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1 Introduction

Several algorithms have been developed for computing Selmer groups for the
Jacobians of curves. Typically, one is interested in computing a Selmer group
in order to bound a Mordell-Weil rank or study a part of a Tate-Shafarevich
group (see, for example, [Kr]). For curves of genera 1 and 2, algorithms using
homogeneous spaces have been developed for computing Selmer groups ([BSD,
GG]). Already in the genus 2 case, the homogeneous spaces are quite difficult
to describe. For that reason, these tend to be somewhat unwieldy to implement.
Other algorithms use functions on the curve to compute a Selmer group ([BK,
Ca, CF, Fd, FPS, KS, Mc, PS, Scl, Tp]). These tend to be far easier. Their
success, however, seems to be based on two assumptions. These assumptions
have been satisfied in the examples presented, so far, but should not be expected
to be satisfied in all cases. In this paper, we attempt to provide a framework
for the study and development of algorithms for computing Selmer groups using
functions on the curve. In particular, we consider the assumptions they are based
on.

Let C be a curve defined over the number figldand letd be its Jacobian.
We standardly identify] with Pic’(C (K)) which we will denote Pi{C). Let A
be an abelian variety defined oviér and let¢ : A — J be an isogeny defined
over K. Let A[¢] denote the kernel of. For most practical purposes (such as
descent), it is really only useful to work with an isogeny whose kernel has a
prime-power exponent. So we assume tAkt] has exponent = p' for some
prime numbelrp.
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In Sect. 2 we provide a framework for developing an algorithm for computing
the ¢-Selmer group forA over K. For the sake of clarity, we first describe a
straightforward way of creating such an algorithm. The assumptions that such
an algorithm is based on are discussed in Sect. 2.4. All but one algorithm in
the literature, that the author is aware of, fits into the framework described. In
Sect. 2.5, we discuss how this framework can be extended in special cases to
encompass this and other algorithms.

The strength of this approach is that it allows us to develop an algorithm
tailored to the data at hand. We give several examples. In Sect. 3 we describe
an algorithm for computing a Selmer group for curves of the fgfhn= f(x)
wherep is a prime not dividing the degree 6f We do three examples. L&
denote a primitivepth root of unity. In the first, we find the Mordell-Weil ranks
of the Jacobian of® = (x2 + 1)(x? — 4x + 1) overQ(¢3) and Q. In the second
we describe all solutions of?> = x° + 1 in fields of degree 2 or less ovéY. In
the third we describe all solutions f = x(x — 1)(x — 2)(x — 3) in fields of
degree 3 or less ovdD. In the latter two examples, the Mordell-Weil ranks of
the Jacobians are 0 ov€)({s) and Q((3) respectively. In Sect. 4 we compute
the 2-Selmer group and Mordell-Weil rank, ov@r of the Jacobian of a smooth
plane quartic curve, using bitangents of the curve.

In Sect. 5 we give a review of the literature in which algorithms for curves
of genus greater than 1 are discussed.

2 The algorithm

Let us define the Selmer group. L&t K, A, ¢, g andp be as in Sect. 1. Let

S be a finite set of primes ok that includes primes oveap, primes dividing

the conductor ofA, and if p = 2, includes real primes also. For any GalK)-
moduleM let M (K) denote the Gal{ /K )-invariants ofM andH *(K, M) denote
H(GalK /K),M). Let H}(K,A[¢]; S) denote the subgroup ¢ (K, A[¢]) of
cocycle classes that are unramified outsgld et § be the map fromJ(K) to
H(K, Al¢)]) arising from the long exact sequence of Galois cohomology attached
to the short exact sequence

0= Al A% I 0.

The kernel of§ is pA(K). Similarly, for any primes € S we have a coboundary
mapd, from J(K,) to H(K,, Al#]) with kernel pA(K,). Let o, be the restriction
map fromH (K, Al¢]) to H1(K,, A[¢]). The following is a commutative diagram.

IK)/GAK) < HYK,AlgLS)
! Ilas
I1s.
[1I(Ke)/GAKs) = [T HL(Ke, Al))

sE€S s€S
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Define the Selmer groupS?(K,A), to be the intersection of the groups
a;1(0:(I(Ks)/#A(K,))) for all s € S. This is equivalent to the usual defini-
tion (see [Mi3, p. 92)).

In Sect. 2.1, we find a finitely generat&dalgebralL and a mag-, derived
from functions onC, so thatF mapsJ(K)/¢A(K) to L*/L*9. In Sect. 2.2 we
find a map: from H(K, A[¢]) to L*/L*9 so thatF = .o 4. The map: will be
induced from a Weil pairing and a Kummer map. lUgt= L @k Ks. We will
similarly be able to define maps, and.; so thatF, =, o §;. Once these maps
are defined, the following will be a commutative diagram where gbh's are
natural maps.

IK)/GAK) < HYK ALS) <& Lr/Ld
\l, \L H Qg \Ir Hﬁs
H§5 1 HLﬁ * *q
[1I(K)/GAK:) & TIHUKe,AlG) = ] Li/L:
s€S s€S s€S

We finish that section by making an assumption causiagd ., and hencer
andF, to be injective. In Sect. 2.3, we show how to use the nfandF; to
compute the Selmer group.

In order for the map§ andF, to be derived from functions 0@, we need
to make the following assumption. We will denote Bi@ (K)) by Div°(C).

Assumption I: For .72 = K or K,, with s € S, every element ofl (7))
/oA(F) is represented by a divisor class containing an element {ON.7),
the divisors ofC of degree O defined overZ'.

2.1 The choice of F and L

Since we will be dealing with a Weil pairing, we need to consider the dual
isogeny tog. Let ¢ : J — A be the dual isogeny te and J[¢] be the kernel

of ¢§ Let A : J — J be the canonical principal polarization dfwith respect to

C. SinceC is defined oveKK, the principal polarizatior\ is also (see [Mil, p.
186]). Letw = 213 [g?)]); we know V¥ is contained inJ[q].

Step 1.Determine the subgroup dfiq] that is¥.
If ¢ is the multiplication byg map, thenZ = J[q]. For non-trivial examples,
see Proposition 3.1 and Sect. 5.

Step 2. Choose some suitable GEl(K )-invariant set of divisors in DR(C)
whose classes span

We denote the linear equivalence class of the degree-0 dilisiorPic’(C)
by [D]. We choose{Dy,...,D,} to be a Galk/K)-invariant set of degree-0
divisors of C for which the divisor classe§[D;]} span¥. As we will see, the
choice of spanning set determines the rragnd theK -algebral. Typically one
wants a minimal, Galois-invariant spanning set. We also want to pick a spanning
set so that the second assumption holds, if possible. This is discussed in Sect. 2.4.
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Step 3.Determine the map and the finitely generatel -algebral based on
the divisors chosen in Step 2.
First we define the finitely generatéd-algebral. Let

with K; = K. Let us define an action of GH(/K) onL'. If o € Gal(K/K), then
let 7 € S, be defined such that fD; = D;, thenai =j. Let

O-(a]n ceey an) = ((rag—ll7 ey UaE_ln)

for a € K. DefineL to be the GaK /K)-invariants inL’.

Let us find a more practical descriptionlafLet A be a subset of1,2,...,n}
such that the sefD; }jc 4 contains one representative of each &gl )-orbit of
{Di}. LetL; = K(D;) be the minimal field of definition oD;. Then we can find
an isomorphism

LEHLJ.

jeA

Let us describe that isomorphism. For simplicity, assume thatkG#l) acts
transitively on the{D;} and letA = 1. We havelL; = K(D3). Let {o;} be
elements of Gal /K) such that

GalK /K) =[] o GalK/Ly)
i
and?D, = D;. We have
n
L, =~ L by | eLl»—>("1I,...,"”I)eHK.
i=1

If there are several orbits, then we can extend this isomorphism by concatenation.
Let us define the map. Let gD; = (f;) wheref; is defined oveK (D;). Such

fi’s exist overK(D;) by Hilbert's Theorem 90. Let Supp() be the support of

the divisorD;.

