On the Structure of Shafarevich-Tate Groups

V. A. Kolyvagin
Steklov Mathematical Institute, 117966, Moscow, GSP-1
Vavilova St. 42, USSR.

1989

Contents

1 Introduction 1
2 Statement of Main Theorem of [?] 5
3 Notation 7
4 Properties of the Classes $\tau_{\lambda, n}$ 8
4.1 The Definition of the Classes $\tau_{\lambda, n}$ 8
4.2 Properties of the Points y_{λ} 9
4.3 Properties of the Localization of $\tau_{\lambda, n}$ 10
5 The Orthoganality Relation and the Characters $\Psi_{p, n}$ 16
6 A Structure Theorem for $\amalg(E / K)\left[\ell^{\infty}\right]$ 22
7 Parametrization of $\amalg(E / K)\left[\ell^{\infty}\right]$ 28

1 Introduction

Let E be a Weil elliptic curve over the fied of rational numbers \mathbb{Q}. Note that, according to the Weil-Taniyama conjecture, ever elliptic curve over \mathbb{Q} is a Weil curve. Let R be a finite extension of \mathbb{Q} and $E(R)$ the group of points of E over R. According to the Mordell-Weil theorem, $E(R)$ is a finitey generated
(abelian) group, that is, $E(R)_{\text {tor }}$ is finite and $E(R) \cong E(R)_{\text {tor }} \times \mathbb{Z}^{g(R, E)}$, where $0 \leq g(R, E) \in \mathbb{Z}$ is the rank of E over R. Let $L(E, R, s)$ denote the L function of E over R (which is defined modulo the product of a finite number of Euler factors). According to the Birch-Swinnerton-Dyer conjecture (which we abbreviate as BS), $g(R, E)$ is the order of the zero of $L(E, R, s)$ at $s=1$.

Another important arithmetic invariant of E is the Shafarevich-Tate group of E over R :

$$
\amalg(R, E)=\operatorname{ker}\left(H^{1}(R, E) \rightarrow \prod_{v} H^{1}(R(v), E)\right)
$$

(v runs through the set of all places of R; see the section on notation at the end of the introduction). It is known (the weak Mordell-Weil theorem) that $\amalg(R, E)$ is a torsion group and for all natural M its subgroup $\amalg(E, R)_{M}$ of M-torsion elements is finite.

It is conjectured that $\amalg(R, E)$ is finite. In that case, BS suggests an expression for the order of $\amalg(R, E)$ as a product of $L^{(g(R, E))}(E, R, 1)$ and some other nonzero values connected with E (for examples, see (1) in [1] for the case $R=\mathbb{Q}$, and see Theorem 1.2 below). Let $[\amalg(R, E)]^{?}$ denote the hypothetical order of $\amalg(R, E)$; then, according to BS , we have the quality $[\amalg(R, E)]=[\amalg(R, E)]^{?}$.

For a long time, no examples of E and R were known where $\amalg(R, E)$ is finite. Only recently, Rubin [2] proved that $\amalg(R, E)$ is finite if E has complex multiplication, R is the field of complex multiplication, and $L(E, \mathbb{Q}, 1) \neq 0$; the author [1], [3], [4] proved finiteness of \amalg for some family (see below) of Weil curves and imaginary quadratic extensions of \mathbb{Q}. For a more detailed exposition of these methods, results, and examples, see the introductions to [1] and [4].

We now state some results [4] from which we begin the study of $Ш$ in this article.

Let N be the conductor of E and $\gamma: X_{N} \rightarrow E$ a Weil parametrization. here X_{N} is the modular curve over \mathbb{Q} which parameterizes isomorphism classes of isogenies $E^{\prime} \rightarrow E^{\prime \prime}$ of elliptic curves with cyclic kernel of order N. The field $K=\mathbb{Q}(\sqrt{D})$ has discriminant D satisfying $0>D \equiv$ square $(\bmod 4 N)$., where $D \neq-3$ or -4 . Fix an ideal i_{1} of the ring of integers O_{1} of K for which $O_{1} / i_{1} \cong \mathbb{Z} / N$. If $\lambda \in \mathbb{N}$, let K_{λ} be the ring class field of K with conductor λ. In particular, K_{1} is the maximal abelian unramified extension of K. If $(\lambda, N)=1, O_{\lambda}=\mathbb{Z}+\lambda O_{1}$, and $i_{\lambda}=i_{1} \cap O_{\lambda}$, let z_{λ} denote
the point of X_{N} over K_{λ} corresponding to the isogeny $\mathbb{C} / O_{\lambda} \rightarrow \mathbb{C} / i_{\lambda}^{-1}$ (here $i_{\lambda}^{-1} \supset O_{\lambda}$ is the inverse of I_{λ} in the group of proper $O_{\mid l a m b d a}-$ ideals). Set $y_{\lambda}=\gamma\left(z_{\lambda}\right) \in E\left(K_{\lambda}\right)$; the point P_{1} is the norm of y_{1} from K_{1} to K. The points y_{λ} and P_{1} are called Heegner points.

Let $\mathcal{O}=\operatorname{End}(E)$ and $Q=\mathcal{O} \otimes \mathbb{Q}$. Let ℓ be a rational prime, $T=\lim E_{\ell^{n}}$ the Tate module, and $\hat{\mathcal{O}}=\mathcal{O} \otimes \mathbb{Z}_{\ell}$. Let $B(E)$ denote the set of odd rational primes which do not divide the discriminant of \mathcal{O} and for which the natural representation $\rho: G(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow$ Aut $_{\mathcal{O}} T$ is surjective. It is known (from the theory of complex multiplication and Serre theory) that the set of primes not belonging to $B(E)$ is finite. Moreover, according to the Mazur theorem, if $\mathcal{O}=\mathbb{Z}$ and N is square-free, then all $\ell \geq 11$ belong to $B(E)$.

If the point P_{1} has infinite order, (that is, $\left.P_{1} \notin E(K)_{\text {tor }}\right)$ and $g(K, E)=1$, let C_{K} denote the integer $\left[E(K) / \mathbb{Z} P_{1}\right]$. The author proved the following theorem in [4].

Theorem 1.1. Suppose that P_{1} has infinite order. Then $g(K, E)=1$, the group $\amalg(K, E)$ is finite, and $[\amalg(K, E)]$ divides $d C_{K}^{2}$, where for all $\ell \in B(E)$ we have $\operatorname{ord}_{\ell}(d)=0$.

In Theorem 1.1, d is an integer which depends upon E but not upon K. The application of Theorem ?? to BS is clear from the following result of Gross and Zagier [5] for $(D, 2 N)=1$.

Theorem 1.2. The function $L(E, K, s)$ vanishes at $s=1$. The point P_{1} has infinite order $\Longleftrightarrow L^{\prime}(E, K, 1) \neq 0$. If P_{1} has infinite order, then the conjecture that the group $\amalg(K, E)$ is finite and $B S$ for E over K, together, are equivalent to the following statement: $g(K, E)=1, \amalg(K, E)$ is finite, and $[\amalg(K, E)]=\left(C_{K} /\left(c \prod_{q \mid N} b\langle q\rangle\right)\right)^{2}$.

In Theorem 1.2, the integer c is defined in terms of the parameterization $\gamma\left(\right.$ cf. [5]), and the integer $b\langle q\rangle$, where $q \mid N$ is prime, is the index in $E\left(\mathbb{Q}_{q}\right)$ of the subgroup of points which have nonsingular reduction modulo q.

