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1 Introduction

Let E be a Weil elliptic curve over the fied of rational numbers Q. Note that,
according to the Weil-Taniyama conjecture, ever elliptic curve over Q is a
Weil curve. Let R be a finite extension of Q and E(R) the group of points of E
over R. According to the Mordell-Weil theorem, E(R) is a finitey generated
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(abelian) group, that is, E(R), is finite and E(R) & E(R)y x ZIFE)
where 0 < g(R, E) € Z is the rank of F over R. Let L(E, R, s) denote the L-
function of E over R (which is defined modulo the product of a finite number
of Euler factors). According to the Birch-Swinnerton-Dyer conjecture (which
we abbreviate as BS), g(R, E) is the order of the zero of L(E, R, s) at s = 1.

Another important arithmetic invariant of F is the Shafarevich-Tate group
of £ over R:

(R, E) = ker <H1(R, E) - [[H'(R(), E))

(v runs through the set of all places of R; see the section on notation at the
end of the introduction). It is known (the weak Mordell-Weil theorem) that
II(R, E) is a torsion group and for all natural M its subgroup HI(E, R)y,
of M-torsion elements is finite.

It is conjectured that III(R, E) is finite. In that case, BS suggests an
expression for the order of III(R, E) as a product of LOFEE)(E R 1) and
some other nonzero values connected with E (for examples, see (1) in [1] for
the case R = Q, and see Theorem 1.2 below). Let [[II(R, E)]” denote the
hypothetical order of III(R, E); then, according to BS, we have the quality
[HI(R, B)] = [II(R, E)]".

For a long time, no examples of E and R were known where III(R, F) is
finite. Only recently, Rubin [2] proved that III( R, F) is finite if F has complex
multiplication, R is the field of complex multiplication, and L(E,Q, 1) # 0;
the author [1], [3], [4] proved finiteness of 1T for some family (see below) of
WEeil curves and imaginary quadratic extensions of Q. For a more detailed
exposition of these methods, results, and examples, see the introductions to
[1] and [4].

We now state some results [4] from which we begin the study of I in
this article.

Let N be the conductor of £ and v : Xy — FE a Weil parametriza-
tion. here Xy is the modular curve over Q which parameterizes isomorphism
classes of isogenies E' — E" of elliptic curves with cyclic kernel of order
N. The field K = Q(v/D) has discriminant D satisfying 0 > D = square
(mod 4N)., where D # —3 or —4. Fix an ideal i; of the ring of integers O,
of K for which Oy/i; = Z/N. If A\ € N, let K, be the ring class field of
K with conductor A. In particular, K; is the maximal abelian unramified
extension of K. If (\, N) =1, Oy = Z+ Oy, and i) = i; N Oy, let z, denote
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the point of Xy over K corresponding to the isogeny C/Oy — C/i;" (here
i;\l D O, is the inverse of I, in the group of proper Ojampaq-ideals). Set
yr = ¥(2x) € E(K)); the point P; is the norm of y; from K; to K. The
points y, and P, are called Heegner points.

Let O = End(F) and Q = O ® Q. Let ¢ be a rational prime, T' = lim Epn
the Tate module, and O = O ® Z,. Let B(E) denote the set of odd rational
primes which do not divide the discriminant of O and for which the natural
representation p : G(Q/Q) — Aute T is surjective. It is known (from the
theory of complex multiplication and Serre theory) that the set of primes not
belonging to B(FE) is finite. Moreover, according to the Mazur theorem, if
O =7 and N is square-free, then all £ > 11 belong to B(E).

If the point P; has infinite order, (that is, P, € E(K)o) and g(K, E) =1,
let Cx denote the integer [E(K)/ZP;]. The author proved the following
theorem in [4].

Theorem 1.1. Suppose that P, has infinite order. Then g(K,E) = 1, the
group UI(K, E) is finite, and [IU(K, E)| divides dC%, where for all { € B(E)
we have ordy(d) = 0.

In Theorem 1.1, d is an integer which depends upon E but not upon K.
The application of Theorem ?? to BS is clear from the following result of
Gross and Zagier [5] for (D,2N) = 1.

Theorem 1.2. The function L(E, K,s) vanishes at s = 1. The point P,
has infinite order <= L'(E,K,1) # 0. If P, has infinite order, then the
conjecture that the group (K, E) is finite and BS for E over K, together,
are equivalent to the following statement: g(K,FE) = 1, III(K, E) is finite,

and [III(K, E)] = (C’K/ <0Hq|N b<q>>>2.

In Theorem 1.2, the integer c is defined in terms of the parameterization
v (cf. [5]), and the integer b(g), where ¢ | N is prime, is the index in E(Q,)
of the subgroup of points which have nonsingular reduction modulo q.

Let > °  a,n~*, where a, € Z, be the canonical L-series of E. It con-
verges absolutely for Re(s) > 3/2 and has an analytical continuation to an
entire function of the complex argument. Let L(E,s) denote this function;
it is the canonical L-function over Q of the elliptic curve E. The function

2(E, s) = (2m)*N*/*T(s)L(E, s)



satisfies the following functional equation:
E(Ea 2 - 3) = <_€>E<E7 S))

where € = ¢(E) is equal to 1 or —1.

Fix a prime ¢ € B(E). Let n(p) = orde(p + 1, a,), where p is a rational
prime. Hereafter in this article we use the notation p or pg, where k£ € N,
only for rational primes which do not divide NV, remain prime in K, and
for which n(p) > 0. If r € N, let A" denote the set of all products of r
distinct such primes. The set A° contains only Py := 1, and A = [J,., A"
If r > 0and A € A", let n()\) denote miny,n(p); then My = ("™ and
n(l) = oco. Let A € A, 1 <n < n(\), and M = ¢". In [4], we constructed
some cohomology classes 7y, € H'(K, Ey) which played a central role in
the proof of Theorem 1.1.

If R is an extension of QQ, then the exact sequence

XM

0

0— Ey — E(R) —
induces the exact squence
0— E(R)/M — HY(R,Ey) — H'(R,E)y — 0.
If R/L is a Galois extension, then
resg/r : H' (L, Ex) — HY(R, Ep)@F/0)

is the restriction homomorphism, which is an isomorphism when the /-
component of the torsion part of E(R) is trivial (because of the spectral
sequence). It is easily seen that the condition ¢ € B(F) leads to the triv-
iality of the ¢-component of the torsion subgroup of E(K)) (cf. [6] for the
case O = Z; the case O # Z can be considered analogously). In particular,
the value resg, /x completely determines the element 7, ,. We now give an
expression for this value. We use the standard facts about ring class fields
(which follow from Galois theory and class field theory, cf. §1 in [3]). If
1 < A € A, then the natural homomorphism G(K,/K:1) — [, G(K,/K1)
is an isomorphism, and we also have the isomorphisms

G(En/Knyp) = GG/ KG) = Z/(p+1).

For all p, fix a generator t, € G(K,/K;) and let ¢, also denote the generator
of G(K\/K,,) corresponding to this ¢,.

4



2 Statement of Main Theorem of [7]

Let ¢ be an odd prime and A a finite abelian group of /-power order. The
sequence of invariants of A is the nonincreasing sequence of nonnegative
integers {ny,ns, ...} such that

A= @ YAYYA
i>1

Fix an elliptic curve E over Q and let ¢ denote the negative of the sign of
the functional equation of E, and let K be a field that satisfies the Heegner
hypothesis.