Definition. The avoidance set is the set of poitSuppD;) in C(K).

Define F = (f,...,f,) from the complement of the avoidance setlfo By

abuse of notation we usB_ to denote then-tuples of divisors and divisor

classes@y,...,Dyn) and (D4], ..., [Dn]). Let P. denote then-tuple of elements
(A[D4l, ..., AIDn]) of J[].
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2.2 Equivalence of maps

In this subsection we show th&t induces a well-defined homomorphism from
J(K)/¢A(K) to L*/L*9 and thatF is related to cohomological maps used to
define a Selmer group. We will return to the algorithm in Subsect. 2.3.

Definition. A good divisor is a divisor of C of degree 0, defined over K (g),K
whose support does not intersect the avoidance set.

From Assumption I, every element &{K)/¢A(K) is represented by a divisor
class containing a divisor of degree 0, defined d¢erFrom [La, Lemma 3, p.
166], every divisor class that contains a divisor defined #verontains a divisor
defined oveK, whose support does not intersect any given finite set, in particular,
the avoidance set. So every elementddK)/»A(K) is represented by a good
divisor.

Let g be aK-defined function fronC to K. LetR=3"n;R be a divisor of
C of degree 0, defined ové¢, whose support does not intersect the support of
(9). We define

g(® = [JeR)™ e K*.

By abuse of notation we define the m&p from good divisors toL* in an
analogous way.

The mapF on good divisors, composed with the isomorphismLofvith
[jeali. is the map[]; , fi. In examples, we will often denotg];_ , Lj by L
and this composition by, since they are more practical.

Lemma 2.1. The map F induces a homomorphism from the subgroup(if J
/9J(K) represented by divisor classes containing good divisors*{a.19.

Proof. The good divisors form a subgroup of B{C)(K). The mapF is a
homomorphism from good divisors {6". Let D andD’ be linearly equivalent
good divisors. We would like to show th&t(D — D’) is in L*9. Let h be aK-
defined function withif) = D —D’. From Weil reciprocity, we have the following
equalities ofn-tuples

F(D — D) =F((h) = h((F)) = h(@P) = (h(PL))? € L".

SinceP, is fixed by GalK /K) we knowh(P,) is inL*. SoF (D —D’) is in L*9.
(I

At this point let us relate the malp to the maps derived from cohomology
which are traditionally used to compute a Selmer group. First let us recall the
definition of the Weil pairing. Let be an isogeny of abelian varieties frdnto
V and7 be the dual isogeny frod to B. Let P € B[r] andQ € V[7] and D
be a divisor orB representind®. There is a functio onV with divisor 7—1D.
Thene, (P, Q) = g(X +Q)/g(X) for any X e V for which the right hand side of
the equation is defined.

Let 14(L") be theqth roots of unity inL’. We have
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Ha(l') = pg(K2) % ... x jiq(K).

Let e,(P, Q) denote thep-Weil pairing of P € Al¢] and Q € j[q@]. Define the
mapw from Al¢] to uq(L") by

w(P) = &(P,P) = (€(P, AID1]), - . ., (P, A[Dn])).
Proposition 2.2. The mapw from A¢] to pq(L’) is injective and defined over K.

Proof. Since the elements of the-tuple P spanj[g%], the mapw is injective
from the non-degeneracy of the Weil pairing. let GalK /K). We would like
to show that’w(P) = w(°P). We have

w(’P) = (e4("P, A[D1]), . . ., €4(°P, A[Dn]))
and

wP) = Uey(P,A[Da), ..., €(P, A[Dn])
= ("8s(P, ADz-11]), ..., “&4(P, A[D5-1,]))
= (e(P, AlDz-11)), - - ., €5("P, A["Dz-1,]))
= (&("P; A[Da)), - . -, €5(°P, A[Dn])).

O

The mapw induces a map fronH (K, A{¢]) to H(K, uq(L")) which we also
call w. From [Se, p. 152]HY(K, uq(L")) = L*/L*9 by a map we calk. The
mapk sends the cocycle class containing¢ °(v1)/v1) to | € L*.

Theorem 2.3. The maps F and kw o § are the same as maps fronfKl) / pA(K)
to L*/L*9.

Proof. Let & be the coboundary map frod(K)/qJ(K) to H(K,J[q]). Let

wq be the map fromJ[q] to pq(L") that sendsR € J[q] to ey(R, P.). For
clarity we redenotey and w by ¢, and wg. We first show that the map is
the same as the compositidno wq o dq on the subgroup of(K)/gqJ(K) of
elements represented by divisor classes containing good divisor® lbet a
good divisor representing such an elementJ¢K)/gqJ(K). From Lemma 2.1,
the choice of such R is unimportant. From [La, Lemma 3, p. 166], we can pick
a degree 0 divisofQ, whose support does not intersect the avoidance set, and
for which qQ is linearly equivalent td®. The class of cocycle&([P]) includes
the cocycle § — [“Q — Q]) with o € GalK /K). Sowq o dq([P]) is the class
of cocycles that includess(— €;([°Q — Q], PL)). Let e@(S,T) = ey(S, AT) for
S, T € J[q]. The e@-WeiI pairing can be defined as follows. i and h, are
functions onC with divisors gE; and gE, respectively, with disjoint supports,
thene(?([El], [E2]) = ho(E1)/hi(Ey). Let (9) = gQ — P with ¢ defined oveK (Q).
We have {g) = q°Q — P and so {g/¢) = 9°Q — qQ. Recall §) = gD;. We have

fi("Q - Q)

Arony _ 1) =
Q1@ - QL D) = LS.
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Thus we have the following equalities oftuples

o oy FQ-Q) _

whereg = F(Q)/g(P.). So we have

F(Q) _ F(aQ
g(@P)  F@Q-P)

Let us show thaF andk o w, o d, are the same as maps frahfK)/¢A(K)
to L*/L*9. It follows from Assumption | that every element d{K)/¢A(K) is
represented by a good divisor. There is an isogenyd — A with ¢ o 7 = q.
From the commutative diagram

K owgqodq([P]) =% = = F(P) modL*9.

0 - Jg — JK) 3 IJK) —» o0
T s +1

0 — A¢l — AK) & JK) — o

we get the following commutative diagram by taking &alK )-invariants.

IK)/QIK) 3 HYK,I[q))
I ) b7
J(K)/AK) = HLK,A])

From the compatibility of Weil pairings we hawg (R, P.) = es(7(R), PL).
Thus the triangle of the following diagram commutes and so the whole diagram
commutes.

IK)/QIK) 3 HUK, I N\ wq
! Ir HYK, pgq(L)) % Lr/Lr

IK)/GAK) 5 HIK,AGD) 7wy

From commutivity,F must factor througbA(K) andF andk o wg o d, are the
same as maps fro(K)/»A(K) to L*/L*9. O

Inspiration for this proof can be found in [Li] and [Mc, Lemma 2.2].

Note that Lemma 2.1 and Theorem 2.3 hold if we replcandL’ by any
field .77 (containingK) andL’ ® .7 Lets € S andL, = L ®« Ks;. The map
F induces a mag=, from J(K,)/#A(K,) to L:/L:9. In order to compute the
Selmer group, we want the mapsandF, to be injective. The map§, §., k
andk, are injective automatically. Let us make an assumption that makasd
w; injective also.