Let $\sum_{n=1}^{\infty} a_{n} n^{-s}$, where $a_{n} \in \mathbb{Z}$, be the canonical L-series of E. It converges absolutely for $\operatorname{Re}(s)>3 / 2$ and has an analytical continuation to an entire function of the complex argument. Let $L(E, s)$ denote this function; it is the canonical L-function over \mathbb{Q} of the elliptic curve E. The function

$$
\Xi(E, s)=(2 \pi)^{-s} N^{s / 2} \Gamma(s) L(E, s)
$$

satisfies the following functional equation:

$$
\Xi(E, 2-s)=(-\varepsilon) \Xi(E, s)
$$

where $\varepsilon=\varepsilon(E)$ is equal to 1 or -1 .
Fix a prime $\ell \in B(E)$. Let $n(p)=\operatorname{ord}_{\ell}\left(p+1, a_{p}\right)$, where p is a rational prime. Hereafter in this article we use the notation p or p_{k}, where $k \in \mathbb{N}$, only for rational primes which do not divide N, remain prime in K, and for which $n(p)>0$. If $r \in \mathbb{N}$, let Λ^{r} denote the set of all products of r distinct such primes. The set Λ^{0} contains only $P_{0}:=1$, and $\Lambda=\bigcup_{r>0} \Lambda^{r}$. If $r>0$ and $\lambda \in \Lambda^{r}$, let $n(\lambda)$ denote $\min _{p \mid \lambda} n(p)$; then $M_{\lambda}=\ell^{n(\lambda)}$ and $n(1)=\infty$. Let $\lambda \in \Lambda, 1 \leq n \leq n(\lambda)$, and $M=\ell^{n}$. In [4], we constructed some cohomology classes $\tau_{\lambda, n} \in H^{1}\left(K, E_{M}\right)$ which played a central role in the proof of Theorem 1.1.

If R is an extension of \mathbb{Q}, then the exact sequence

$$
0 \rightarrow E_{M} \rightarrow E(\bar{R}) \rightarrow \xrightarrow{\times M} 0
$$

induces the exact squence

$$
0 \rightarrow E(R) / M \rightarrow H^{1}\left(R, E_{M}\right) \rightarrow H^{1}(R, E)_{M} \rightarrow 0
$$

If R / L is a Galois extension, then

$$
\operatorname{res}_{R / L}: H^{1}\left(L, E_{M}\right) \rightarrow H^{1}\left(R, E_{M}\right)^{G(R / L)}
$$

is the restriction homomorphism, which is an isomorphism when the ℓ component of the torsion part of $E(R)$ is trivial (because of the spectral sequence). It is easily seen that the condition $\ell \in B(E)$ leads to the triviality of the ℓ-component of the torsion subgroup of $E\left(K_{\lambda}\right)$ (cf. [6] for the case $\mathcal{O}=\mathbb{Z}$; the case $\mathcal{O} \neq \mathbb{Z}$ can be considered analogously). In particular, the value $\operatorname{res}_{K_{\lambda} / K}$ completely determines the element $\tau_{\lambda, n}$. We now give an expression for this value. We use the standard facts about ring class fields (which follow from Galois theory and class field theory, cf. §1 in [3]). If $1 \leq \lambda \in \Lambda$, then the natural homomorphism $G\left(K_{\lambda} / K_{1}\right) \rightarrow \prod_{p \mid \lambda} G\left(K_{p} / K_{1}\right)$ is an isomorphism, and we also have the isomorphisms

$$
G\left(K_{\lambda} / K_{\lambda / p}\right) \cong G\left(K_{p} / K_{1}\right) \stackrel{\cong}{\rightrightarrows} \mathbb{Z} /(p+1) .
$$

For all p, fix a generator $t_{p} \in G\left(K_{p} / K_{1}\right)$ and let t_{p} also denote the generator of $G\left(K_{\lambda} / K_{\lambda / p}\right)$ corresponding to this t_{p}.

2 Statement of Main Theorem of [?]

Let ℓ be an odd prime and A a finite abelian group of ℓ-power order. The sequence of invariants of A is the nonincreasing sequence of nonnegative integers $\left\{n_{1}, n_{2}, \ldots\right\}$ such that

$$
A \approx \bigoplus_{i \geq 1} \mathbb{Z} / \ell^{n_{i}} \mathbb{Z}
$$

Fix an elliptic curve E over \mathbb{Q} and let ε denote the negative of the sign of the functional equation of E, and let K be a field that satisfies the Heegner hypothesis.

Suppose A is equipped with an action of complex conjugation σ. For $\nu=0,1$ let A^{ν} denote the submodule $\left(1-(-1)^{\nu} \varepsilon \sigma\right) A$. Since ℓ is odd, $A=A^{0} \oplus A^{1}$, and σ acts on A^{ν} as multiplication by $(-1)^{\nu-1} \varepsilon$. Proof:

$$
\sigma\left(1-(-1)^{\nu} \varepsilon \sigma\right) x=\left(\sigma-(-1)^{\nu} \varepsilon\right) x=(-1)^{\nu-1} \varepsilon x+\sigma x
$$

and

$$
(-1)^{\nu-1} \varepsilon\left(1-(-1)^{\nu} \varepsilon \sigma\right) x=\left((-1)^{\nu-1} \varepsilon-(-1)^{2 \nu-1} \sigma\right) x=\left((-1)^{\nu-1} \varepsilon+\sigma\right) x
$$

Let $X=\amalg(E / K)\left[\ell^{\infty}\right]$, and for $\nu=0,1$, let $\left\{x_{i}^{\nu}\right\}$ be the sequence of invariants of X^{ν}. If $r \in \mathbb{N}$, let $\nu(r) \in\{0,1\}$ be such that $r-\nu(r)-1$ is even. Set

$$
\xi(r, \nu)=r-|\nu-\nu(r)| .
$$

Let $B(E)$ denote the set of odd rational primes which do not divide the discriminant of $\mathcal{O}=\operatorname{End}(E)$ and for which $\rho: G_{\mathbb{Q}} \rightarrow \operatorname{Aut}_{\mathcal{O}}\left(T_{\ell}(E)\right)$ is surjective. Fix $\ell \in B(E)$ and for any prime p let $n(p)=\operatorname{ord}_{\ell}\left(\operatorname{gcd}\left(p+1, a_{p}\right)\right)$. Let Λ^{r} denote the set of all products of r distinct primes $p \nmid N$ such that p is inert in K, and for which $n(p)>0$. Let Λ be the union of the Λ^{r}, and for any $\lambda \in \Lambda$ let $n(\lambda)=\min _{p \mid \lambda} n(p)$.

Suppose $\lambda \in \Lambda$. Let $m^{\prime}(\lambda)$ be the exponent of the highest power of ℓ that divides P_{λ} in $E\left(K_{\lambda}\right)$. Let

$$
m(\lambda)= \begin{cases}m^{\prime}(\lambda) & \text { if } m^{\prime}(\lambda)<n(\lambda) \\ \infty & \text { otherwise }\end{cases}
$$

Let $m_{r}=\min _{\lambda \in \Lambda^{r}} m(\lambda)$. For example, $m_{0}=\operatorname{ord}_{\ell}\left(\left[E(K): \mathbb{Z} P_{1}\right]\right)$. Let

$$
m=\min _{\lambda \in \Lambda} m(\lambda) .
$$

Theorem 2.1 (Kolyvagin). If $\nu \in\{0,1\}$ and $r \geq 1+\nu$, then

$$
x_{r-\nu}^{\nu}=m_{\xi(r, \nu)-1}-m_{\xi(r, \nu)}
$$

Theorem 2.2 (Kolyvagin). $\# Ш(E / K)\left[\ell^{\infty}\right]=\ell^{2\left(m_{0}-m\right)}$
Theorem 2.3 (Kolyvagin). The full Birch and Swinnerton-Dyer conjecture is true for E over K if and only if $m=\operatorname{ord}_{\ell}\left(c \prod_{q \mid N} c_{q}\right)$, where c is the Manin constant, and the c_{q} are the Tamagawa numbers.