Suppose A is equipped with an action of complex conjugation o. For
v = 0,1 let A” denote the submodule (1 — (—1)?e0)A. Since ¢ is odd,
A= A"® Al and o acts on A” as multiplication by (—1)""'e. Proof:

o1 —(=1)eo)x = (0 — (—=1)"e)x = (—=1)"tex + oz,
and
(1) (1 — (=1)eo)r = ((—=1)" e = (=1)* to)r = ((—1)" ‘e + o).

Let X = HI(E/K)[(>], and for v = 0,1, let {z}} be the sequence of
invariants of X”. If r € N, let v(r) € {0, 1} be such that r —v(r) — 1 is even.
Set

E(ryv)=r—|v—uv(r).

Let B(FE) denote the set of odd rational primes which do not divide
the discriminant of O = End(E) and for which p : Gg — Auto(Ty(E)) is
surjective. Fix ¢ € B(E) and for any prime p let n(p) = ordy(ged(p+1, ay)).
Let A" denote the set of all products of r distinct primes p 4 N such that p
is inert in K, and for which n(p) > 0. Let A be the union of the A", and for
any A € A let n(\) = miny\ n(p).

Suppose A € A. Let m’(\) be the exponent of the highest power of ¢ that
divides Py in E(K)). Let

() = {m’()\) if m’(\) < n(\),

00 otherwise.
Let m, = minyear m(A). For example, mg = ord,([E(K) : ZP,]). Let

m = min m(A).



Theorem 2.1 (Kolyvagin). If v € {0,1} and r > 1+ v, then

Ty = Meg(rp)—1 — Mg ().

Theorem 2.2 (Kolyvagin). #I1I(E/K)[(>®] = ¢*mo=m)

Theorem 2.3 (Kolyvagin). The full Birch and Swinnerton-Dyer conjecture
1s true for E over K if and only if m = ordy (quuv cq>, where ¢ 1s the
Manin constant, and the c; are the Tamagawa numbers.



3 Notation

Let ¢ be a prime and A an abelian group of /-power order.
{ = a prime
A = abelian group of /-power order
M=
A[M] = kernel of multiplication by M
A/MA = cokernel of multiplication by M
L = algebraic closure of L, embedded in C
Gal(R/L) = Galois group of R/L, when defined
HY(L,A) = H'(Gal(L/L), A)
O* = units in the ring O
R(v
K, = ring class field of K of conductor A

~—

= completion of R at the place v

K = the unramified quadratic extension of Q,
HY(R,A) > 7 7, =7(v) € H(R,, A)

Q, = K(p) = U R,, where p is a fixed place over p € A!
plv
H,, = (see page 12)

X = WI(E/K)[™)
n(\) = Igli/\nordg(gcd(p +1,ap))

1

m/(\) = ordy(Py € E(K)))
() {m’()\) if m’(A? < n()),
00 otherwise
my = irelquln m(\)
moy = Ordg([E(K) : ZPl])
v e {0,1} (fixed)
v(r) € {0,1} has opposite parity to that of r
§(r,v) =r—[v—wu(r)
A" = { all products of r distinct pt N s.t. p is inert in K and n(p) > 0 }
A = UpsoA”
A ={Ae A" :n(\)>n}
M:U%
r>0 7
e(A) = ey(A) = min{k > 0: /FA =0} (here A is a torsion Zs-module)
e(a) = eg(a) = e(Zy - a) = logy(order(a))
Yy, = (see page 14)
u(v) = (see page 28)



/
We use n,n/,n” for natural numbers and M, M’ M", resp., for £™, (™,
1
and " .

4 Properties of the Classes 7,

4.1 The Definition of the Classes 7,

Fix A € A and ¢ € B(F). Let M = (", where 1 <n < n(\). We construct a
class 7, € H' (K, E[M]).

Let K, be the ring class field of K with conductor A\. Thus K; is the
Hilbert class field of K and if A > 1, then

Gal(Ky /K1) — [ ] Gal(K,/EK)
pIA

is an isomorphism and

[~=3

Cal(Ky/Knyp) = Gal(K, /K1) = Z/(p + 1)L

For each p | A, fix a generator ¢, € Gal(K, /Ky ).
Let Oy = Z + AOk and Z), = N N Oy, where O /N = Z/NZ. Let
zx € Xo(N)(K),) be the point corresponding to the cyclic N-isogeny

(C/O\— C/T, ).
Set

Yy = 7TE(Z)\) € E(K)\)
Since ¢ € B(E),

resi : H'(K, E[M]) — H' (K, E[M])% /5

is an isomorphism. Thus to construct an element of H'(K, E[M]), it suffices
to give an element of H'(Ky, E[M])%F\/K) which is what we now do.

Let
p

I=-> it

=1



and
L= ] 1 € Z[Gal(K,/K))).
plA

Let Jy, = > g, where g runs through a set of coset representatives for
Gal(K,/K,) inside Gal(K,/K). Then JyI, € Z|Gal(K,/K)] and we let

P\, = L)y, € E(KA)
Then

resi* () = Py (mod ME(K))) € E(K))/ME(K)) — H'(K), E[M](). |
4.1

Remark 4.1. If P, has infinite order, then Kolyvagin proved that
#IL(E/K)[€<] | €2,

where mg = ord,([E(K) : ZP]).

4.2 Properties of the Points 1)

Suppose p | A and set Tr, = >°7 ¢/, Then

Tr, yx = apys/p-
Let F, denote the residue class field of K, and set £ = E /F,-
E(K,) >aw— ac E(F,).

Let Fr, : F, — FF, be the pth power automorphism. For all g € Gal(K,/Q),
we have

gAy/)\ = Frp(g/\y)\Z?)'

Let 6, be the Artin reciprocity homomorphism from the group of classes
of O, ideals to Gal(K,/K), and let o denote complex conjugation. We have

a(yx) = eO\(Zx)yr  (mod E(Q)or)- (4.2)

We have
(tp — I, =Tr,—(p+ 1).



If M |ged(p+1,a,), then for all g € Gal(K,/Q), we have
gP\= P, (mod ME(K),)),

so (4.1) really does defines an element 7, ,, € H' (K, E[M]).
Since og = g~ lo for all g € Gal(K,/K), it follows that

ol,=—IL,0 (mod M).
This and (4.2) imply that if A € A", then
oPy, =¢(—1)"Py (mod ME(K,)), and

0Tan = e(=1)"Tp.

4.3 Properties of the Localization of 7,

Recall that p is a prime of good reduction for £ which is inert in K and that
ap,=p+1=0 (mod M).

The primes p that we will actually use to prove things will be given by a
Chebaterov density argument, so we can safely assume that p > 2 (so that
the appropriate reduction maps are injective). For all M = ¢, we have

EM] C E(Q,")
and reduction induces a G, = Gal(Q,"/Q,) isomorphism
E[M] = E(F,)[M].

We have
Frz —a, Fr,+p =10

on E[M] and E(F,)[M]. Since a, =p+1=0 (mod M),
Fr2—1=0 on E[M],

so E[M] C EIK], where K is the unramified quadratic extension of Q,.
Since p is inert in K, it follows that K = K(p).
Let F' = F,2 denote the residue class field of K.
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Lemma 4.2. We have a commutative square of isomorphisms

E(K)/ME(K) — E[M]
E(F)/ME(F) —— E[M],

where P ) +1
Ip2 — = a p

fp,n: ZW 5 fp,n: MpFrp_T-

(The meaning of f,, is “first make a choice of Mth root, then apply
Fr,2 —17; this is well defined since different choices differ by an Mth root,
and the Mth roots are fixed by Fr,2, since they are rational over K.)