Let.ZZ be any field containing and.7Z" be an algebraic closure. Let coker
be defined to make the following an exact sequence of. 3l(72")-modules.

0 — Al¢] = pg(L’) — coker— 0
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In addition, let 72" denote the minimal field of definition, ove#’, of the D;’s.
We have
HY (7 Algl) = HY(TZ, ug(L))) is injective

< uq(L')(F) — coker(Z) is surjective
< HYGal(w” |.72), N ¢]l) = HYGal(7#' |.7), ug(L))) is injective

Assumption 1I: The mapsH (G, Al¢]) = HY(G, p(L")) are injective forG =
GalK’/K) andG = GalK//K,) with s € S.
This assumption guarantees that the mapsnd F, are injections.

2.3 Computing the Selmer group

Step 4.Find a setS.

The set of primes oK denotedS must include the primes dividing the
conductor ofA, the primes ovep, and if p = 2, the real primes. The primes
dividing the conductor ofA are the same as those dividing the conductod of
These are a subset of the primes at which the reductio@ & singular. It is
easier, in general, to determine the primes at which the reducti@nigkingular
(see [Ha, chap. 1, Sect. 5]), than the primes dividing the conductdr §b, for
simplicity, we can include ir§ all of the primes at which the reduction 6f is
singular.

Step 5.Determine the image dfi }(K, A[¢]; S) in L*/L*9 and find generators
of that image.
We havel = []; , Lj where thel; are fields. Thus.*/L*9 is isomorphic to

* *q
[Gealy /4™

Definition. Let L (S, q) be the subgroup ofJ-*1,/LJ-*GI of elements with the property
that if we adjoin the qth root of a representative tg that we get an extension
unramified outside of primes over primes of S. L@&,lq) = HJ—GA L (S,a).

Since we are making Assumption Il, we have
H(K,Al¢]) = ker :HY(K, 11q(L")) — H(K, coker)
and
HYK,A[4;S) = ker:HYK,uq(L');S) — H(K, coker)
~ ker:L(S,q) — HY(K, coker)

By abuse of notation, we refer to the subgroup ldfS,q) above as
HY(K,Al¢]; S). Let 3; be the natural map frorb* /L*9 to L} /LY. The image of
J(K)/pAKK) in HY(K, Al¢]) actually lies inH(K,A[¢]; S) and the following
diagram commutes (see [Mi3, p. 92]).
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IK)/GAK) S HYK,AlgLS)

1 H118s
[T J(Ks)/oA(Ks) H‘—': [T Le/Ls®
s€ES s€S

From Theorem 2.3 and the injectivity &f o w the Selmer groupS?(K, A),
is isomorphic to the intersection of the grougs(F.(J(Ks)/9A(Ks))) for all
5€S.

Step 6.Find generators fad (K,)/$A(K,) and their images undé,, in L% /L3,
forall s € S.

For representatives, we fir;-rational, degree 0 divisors. It may be neces-
sary to shift their supports so that we have good divisors. To check if the classes
of good divisors are independent JifK,)/pA(Ks), it is easiest to check if their
images under the injective mdp are independent ih}/L:%. A deterministic
algorithm for finding such generators for the Jacobians of curves of genus 2 and
the multiplication by 2 map is given in [St1].

We need to know how many generators are neededCLigave genug and
s be a finite prime oK. Recallq = p'.

Proposition 2.4. If s|p, then#J (K,)/qJ(K,) = g9 1. #3 (K,)[q]. If 5 Jp, then
#H (Ks)/oA(Ks) = #A(KS)[¢]-

Both statements can be shown using the snake lemma and the fadt(khat
contains a subgroup of finite index isomorphicgtgopies of the ring of integers
in K, (see [Ma] and [Sc2, Lemma 3.8, Proposition 3.9]). Of courd€¢K#[q] =
g%. If ¢ is not a multiplication byg map, ands lies overp, then the computation
of #J(Ks)/dA(Ks) is not always trivial. This is discussed in [Sc2, Sect. 3], where
an algorithm is given, in the case thhis an elliptic curve. In certain other cases
it can be accomplished, as in Corollary 3.6.

If p=2, thenS includes real primes.

Proposition 2.5. If ¢ = 2' and J is defined oveR, then#J(R)/qJ(R) = q~ 9 -
#J(R)[q].

For the proof, simply replace 2 by = 2' in [Sc2, Proposition 5.4] where one
can find discussions of more general isogenies of even degree at real primes.

Step 7.Find the intersection iH }(K, A[¢]; S) of 3;1(Fs(J(Ks)/#A(Ks))) for
alls € S.

At this point we have accomplished our goal of computing the Selmer group.
One reason that Selmer groups are computed is for the purpose of bounding
the Mordell-Weil rank. The groug(K) is called the Mordell-Weil group of
over K. It is a finitely generated abelian group and its fizeank is called
the Mordell-Weil rank ofJ over K. In order to find the Mordell-Weil rank,
we need to find elements df(K)/¢A(K) and map them td.*/L*%. One can
save time by doing this before Step 6 since element3(&f)/»A(K) map to
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elements in eacl (K;)/0A(K;). Let III(K, A)[¢] denote theg-torsion of the
Tate-Shafarevich group fofA over K. We hope to generate all of the kernel
from S?(K, A) to III(K , A)[¢] (assuming you know whallI(K , A)[¢] is!) This
kernel is isomorphic td (K)/¢A(K). If we have success, then we can attempt
to compute the Mordell-Weil rank of (K).

Let ¢’ be an isogeny frond to A for which ¢ o ¢’ = 7 and 7' = mu for
some unitu in EndQ), and integers andm = g'. In addition, assume that we
are able to comput&(K)/¢'J(K) (at this point it would be helpful ifA were
a Jacobian). The following proposition contains an exact sequence which helps
combine the sizes of these groups to find the sizé(&f)/mJ(K).

Proposition 2.6. Let B and D be abelian groups and letB — D andg : D —
B be homomorphisms. The following is an exact sequence

0 - B[f]/¢(D[fg]) — B/gD = D/fgD — D/fB — O.

Proof. The proposition follows from the diagram below, which commutes from
the snake lemma applied to the middle two exact sequences.

0 — y¢(Ifg) — BIf] — B[f]/g(DIlfg) —

1 A 1

0 — gD — B — B/gD - 0
If Lf If

0 — fgD — D — D/fgD — 0
! ! !

— 0 - D/B — D/fB — 0

O

If f andg are isogenies of abelian varieties, then the grB{f]/g(D[f g])
will be a quotient of torsion groups, hence computeable. Repldciagd g by
¢ and ¢’, from J(K)/¢A(K) and A(K)/¢'J(K) we can computel (K)/7J(K)
using the exact sequence. By replacingndg by 7', 1 <i <t — 1, andr, we
can compute the size df(K)/mJ(K). If r is the Mordell-Weil rank ofJ over
K, thenJ(K)/mJ(K) = (Z/mz)" @ J(K)[m].

On the other handy-Selmer groups have many interesting uses beyond com-
puting J(K)/mJ(K). For example, in [We], Wetherell provides a method of
bounding the number of rational points on a cu@ewhen the Mordell-Weil
rank is at least as large as the genus. This is the case that effective Chabauty (see
[Co]) does not help with. In order to do this, he considers a set of covers of the
curve parametrized by elements ofpaSelmer group, where is any isogeny
from an abelian variety to the Jacobian@©f

2.4 Assumptions

Let us consider the two assumptions that we made.
Letd =gcd{ [KT : K] | K C KT c Q, C(KT) #(}. Recall that the exponent
of Alglisq=p'.
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Proposition 2.7. If p /d, then Assumption | is satisfied.