3 Notation

Let ℓ be a prime and A an abelian group of ℓ-power order.

$$
\begin{aligned}
& \ell=\text { a prime } \\
& A=\text { abelian group of } \ell \text {-power order } \\
& M=\ell^{n} \\
& A[M]=\text { kernel of multiplication by } M \\
& A / M A=\text { cokernel of multiplication by } M \\
& \bar{L}=\text { algebraic closure of } L \text {, embedded in } \mathbb{C} \\
& \operatorname{Gal}(R / L)=\text { Galois group of } R / L \text {, when defined } \\
& H^{1}(L, A)=H^{1}(\operatorname{Gal}(\bar{L} / L), A) \\
& \mathcal{O}^{*}=\text { units in the ring } \mathcal{O} \\
& R(v)=\text { completion of } R \text { at the place } v \\
& K_{\lambda}=\text { ring class field of } K \text { of conductor } \lambda \\
& \mathcal{K}=\text { the unramified quadratic extension of } \mathbb{Q}_{p} \\
& H^{1}(R, A) \ni \tau \mapsto \tau_{v}=\tau(v) \in H^{1}\left(R_{v}, A\right) \\
& \overline{\mathbb{Q}}_{p} \approx \bar{K}(\mathfrak{p})=\bigcup_{\mathfrak{p} \mid v} R_{v}, \text { where } \mathfrak{p} \text { is a fixed place over } p \in \Lambda^{1} \\
& H_{p, n}=\text { (see page 12) } \\
& X=\amalg(E / K)\left[\ell^{\infty}\right] \\
& n(\lambda)=\min _{p \mid \lambda} \operatorname{ord}_{\ell}\left(\operatorname{gcd}\left(p+1, a_{p}\right)\right) \\
& m^{\prime}(\lambda)=\operatorname{ord}_{\ell}\left(P_{\lambda} \in E\left(K_{\lambda}\right)\right) \\
& m(\lambda)= \begin{cases}m^{\prime}(\lambda) & \text { if } m^{\prime}(\lambda)<n(\lambda), \\
\infty & \text { otherwise }\end{cases} \\
& m_{r}=\min _{\lambda \in \Lambda^{r}} m(\lambda) \\
& m_{0}=\operatorname{ord}_{\ell}\left(\left[E(K): \mathbb{Z} P_{1}\right]\right) \\
& \nu \in\{0,1\} \text { (fixed) } \\
& \nu(r) \in\{0,1\} \text { has opposite parity to that of } r \\
& \xi(r, \nu)=r-|\nu-\nu(r)| \\
& \Lambda^{r}=\{\text { all products of } r \text { distinct } p \nmid N \text { s.t. } p \text { is inert in } K \text { and } n(p)>0\} \\
& \Lambda=\cup_{r \geq 0} \Lambda^{r} \\
& \Lambda_{n}^{r}=\left\{\lambda \in \Lambda^{r}: n(\lambda) \geq n\right\} \\
& \Lambda_{n}=\bigcup_{r \geq 0} \Lambda_{n}^{r} \\
& 7 \\
& e(A)=e_{\ell}(A)=\min \left\{k \geq 0: \ell^{k} A=0\right\} \text { (here } A \text { is a torsion } \mathbb{Z}_{\ell} \text {-module) } \\
& e(a)=e_{\ell}(a)=e\left(\mathbb{Z}_{\ell} \cdot a\right)=\log _{\ell}(\operatorname{order}(a)) \\
& \psi_{p, n}^{\nu}=\text { (see page 14) } \\
& u(\nu)=(\text { see page } 28)
\end{aligned}
$$

We use $n, n^{\prime}, n^{\prime \prime}$ for natural numbers and $M, M^{\prime}, M^{\prime \prime}$, resp., for $\ell^{n}, \ell^{n^{\prime}}$, and $\ell^{n^{\prime \prime}}$.

4 Properties of the Classes $\tau_{\lambda, n}$

4.1 The Definition of the Classes $\tau_{\lambda, n}$

Fix $\lambda \in \Lambda$ and $\ell \in B(E)$. Let $M=\ell^{n}$, where $1 \leq n \leq n(\lambda)$. We construct a class $\tau_{\lambda, n} \in H^{1}(K, E[M])$.

Let K_{λ} be the ring class field of K with conductor λ. Thus K_{1} is the Hilbert class field of K and if $\lambda>1$, then

$$
\operatorname{Gal}\left(K_{\lambda} / K_{1}\right) \longrightarrow \prod_{p \mid \lambda} \operatorname{Gal}\left(K_{p} / K_{1}\right)
$$

is an isomorphism and

$$
\operatorname{Gal}\left(K_{\lambda} / K_{\lambda / p}\right) \stackrel{\cong}{\rightrightarrows} \operatorname{Gal}\left(K_{p} / K_{1}\right) \stackrel{\cong}{\rightrightarrows} \mathbb{Z} /(p+1) \mathbb{Z}
$$

For each $p \mid \lambda$, fix a generator $t_{p} \in \operatorname{Gal}\left(K_{\lambda} / K_{\lambda / p}\right)$.
Let $\mathcal{O}_{\lambda}=\mathbb{Z}+\lambda \mathcal{O}_{K}$ and $\mathcal{I}_{\lambda}=\mathcal{N} \cap \mathcal{O}_{\lambda}$, where $\mathcal{O}_{K} / \mathcal{N} \cong \mathbb{Z} / N \mathbb{Z}$. Let $z_{\lambda} \in X_{0}(N)\left(K_{\lambda}\right)$ be the point corresponding to the cyclic N-isogeny

$$
\left(\mathbb{C} / \mathcal{O}_{\lambda} \rightarrow \mathbb{C} / \mathcal{I}_{\lambda}^{-1}\right)
$$

Set

$$
y_{\lambda}=\pi_{E}\left(z_{\lambda}\right) \in E\left(K_{\lambda}\right) .
$$

Since $\ell \in B(E)$,

$$
\operatorname{res}_{K}^{K_{\lambda}}: H^{1}(K, E[M]) \rightarrow H^{1}\left(K_{\lambda}, E[M]\right)^{\operatorname{Gal}\left(K_{\lambda} / K\right)}
$$

is an isomorphism. Thus to construct an element of $H^{1}(K, E[M])$, it suffices to give an element of $H^{1}\left(K_{\lambda}, E[M]\right)^{\operatorname{Gal}\left(K_{\lambda} / K\right)}$, which is what we now do.

Let

$$
I_{p}=-\sum_{i=1}^{p} i t_{p}^{i}
$$

and

$$
I_{\lambda}=\prod_{p \mid \lambda} I_{p} \in \mathbb{Z}\left[\operatorname{Gal}\left(K_{\lambda} / K_{1}\right)\right] .
$$

Let $J_{\lambda}=\sum g$, where g runs through a set of coset representatives for $\operatorname{Gal}\left(K_{\lambda} / K_{1}\right)$ inside $\operatorname{Gal}\left(K_{\lambda} / K\right)$. Then $J_{\lambda} I_{\lambda} \in \mathbb{Z}\left[\operatorname{Gal}\left(K_{\lambda} / K\right)\right]$ and we let

$$
P_{\lambda}=J_{\lambda} I_{\lambda} y_{\lambda} \in E\left(K_{\lambda}\right) .
$$

Then

$$
\begin{equation*}
\operatorname{res}_{K}^{K_{\lambda}}\left(\tau_{\lambda, n}\right)=P_{\lambda}\left(\bmod M E\left(K_{\lambda}\right)\right) \in E\left(K_{\lambda}\right) / M E\left(K_{\lambda}\right) \hookrightarrow H^{1}\left(K_{\lambda}, E[M]\right) . \tag{4.1}
\end{equation*}
$$

Remark 4.1. If P_{1} has infinite order, then Kolyvagin proved that

$$
\# Ш(E / K)\left[\ell^{\infty}\right] \mid \ell^{2 m_{0}},
$$

where $m_{0}=\operatorname{ord}_{\ell}\left(\left[E(K): \mathbb{Z} P_{1}\right]\right)$.