Proof. Suppose f,,(P) = 0, so there is @ € E(Q,) such that MQ = P
and (Fr2 —1)(Q) = 0. Thus Q € E(K), so Rmod ME(K)) = 0, and f,,
is injective. The diagram commutes because Frz —1 =a,Fr,—(p+1) on
E(F,)[¢>=]. The leftmost vertical map is surjective, by Hensel’s lemma, and
hence an isomorphism because, as mentioned above, the rightmost vertical
map is an isomorphism (and f,,, is injective). Because f,, is injective so is
fom» 50 to complete the proof it suffices to show that f,,, is surjective. Since
#E(F) is finite,

#< E(F) )_ #E(E) _ #E(F) g

ME(F)) #ME(F) #EB(F)/#EM]

Thus fpm and hence f,, must be surjective. O

Let
[ ]« EIM] x E[M] — py

denote the Weil pairing. We have
[v(e1),v(e2)lne = (ler, e2]ur) (4.3)

for all v € Gal(Q/Q).
Let E[M] = E[M]° ® E[M]' be the decomposition of F[M] with respect
to the involution Fr,, as described in Section 2.
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Lemma 4.3. E[M)" = Z/MZ for v =0,1.

Proof. If the lemma is false, then Fr, = 1 or Fr, = —1 on E[¢] (I don’t 100%
see this, though I don’t see how it could be wrong either), and we have for
any ey, es € E[M],

[e1, e2]e = [Fry(e1), Frp(ea)]e = Frples, eafe

= ([er, e2]e)? = [e1, €2); ',

o [e1,es]r = 1, since £ is odd. (In the last equality, we used that p = —1
(mod ¢).) This is impossible, because [, |, is nondegenerate. O

Let
Hy = H'(K, E[M]) = Hom(G2/(G2)™, E[M])  Hom(K"/(K"), E[M]),

where we have used the isomorphism 6, : K*/(K*)™ — G&°/(Ga") from

local class field theory. We have
K* /(KM = A, ® B,
where A, = (p) = pZ/pM% and B, = O} /(Ox)M. Then
Hypn=2A4,,®B,,

where A, ,, (resp., B,,) is the subgroup of H,, of homomorphisms that are
trivial on B,, (resp., A,,). Note that A,, = E(K)/ME(K), since

E(K)/ME(K) C Apn = Hyl,

and #(E(K)/ME(K)) = M? = #A,,, (see Lemma 4.2).
If £, is the class field of K that corresponds to the subgroup (K*)Mp?
of K*, then B,,, = H' (G, E[M]), where

Gpn = Gal(L,,,/K).

Because Hy,,, = A, @ By, it follows that H), decomposes into a direct
sum of the cyclic subgroups A7, and B}, of order M.

Let K, be the class field of K corresponding to the subgroup pZ(Z;—i- pOx).
The field IC, is a cyclic totally ramified extension of KC of degree p + 1 and
L, is a subextension of K, of degree M over K. Suppose that A € Ais a
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multiple of p. The completion of K}/, in K (p) is the field K, the completion
of K, is the field K, and the embedding (as decomposition group)

Gal(K(p)/K) — Gal(K/Ky,p)

induces an isomorphism between Gal(K,/K) and Gal(K»/K)/,). Thus the
generator t, € Gal(K»/K)/,) can also be viewed as a generator of Gal(K,,/K).
Let t,,, denote the generator of G, which is the image of ¢,,.

For e € E[M], let by, (e) be the element of H,, which sends ¢,, € G,
to e. We define a nondegenerate alternating pairing

() H,,x H,, — Z/MZ

pn

by the following conditions: the group Hg(y],n is orthogonal to the group H;vn,
and for s € Ay, and all e € E[M] we have

(5t o _ 15 (), el

where )
Com = (9;1(%7”))(10 SO (mod p).
Let
(, )pm : Hpn X Hyy — Z/MZ

be the alternating pairing induced by cup product, the pairing [, |y, and the
canonical isomorphism H?(K, ups) — Z/MZ. This is a pairing of Gal(K/Q,)
modules, hence H), is orthogonal to H,,. According to formula (5) of [?],

(8,0p.n(€))pn = (5, bp,n(e»;n,n

for all s and e, it follows that

<a >p,n = <> >;9,n‘

Fix generators e of the groups Exy, where M, = ™) such that

[627 6;]]\/[ = Cp,n(p)‘

Set \

v _ p
P ﬁep'
Then [e) ., e} ] = G, since [N3, Naly = [a, 8]} for all o, 8 € E[M,] and
N = M,/M. (I'm not sure this makes any sense, but it’s my best guess at
what Kolvagin means; what he writes makes no sense.)

e
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Definition 4.4 (i, ). Define a homomorphism
Yy, Hy — Z/MZ

by ¢¥ . (z) = (z,b,,) pn, Where B2 = b, (el 7).

7 Upmn p,n

Then vy is trivial on By = (by ) and induces an isomorphism between
Ay, and Z/MZ such that for all s € Ay, we have

Upn(s)epn = (=1)" fpn(s). (4.4)

Let v, = gm + w;,n and, abusing notation, let 1,, also denote the
homomorphism H'(K, E[M]) — Z/MZ which is the composition of ¥, ,
and the localization homomorphism H'(K, E[M]) — H,,,.

Let Sy, be the subgroup of « € H'(K, E[M]) such that a(v) € E(K(v))/ME(K (v))
for all places v of K that do not divide A. (Equivalently, the image of « in
HY(K (v), E) is trivial for all v f .) Thus Sy, contains Sel ™ (E/K), but Sy,
might be bigger because there is no local condition at places that divide .

Proposition 4.5. Let A € A". Then 7y, € S;f;). If £(p, \) = 1, then

Tpn(p) = Py (mod ME(K))) € E(K,)/ME(K,).

If p| A, then
Tan(P) =€ Vpn(Tr/pn) - bf,m where 3 = v(r) (4.5)
/ p+1 Ay \ ——
& Vpn(Tapm) - €py = <(—1)ﬂ AR Mp> Py/p- (4.6)

Proof. The cohomology class 7y, contains the cocycle

Fan(7) = ('y (%) — %) - %, (4.7)
where
1=7A _]\Z)PA € E(K))

is the unique (since E(K)[¢*] is trivial) solution to the equation Mz =
(1 =7)P € ME(K,). If {(p,A) = 1, then K\ C K and Gal(K(p)/K) C
Gal(K/K)), hence, in view of (4.7), we see that 7y, (p) = P{mod ME(K)).
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If Ris a field and o« € H'(R, E[M]), denote by (a) the image of « in
H'(R, E)[M]. Again, in view of (4.7), we see that the class (7),) contains

the cocycle

Kyn(7) = %-

In particular,
(Tam) € H(Gal(K,/K), E(K))).

Let v be a place of K that does not divide A. Then since K /K is unramified
outside A, it follows that (7x,), € H'(K,, E)™. This group is always finite
and is trivial if (v, N) = 1. Gross observed that in the case v | A, we have
(Tam)v = 0 as well. (Huh?) Hence 7, € Sf’n.

