.maths.usyd.edu.au:8000/u/magma/ .)

J.R. Merriman, S. Siksek and N.P. Smart, Ezplicit 4-descents on an elliptic curve, Acta
Arith. 77 (1996), 385—404. MR [97:11027

J.S. Milne, Arithmetic duality theorems, Academic Press, Boston, 1986. MR [88e:14028

L.J. Mordell, On the rational solutions of the indeterminate equations of the 3rd and 4th
degrees, Proc. Camb. Phil. Soc. 21 (1922), 179-192.

J. Nekovar, Class numbers of quadratic fields and Shimura’s correspondence, Math. Ann.
287 (1990), 577-594. MR 91k:11051

PARI homepage: http://www.parigp-home.de/

B. Poonen and E.F. Schaefer, Explicit descent for Jacobians of cyclic covers of the projective
line, J. reine angew. Math. 488 (1997), 141-188. MR [98k:110R87

K. Rubin, The one-variable main conjecture for elliptic curves with complex multiplication,
in: L-functions and arithmetic, Ed. J. Coates and M.J. Taylor, LMS Lecture Notes Series,
vol. 153, Cambridge University Press, Cambridge, 1991, pp. 353-371. MR 92j:11055

K. Rubin, Descents on elliptic curves with complex multiplication, in: Théorie des nombres,
Séminaire Paris 1985/86, Ed. C. Goldstein, Progress in Mathematics, vol. 71, Birkh&auser,
1987, pp. 165-173. MR [90g:11073

P. Satgé, Groupes de Selmer et corps cubiques, J. Number Theory 23 (1986), 294-317. MR
871:11070

E.F. Schaefer, Computing a Selmer group of a Jacobian using functions on the curve, Math.
Ann. 310 (1998), 447-471. MR |99h:11063


http://www.ams.org/mathscinet-getitem?mr=36:2593
http://www.ams.org/mathscinet-getitem?mr=83k:20002
http://www.ams.org/mathscinet-getitem?mr=2003i:11042
http://www.ams.org/mathscinet-getitem?mr=99d:11058
http://www.ams.org/mathscinet-getitem?mr=22:24
http://www.ams.org/mathscinet-getitem?mr=98a:11072
http://www.ams.org/mathscinet-getitem?mr=98d:11058
http://www.ams.org/mathscinet-getitem?mr=99e:11068
http://www.ams.org/mathscinet-getitem?mr=2001g:11083
http://www.ams.org/mathscinet-getitem?mr=2003i:11069
http://www.ams.org/mathscinet-getitem?mr=2001b:11047
http://www.ams.org/mathscinet-getitem?mr=2001g:11098
http://www.ams.org/mathscinet-getitem?mr=52:409
http://www.ams.org/mathscinet-getitem?mr=99g:11150
http://www.ams.org/mathscinet-getitem?mr=97j:11027
http://www.ams.org/mathscinet-getitem?mr=88e:14028
http://www.ams.org/mathscinet-getitem?mr=91k:11051
http://www.ams.org/mathscinet-getitem?mr=98k:11087
http://www.ams.org/mathscinet-getitem?mr=92j:11055
http://www.ams.org/mathscinet-getitem?mr=90g:11073
http://www.ams.org/mathscinet-getitem?mr=87i:11070
http://www.ams.org/mathscinet-getitem?mr=99h:11063

p-DESCENT ON AN ELLIPTIC CURVE 1231

[29] E.F. Schaefer, Class groups and Selmer groups, J. Number Theory 56 (1996), 79-114. MR
97e:11068

[30] J.H. Silverman, The arithmetic of elliptic curves, Springer GTM 106, 1986. MR 87g:11070

[31] D. Simon, E'quations dans les corps de nombres et discriminants minimauz, Theése, Bordeaux,
1998.

[32] D. Simon, Computing the rank of elliptic curves over number fields, to appear in LMS J.
Comput. Math. 5 (2002), 7-17 (electronic). MR [2003g:11060

[33] M. Stoll, Implementing 2-descent for Jacobians of hyperelliptic curves, Acta Arith. 98 (2001),
245-277. MR 2002b:11089

[34] J. Top, Descent by 3-isogeny and 3-rank of quadratic fields, in: Advances in number theory,
Ed. F. Gouvea and N. Yui, Clarendon Press, Oxford, 1993, pp. 303-317. MR 97d:11167

[35] A. Weil, Sur un théoréme de Mordell, Bull. Sci. Math. (2) 54 (1930), 182-191.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, SANTA CLARA UNIVERSITY, SANTA
CLARA, CALIFORNIA 95053
E-mail address: eschaefe@math.scu.edu

SCHOOL OF ENGINEERING AND SCIENCE, INTERNATIONAL UNIVERSITY BREMEN, P.O. Box
750561, 28 725 BREMEN, GERMANY
E-mail address: m.stoll@iu-bremen.de


http://www.ams.org/mathscinet-getitem?mr=97e:11068
http://www.ams.org/mathscinet-getitem?mr=87g:11070
http://www.ams.org/mathscinet-getitem?mr=2003g:11060
http://www.ams.org/mathscinet-getitem?mr=2002b:11089
http://www.ams.org/mathscinet-getitem?mr=97d:11167

	1. Introduction
	2. Étale algebras
	3. Computing a Selmer group
	4. Full p-descent. Condition (i)
	5. Full p-descent. The generic case
	6. p-descent by isogeny
	7. Explicit 3-descent
	7.1. The algorithm for a =0
	7.2. The algorithm for a = 0

	8. Examples
	8.1. An example of a generic full 3-descent
	8.2. An example of a full 5-descent in a special case
	8.3. An example of a 13-isogeny descent

	References