4.2 Properties of the Points y_{λ}

Suppose $p \mid \lambda$ and set $\operatorname{Tr}_{p}=\sum_{i=0}^{p} t_{p}^{i}$. Then

$$
\operatorname{Tr}_{p} y_{\lambda}=a_{p} y_{\lambda / p}
$$

Let $\overline{\mathbb{F}}_{p}$ denote the residue class field of $\bar{K}_{\mathfrak{p}}$, and set $\tilde{E}=E_{/ \mathbb{F}_{p}}$.

$$
E\left(\bar{K}_{\mathfrak{p}}\right) \ni \alpha \mapsto \tilde{\alpha} \in \tilde{E}\left(\overline{\mathbb{F}}_{p}\right)
$$

Let $\operatorname{Fr}_{p}: \overline{\mathbb{F}}_{p} \rightarrow \overline{\mathbb{F}}_{p}$ be the p th power automorphism. For all $g \in \operatorname{Gal}\left(K_{\lambda} / \mathbb{Q}\right)$, we have

$$
\widetilde{g y_{\lambda}}=\operatorname{Fr}_{p}\left(\widetilde{g y_{\lambda / p}}\right) .
$$

Let θ_{λ} be the Artin reciprocity homomorphism from the group of classes of \mathcal{O}_{λ} ideals to $\operatorname{Gal}\left(K_{\lambda} / K\right)$, and let σ denote complex conjugation. We have

$$
\begin{equation*}
\sigma\left(y_{\lambda}\right) \equiv \varepsilon \theta_{\lambda}\left(\mathcal{I}_{\lambda}\right) y_{\lambda} \quad\left(\bmod E(\mathbb{Q})_{\text {tor }}\right) \tag{4.2}
\end{equation*}
$$

We have

$$
\left(t_{p}-1\right) I_{p}=\operatorname{Tr}_{p}-(p+1)
$$

If $M \mid \operatorname{gcd}\left(p+1, a_{p}\right)$, then for all $g \in \operatorname{Gal}\left(K_{\lambda} / \mathbb{Q}\right)$, we have

$$
g P_{\lambda} \equiv P_{\lambda} \quad\left(\bmod M E\left(K_{\lambda}\right)\right)
$$

so (4.1) really does defines an element $\tau_{\lambda, n} \in H^{1}(K, E[M])$. Since $\sigma g=g^{-1} \sigma$ for all $g \in \operatorname{Gal}\left(K_{\lambda} / K\right)$, it follows that

$$
\sigma I_{p} \equiv-I_{p} \sigma \quad(\bmod M)
$$

This and (4.2) imply that if $\lambda \in \Lambda^{r}$, then

$$
\begin{aligned}
\sigma P_{\lambda} & =\varepsilon(-1)^{r} P_{\lambda} \quad\left(\bmod M E\left(K_{\lambda}\right)\right), \quad \text { and } \\
\sigma \tau_{\lambda, n} & =\varepsilon(-1)^{r} \tau_{\lambda, n} .
\end{aligned}
$$

4.3 Properties of the Localization of $\tau_{\lambda, n}$

Recall that p is a prime of good reduction for E which is inert in K and that

$$
a_{p} \equiv p+1 \equiv 0 \quad(\bmod M)
$$

The primes p that we will actually use to prove things will be given by a Chebaterov density argument, so we can safely assume that $p>2$ (so that the appropriate reduction maps are injective). For all $M=\ell^{n^{\prime}}$, we have

$$
E[M] \subset E\left(\mathbb{Q}_{p}^{\mathrm{un}}\right)
$$

and reduction induces a $G_{p}=\operatorname{Gal}\left(\mathbb{Q}_{p}^{\mathrm{un}} / \mathbb{Q}_{p}\right)$ isomorphism

$$
E[M] \stackrel{\cong}{\rightrightarrows} \tilde{E}\left(\overline{\mathbb{F}}_{p}\right)[M] .
$$

We have

$$
\operatorname{Fr}_{p}^{2}-a_{p} \operatorname{Fr}_{p}+p=0
$$

on $E[M]$ and $\tilde{E}\left(\overline{\mathbb{F}}_{p}\right)[M]$. Since $a_{p} \equiv p+1 \equiv 0(\bmod M)$,

$$
\operatorname{Fr}_{p}^{2}-1=0 \quad \text { on } E[M]
$$

so $E[M] \subset E[\mathcal{K}]$, where \mathcal{K} is the unramified quadratic extension of \mathbb{Q}_{p}. Since p is inert in K, it follows that $\mathcal{K}=K(p)$.

Let $F=\mathbb{F}_{p^{2}}$ denote the residue class field of \mathcal{K}.

Lemma 4.2. We have a commutative square of isomorphisms

where

$$
f_{p, n}=\frac{\operatorname{Fr}_{p^{2}}-1}{M}, \quad \tilde{f}_{p, n}=\frac{a_{p}}{M} \operatorname{Fr}_{p}-\frac{p+1}{M} .
$$

(The meaning of $f_{p, n}$ is "first make a choice of M th root, then apply $\mathrm{Fr}_{p^{2}}-1$ "; this is well defined since different choices differ by an M th root, and the M th roots are fixed by $\mathrm{Fr}_{p^{2}}$, since they are rational over \mathcal{K}.)

Proof. Suppose $f_{p, n}(P)=0$, so there is $Q \in E\left(\overline{\mathbb{Q}}_{p}\right)$ such that $M Q=P$ and $\left(\operatorname{Fr}_{p}^{2}-1\right)(Q)=0$. Thus $Q \in E(\mathcal{K})$, so $\left.P \bmod M E(\mathcal{K})\right)=0$, and $f_{p, n}$ is injective. The diagram commutes because $\operatorname{Fr}_{p}^{2}-1=a_{p} \operatorname{Fr}_{p}-(p+1)$ on $E\left(\overline{\mathbb{F}}_{p}\right)\left[\ell^{\infty}\right]$. The leftmost vertical map is surjective, by Hensel's lemma, and hence an isomorphism because, as mentioned above, the rightmost vertical map is an isomorphism (and $f_{p, n}$ is injective). Because $f_{p, n}$ is injective so is $\tilde{f}_{p, n}$, so to complete the proof it suffices to show that $\tilde{f}_{p, n}$ is surjective. Since $\# \tilde{E}(F)$ is finite,

$$
\#\left(\frac{\tilde{E}(F)}{M \tilde{E}(F)}\right)=\frac{\# \tilde{E}(F)}{\# M \tilde{E}(F)}=\frac{\# \tilde{E}(F)}{\# \tilde{E}(F) / \# \tilde{E}[M]}=\# \tilde{E}[M]
$$

Thus $\tilde{f}_{p, n}$ and hence $f_{p, n}$ must be surjective.
Let

$$
[,]_{M}: E[M] \times E[M] \longrightarrow \mu_{M}
$$

denote the Weil pairing. We have

$$
\begin{equation*}
\left[\gamma\left(e_{1}\right), \gamma\left(e_{2}\right)\right]_{M}=\gamma\left(\left[e_{1}, e_{2}\right]_{M}\right) \tag{4.3}
\end{equation*}
$$

for all $\gamma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$.
Let $E[M]=E[M]^{0} \oplus E[M]^{1}$ be the decomposition of $E[M]$ with respect to the involution Fr_{p}, as described in Section 2.