Suppose that p | A. Since reduction induces an isomorphism between
E[M] and E(F)[M], the elment k, ,(v) may be defined by its reduction. We
shall show that if

v € Gal(K(p)/K) C Gal(K /Ky ),
then the eduction of the first term of (4.7) is trivial. Indeed, it is equal to
BB,
7M M -
since, by virtue of ... and the definition of Py, we have

]5)\:—(1+2+"‘+p)Fer>\/pGME(F)'

Hence
man(p) € H(Gal(K,/K), E[M]) = B,

It remains to calculate the value of 7, ,,(p) at t,. We have

(1 — tp)PA (1 — tp>IpI)\/pJ)\y>\

M M
_ (p+1—="Tr,) 1 pJayn
M
p+1 a
=" IypIayx — Mpp)\/pa
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and for its reduction, in view of ...., we have the expression

p+1 a - ~ ~
(— Fr, __p> Pyp = Jon(=Frp P/\/p)

M M
= fp,n <(_1)5/ e ]5/\/p>

=& wp,n(ﬂ/p) ‘ eg,n-

]

5 The Orthoganality Relation and the Char-
acters ¥, ,

Let R be an extension of Q, n < n' and n” = n’ —n. The exact sequence
0 — E[M] — E[M'] 2L E[M"] — 0

induces the exact sequence

«

E(R)[M")/ME(R)M'] — H'(R, E[M]) = H'(R, E[]M") =~ H'(R, E[M")).
Suppose that for all integer n,n’ with n < n’ we have E(R)[M"] =

ME(R)[M']. Then the maps a,,, are injections and the image of a,,/ is

HY(R, E[M'])[M], since a» s is also an injection and v, 100ty v is multipli-

cation by M. (This is sneaky. Here ay, : H' (R, E[M"]) — H'(R, E[M"])

is defined because n"” = n’ —n < n/, and by hypothesis o, , is an injection.)

In this situation, it is useful to identify H'(R, E[M]) with H'(R, E[M'])[M].

Specifically, we have the following two cases in which the hypothesis assumed

at the beginning of this paragraph is satisfied. First, suppose that R = K. In

this case, since E(K)[(*°] = 0, we identify H'(R, E[M]) with H[M], where

H:= H'(K,E[(*]) = lim H'(K,E[M).
M'—o0
Note that S, coincides with S} ,/[M] under this identification. The sec-
ond case is when R = K(p) (completion of K at prime over p) and n’ <
n(p) = ordy(ged(ay, p+1)). Then E(R)[M'] = E[M’], hence, ME(R)[M'] =
E[M"] = E(R)[M"].
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Let n < n’ < n(A). It follows from (4.1) that

Tan = Op/ 0T/

or
"
Taxn = M Txn'

in view of the identifications. From (4.4) and Proposition 4.5, for p a prime
with p{ A and s € S, ,,, we obtain the relations

Up (o) = Ppn(Tan)  (mod M) (5.1)

and

Vp(8) = M//wp,n<5) (mod M"). (5.2)

If A is a torsion Zs,-module, then e(A) = ey(A) denotes the minimum
nonnegative integer k such that (*A = 0, so e(A) is log, of the exponent
of A. If a € A, then e(a) = es(a) = e(Z; - a), i.e., log, of the order of a. For
example, when m () < oo then

m(\) = n(A\) — eg( Py (mod MMV E(K))).

Suppose n < n’ < n(A). By definition of m(\), 7,y # 0 if and only if
n’ > m(\), and in that case we have

e(Tam) = e(Pmod (" E(K))))
= e(Py\(mod ("ME(K,))) — (n()\) —n) :
=n' —m(\). (5.5)

Suppose n’ € [m(A),n(A)] and let n € [n" —m(\), n'], so
n —m(\) <n<n <n(N).

Let p | A € A". Then 7,/ € S;f;). From (4.5), in view of the equalities
My, =0 and byl = M5 it follows that M” | 4, (7, ') and

Taw (P) = €W (7 panr) [ MO,
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If s € Si\'(:;), then, in consequence of the reciprocity law, we have the orthog-
onality relation

S (7a (), (D)) pm = 0.

p|A

This relation, taking into account the previous equality and the definition of
the homomorphism 1, ,, gives us the relation

> W (Trjpn)/M") - topa(s) =0 (mod M). (5.6)

plA

The universality of the characters t,, (with n < n(p)) is evident from
the following proposition. We use the decomposition H = H° @ H' relative
to the action of Gal(K/Q).

Proposition 5.1. Let A° and A" be finite subgroups of H°[M| and H'[M],
respectively. For i =0 ori =1, let ' € Hom(A", Z/MZ) and n’ > n. Then
there are infinitely many primes p such that M' | M, (i.e., n' < n(p)) and

Z/MZ (restriction of ¢} to A") = (Z/MZ)y".

Proof. We consider in detail the case where E does not have complex multi-
plication. The other case is handled analogously.

Let E[M] = E[M]°® E[M]' be the decomposition of E[M] relative to the
action of ¥ = {1,0}, where o is the automorphism of complex conjugation.
Since o¢ = (7! for all ¢ € pyy, it follows that E[M]* ~ Z/MZ for i = 0,1
(cf. (4.3) and below). Let € be a generator of E[M]". Let V = K(E[M')),
where M’ = ¢*'. Note that puy C V because of nondegeneracy of the Weil
pairing.

Define the homomorphism

f: H[M] — H'(V, i) = Hom(G5?, 1)
as follows: for all z € G& and h = h® + h' € H[M], we have
F(h): 2z [1°(2), €'y - [h'(2), €]y (5.7)

I have to check that this is well-defined and is a homomorphism, and I also
have to figure out what this is! It might be res¥ composed with cupping with
two elements of H°(V, E[M]), and ?
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Suppose that f is an injection. Let W be the abelian extension of V'
corresponding to f(A), where A = A° @ A'. That is, W is the fixed field of

ker f(A) = ﬂ ker p C G
Pef(A)

By Kummer theory, the natural homomorphism
Gal(W/V') — Hom(f(A), a1

is an isomorphism, hence, in view of the isomorphism f : A — f(A), we have
the isomorphism
Gal(W/V) — Hom(A, pr).

Suppose that n € Gal(W/V) corresponds to the element x € Hom(A, pp/)
such that y = (%" on A”, where ¢ = [¢%,e!]y;. Let 3 = noy € Gal(W/Q),
where oy is the restriction of complex conjugation to W. According to the
Chebotarev density theorem, there exists infinitely many rational primes ¢
which do not divide N/, are unramified in W, and such that

ﬁ = Fr .= FrW(w)/@q

for some place w of W dividing q. We shall show that such primes ¢ satisfy
the conditions of the proposition.

Since ( is nontrivial on K, it follows that ¢ is a prime of K. Furthermore,
M' | (q+1), since for £ € ppy C V', we have

=g =¢=¢"=¢.

We see that Fr* = 07 = 1 on E[M] and, on the other hand, Fr* —a, Fr +¢ = 0
on E[M']. Hence a,Fr = ¢+ 1 = 0 on E[M’], or, equivalently, M’ | a,.
Therefore M' | M,.

Let ¢ € Gal(V/Q) and let a(g) = 1 if g € Gal(V/K), and a(g) =
—1, otherwise. If (—=1)""'e = 1, then, by definition, ¢ acts trivially on
H[M]", hence h*(29) = gh”(z). If (—=1)""'e = —1, then o acts on H[M]"
by multiplication by —1, hence h”(29) = a(g)gh”(z). Using (4.3) as well, for
h” € A, we have

!