Proof. Let KT be a field of degree@’ over K with C(KT) # (). From [Mid, p.
168], every element od (K t) is represented by a degree 0 divisor®fdefined
overK'. Let N denote any map induced by the norm map fremto K. The
following is a commutative diagram.

DV(C)KTY — J(KT) — 0
IN IN LN
DiVo(C)(K) — J(K) — coker

The composition of the natural inclusion of B{€)(K) in Div®(C)(K ) with
the norm map to DIYC)(K) is the multiplication byd" map. Sod" kills the
cokernel. The cokernel is thus killed ld; the greatest common divisor of the
df’s. Sinceq is relatively prime tad, we know that every element 8{K)/¢A(K)
is represented by a divisor class that contains a divis@ afefined ovelK.

Fix a primes € S. Sincep/d, there is a completion ok at a prime over
s whose degree ovef; is prime top. The same argument as above shows that
every element o8 (K,)/#A(Ks) is represented by a divisor class that contains a
divisor of C defined overK,. O

Now let us consider Assumption Il. If the induced mapon cohomology
groups is an injection for some given spanning set then we have an injection
for any spanning set containing the given one. To test whether there exists a
spanning set satisfying Assumption Il, it suffices to use the entire/sdtor
any given spanning set, the following provides a simplification. Kéthe the
minimal field of definition of theD/s. Let L{ = [[K; wherei; ranges over
all thosel such thatD, is in the same GaK'/K)-orbit asD;. We letL] in-
herit its GalKk’/K)-module structure fronl’. We havel’ = J[,_,Lj. The
groupH }(Gal(K’/K), uq(L")) is isomorphic tos;c 4H Y(Gal(K’/K), 1q(Ly))- Let
Stah be the stabilizer in Gal{’/K) of Dj. The latter sum is isomorphic to
@®jeaH(Stah, uq) from Shapiro’s lemma (see [AW, p. 99]). We can make an
analogous statement by replacikgwith K.

2.5 Extension of the algorithm

Letf be a polynomial of degree 2d over the number figlavith distinct roots in
K. Let C be the normalization of the curve given by the affine equagfon f (x)
and letJ be its Jacobian. Lef«;} be the set of roots of. Then the divisor
classes inP. = ([(a1,0) — (aq, 0)], [(a2,0) — (a1,0)], . .., [(@2d,0) — (a1, 0)])
spanJ[2]. We can letL = K[T]/(f (T)), andL’ = K[T]/(f (T)) where GalK /K)
acts trivially onT. Note K[T]/(f(T)) = JIKI[T]/(T —«a;) = []K by T ~
(T,....,T) = (au,..., ). The mapw’, given byP — (P, P), sends][2] to
u2(L"). However this map may not be defined o%erThe groupG generated by
the set{(c — 1)(w'(P)) | P € J[2],0 € Gal(K/K)} is contained int1 C pup(L’).
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Thus the induced map fromd[2] to ux(L’)/ + 1 is defined ovelK; it is also
injective. The map this induces on cohomology may not be injective, but the
kernel is sufficiently under control so that Mordell-Weil ranks can nevertheless
sometimes be computed. In this case, the rRajs x — T and its image is
in L*/L*2K*. This case is far more complicated than those that fit into the
framework given earlier. It is discussed in [Ca], [FPS], [PS] and [St1].

We can try to use this technique in general. We can pick some spanning set
and quotient out by a group lik&. But then we can not typically expect the
induced map on cohomology to be close enough to injective to be useful.

3 Curves of the formyP = f (x)

Let K be a field of characteristic 0. L&{x) be a monic polynomial oveK of
degreed with distinct roots inK. Let C be the normalization of the projective
curve defined by the affine equatigfi = f(x), wherep is a prime that does
not divided. (The case wherp does divided is described in [PS]). From [Tw,
Sect. 1], the genus & is g = (p—1)(d—1)/2. Sincep # d there is a single point
on the line at infinity. Ifd # p + 1, then the projective curve will be singular at
oo. Also from [Tw, Sect. 1], since Ad, the normalization has a single rational
point over the point on the line at infinity which we denete Since we chose
f to have distinct roots, the projective curve givenyy=f (x) can be singular
nowhere else.

Consider the map on C, that on the affine part sends,§) — (X, {py).
The mapr induces an automorphism df The groupJ is generated by divisor
classes of the formH — oco] whereP is an affine point orC. The divisor of the
functionx — x(P) is 7P~P + ...+ 7P + P — poo. Consider the subring[7] in
End(). The minimal polynomial ofr overZ istP~1+ ...+t + 1. Thust acts
as a primitivepth root of unity in End{); so by abuse of notation we rename it
Cp- Let o =1— ¢, in End().

For 1<i < p -1, the quotient of the numbers elqi)) and (1-¢p) is a
unit. Thus the subgroup[¢] of J is fixed by GalK /K). The abelian variety
J /J[¢], however, will typically not be a Jacobian ovkrunlesskK containsgp.
Thus it will be difficult to compute the Mordell-Weil rank a¥(K) directly for
the reasons presented at the end of Sect. 2.3. For that reason, we assufne that
contains¢, so ¢ is aK-defined endomorphism.

Here is one case where the quotient is a JacobianCLée y® = x? — k
and C’ bey® = x2 + 27k with k € K* (andK not necessarily containing,)
and letE and E’ be their Jacobians (elliptic curves). Let= 1 — (3 on E
and¢’ = 1— (3 on E’. Then there are isogenies: E — E/E[¢] = E’ and
7' i E’ = E’/E'[¢'] ¥ E defined ovelK with 7/ o7 = 3. In [Tp], Top describes
the computation of the- and r’-Selmer groups along the lines of Sect. 2.

Let us show that? = A\=13[¢] = J[¢].

Proposition 3.1. Let A be the canonical principal polarization from J tb with
respect to C. We have 1J[¢] = J[¢].
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Proof. Let (1 — Cp)T denote the image in Endl{ of 1 — (, under the Rosati
involution. By definition, the following diagram commutes.

J A3
1-¢)tr T1-¢
J A3

From [Mi2, p. 139], we have] = C;l. Thus we have

W= AT Gl = I - )= 3L — 1= 9[- ¢ = I[1 — ¢l = I[g]
since the quotient of + Cp—l and 1- ¢, is a unit. |

We know @)P~! =u - p whereu is a unit in Endg).
Definition. LetdimM denote the dimension of &f-vector space M.

We also know dind[p]=2¢ =(p — 1)(d — 1), so dimJ[¢] = d — 1. We need to
choose a Galois-invariant spanning setl§f]. Let {«; } be the set of roots of
f.

Proposition 3.2. The divisor classefaz,0) — oc], ..., [(ag_1,0) — oc] form a
basis for J¢].

Proof. The following proof was suggested by Michael Stoll. l&(C) be the
function field of C over K and let Princ denote the principal divisors. The
following sequences are both exact.

0K = KC)* ¥ pPrinc— 0

0 — Princ— DiV’(C) - J — 0

Let 7, as before, be the automorphism®@fgiven on the affine part by(x,y) =
(X, ¢py). By extendingr from points to divisors, the map induces maps on
Princ, Di’(C) andJ. We can letr act onK (C) by fixing K(x) and sending
to gp‘ly. Let G = (7). Under these actions, both are exact sequenceq®}-
modules.

Under G-cohomology we have the following exact sequence.