Lemma 4.3. $E[M]^{\nu} \approx \mathbb{Z} / M \mathbb{Z}$ for $\nu=0,1$.
Proof. If the lemma is false, then $\operatorname{Fr}_{p}=1$ or $\operatorname{Fr}_{p}=-1$ on $E[\ell]$ (I don't 100% see this, though I don't see how it could be wrong either), and we have for any $e_{1}, e_{2} \in E[M]$,

$$
\begin{aligned}
{\left[e_{1}, e_{2}\right]_{\ell} } & =\left[\operatorname{Fr}_{p}\left(e_{1}\right), \operatorname{Fr}_{p}\left(e_{2}\right)\right]_{\ell}=\operatorname{Fr}_{p}\left[e_{1}, e_{2}\right]_{\ell} \\
& =\left(\left[e_{1}, e_{2}\right]_{\ell}\right)^{p}=\left[e_{1}, e_{2}\right]_{\ell}^{-1},
\end{aligned}
$$

so $\left[e_{1}, e_{2}\right]_{\ell}=1$, since ℓ is odd. (In the last equality, we used that $p \equiv-1$ $(\bmod \ell)$.$) This is impossible, because [,]_{\ell}$ is nondegenerate.

Let
$H_{p, n}:=H^{1}(\mathcal{K}, E[M])=\operatorname{Hom}\left(G_{p}^{\mathrm{ab}} /\left(G_{p}^{\mathrm{ab}}\right)^{M}, E[M]\right) \cong \operatorname{Hom}\left(\mathcal{K}^{*} /\left(\mathcal{K}^{*}\right)^{M}, E[M]\right)$,
where we have used the isomorphism $\theta_{p}: \mathcal{K}^{*} /\left(\mathcal{K}^{*}\right)^{M} \rightarrow G_{p}^{\mathrm{ab}} /\left(G_{p}^{\mathrm{ab}}\right)^{M}$ from local class field theory. We have

$$
\mathcal{K}^{*} /\left(\mathcal{K}^{*}\right)^{M}=\mathcal{A}_{n} \oplus \mathcal{B}_{n}
$$

where $\mathcal{A}_{n}=\langle p\rangle=p^{\mathbb{Z}} / p^{M \mathbb{Z}}$ and $\mathcal{B}_{n}=\mathcal{O}_{\mathcal{K}}^{*} /\left(\mathcal{O}_{\mathcal{K}}^{*}\right)^{M}$. Then

$$
H_{p, n}=A_{p, n} \oplus B_{p, n}
$$

where $A_{p, n}$ (resp., $B_{p, n}$) is the subgroup of $H_{p, n}$ of homomorphisms that are trivial on \mathcal{B}_{n} (resp., $\mathcal{A}_{p, n}$). Note that $A_{p, n}=E(\mathcal{K}) / M E(\mathcal{K})$, since

$$
E(\mathcal{K}) / M E(\mathcal{K}) \subset A_{p, n}=H_{p, n}^{\mathrm{un}}
$$

and $\#(E(\mathcal{K}) / M E(\mathcal{K}))=M^{2}=\# A_{p, n}($ see Lemma 4.2).
If $\mathcal{L}_{p, n}$ is the class field of \mathcal{K} that corresponds to the subgroup $\left(\mathcal{K}^{*}\right)^{M} p^{\mathbb{Z}}$ of \mathcal{K}^{*}, then $B_{p, n}=H^{1}\left(G_{p, n}, E[M]\right)$, where

$$
G_{p, n}=\operatorname{Gal}\left(\mathcal{L}_{p, n} / \mathcal{K}\right)
$$

Because $H_{p, n}=A_{p, n} \oplus B_{p, n}$, it follows that $H_{p, n}^{\nu}$ decomposes into a direct sum of the cyclic subgroups $A_{p, n}^{\nu}$ and $B_{p, n}^{\nu}$ of order M.

Let \mathcal{K}_{p} be the class field of \mathcal{K} corresponding to the subgroup $p^{\mathbb{Z}}\left(\mathbb{Z}_{p}^{*}+p \mathcal{O}_{\mathcal{K}}\right)$. The field \mathcal{K}_{p} is a cyclic totally ramified extension of \mathcal{K} of degree $p+1$ and $\mathcal{L}_{p, n}$ is a subextension of \mathcal{K}_{p} of degree M over \mathcal{K}. Suppose that $\lambda \in \Lambda$ is a
multiple of p. The completion of $K_{\lambda / p}$ in $\bar{K}(\mathfrak{p})$ is the field \mathcal{K}, the completion of K_{λ} is the field \mathcal{K}_{p}, and the embedding (as decomposition group)

$$
\operatorname{Gal}(\overline{\mathcal{K}}(\mathfrak{p}) / \mathcal{K}) \hookrightarrow \operatorname{Gal}\left(\bar{K} / K_{\lambda / p}\right)
$$

induces an isomorphism between $\operatorname{Gal}\left(\mathcal{K}_{p} / \mathcal{K}\right)$ and $\operatorname{Gal}\left(K_{\lambda} / K_{\lambda / p}\right)$. Thus the generator $t_{p} \in \operatorname{Gal}\left(K_{\lambda} / K_{\lambda / p}\right)$ can also be viewed as a generator of $\operatorname{Gal}\left(\mathcal{K}_{p} / \mathcal{K}\right)$. Let $t_{p, n}$ denote the generator of $G_{p, n}$ which is the image of t_{p}.

For $e \in E[M]$, let $b_{p, n}(e)$ be the element of $H_{p, n}$ which sends $t_{p, n} \in G_{p, n}$ to e. We define a nondegenerate alternating pairing

$$
\langle,\rangle_{p, n}^{\prime}: H_{p, n} \times H_{p, n} \longrightarrow Z / M \mathbb{Z}
$$

by the following conditions: the group $H_{p, n}^{0}$ is orthogonal to the group $H_{p, n}^{1}$, and for $s \in A_{p, n}$ and all $e \in E[M]$ we have

$$
\zeta_{p, n}^{\left\langle s, b_{p, n}(e)\right\rangle_{p, n}^{\prime}=\left[f_{p, n}(s), e\right]_{M}, ~}
$$

where

$$
\zeta_{p, n} \equiv\left(\theta_{p}^{-1}\left(t_{p, n}\right)\right)^{\left(p^{2}-1\right) / M} \quad(\bmod p)
$$

Let

$$
\langle,\rangle_{p, n}: H_{p, n} \times H_{p, n} \rightarrow \mathbb{Z} / M \mathbb{Z}
$$

be the alternating pairing induced by cup product, the pairing $[,]_{M}$, and the canonical isomorphism $H^{2}\left(\mathcal{K}, \mu_{M}\right) \rightarrow \mathbb{Z} / M \mathbb{Z}$. This is a pairing of $\operatorname{Gal}\left(\mathcal{K} / \mathbb{Q}_{p}\right)$ modules, hence $H_{p, n}^{0}$ is orthogonal to $H_{p, n}^{1}$. According to formula (5) of [?],

$$
\left\langle s, b_{p, n}(e)\right\rangle_{p, n}=\left\langle s, b_{p, n}(e)\right\rangle_{p, n}^{\prime}
$$

for all s and e, it follows that

$$
\langle,\rangle_{p, n}=\langle,\rangle_{p, n}^{\prime} .
$$

Fix generators e_{p}^{ν} of the groups $E_{M_{p}}^{\nu}$, where $M_{p}=\ell^{n(p)}$, such that

$$
\left[e_{p}^{0}, e_{p}^{1}\right]_{M}=\zeta_{p, n(p)} .
$$

Set

$$
e_{p, n}^{\nu}=\frac{M_{p}}{M} e_{p}^{\nu}
$$

Then $\left[e_{p, n}^{0}, e_{p, n}^{1}\right]=\zeta_{p, n}$, since $[N \beta, N \alpha]_{M}=[\alpha, \beta]_{M_{p}}^{N}$ for all $\alpha, \beta \in E\left[M_{p}\right]$ and $N=M_{p} / M$. (I'm not sure this makes any sense, but it's my best guess at what Kolvagin means; what he writes makes no sense.)