(R (Fx?), e Jar = [B" (), e [y = X" (07) = [€%, €']}y,

where b = ¢”(h”). Hence, considering (4.4), we see that vy, is proportional
to ¢¥ by a factor from (Z/MZ)*.
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Now we shall prove that f is an injection. Let h € ker(f). Then it follows
from (5.7) that for all 2 € G% we have

[1°(2), e']ar = [P (2), " (5.8)
The substitution z — 29 ' gives us the equality
[1(2), ge'lar = [0 (2), ge*T - (5.9)

For i = 0,1, let €' be the generator of E’ such that (M’'/M)e! = ¢'. De-
fine the homomorphism ¢ : Gal(V/K) — GLy(Z/M'Z) so that g(ef,e) =
p(g)(€2 el). Since ¢ € B(FE), it follows that Im(p) = GLy(Z/M'Z). Fur-
thermore, the homorphism p : Gal(V/K) — GLy(Z/M'Z) is an injection,
and is an isomorphism when K C Q(FE[M’]). The field K is a subfield of
Q(E[M']) if and only if £ = 3 (mod 4) and K = Q(y/—1), in which case
p(Gal(V/K)) = ker(¢'), where the homomorphism ¢ : GLo(Z/M'Z) — {1}
is induced by det : GLo(Z/M'Z) — (Z/M'Z)* and the unique nontrivial
homomorphism ¢ : (Z/M'Z)* — {1} (cf. [?, §4]).

Let go € Gal(V/K) be such that p(go) = (% ). Substituting ggo for g
n (5.9), we obtain the equality

[R°(2), ge%ar = [B'(2), ge' )51 (5.10)
Let K C Q(E[M']). Then there exists an element g; € Gal(V/Q(E[M']))
such that a(g;) = —1. The relations (5.9) and (5.10) for ¢ = 1 nd
g = g1, respectively, together imply that for i = 0,1, [h%(2),¢e']yy = 1 a

[h'(2),€']ar = 1, hence hY(z) = h'(z) = 0.

Suppose that K C Q(E[M'])). Then K = Q(v/—1), hence ¢ > 3, since
we are assuming that K # Q(y/—3). Since ¢ > 3, there exists an element
a € Z/M'Z such that §(a) =1 but a £ 1 (mod ¢). Let g, € Gal(V/K) be
such that p(g2) = (3 2). Comparing (5.9) and (5.10) for ¢ = 1 and g = gs,
respectively, we obtain h°(z) = hl(z) = 0.

Thus res);(h) = 0. It remains to show that

resy. : H{M] — H*(V, E[M])

is an injection. Let g3 € Gal(V/K) be such that p(gs) = (7" %) and
G35 = {1,93}. Then Gj is a subgroup of order 2 in the center of Gal(V/K).
We have E[M] = 0 and H'(G3, E[M]) = 0. In view of inf-res-transgression
applied to the group Gal(V/K) and its normal subgroup Gs, we see that
ker(res¥.) = H'(Gal(V/K), E[M]) is the trivial group. O
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We need the following corollary to Proposition 5.1.

Corollary 5.2. Let A° and A* be finite subgroups of H[M|° and H[M]'. For
1=0,1andj=1,2, let

f; : Hom(A", Z/M) — C]’:

be four surjective homomorphisms, and suppose that n’ > n. Then there are
infinitely many primes p such that M' | M, and

#f7 (vestriction of ¢, to A’) = #C.

Proof. By virtue of Proposition 5.1, it is enough to prove the existence of
characters ¢* € Hom(A',Z/MZ) such that e(f;(1")) = e(C}). There exists
a character 9", since otherwise Hom(A",Z/M?7) is the union of two proper
subgroups, which is impossible. O

Let A\ € A", § € A¥ and § | \. Let Shsn denote the group Sy, when
0 =1, and denote the intersection of S, with the kernels of the characters
Ypn for all p | 6 when § > 1. We have the following proposition.

Proposition 5.3. Let v € {0,1} and r — k > 0. Then #S5;, = n.

Proof. Since S¥ 5, is the subgroup of S5, of all elements of order "1, it
is sufficient to prove the equality

#( o ) > (F, (5.11)

v
SA,é,n—l

Note that (5.11) implies that the multiplicity of n in the sequence of invariants
of SY5, 18 > (r —k)/n.

If v is a place of K, let H,, denote H'(K(v), E[M]) and A,,, denote
E(K(v))/ME(K(v)). If 3 is a set of places of K, let Hg,, denote the locally-
compact group [, 5 Hyn. The pairing

v|B

identifies the group Hpg,, with its dual group. We use multiplicative notation:
v | B signifies that v € # and (3,0, denotes the cup product 5 U B2. An
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element of A is identified with its set of prime divisors. Let § = A/é and
let Z,, be the image of Sy, in Hg,. It is sufficient to prove that Z,, is an
isotropic subgroup of Hp,,, because then Z} is an isotropic subgroup of Hy ,,,

hence
# 2, =\/#Hpn=M""*
and #27% | = (M/{)"% (the latter equality holds since, in the previous
equality, n is any natural number < n())). Thus, #(Z2%/Z% |) = F,
whence follows (5.11).
Let « be the set of all places of K. By Poitou-Tate duality, the image Y;
of the group H[M] in H,, is an isotropic subgroup of H, ,. Let

Vs=[[Bon- ] Ao

p|d ged(v,A)=1

By local Tate duality A, , is an isotropic subgroup of H,,, and B, , is
an isotropic subgroup of H,,, so Y3 is an isotropic subgroup of H,/g3,,.

Let Yo = Hg, x Y;. We have Z,, = m3(Y1 NY2). (I do not know for
certain exactly what Kolyvagin means by 7mg, and he doesn’t bother to say.)
Obviously, the equality (Z,, Z,)s, = 0 holds. Let z € Hg,, and (Z,, 2)3,, =
0. Let 2’ denote an element of H,, such that m3(2’) = z and m,/3(2") = 0.
Since 2’ is orthogonal to Y; MY, by Pontrjagin theory, 2z’ = z; + 2, where
7z € Y- =Y and z € Y;-. We have mg(22) € Hy,, = 0 and m/5(2) €
Yt = Y3 Hence 2/ — 29 = 21 € VI N Y, and m5(2" — 29) = 2, 50 2 € Z,. O

We now have all that is necessary for the study of the group X =
HI(E/K)[€=].

6 A Structure Theorem for III(E/K)[(*]

Let Al denote the subset of A" consisting of all elements A such that n(\) > n;

then
A= JA;

r>0

Let ¢}, be the restriction of ¢y, to the Selmer group Sy, = SY

1n

the subgroup of Hom(S},, Z/MZ) generated by ¢, for all p | A.
In the sequel, we shall assume that n” > n' > n.

v
and ®f
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Proposition 6.1. Let § € AF,, n > m(0), 6qg € AF*, and e(V,,,(75,))

e(Tsn). Then m(dq) < m(0). If, moreover, n” —n > m(dq) and v =1 —v(k),
then

e(yn (mod 15,,)) < m(d) —m(dq).
Proof. By Proposition 4.5,
Toqn (@) = €Vqn(Tsm) by -
Then, in view of (5.3) and our assumptions, we have
n—m(0q) = e(Tsgn) = e(Vgn(Ton)) = e(T5n) = n —m(9).

Hence m(dq) < m(9).

It is a consequence of (5.6) that ayj, € @5, where
o 7qu,n’ (7—5,n’)
a = W S Z/MZ

and n' =n +m(dq). Since

ord (Vg n(Tsn)) =1 — e(75.,) = m(J)
and (5.1) holds, it follows that ord,(a) = m(d) — m(dq). O

If § € A*, where r > k, let

m,(0) = Aer}\lrlgp\ m(\).

Proposition 6.2. If § € A¥ is such that m(8) < oo, then my1(8) < m(d).

Proof. Let n = n(d); then n > m(J), since m(d) < oco. Accoding to Corol-
lary 5.2, there exists ¢ such that ¢ € A*™! and e(vyn(75.,) = €(75,). The,
by Proposition 6.1, we have the inequality m(dq) < m(J). ]

Recall that, for r > 0, m, denotes m,(1).
Proposition 6.3. The sequence {m,} is such that m, > m,,.