0=HYG,K(C)*) » HYG, Princ) » H3G,K") =K /K" =1

To get the first equality, we can identif¢g with Gal(K(C)/K(x)) and use
Hilbert's theorem 90. The next-to-last equality comes from the fact &as

a finite cyclic group and sdH2(G,K") =~ ker(1 — 7)/image(Norm), where
Norm = 1 +... + 7P~1, ThereforeH (G, Princ) = 0 and hence the map from
Div(C)® to J© = J[¢] is surjective. Sal[¢] is generated bya-invariant divi-
sors. The group DR(C)® is generated by divisors of the forf — co where
P € C© and by those of the form Norm(— oc) for arbitraryP € C \ co. Each
such NormP — oo) = div(x — x(P)) and so is principal. Thud[¢] is generated
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by divisors of the formP — co whereP € C€ but the only points fixed by
are those withy-coordinate 0 ando.

We have already seen that difi] = d — 1 and that the sum of adl divisor
classes [i,0) — oc] is 0, so the result follows. O

ThereforeP, = ((ovg,0)— o0, ..., (ag,0)—o0) is a Galois-invariant set whose
divisor classes spab[¢]. Thus we can sett = K[T]/(f(T)) and

L= K[T1/(f(T)) KITI/(T — )

14

1%

Ki byT*—)(T,...,T)H(Oxl,...,ad)
i=1

where GalK /K) acts trivially onT. Therefore we can Igf = x — T where if
R=>"niR is a good divisor, then

x-TR) = [[xR)-T)* e L*.

When composed with the isomorphismidfand [] Ki, the mapx — T becomes
the d-tuple of functions X — a1,...,X — ag), whose divisors areP, .

It is often convenient to work with divisors of the forth—r oo whereD is a
K -rational, effective divisor of degrae Let us consider the image of the divisor
class containing such a divisor under the nxap T. The following proposition
holds even whefK does not contairp.

Proposition 3.3. Any element of (K) can be represented by a divisor of degree
0 which is defined over K and whose support does not incladar points with
y-coordinate 0. In particular, let D= 71Q + ... +7"Q — roo Where the”'Q are
the r conjugates over K of the point Q of C an@@) # 0. We have

r

(x = T)([D]) = [ [x("Q) — T)(modL*P).

i=1
Let D = (a1,0) +... + (ar, 0) — rco where then; are conjugate over K, possibly
renumbered, and K d. We have

d

x—T)O) = [[ (i -T) "+ ][t = T) (modL*P).
i=1

i=r+1

Proof. Assumep is odd. SinceC has aK-rational point, namelyx, the first
sentence follows from Proposition 2.7. L®t= (xo, Yo) be a point ofC defined
over a finite extension oK and fix a set{o;} of embeddings oK (Q) in K,
such that”1Q, ..., ?"Q are the conjugates @ overK. Let

D= _"Q)-roc.
i=1
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Any degree 0 divisor defined ovét can be written as the sum and difference
of such divisors (possibly with different sets {f; }).

First we assume that 7 0. Leta, b € K* with f(a) # 0. Let (@, ¢), (&, {yC),
..., (a, C,?’lc) be thep affine points on the lin& =a and let ¢;,b), ..., (gq,b)
be thed affine points on the ling/ = b; the latterd points are not necessarily
distinct. Sincep does not divided we can find integer;y and m such that
nd + m(d — p) = 1. The divisor of the functionx(— a)™(y — b)~" ™ is

roo+rm(a,c) +...+rm(a, Cr‘,’*lc) —r(n+m)(gy,b) — ... —r(n+m)(gq,b).

When we add to this principal divisor we get a divisor withodb or points
with y-coordinate O in its support. Therefore we have

(@-TI"X(Q)—=T)-...-(X(°Q) —T)
((gr=T)-... (ga — T)yrm
(a—-T)P"x("Q)—T)-...- (X(°Q) —T)
((~17(F (T) — bP)y@=m
X(C'Q)—=T)-...-(X(°Q) — T)(modL*P).
LetD = (ag,0)+...+(cr, 0)—r oo where they; are conjugate ovef andr <

d. We can letr < d since} (i, 0)—doc is principal. Letg =y — [ ;(X — aj).
We have

x-T)[b) =

ml
(9) = (@1,0) +... +(ar,0)+ Y P — (' +1)00
j=1
wherem’ = max{d —r,r(p — 1)} andP; = (X, y;) with y; # 0 and thex;’s are
the roots of the polynomial

d r
IT ¢ —ai) = JJx = ai)P™
i=1

i=r+1
We have
m/
D—(9)=moo—Y P
i=1
which is the negative of a divisor of the form we handled in the first part of the
theorem. Therefore we have

’

x-T))=JJx -t =[[(T-x)"

i=1 i=1

d r
=[] - a) - T[T = @)P~(modL*?).
i=r+l1 i=1
Let us consideL to be a product of number fields or to be containel[ik; .
In either case, one of the two products in the above formula will be 0 at each
factor. Thus we have
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d r
x=T)O) = [ (@ -+ ][t = T) (modL*).
i=1

i=r+1
For thep = 2 case, see [Scl, Lemma 2.2]. O

The upshot of the first formula in the above lemma is that you can basically
ignore the appearance of in such a divisor.

The following proposition shows that the mapinduces on cohomology is
injective and describeld (K, J[¢]; S).

Proposition 3.4. Let K be a number field containing,. The groups
norm

H(K,J[¢]; S) andker : L(S,p) — K*/K*P are isomorphic via ko w.
Proof. First we show that the following is a split exact sequence of IGAK)-
modules

0= I[¢] 5 pp(L") = p1p(K) = 0

whereN is the norm map. The dimensions of the thFgevector spaces aik—1,
d and 1 respectively. The divisor of the functigns («y,0) +. .. + (g, 0)—doo.
So the sum of thel divisor classes [{;,0) — o] is trivial. Then since(, € K,
the Weil pairing is linear and the image af is therefore equal to the kernel
of the norm. LetA be the diagonal embedding pf(K) in up(L’). Let b be a
positive residue ofi~1(mod p). Then the composition ofA\® and the norm is
the identity, so the exact sequence splits.
Since this short exact sequence splits, the following is a split exact sequence

0— HYK,I[4]) 4 HYK, up(L) S HY(K, 1p(K)) — 0.

The groupH (K, up(L")) is isomorphic toL*/L*P by the map we calk. The
groupH }(K,, 115(K)) is isomorphic toK * /K *P by a Kummer map also. Soo w
induces an isomorphism &f1(K, J[¢]) with the kernel of the norm fror.* /L*P
to K*/K*P and of H(K, J[¢]; S) with the kernel of the norm froni.(S, p) to
K*/K*P, O

The following proposition has two corollaries for a number figldThe first
gives the size ofl(K,)/¢J(Ks) for s a finite prime. The second shows how to
find the Mordell-Weil rank ofl (K) from J(K)/$J (K) and knowledge of torsion.

Proposition 3.5. Let.ZZ" be a number field or the completion of a number field
at a finite prime, that containg,. ThendimJ (7)) /pJ(7") — dimJ(ZZ)[p] is
the same a¢p — 1)(dimJ (7)) /pI (7)) — dimI (F2)[¢]).

Proof. For eachn > 1, the following is an exact sequence from Proposition 2.6
whereB =D =J(7) andg = ¢ andf = ¢".
AN | IH) ¢ IZ) | IH)
PQ(ZN™)  dI(F)  PMN(F)  PNI(H)

—0
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Therefore
dimJ (7)) /pd(7) = dimd () /¢P LI ( )
p—2 p—2
= (p — DdimI () /I (F) — > _dimI(F)[¢']+ > dime(7)[¢'*]).
i=1 i=1
Thus
dimJ (7)) /pd(7) — dimd (72)[p] = (p — 1)dimI (7)) /pI ()
p—1 p—1
= " dimI(F)[¢']+ Y dime3(F)[¢)).
i=1 j=1

For eachj > 1, the following is an exact sequence.