Definition $4.4\left(\psi_{p, n}^{\nu}\right)$. Define a homomorphism

$$
\psi_{p, n}^{\nu}: H_{p, n}^{\nu} \rightarrow \mathbb{Z} / M \mathbb{Z}
$$

by $\psi_{p, n}^{\nu}(x)=\left\langle x, b_{p, n}^{\nu}\right\rangle_{p, n}$, where $b_{p, n}^{\nu}=b_{p, n}\left(e_{p, n}^{1-\nu}\right)$.
Then $\psi_{p, n}^{\nu}$ is trivial on $B_{p, n}^{\nu}=\left\langle b_{p, n}^{\nu}\right\rangle$ and induces an isomorphism between $A_{p, n}^{\nu}$ and $\mathbb{Z} / M \mathbb{Z}$ such that for all $s \in A_{p, n}^{\nu}$ we have

$$
\begin{equation*}
\psi_{p, n}^{\nu}(s) e_{p, n}^{\nu}=(-1)^{\nu} f_{p, n}(s) . \tag{4.4}
\end{equation*}
$$

Let $\psi_{p, n}=\psi_{p, n}^{0}+\psi_{p, n}^{1}$ and, abusing notation, let $\psi_{p, n}$ also denote the homomorphism $H^{1}(K, E[M]) \rightarrow \mathbb{Z} / M \mathbb{Z}$ which is the composition of $\psi_{p, n}$ and the localization homomorphism $H^{1}(K, E[M]) \rightarrow H_{p, n}$.

Let $S_{\lambda, n}$ be the subgroup of $\alpha \in H^{1}(K, E[M])$ such that $\alpha(v) \in E(K(v)) / M E(K(v))$ for all places v of K that do not divide λ. (Equivalently, the image of α in $H^{1}(K(v), E)$ is trivial for all $v \nmid \lambda$.) Thus $S_{\lambda, n}$ contains $\operatorname{Sel}^{(M)}(E / K)$, but $S_{\lambda, n}$ might be bigger because there is no local condition at places that divide λ.

Proposition 4.5. Let $\lambda \in \Lambda^{r}$. Then $\tau_{\lambda, n} \in S_{\lambda, n}^{\nu(r)}$. If $\xi(p, \lambda)=1$, then

$$
\tau_{p, n}(p)=P_{\lambda}\left(\bmod M E\left(K_{p}\right)\right) \in E\left(K_{p}\right) / M E\left(K_{p}\right) .
$$

If $p \mid \lambda$, then

$$
\begin{align*}
\tau_{\lambda, n}(p) & =\varepsilon \cdot \psi_{p, n}\left(\tau_{\lambda / p, n}\right) \cdot b_{p, n}^{\beta}, \quad \text { where } \beta=\nu(r) \tag{4.5}\\
\varepsilon \cdot \psi_{p, n}\left(\tau_{\lambda / p, n}\right) \cdot e_{p, n}^{\beta^{\prime}} & =\left((-1)^{\beta} \cdot \frac{p+1}{M} \cdot \varepsilon-\frac{a_{p}}{M}\right) \widetilde{P_{\lambda / p}} . \tag{4.6}
\end{align*}
$$

Proof. The cohomology class $\tau_{\lambda, n}$ contains the cocycle

$$
\begin{equation*}
k_{\lambda, n}(\gamma)=\left(\gamma\left(\frac{P_{\lambda}}{M}\right)-\frac{P_{\lambda}}{M}\right)+\frac{(1-\gamma) P_{\lambda}}{M}, \tag{4.7}
\end{equation*}
$$

where

$$
\frac{(1-\gamma) P_{\lambda}}{M} \in E\left(K_{\lambda}\right)
$$

is the unique (since $E\left(K_{\lambda}\right)\left[\ell^{\infty}\right]$ is trivial) solution to the equation $M x=$ $(1-\gamma) P_{\lambda} \in M E\left(K_{\lambda}\right)$. If $\xi(p, \lambda)=1$, then $K_{\lambda} \subset \mathcal{K}$ and $\operatorname{Gal}(\bar{K}(\mathfrak{p}) / \mathcal{K}) \subset$ $\operatorname{Gal}\left(\bar{K} / K_{\lambda}\right)$, hence, in view of (4.7), we see that $\tau_{\lambda, n}(p)=P_{\lambda}(\bmod M E(\mathcal{K}))$.

If R is a field and $\alpha \in H^{1}(R, E[M])$, denote by (α) the image of α in $H^{1}(R, E)[M]$. Again, in view of (4.7), we see that the class $\left(\tau_{\lambda, n}\right)$ contains the cocycle

$$
k_{\lambda, n}^{\prime}(\gamma)=\frac{(1-\gamma) P_{\lambda}}{M}
$$

In particular,

$$
\left(\tau_{\lambda, n}\right) \in H^{1}\left(\operatorname{Gal}\left(K_{\lambda} / K\right), E\left(K_{\lambda}\right)\right)
$$

Let v be a place of K that does not divide λ. Then since K_{λ} / K is unramified outside λ, it follows that $\left(\tau_{\lambda, n}\right)_{v} \in H^{1}\left(K_{v}, E\right)^{\mathrm{un}}$. This group is always finite and is trivial if $(v, N)=1$. Gross observed that in the case $v \mid \lambda$, we have $\left(\tau_{\lambda, n}\right)_{v}=0$ as well. (Huh?) Hence $\tau_{\lambda, n} \in S_{\lambda, n}^{\beta}$.

Suppose that $p \mid \lambda$. Since reduction induces an isomorphism between $E[M]$ and $E(F)[M]$, the elment $k_{\lambda, n}(\gamma)$ may be defined by its reduction. We shall show that if

$$
\gamma \in \operatorname{Gal}(\bar{K}(\mathfrak{p}) / \mathcal{K}) \subset \operatorname{Gal}\left(\bar{K} / K_{\lambda / p}\right),
$$

then the eduction of the first term of (4.7) is trivial. Indeed, it is equal to

$$
\tilde{\gamma} \frac{\tilde{P}_{\lambda}}{M}-\frac{\tilde{P}_{\lambda}}{M}=0
$$

since, by virtue of \ldots and the definition of P_{λ}, we have

$$
\tilde{P}_{\lambda}=-(1+2+\cdots+p) \operatorname{Fr}_{p} \tilde{P}_{\lambda / p} \in M E(F)
$$

Hence

$$
\tau_{\lambda, n}(p) \in H^{1}\left(\operatorname{Gal}\left(\mathcal{K}_{p} / \mathcal{K}\right), E[M]\right)=B_{p, n}
$$

It remains to calculate the value of $\tau_{\lambda, n}(p)$ at t_{p}. We have

$$
\begin{aligned}
\frac{\left(1-t_{p}\right) P_{\lambda}}{M} & =\frac{\left(1-t_{p}\right) I_{p} I_{\lambda / p} J_{\lambda} y_{\lambda}}{M} \\
& =\frac{\left(p+1-\operatorname{Tr}_{p}\right) I_{\lambda / p} J_{\lambda} y_{\lambda}}{M} \\
& =\frac{p+1}{M} I_{\lambda / p} J_{\lambda} y_{\lambda}-\frac{a_{p}}{M} P_{\lambda / p}
\end{aligned}
$$

and for its reduction, in view of, we have the expression

$$
\begin{aligned}
\left(\frac{p+1}{M} \operatorname{Fr}_{p}-\frac{a_{p}}{M}\right) \tilde{P}_{\lambda / p} & =\tilde{f}_{p, n}\left(-\operatorname{Fr}_{p} \tilde{P}_{\lambda / p}\right) \\
& =\tilde{f}_{p, n}\left((-1)^{\beta^{\prime}} \cdot \varepsilon \cdot \tilde{P}_{\lambda / p}\right) \\
& =\varepsilon \cdot \psi_{p, n}\left(\tau_{\lambda / p}\right) \cdot e_{p, n}^{\beta^{\prime}} .
\end{aligned}
$$