Proof. By assumption the point P; has infinite order. Hence my < oo, since
my is the exponent of the highest powe of ¢ dividing P, in E(K). Now apply
Proposition 6.2 and use induction on 7. O
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Let Ty, denote the quotient group of Hom(S},, Z/MZ) with respect to
®f .. Recall that v/ denotes 1 — v, where v € {0,1}.

Proposition 6.4. Let k>0, r >k, a = v(k), f =v(r), and n” > n' > n.
Let 6 € A, be such that x := m,.(§) < n and X\ € A7, such that m(\) = .
Then there exists ¢ € A satisfying the following conditions:

1. &(g, \) =1 and M" | M,;
2. e (mam)) = e(mam);
3. at our discretion, one of the following two conditions is fullfilled:
(a) e(vgfmod ©F,,)) = e(T3,);
(b) if k > 1, then for a preassigned py | 0,
6((,02‘:“/ (7—5/1?1,71’)) = 6(7’5/])1%/);
4 eV (Tom)) = e(Tom);
5. there exists p | (A/d) such that m(\g/p) = x.

Moreover, if « = 3 and n”" —n > y = m(6), then we may choose a p
satisfying condition 5 so that the following condition is fulfilled:

0. 6( gn(Tg’n)) = 6(7—6,71)-

Proof. By Proposition 77, there exists s € Sf:&n such that e(s) = n. Accord-
ing to Proposition ??, there exists ¢ € A! satisfying conditions (1)-(4) and
the following condition:

T, eltg(s) = e(s) = n.
Since 7y, and s are orthogonal (see ()), we have the relation
Y U0 (Daaspn) = =V ()0 (Tan) == 2 € Z/MZ.
pl3

It follows from () and () that conditions (2) and (7) are satisfied as well
after the substitution n’ — n. Hence e(z) = n — 2z > 0. By the definition
of x, we have

e(¢5,n(TAq/p,n) < e(Tag/pn) <N — 2.
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Thus, there exists p | (A\/d) such that the following conditions are fulfilled:

€(¢5n(ﬁq/p,n) = n — z and, hence, m(\q/p) = x;
e(Wpn(s) = 1.

If o« = 3 and n"” —n > y, then we may take the element 75,4, to be s. If
Ts.n = 0, then (6) holds. Otherwise e(75,) =n —y > 0, and (6) follows from
(9), since 75, = (VT5 11y O

Proposition 6.5. Let n > mg and n’ = n +myg. (It says “‘m+my” in [?],
but m isn’t defined anywhere.) Suppose thatr = k+1 > 1, § € A, and
m(0) = m,_1. Then there exists a prime number p, such that dp, € A" and
m(dp,) = m,.(9). For every such p,, if B = v(r), we have

e(@gr,n (mOd q)g,n)) - e(T(Sﬁ,n) =Mr_1 — mr(5)7 (61)
e(Vp,n(Ts5m)) = €(T5.n), (6.2)
6(¢5§,n (mod (I)(sﬁln)) > My_9 —m,_1, wherer > 2. (6.3)

Proof. Let A € A7 |, where x = m/(d), be such that m(\) = x. The existence
of p, follows from Proposition 6.4 applied to 6 and A (and n” = n/, n’ = n,
n=x+1).

Now apply Proposition 6.4 to § and A\ = dp, (where n” =n’ and n’ = n).
Select a ¢ corresponding to condition (3a)). From conditions (2) and (3a),
and Proposition 6.1, it follows that e(Tfn) < y—uxz, where y = m(d) = m,_;.
The element a = 75,, belongs to Slﬁ, y C Sﬁ n, Dy virtue of Proposition 4.5
and the relation 7y, = 0 for all ¢’ € Ag_l (by definition of m,_; = y). Since
a = {""Y75,, it then follows from (8) that

e(y, n(a) = el (Togn) —(n—y) =y —=.
Since a L ®s,,, we have that
e(gp , (mod @7 ) >y —x,

hence (6.1) is true.
Analogously, the element b = 75, , lies in Sﬁ In and b L @gln. According
to (6), (6.2) is true, hence e(gpg;vn(b) =m,_s —y, and (6.3) holds. O
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If w is a sequence (py, . .., p,) of integers, for 0 < i < rlet w(i) =po- - p;.
[Note, this is not how Kolyvagin defines w(7), but his definition doesn’t make
any sense.] Define €27 to be the set of sequences w = (py, ..., p,) such that
w(r) € A7 and m(w(i)) = m; for 0 <4 < r. In particular, Q2 contains only
(po) = (1).

A priori, by the Mordell-Weil theorem, and because E(K)[¢*] is trivial,
(E(K)/ME(K))” = (Z/MZ)* , where ¢° + g* is the rank of F over K. The
sequence

0— E(K)/ME(K) — Hl(K,E[M]) — Hl(K, E)[M] — 0.
induces the exact sequence

0 — (E(K)/ME(K))" — 8%, 0. (6.4)

Here X7, = X};. By the weak Mordell-Weil theorem, the group 57, is finite.
Recall that the Heegner point P; has a unique representation P, = ¢™°x
where x € E(K) — (E(K) (set-theoretic difference).
Let n > mg, r =1, w = pg = 1, and choose p; as in Proposition 6.5. Then
T3, = Hom(SY, ,Z/MZ) and m,(6) = my. According to (6.1), we have

— XV

1n

e(SRn) = e(T(Sn) =myg—my <n.

Hence, in view of (6.4), it follows that ¢° =0, S?, = S?,, ., and X° =
XV, = X{,.0_m, 18 a finite group. In particular, the invariants z of X°
coincide with the invariants of 77,,.

Moreover, it follows from (6.2) that
(ks n(x (mod ME(K)))) =,
hence, S}, is the direct sum of Z/MxZ (mod ME(K)) = Z/MZ and Y =

1n
ker gozljhn.
Let r = 2, w = (1,p1), and § = p;. Then Ty, is the dual group for Y.

Hence, it follows from 6.1 that
e(Y)= e(Tin) =my — ma(9)

and by (6.4), we have g' = 1 and X' = X| = Xj,_ (9) is finite and

isomorphic to Y. In particular, the invariants x} of the group X' coincide

with the invariants of the group Tplm.
In [?] it was proved that ¢° = 0, and in [?] that ¢! = 1 and #X | ¢>™.
Recall that, for v € {0,1} and j € N v(j) denotes the element of {0,1}

such that j —v(j) — 1 is even, and £(j,v) = j — |v — v(j)|.
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Theorem 6.6. Let 1 > 0, n > myg, and n' = n + mg. Then Q, # 0.
Moreover, for all w € Q' there exists p, | £(w,p,) € Q. Let w € Q.
Then for 1 <j <r,

e (¢pn (Tui-1)m)) = e(Tu-1)m);

and if v € {0,1} is such that r — v > 0, then for 1 +v < j <r we have

e ( 0 (004 q)Z)(jfl),n>> = Me(jw)-1 ~ Me(j) = Tjp-

Proof. For r = 1 the theorem was proved above. Therefore, by induction,
it suffices to prove the theorem for r > 2, assume it is true for all v’ < r.
Let w € Q7' § = w(r — 1), and choose p, as in Proposition 6.5 so that, in
particular, the relations (6.1)—(6.3) hold. Since the theorem is true for r — 1,
it follows that e(7},) = =;_,, and for 8 = v(r),

r—v)

B’ —
xT‘—l—,Bl = Myp_o — Myp_1.