0= I(F)¢] = TN S pI(F)[F] 0
Thus
dimJ(72)/pd(72) —dim3(Z2)[p] = (p— 1dimI(F)/pI(F)
—(p — 1)dimI(7)[¢].
O

Corollary 3.6. Let K, be a finite extension oRs containing(, and let r =
ordy(s). In addition letg be the genus of C. ThatimJ(K,)/¢J(K;) = gr[K, :
Qs(¢p)] + dimJ (K)[¢].

Proof. If s # p, thenr =0 and this follows from Proposition 2.4. Letlie over
p; sor = 1. From Proposition 2.4, we have

dimJ (K,)/pJ(K;) = g[Ks : Qp] +dimJ (K,)[p].
Using Proposition 3.5 we have
9[Ks 1 Qp] = (p — 1)(dimI (Ks) /¢ (Ks) — dimJ (Ks)[¢])
9[Ks = Qp(¢p)] = dimI (Ks)/¢J (K,) — dimJ (K)[¢].
O

Corollary 3.7. Let K be a number field containing. The Mordell-Weil rank of
J(K) is (p — 1)(dimI (K)/¢I (K) — dimI (K)[4]).

This follows immediately from Proposition 3.5.
We conclude with a proposition suggested independently by Armand Brumer,
Michael Stoll and the referee. The proof appears after [PS, Lemma 13.4].

Proposition 3.8. Let C be defined over K, a number field not necessarily con-
taining ¢,. The Mordell-Weil rank of {K) is the quotient of the Mordell-Weil rank

of J(K(¢p)) by [K(¢p) : K].
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3.1 Example where not all elementsyofare rational

Proposition 3.9. Let C be the projective curve given by the affine equattor y
(x?+1)(x*> — 4x + 1) and let J be its Jacobian. The grougQ) has Mordell-Weil
rank 1 and the group (Q({3)) has Mordell-Weil rank 2.

Proof. Let K = Q((3) andf(x) = (x2 + 1)(x? — 4x + 1). Let ¢ = 1 — (3. We
first computed (K)/¢J(K). The roots off are=+i and 2+ /3. We havel =
K[T]/(F(T)) = K(@i) x K(i) by T — (i,2 ++/3) andL*/L*® is isomorphic
to (K(i)*/K(i)*3)2. In K(i) = Q((12), we fix (3 = (-1 ++/-3)/2 and /3 =
iv—3. The bad primes of overQ are 2 and 3. There is one prime Kf(i)
over 2 generated by (1H); it is inert in K and ramifies inK (i). There is one
prime q of K(i) over 3; it ramifies inK and then is inert up t& (i). We will
denote the restriction of these primesKoby 2 andq. SinceK (i) is a totally
imaginary extension of the rationals, it has unit rank 1. We noteithats is a
fundamental unit. The class group of the fildi) is trivial. ThusK (i)(S, 3) is
(i — (3,C3,1+i,V/=3).

From Proposition 3.4, the groud *(K,J[¢]; S) is the kernel of the norm
from L(S,3) = K(i)(S,3)? to K*/K*3. The number¢s(i — (3) generates the
kernel of the norm fronK (i)(S, 3) to K*/K*3, ThusH(K,J[¢];S) = ((i —

G (i — )P, (G, (D). (L +1, (L +1)D), (V=3, V=3, (L, Gali — ¢3))). The group
S?(K,J) is the intersection of the groupk 1(Fs(J (Ks)/#Jd (Ks))) for the primes
5 =2 andq of K.

At this point let us find the images of the known elements] (K) by the
mapx — T. The groupd (K)[¢] has order 3 and is generated by the divisor class
[(i,0) + (=i,0) — 20¢]. In J(K) there is also the divisor class [(D) — ~]. In
the following table we present the images of these two classes (K, J[¢]; S)
by the mapx — T. Above each coordinate is written— « to remind us how
to compute that coordinate. We use Proposition 3.3 to compute the images of
[(0,1) — oc] and [(i, O) + (—i, 0) — 200].

X —i X —(2+/3)
[(i,0)+(=i,0)—200] — (1+i)? C32(| — (3)%(1 +1)
[0,1)— o] 1 3 — G)?

From the first exact sequence in the proof of Proposition 3.5, we KhgW[¢]
/o3 (K)[3]) injects intoJ (K)/¢J (K) which injects intoL* /L*3. Thus we know
thatJ (K)[3] = J(K)[¢] and is generated byi[(0)+(—i, 0)— 200] since its image
is not trivial. In addition we see that the image of ,[{§— oc] is independent of
the image of torsion and so the divisor class has infinite order. We will show that
S?(K,J) is generated by the images of [0) + (—i,0) — 200] and [(0 1) — a].

Let us describe the groupd(K,)/¢J(K,) and L;/L§3 > (Ky(i)*
JKq(i)*2)2. The groupK,(i)*/Kq(@i)*2 is (v/=3,1+v/=3,1+iy/=3,1+ V=3,
1 +i¢f32, 1 +¢T33>. Let us rename those numbe{8,B,E, I, ¥, A), to
agree with the notation in [KS]. Multiplicatively, anything that is 1 modulo
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9 is a cube, as are t i\/—;S3 and —1. We have [ — (3,(3,1 +i,v/=3] =
[BE,B2I', I'>, AmodK,(i)*3. Thus the kernel of3, is trivial. From Corol-
lary 3.6 we know dimd(K,)/¢J(K,) is the sum of 3K, : Qz(¢3)], which is
3, and dimJ(K,)[¢], which is 1 sinceK, N K(J[¢]) = K, for a total of 4.
In the following table we list generators df(K,)/¢J (K,) and their images in

L /L33 = (Kq(i)*/Kq(0)%)%

X—i x—(2+V3)
[(i,0)+(=i,00—20] —~ I I'E?
[(0,1) — o] +— 1 I2E?
[(4,y1) —oc0] — @ I'E
(v o] = A 2

A small amount of linear algebra shows th@‘}'l(Fq(J (Kq)/ I (Ky))) is
the same as the group generated by the imagesi d)[¢ (—i,0) — 20c] and
[(0,1) — ]. So that is the Selmer group and those two divisor classes generate
J(K)/#JI(K). We do not even need(Kz)/¢J(Kz). Thus, from Corollary 3.7,
the Mordell-Weil rank ofJ(K) is 2. One can verify that the divisor classes
[(0,1) — o] and [(Q ¢3) — o] have infinite order and are independent. From
Proposition 3.8, the Mordell-Weil rank af(Q) is 1. O

Using a straightforward computation in the number field gotten by adjoining
to Q the root of the characteristic polynomial of FrobeniuslafverF7, Michael
Stoll has shown thall is absolutely simple. This type of argument appears in
the proof of [PS, Proposition 14.4].

3.2 Examples with Mordell-Weil rank 0O

In this section we find solutions of two diophantine equations over infinitely
many number fields. First let us state two propositions. Each follows from the
Riemann-Roch theorem and results in [Mil, Sect. 5] and is well-known.

Proposition 3.10. Let f(x) be a polynomial of degree 5 or 6, defined over a field
K of characteristic other than 2 with distinct roots kK. Let C be the normaliza-

tion of the curve whose affine equation fs¥f (x). Every element d?ic’(C) has

a unique representation by an effective divisor, with the exception of the canonical
class. In addition, every K-rational divisor class of degree 2 can be represented
by an effective K -rational divisor.