5 The Orthoganality Relation and the Characters $\Psi_{p, n}$

Let R be an extension of $\mathbb{Q}, n \leq n^{\prime}$ and $n^{\prime \prime}=n^{\prime}-n$. The exact sequence

$$
0 \rightarrow E[M] \rightarrow E\left[M^{\prime}\right] \xrightarrow{M} E\left[M^{\prime \prime}\right] \rightarrow 0
$$

induces the exact sequence
$E(R)\left[M^{\prime \prime}\right] / M E(R)\left[M^{\prime}\right] \hookrightarrow H^{1}(R, E[M]) \xrightarrow{\alpha_{n, n^{\prime}}} H^{1}\left(R, E\left[M^{\prime}\right]\right) \xrightarrow{\alpha_{n^{\prime}, n^{\prime \prime}}} H^{1}\left(R, E\left[M^{\prime \prime}\right]\right)$.
Suppose that for all integer n, n^{\prime} with $n \leq n^{\prime}$ we have $E(R)\left[M^{\prime \prime}\right]=$ $M E(R)\left[M^{\prime}\right]$. Then the maps $\alpha_{n, n^{\prime}}$ are injections and the image of $\alpha_{n, n^{\prime}}$ is $H^{1}\left(R, E\left[M^{\prime}\right]\right)[M]$, since $\alpha_{n^{\prime \prime}, n^{\prime}}$ is also an injection and $\alpha_{n^{\prime \prime}, n^{\prime}} \circ \alpha_{n^{\prime}, n^{\prime \prime}}$ is multiplication by M. (This is sneaky. Here $\alpha_{n^{\prime \prime}, n^{\prime}}: H^{1}\left(R, E\left[M^{\prime \prime}\right]\right) \rightarrow H^{1}\left(R, E\left[M^{\prime}\right]\right)$ is defined because $n^{\prime \prime}=n^{\prime}-n \leq n^{\prime}$, and by hypothesis $\alpha_{n^{\prime \prime}, n^{\prime}}$ is an injection.) In this situation, it is useful to identify $H^{1}(R, E[M])$ with $H^{1}\left(R, E\left[M^{\prime}\right]\right)[M]$. Specifically, we have the following two cases in which the hypothesis assumed at the beginning of this paragraph is satisfied. First, suppose that $R=K$. In this case, since $E(K)\left[\ell^{\infty}\right]=0$, we identify $H^{1}(R, E[M])$ with $H[M]$, where

$$
H:=H^{1}\left(K, E\left[\ell^{\infty}\right]\right)=\underset{M^{\prime} \rightarrow \infty}{\lim } H^{1}\left(K, E\left[M^{\prime}\right]\right) .
$$

Note that $S_{\lambda, n}$ coincides with $S_{\lambda, n^{\prime}}[M]$ under this identification. The second case is when $R=K(p)$ (completion of K at prime over p) and $n^{\prime} \leq$ $n(p)=\operatorname{ord}_{\ell}\left(\operatorname{gcd}\left(a_{p}, p+1\right)\right)$. Then $E(R)\left[M^{\prime}\right]=E\left[M^{\prime}\right]$, hence, $M E(R)\left[M^{\prime}\right]=$ $E\left[M^{\prime \prime}\right]=E(R)\left[M^{\prime \prime}\right]$.

Let $n \leq n^{\prime} \leq n(\lambda)$. It follows from (4.1) that

$$
\tau_{\lambda, n}=\alpha_{n^{\prime}, n} \tau_{\lambda, n^{\prime}}
$$

or

$$
\tau_{\lambda, n}=M^{\prime \prime} \tau_{\lambda, n^{\prime \prime}}
$$

in view of the identifications. From (4.4) and Proposition 4.5, for p a prime with $p \nmid \lambda$ and $s \in S_{\lambda, n}$, we obtain the relations

$$
\begin{equation*}
\psi_{p, n^{\prime}}\left(\tau_{\lambda, n^{\prime}}\right)=\psi_{p, n}\left(\tau_{\lambda, n}\right) \quad(\bmod M) \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi_{p, n^{\prime}}(s)=M^{\prime \prime} \psi_{p, n}(s) \quad\left(\bmod M^{\prime}\right) \tag{5.2}
\end{equation*}
$$

If A is a torsion \mathbb{Z}_{ℓ}-module, then $e(A)=e_{\ell}(A)$ denotes the minimum nonnegative integer k such that $\ell^{k} A=0$, so $e(A)$ is $\log _{\ell}$ of the exponent of A. If $a \in A$, then $e(a)=e_{\ell}(a)=e\left(\mathbb{Z}_{\ell} \cdot a\right)$, i.e., $\log _{\ell}$ of the order of a. For example, when $m(\lambda)<\infty$ then

$$
m(\lambda)=n(\lambda)-e_{\ell}\left(P_{\lambda}\left(\bmod \ell^{n(\lambda)} E\left(K_{\lambda}\right)\right)\right.
$$

Suppose $n \leq n^{\prime} \leq n(\lambda)$. By definition of $m(\lambda), \tau_{\lambda, n^{\prime}} \neq 0$ if and only if $n^{\prime}>m(\lambda)$, and in that case we have

$$
\begin{align*}
e\left(\tau_{\lambda, n^{\prime}}\right) & =e\left(P_{\lambda}\left(\bmod \ell^{n^{\prime}} E\left(K_{\lambda}\right)\right)\right) \tag{5.3}\\
& =e\left(P_{\lambda}\left(\bmod \ell^{n(\lambda)} E\left(K_{\lambda}\right)\right)\right)-\left(n(\lambda)-n^{\prime}\right) \tag{5.4}\\
& =n^{\prime}-m(\lambda) \tag{5.5}
\end{align*}
$$

Suppose $n^{\prime} \in[m(\lambda), n(\lambda)]$ and let $n \in\left[n^{\prime}-m(\lambda), n^{\prime}\right]$, so

$$
n^{\prime}-m(\lambda) \leq n \leq n^{\prime} \leq n(\lambda)
$$

Let $p \mid \lambda \in \Lambda^{r}$. Then $\tau_{\lambda, n^{\prime}} \in S_{\lambda, n}^{\nu(r)}$. From (4.5), in view of the equalities $M \tau_{\lambda, n^{\prime}}=0$ and $b_{p, n}^{\nu(r)}=M^{\prime \prime} b_{p, n}^{\nu(r)}$, it follows that $M^{\prime \prime} \mid \psi_{p, n^{\prime}}\left(\tau_{\lambda / p}, n^{\prime}\right)$ and

$$
\tau_{\lambda, n^{\prime}}(p)=\varepsilon\left(\psi_{p, n^{\prime}}\left(\tau_{\lambda / p, n^{\prime}}\right) / M^{\prime \prime}\right) b_{p, n}^{\nu(r)} .
$$

If $s \in S_{\lambda, n}^{\nu(r)}$, then, in consequence of the reciprocity law, we have the orthogonality relation

$$
\sum_{p \mid \lambda}\left\langle\tau_{\lambda, n^{\prime}}(p), s(p)\right\rangle_{p, n}=0
$$

This relation, taking into account the previous equality and the definition of the homomorphism $\psi_{p, n}$, gives us the relation

$$
\begin{equation*}
\sum_{p \mid \lambda}\left(\psi_{p, n^{\prime}}\left(\tau_{\lambda / p, n^{\prime}}\right) / M^{\prime \prime}\right) \cdot \psi_{p, n}(s) \equiv 0 \quad(\bmod M) \tag{5.6}
\end{equation*}
$$

The universality of the characters $\psi_{p, n}$ (with $n \leq n(p)$) is evident from the following proposition. We use the decomposition $H=H^{0} \oplus H^{1}$ relative to the action of $\operatorname{Gal}(K / \mathbb{Q})$.