Hence the equality xfi 5 = My—g — m,_ holds, by (6.3) and the inequality
xfiﬁ, < 7 . In view of (6.1), (6.2), and the induction hypothesis, it

r—1-0'
remains only to prove that m,(0) = m,. This will be done if we prove that

Qr, # (. Indeed, using the fact that {(w',p’) € Q,, as above, we then have

n’

Myp_1 — M,y = ZEffﬁ =my_1 —m,(9).

If u=m,+1for 0 <k <r,let U* be the set of pairs w € QF,, X € A" such
that w(k) | A and m(\) = m,. It follows from Proposition 6.5 that €27, is
nonempty if U""! is nonempty. Then, since U° is nonempty, it is sufficient
to prove that U**! is nonempty if £ < r — 1 and U* is nonempty. Then, by
induction, U"~! is nonempty. Let £(w,\) € U*. Apply Proposition 6.4 to
d =w(k), A (and n” =n', n = u), and choose a ¢ corresponding to condition
(3a). We need to show that m(dq) = my41; then the pair ((w,q), Ag/p) will
belong to U**!. By Theorem 6.6 for k +1 < r — 1, we have

4 . o’
My — Mi41 = Tyl — 6(T5,n)’

where a = v(k). On the other hand, in view of Proposition 6.1 and condition
(3a), we see that e(T5s,) < my —m(dq). Hence m(dq) < my41, but, by the
definition of my 1, we have my 1 < m(dqg). Thus m(dq) = my,1. O
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7 Parametrization of UI(F/K)[(™]

The purpose of this section is the parameterization of X and its dual group
by a sequence of prime numbers more arbitrary than €. This is essential for
an effective description of the structure of X and its dual group, and for
the parameterization of X by the classes 7, and of its dual group by the
characters ¢, ,.

Let n’ be a nonnegative integer (I think). For r > 0 let II7, be the set of
sequence m = (py, ..., py) such that =w(r) € A7,;if r > 0and 1 < j <, then

6(\I/pj,n/(7'7r(j_1)7n/)) = e(TW(j_l)m/) (71)

and, if » > 2 and 2 < j < r, moreover,

e(quj n (TW(j—l)/phn’) = e(TTr(j—l)/m,n’)' (7.2)

Recall that

m = minm, = lim m,.
r>0 r—00

Let A € A" be such that m(A) = m. As in the above proof of the nonempti-
ness of U™"! using Proposition 6.4, condition (3b), and induction, we shall
prove that for all n’ there exists = € II7, such that m(7(r)) = m. We shall
say that = € II7, is minimal if m(7(r)) = m. From Proposition 6.1 and
6.4 it follows that if 7’ € H;,_l is minimal, then there exists p, such that
(7', p.) € II7, is minimal.

Let n > mgy and n' > n 4+ my. Assume that r > 2, that 7 € I, is
minimal, and 7© — p, is minimal as well.

Definition 7.1 (u(v)). If v € {0, 1}, then u(v) denotes r — v if r — v is even
(i.e., v =v(r + 1)), otherwise (i.e., when v = v(r)), u(v) =r —v — 1.

Let \” = 7(u(v) + v). By Proposition 6.5, T}, , = 0, that is, ¢ ,, 1 <
Jj < u(v) + v, generate Hom(SY,, Z/MZ). In particular, the homomorphism
oy in (?77?) below is an isomorphism. For 1 — v < i < u(v), set

AN =70+ v) /Do
and

14
Z = Tav ntm(\v) € Sav
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For 1 <i <w(v) and 1 —v < j < wu(v), define the elements af; € Z/MZ
as follows: if j >4, or if j + v =1 and i is even, then

and for the remaining pairs ij:
055 = Uy ntm(3) (TN tmirpy) /7). (7.4)

From the orthogonality relation (77), with n’ = n+m(\/) and A = N/, it
follows that for 1 < ¢ < u(v), we have

£

v)
@ijPpjrum = 0. (7'5>

—Uv

Il
—_

j
Let a = (a;j) be a square matrix of dimension u with coefficients in Z /MZ.
Let A(a) denote the abelian M-torsion group given by generators 1;, where
1 <7 < n, and relations Z?Zl a;;1; = 0. By identifying 1, with the element
of (Z/MZ)" having the jth component equal to 1 and the others equal to
zero, we can identify A(a) with the quotient group of (Z/M7Z)" with respect
to the subgroup generated by the rows of a.
Let r > 2+4v, a” = {aj;} for 1 <i,j <u(v), and A” = A(a”). Sending 1;
to ¢, ., smod ¢y ) and taking (7.5) into account, we define the surjective
homomorphisms o in () below. We have the isomorphisms

A —— /(o) ) —=— Hom(S},, Z/MZ)/ (¢}, ) (T.6)
o
X o Hom (X", Z/MZ).

Here @) | :=1and (¢} ,) is the subgroup generated by ¢V . We proved
above that the natural injection o4 is an isomorphism. The isomorphism aj
is induced by the exact sequence (?), and o is any isomorphism between X"
and its dual group. We shall prove below that Y is an isomorphism as well.

If b € Z/MZ, then ord,(b) := n — e(b). Using Proposition ??, (?), and
(7), we obtain the relation

orde(al;) = m(A; /piyy) — m(A)) < my < n. (7.7)
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Since a;; = 0 if 7 > 4, it then follows that

u(v)
ordg(A”) < 2" := Zordg(ai”i).

i=1
Equation (7.7) implies that
2042t =2my — m(m(r — 1)) —m(mw(r)/p1).

We shall show that m(w(r)/p1) = m. Since m(w(r — 1)) = m, by the condi-
tions on m, it follows that

ordy([A%][AY]) < 2° + ' = 2mg — 2m. (7.8)

Let A = 7(r). Since Ty pqm and s = Tx/(p1p,)n+m are orthogonal, considered
as elements of Sy, (cf. (7)), then if

0, = 2#1)1,71-&-771 (T/\/ph"'i‘m) /Em’
it follows that

010p1 () = 02 1= —(0p, mtm (To/pr ) /07 ) U, (5).

From conditions ?? and ?? and the equality m(A\/p,) = m, we obtain that
e(f2) = e(s) > 0. Thus, 0, € (Z/MZ)* and m(\/p;) = m, since otherwise
m(A/p1) > m, which implies that 6, € ¢{(Z/MZ).

Since ord,([X°][X]) = 2mo — 2m (cf. ?7) and ?? holds, it follows that
the surjective homomorphisms of and af are isomorphisms.

Note that v, (2{) = 0 for 1 < j <, because then, by Proposition ??,
z{ (Pj+v) € By, and ¥y (By,) = 0 (cf. Section ?7?7). We see from ?7 and
?? that, if u(v) > 2 and i < u(v), then ¢, . (2) € (Z/MZ)*. According
to (77),

e(z) = n+m(N) —m(N) = n.

)

We shall show that if (c1, ..., cuu)) € (Z/MZ)*") is such that

u

—~

v)
cizi =0, (7.9)

=1

then ¢; = 0 for 1 < i < u(v). It is sufficient to consider the case u(v) > 2.
Then for 2 < j < u(v) + v, we apply the characters ., to (7.9). By the
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properties of 2” noted above, we obtain ¢; = - -+ = ¢,)-1 = 0 and, hence,
Cu(v) = 0 as well.
Then, from the definition of 2/ and Proposition 7?7, it follows that

() = A5y (mod E(K (py,))/M).
Thus

u(v)
w = E cizi €S, 5
i=1

and the following relation holds for 1 < j < u(v):

> caly = 0. (7.10)

Note that the orthogonality between elements of S} , and x (mod M E(K)),
in view of the fact that

Opn(x (mod ME(K)) € (Z/MZ)*

and (??), implies that S; , = Sj,. Therefore, (??) is the condition that
w belongs to the group S3;. Let B” = {ci,...,cyw} be the subgroup of
(Z/MZ)"¥) defined by (7.10). If a is a matrix, then a* denotes the transpose
of the matrix a.