Proposition 3.11. Let C be a smooth plane quartic curve defined over a field
K. Every element oRic3(C) has a unique representation by an effective divisor
unless the divisor class containg PP, + Pz where the three Ps are collinear. In

the latter casd¢P; + P, + P3] = [Q; + Q, + Q3] if and only if there are lines Land

L, and a point R such that]lC = P; +P,+P3+R and ,b.C = Q; +Q, + Q3 +R.
Assume, in addition, that C has a K -rational point. Every K -rational divisor class
of degree 3 contains an effective K -rational divisor.
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From these follow special cases of the fact that wikermas aK -rational
point and the groug (K) is finite, then we can describe all points @ over
fields of degree oveK, less than or equal to the genus. Though we can describe
all such points, it is a more difficult problem to pick one of the fields and decide
which of those points are defined over that field. We present examples using each
of the previous propositions.

Proposition 3.12. The onlyQ-rational points on the curve C given by y¥ x°+1
are oo, (0,4+1) and (—1,0). The only other points on C rational over quadratic
extensions ar¢l +i,+(1 — 2i)), (1 —i,£(1 + 2)) and those with > Q.

Note that we could compute a 2-Selmer group or a (()-Selmer group. We
will do the latter, as there are already examples of the former in the literature.

Proof. We can rewrite the curve ad = (y+1)(y — 1) and letK = Q((s). We use
the endomorphismp = 1 — (5 of J, the Jacobian o€. The bad primes are the
single prime over 2, which we also denote by 2, and the single psimé — (s
over 5. The fieldK has class humber 1 and unit rank 1, with fundamental unit
1+(s. ThusK(S,5) = ((5,1 +¢5,2,1 — ¢s) andH (K, J[¢]; S) is the kernel of
the norm fromL(S, 5) =K (S, 5)% to K* /K *>.

We haveK;/K*® = (p,1+p,1+p? 1+p3 1+p? 1+p°). Let us rename
those elements oK, by (a,b,c,d,e,f). Any element that is 1 modulg® is
a fifth power, as are the fourth roots of unity. The vectajg I + (5,2,1 —
(s] = [bc’e?, b?c*d?e?, e3f , a]modK,°. Thus the kernel of3, is trivial. From
Corollary 3.6,J(K;)/¢J(K,) has dimension 3. In the following table we list
generators o8 (K,)/#J(K,) and their images irh.;/L;;5.

y+1l y—-1
[(x¢,p%) —oc] —» d d*
[(%2, p%) —cc] = e e
[(x3,p°) — 0] = f f4

We see thaﬁgl of the image ofJ(K,)/#J(K,) is the group generated by the
image of [(Q1)— oco]. So that is the Selmer group addK)/¢J(K) is generated
by that divisor class. We do not even ne#&K,)/¢J (K,). From Corollary 3.7,
we see thafl (K) has Mordell-Weil rank 0.

Now #J(Q) is at least 10 sincd(Q) contains [(01) — o] of order 5 and
[(—1, 0)—o0] of order 2. By computing #(F,) for a few primes we can prove that
the order of] (Q) divides 10 so it is equal to 10. L& = [(0, 1) + (—1, 0) — 2c¢].
Then D = [2(0,1) — 2], 3D = [A +i,1—-2)+ (1 —i,1+2) — 2],
4D =[(0, —1) + 0o — 2¢], 5D =[(—1,0) + 0o — 200], 6D =[(0,1) + 00 — 2],
D =[1+i,-1+2)+(1—i,—-1—2i)— 2], 8D =[2(0, —1) — 2c¢], 9D =
[(0,-1) + (—1,0) — 2¢], 10D = [200 — 2] = 0.

We have a bijection of the sef§Q) and Pié¢(C)(Q) by [P + Q — 2] —
[P+Q]. From Proposition 3.10, iP is aQ-rational point ofC, then P +oo—200]
must appear in the above list. i is defined over a quadratic extension @f
andP is its conjugate, thenF[+ P — 200] must appear in the above list, unless



Computing a Selmer group 467

[P + P — 200] is the canonical class. A simple calculation shows that if that is
the case then(P) € Q. ]

SinceJ has complex multiplication by a cyclic, quartic, totally imaginary
field it is absolutely simple. See [St2] for more discussion of the Mordell-Weil
ranks of the Jacobians of curves of the foyf= x' +k wherel is an odd prime.

Proposition 3.13. The onlyQ-rational points on the curve C given by y x(x —

1)(x — 2)(x — 3) are oo and those on ¥ 0. The only other points over quadratic
extensions of) are those on y= —1 and y = 2. There are 12 conjugate triples

of points over cubic extensions that are not collinear. All other points over cubic
extensions can be obtained by finding the other three points of intersection of a
Q-rational line with a point of GQ).

Proof. We can use = 1—(3 and the techniques in earlier examples, to show that
J has trivial Mordell-Weil rank oveQ((3) and hence ove®. Let us compute
J(Q). We already have all ad[¢] rational overQ. The liney = —1 is bitangent

to C and meets the curve atX@(—1) + 2(xo, —1) where thex; are the roots of

x? —3x+ 1. Aline L is a bitangent ofC if the intersection divisor of. with C

is L.C = 2P +2Q for pointsP andQ of C (not necessarily distinct). We have a
bijection of the sets (Q) and Pié(C)(Q) by [P +Q +R — 3] — [P +Q +R].
From Proposition 3.11, the order oik{( —1) + (X, —1) + 00 — 3o¢] is 2.

The primes of bad reduction ov€rare 2 and 3. The characteristic polynomial
of the Frobenius 08 overFs is fs(t) = t® — 3t* — 15t% + 125 which factors over
Q into irreducible quadratic and quartic factors. Thliss isogenous ovef)
to the sum of the elliptic curvé& given byy® = (X — 9/4)(X — 1/4) (where
X=(X- %)2) and a 2-dimensional abelian variety which is simple o@erln
addition # (Fs) =f5(1) = 4- 27. The divisor ofy +1 is 4(—1, —1) — 400 overFs.
From Proposition 3.11, the order of{l, —1) + 200 — 3o¢] is 4 in J(Fs). So the
2-power part of](Fs) is a cyclic group of order 4.

We have 8 (Fi9) = 16- 27- 13. The curve has 10 rational bitangents over
F19. They are the line at infinityuy = —1, uy = 4x + 10 anduy = 10x + 2
whereu® = 1. This gives us 9 divisor classes of the forRy fr P, + oo — 30¢]
where P; + 2P, is the intersection divisor o€ with one of theFqo-rational
bitangents which is not the line at infinity. Each of these 9 divisor classes is
different and has order 2, from Proposition 3.11. The 2-power pal{®Bfg) has
16 elements and at least 9 have order 2. Thus the 2-power part has exponent
2. Putting together the information from the reductions at 5 and 19, we see that
J(Q) ¥ (2/32)® © Z/2Z. By comparisorE(Q) =~ Z/3Z & Z /2Z.

We can find an effective representative of each divisor class H{®)(Q).
They are supported on the poist, the four points ory = 0, the two points on
the bitangenyy = —1, the four points ory = 2 (each is quadratic oveéd), and
12 triples of non-collinear conjugate cubic points. The proposition then follows
from Proposition 3.11.

Of courseE(Q) gives us theQ-rational points. But it does not give the points
defined over quadratic and cubic extensions. O
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4 A 2-descent for the Jacobian of a smooth plane quartic curve using
bitangents

Let C be the curve ove® defined by the equation 592906+ (—160930( +
182952@)X3 + (12537252 — 24442@Y + 164850&Z2)X? + (—219450/3 —
22039@Y? + 585642Y + 36590Z3)X + (110254 + 651@ Y3 — 3137F?Y? —
954&3Y +2371&%) = 0 and letJ be its Jacobian. The line¥ = 0,Y =0,
Z=0,X+Y+Z=0,X-Y-2Z=0,2X—-Y+Z=0,andX —3Y +2Z =0
are all bitangents o€ (see the proof of Proposition 3.13 for the definition of
bitangent). The curv€ is a smooth plane quartic curve and so has genus 3. We
will work over K = Q and use the multiplication by 2 map frointo itself as
our isogeny. In this casé = A~1J[2] = J[2], where is the canonical principal
polarization ofJ with respect toC. The curveC has the property that every
element ofJ[2] is defined overQ. This fact simplifies the example and makes
Assumption Il hold.