The pairing
(Z/MZ)"Y) x (Z/MZ)"") — Z/MZ,

under which (1;,1;) = §;; (the Kronecker symbol), induces the isomorphism
B% in (??). The isomorphism 3} is any isomorphism of the dual groups. The
f% is an injection (ci, ..., cyw)) — w. The isomorphism 3} is induced by the
homomorphism S%, — X" in (??7). We have

=®
=3
)
SN
&2

||zl&

A(a”™) Hom(A(a""), Z/MZ) B ker(¢7y,,) X,
(7.11)

We shall show that, for n > 2my, 84 is also an isomorphism. Let a be a
u X w matrix over Z/MZ such that a;; = 0 for j > ¢ and

IR
1%
1%

= Zordg(aii) < n.
i=1
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Using induction on u and our assumption, we see that ord,(A(a)) = &.

In particular, if n > 2m and a = a”", then £ < n, by virtue of (?7), and
hence, ordy, (B") = £ = 2”. Thus, since ord,([X°][X1]) = 2°+2! = 2my—2m,
and (39 and (3 are injections, it follows that 39 and [} are isomorphisms.

Note that since (™ X" = 0, for n = mg and n’ > 2mg, we have the
isomorphism «af, and for n’ > 3mg, the isomorphisms g} for 1 < k < 4
(obtained by reduction modulo £ of the corresponding homomorphisms for
n=mg+1).

Fix 6 = 2 or § = 3. Assume that the value of m is known, for example,
m = m’; that is, the f~-component of the Birch and Swinnerton-Dyer conjec-
ture for E over K is true. Assume as well that we can effectively calculate
the values of ¢, ,» on Ty v for X € A and (p, \') = 1, i.e., in view of (7), we
can calculate the coordinates of Py € E(F), where F is the residue field of
K(p).

Then the above exposition gives us an algorithm for calculating mq for
some r > 1, n' > 0mo+ 1, and 7 = (po,...,p.) € II’,, such that m(\) =
m(A/p1) = m, where A = 7(r), and for calculating the coefficients af; €
7./ MoZ, where My € ¢ . Then for n = mg, we obtain the isomorphism (7),
in particular, the isomorphism A” = X" and the parametrization of the dual
group of X¥ by the characters ¢y, ~for p | (\”/p). If 6 = 3, then we also
obtain the isomorphisms in (7), in particular, the parameterization of X"
by means of {z}. We can, of course, use the explicit matrix a” = {a;;} to
calculate the invariants of X".

Now we shall demonstrate the algorithm. Sort out (in any order) a triple
n' >m, r > 1, m such that A\ € A7,, until one is obtained which satisfies the
following conditions.

First, we verify the condition

Vprmt1(Ta/pms1) = 0. (7.12)

It follows from (7.12) that m(A/p) = m and, in view of Proposition 6.1, that
m(A) = m. If r =1, then (7.12) implies that mg = m, hence X = 0, since
#X = (?m=2m0  and we complete the calculations. If r > 1, then we verify
the conditions

n -1

7 > my = 1§jr§113(r%)+1 orde (¢, n(T1m)) (7.13)

and

¢p2,m6+1(7—1,m0+1) 7é 0. (714)
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It follows from (7.13) that mg = my. If r > 2, then we verify the condition

¢p17m0+1(7_1,mo+1) 7é 0. (715)

Furthermore, for 1 <i < u(v), we can calculate the values m(\/) according
to the formula

A) = i devp. . m Yo . 7.16

m( z) j:u(i)—rny,}igjgu(u) or pryru, 0+1(7_/\Z7 0+1) ( )

Recall that &(r,v) = rif r —v is odd and £(r,v) = r — 1, otherwise. Then for

v=20,and forv =1 and 1 <i < ¢(r,v) — v — 1 (if such 7 exist), we verify
the condition

VpiyirmO)+1 (T)\f,m(/\;-’)-i-l) # 0. (7.17)

The conditions (7.12), (7.14), and (7.13) if » = 2, or (7.15) and (7.17) if
r > 2, are equivalent to the conditions (7.1) and (7.2); thus, we require a
triple n/, r, w for which (7.12) and (7.13) hold, and, if r = 2, (7.15) and (7.17)
hold as well (for the case r = 1, see above).

The coefficients of a” for » — v > 2 are calculated using (7.3) and (7.4).

If r = 2 or 3, then my = m(py,p2) = m, hence, m,, = m for r > 2.
Furthermore, u(0) = 2 and the matrix a” is a square diagonal matrix such
that ordy(a?,) = mg — m(p;). In view of Theorem ? and (?), we obtain that
my = m(p;) and ord,(ady) = mo — m(p1). Then (?), as well as (?), holds
already (if n = mg) for = 2. In particular, X0 = 53, == (Z/(m0~™)?:
MOTEOVET, Ty, my AN Ty, m, form a basis for S3; , and ¢) | and @9 - form
a basis for Hom(SY, ,Z/MyZ). If r = 2, then my = m(py) = m; if r = 3,
then p; = \Y and, according to (7.16),

myp = Ofdewpz,moﬂ(Tpl,m0+1))-

If r =2, then
e(XH =my—mog=m—m=0,

so X! = 0. Suppose that » = 3. Then
Y = ker(pp, my) = X' = (/0772

and ¢, . and o) restricted to Y, form a basis of Hom(Y, Z/MyZ).
For r > 3, the group A = X" splits into the direct sum of two isomorphic
subgroups (according to Theorem 7). Such a decomposition is obtained as

33



a result of the orthogonality between 7y ,, and Tys ,, for X | A and A" | A.
This permits more rapid calculation of the invariants of X".

Recall (cf. Theorem ?) that the /~-component of the Birch and Swinnerton-
Dyer conjecture is the equality m = m’. If it is known that m > m’, which
is automatically true when m’ = 0, then we can use the algorithm, as above,
with m” in place of m. A calculation using this procedure ends if and only if
m = m’, hence it allows us to obtain the information above simultaneously
with the proof of the equality m = m”.

Let C be a curve of genus 1 over K having a point over K (v) for all
places v of K. Suppose that

e (' is a principal homogeneous space over E,

(2) € H'(K, E) is the cohomology class corresponding to C,

M is the order of (2),
e every rational prime dividing M belongs to B(F),

z € Sy is the element of the Selmer group which lies over (z), and

forall £ | M and p € A’ we can calculate the value z(p) € E(K(p))/ME(K (p)).

Adding to z, if necessary, the element 7' <E£|M E""O) P, (mod ME(K)),

with the corresponding 7' C N, we may assume that for all ¢ | M we have
2(p1)' =0 (mod £M~™).

Then we have the following effective criterion (necessary and sufficient) for
the curve C' to have a point over K (with m, mg, and A, of course, corre-
sponding to ¢):

forall £| M, for all p| A\, z(p) =0 (mod £ ™E(K(p))). (7.18)

If the curve C' is defined over Q and has a point over Q(v) for all places of
Q, then the effective criterion for C' to have a point over Q is the criterion
(7.18) with z(p)” in place of z(p), where (1)*~'e = 1.
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