Away from the lineZ = 0 we letx = X/Z andy =Y /Z and denote points
by their affine, X, y)-coordinates. The divisors of the functiorsy, x +y + 1,
y—X+2,y—2x—1 andx — 3y + 2 are doubles of divisors, all of whose images
have order two inJ; in fact they form a basis fad[2]. Thus we can let. = Q°®
andF = (X,y,x+y+1y—x+2y—2x—1 x—3y+2). The groutH 1(Q, J[2]) is
isomorphic toL*/L*2 = (Q*/Q*2)® by the magk o w. The mapF is an injection
from J(Q)/2J(Q) to (Q*/Q*?)8. The setC(Q) contains {(-7/5,0) and (-1/7,0)
(coming from the intersection with = 0) and (%5, 8/5) so Assumption | holds
from Proposition 2.7.

It is a straightforward exercise to show that this curve has nonsingular re-
duction at all finite primes greater than 17 and singular reduction at the oth-
ers; thus we can le6 = {~,2,3,5,7,11,13 17}. The image ofJ(Q) un-
der F in (Q*/Q*2)°® is contained in the image dfi}(Q,J[2]; S). Recall from
Step 5 thatQ(S,2) = (—1,2,3,5,7,11,13,17) C Q*/Q*2. Under the identi-
fication of H(Q, J[2]) with (Q*/Q*?)®, the groupH(Q,J[2]; S) gets sent to
L(S,2) =Q(S, 2)°.

In the following table, we show the images iffS, 2), underF, of the six
elements ofJ[2] and two other rational divisor classes. Along the top of the
table, we list the component functions I6f When we Write%(x), for example,
we mean the divisor whose double is the divisomxof

X y X+y+1l y—x+2 y—2x—1 x—3y+2
[360] = 5 3.7 2.5.7 2.7 -2.3.5.7 3.7
By~ -3.7 2510 2.7 2.3.5.7 -7 5.7
Bx+y+1)]— -2-5.7 2.7 —2-5 7 —3.5.7 -7
3y -x+2]~ -2.7 -2.3.5.7 -7 2.5.17 -2.7 -3.5.7
3y —2x—1)]~ 2-3.5.7 7 3.5.7 2.7 1 3.5.7
Bx-3y+2]—~ -3.7 5.7 7 3.5.7 —-3.5.7 —-13
[(=7/5,0) — (=1/7,0)] — 5 -7 -3.5.7 3.7-17 -7 3.5.7.13

[(1/5,8/5)— (-1/7,0)] — —5.7 3-11 3.5 3.7.17 -7 -5.7
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The images of all eight divisor classes are independent. Since the images of the
six divisor classes of order two are independent, they form a basi¥[2pr As

the images of the other two divisors are independent of the imadé¢2df and

of each other iJ(Q)/2J(Q), they each have infinite order and are independent
in the Mordell-Weil group.

We can computes?(Q,J) in a manner similar to previous examples. The
only difference is that we need to compute the intersection of all eight groups
B51(Fs(3(Qs)/23(Qs))) for s € S. The intersection has dimension 8 asfn
vector space and a basis is the image of the eight rational divisors in the table.
Thus dim:,J(Q)/2J(Q) = 8 and dim,J (Q)[2] = 6 and so the Mordell-Weil rank
is exactly 2.

Proposition 4.1. The Mordell-Weil group ove® of the Jacobian of the smooth
plane quartic curve C, which is bitangent to=X0, Y =0,Z =0, X+Y +Z =0,
X—-Y—-22=0,2X-Y+Z=0,and X—3Y +2Z =0, has rank 2.

Just computing the characteristic polynomial of Frobeniug atl9 seemed
infeasible and so we do not know the splitting behaviod of

5 Examples in the literature for genus higher than 1

In [Sc2], a 2-Selmer group is used to show that the Mordell-Weil rank Qver
of the Jacobian of? = f (x), wheref (x) = x>+ 16x* — 2743+ 81 %% + 178 +1,

is 7. LetL = Q[T]/(f(T)) and CIL) denote the class group of the fidld The

fact that dim C()/CI(L)? is 4 was exploited. In [Sc1], a 2-Selmer group is used
to show that the Mordell-Weil rank of the Jacobianydf= x(x — 2)(x — 3)(x —

4)(X — 5)(X — 7)(x — 10) overQ is 2. In [St2], Stoll computed both 2-Selmer
groups and (X {s)-Selmer groups for the Jacobians of some curves of the form
y? = x® + k. Using information from both, some were shown to have non-trivial
2-parts of their Tate-Shafarevich groups.

In each of these cases, the hyperelliptic curve is of the form described in
Sect. 3, namely? = f(x) wheref has odd degree. As discussed in Sect. 2.5,
there is a way of bounding the Mordell-Weil rank of the Jacobians of hyperelliptic
curves of the formy? = f (x), wheref has even degree; see [Ca, FPS, PS]. The
author has used this to show that the Mordell-Weil rank @yeof the Jacobian
of a curve of Colin Stahlke’s given by? = f (x) wheref (x) = 121x% — 13&"> +
184 + 37k® + 104x? — 112 + 1 is exactly 12. LetL = Q[T]/(f(T)) and
CI(L) denote the class group of the field The fact that dim CI)/CI(L)? is
9 was exploited. In [FPS], the Mordell-Weil rank ovér of the Jacobian of
y? = x5+ 8x5 + 2% + 223 + 5x2 + 6x + 1 is shown to be 1. This is used to
show that there are n@-rational quadratic polynomials with rational periodic
points of period 5. In [PS] the algorithm is extended further to curves of the form
yP = f(x) where the prime divides the degree df. In addition, the Mordell-
Weil rank overQ of the Jacobian of® = (x? — x + 6)2(x8 + 3x + 3) is shown to
be 2. This example required working in a number field of degree 16 Qver
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Flynn has a technique for bounding the Mordell-Weil rank of the Jacobian
J of a hyperelliptic curveC of genus 2 over a number field, that is the best
one available for certain cases (see [Fl, CF]). Let us describe how it fits into our
framework and how it can be extended. Assuhfig] has a rational subgroup of
order 4 which is isotropic with respect to the 2-Weil pairing. In most cases, the
quotient ofJ by that subgroup is again the Jacobilnof a genus 2 curvE’.
The induced isogeny is called a Richelot’s isogeny. We denote ib.bjhere
is similarly a Richelot’s isogeny’ from J’ to J such thaty’ o ¢ = 2. Because
of the isotropy,/\—lj[q?’] = J[¢] for the canonical principal polarizatioh of J
with respect toC (see [Mi2, prop. 16.8]). In [CF], Cassels and Flynn present
a method for computinG?(K ,J) and S¢ (K, J’) assuming that all elements of
J[¢] are rational. They use the method described in Sect. 2. The kernel of a
Richelot’s isogeny is isomorphic td,, the Klein-4 group. The groupl X(G, V,)
is trivial for all G C Aut(V,). Thus for all possible Galois actions dr¢] or
J'[¢'], Assumption Il holds and we can do a descent using a Richelot’s isogeny.
There are a few examples in the literature like those in Sect. 3 wher2.
In [KS], the Mordell-Weil rank of the Jacobian ¢f = x* — 1 over Q((y») is
shown to be 0. Fadeev and McCallum describe a mdpr quotients of thepth
Fermat curve given byP = x3(1 — x)? with 0 < a,b < p; see [Fd, Mc].
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