Proposition 5.1. Let A^{0} and A^{1} be finite subgroups of $H^{0}[M]$ and $H^{1}[M]$, respectively. For $i=0$ or $i=1$, let $\psi^{i} \in \operatorname{Hom}\left(A^{i}, \mathbb{Z} / M \mathbb{Z}\right)$ and $n^{\prime} \geq n$. Then there are infinitely many primes p such that $M^{\prime} \mid M_{p}$ (i.e., $n^{\prime} \leq n(p)$) and

$$
\mathbb{Z} / M \mathbb{Z}\left(\text { restriction of } \psi_{p, n}^{i} \text { to } A^{i}\right)=(\mathbb{Z} / M \mathbb{Z}) \psi^{i}
$$

Proof. We consider in detail the case where E does not have complex multiplication. The other case is handled analogously.

Let $E[M]=E[M]^{0} \oplus E[M]^{1}$ be the decomposition of $E[M]$ relative to the action of $\Sigma=\{1, \sigma\}$, where σ is the automorphism of complex conjugation. Since $\sigma \zeta=\zeta^{-1}$ for all $\zeta \in \mu_{M}$, it follows that $E[M]^{i} \approx \mathbb{Z} / M \mathbb{Z}$ for $i=0,1$ (cf. (4.3) and below). Let e^{i} be a generator of $E[M]^{i}$. Let $V=K\left(E\left[M^{\prime}\right]\right)$, where $M^{\prime}=\ell^{n^{\prime}}$. Note that $\mu_{M^{\prime}} \subset V$ because of nondegeneracy of the Weil pairing.

Define the homomorphism

$$
f: H[M] \rightarrow H^{1}\left(V, \mu_{m}\right) \cong \operatorname{Hom}\left(G_{V}^{\mathrm{ab}}, \mu_{M}\right)
$$

as follows: for all $z \in G_{V}^{\text {ab }}$ and $h=h^{0}+h^{1} \in H[M]$, we have

$$
\begin{equation*}
f(h): z \mapsto\left[h^{0}(z), e^{1}\right]_{M}^{2} \cdot\left[h^{1}(z), e^{0}\right]_{M}^{2} \tag{5.7}
\end{equation*}
$$

I have to check that this is well-defined and is a homomorphism, and I also have to figure out what this is! It might be res ${ }^{V}$ composed with cupping with two elements of $H^{0}(V, E[M])$, and ?

Suppose that f is an injection. Let W be the abelian extension of V corresponding to $f(A)$, where $A=A^{0} \oplus A^{1}$. That is, W is the fixed field of

$$
\operatorname{ker} f(A)=\bigcap_{\varphi \in f(A)} \operatorname{ker} \varphi \subset G_{V}^{\mathrm{ab}}
$$

By Kummer theory, the natural homomorphism

$$
\operatorname{Gal}(W / V) \rightarrow \operatorname{Hom}\left(f(A), \mu_{M}\right)
$$

is an isomorphism, hence, in view of the isomorphism $f: A \rightarrow f(A)$, we have the isomorphism

$$
\operatorname{Gal}(W / V) \rightarrow \operatorname{Hom}\left(A, \mu_{M}\right)
$$

Suppose that $\eta \in \operatorname{Gal}(W / V)$ corresponds to the element $\chi \in \operatorname{Hom}\left(A, \mu_{M}\right)$ such that $\chi=\zeta^{\psi^{\nu}}$ on A^{ν}, where $\zeta=\left[e^{0}, e^{1}\right]_{M}$. Let $\beta=\eta \sigma_{1} \in \operatorname{Gal}(W / \mathbb{Q})$, where σ_{1} is the restriction of complex conjugation to W. According to the Chebotarev density theorem, there exists infinitely many rational primes q which do not divide $N \ell$, are unramified in W, and such that

$$
\beta=\operatorname{Fr}:=\operatorname{Fr}_{W(w) / \mathbb{Q}_{q}}
$$

for some place w of W dividing q. We shall show that such primes q satisfy the conditions of the proposition.

Since β is nontrivial on K, it follows that q is a prime of K. Furthermore, $M^{\prime} \mid(q+1)$, since for $\xi \in \mu_{M^{\prime}} \subset V$, we have

$$
\xi^{-1}=\xi^{\sigma}=\xi^{\beta}=\xi^{\mathrm{Fr}}=\xi^{q} .
$$

We see that $\mathrm{Fr}^{2}=\sigma_{1}^{2}=1$ on $E\left[M^{\prime}\right]$ and, on the other hand, $\mathrm{Fr}^{2}-a_{q} \mathrm{Fr}+q=0$ on $E\left[M^{\prime}\right]$. Hence $a_{q} \mathrm{Fr}=q+1=0$ on $E\left[M^{\prime}\right]$, or, equivalently, $M^{\prime} \mid a_{q}$. Therefore $M^{\prime} \mid M_{q}$.

Let $g \in \operatorname{Gal}(V / \mathbb{Q})$ and let $\alpha(g)=1$ if $g \in \operatorname{Gal}(V / K)$, and $\alpha(g)=$ -1 , otherwise. If $(-1)^{\nu-1} \varepsilon=1$, then, by definition, σ acts trivially on $H[M]^{\nu}$, hence $h^{\nu}\left(z^{g}\right)=g h^{\nu}(z)$. If $(-1)^{\nu-1} \varepsilon=-1$, then σ acts on $H[M]^{\nu}$ by multiplication by -1 , hence $h^{\nu}\left(z^{g}\right)=\alpha(g) g h^{\nu}(z)$. Using (4.3) as well, for $h^{\nu} \in A^{\nu}$, we have

$$
\left[h^{\nu}\left(\operatorname{Fr}^{2}\right), e^{\nu^{\prime}}\right]_{M}=\left[h^{\nu}(\eta), e^{\nu^{\prime}}\right]_{M}^{2}=\chi^{\nu}\left(h^{\nu}\right)=\left[e^{0}, e^{1}\right]_{M}^{b}
$$

where $b=\psi^{\nu}\left(h^{\nu}\right)$. Hence, considering (4.4), we see that $\psi_{q, n}^{\nu}$ is proportional to ψ^{ν} by a factor from $(\mathbb{Z} / M \mathbb{Z})^{*}$.

Now we shall prove that f is an injection. Let $h \in \operatorname{ker}(f)$. Then it follows from (5.7) that for all $z \in G_{V}^{\mathrm{ab}}$ we have

$$
\begin{equation*}
\left[h^{0}(z), e^{1}\right]_{M}=\left[h^{1}(z), e^{0}\right]_{M}^{-1} \tag{5.8}
\end{equation*}
$$

The substitution $z \mapsto z^{g^{-1}}$ gives us the equality

$$
\begin{equation*}
\left[h^{0}(z), g e^{1}\right]_{M}=\left[h^{1}(z), g e^{0}\right]_{M}^{-\alpha(g)} . \tag{5.9}
\end{equation*}
$$

For $i=0,1$, let e^{i} be the generator of E^{i} such that $\left(M^{\prime} / M\right) e_{1}^{i}=e^{i}$. Define the homomorphism $\varphi: \operatorname{Gal}(V / K) \rightarrow \mathrm{GL}_{2}\left(\mathbb{Z} / M^{\prime} \mathbb{Z}\right)$ so that $g\left(e_{1}^{0}, e_{1}^{1}\right)=$ $\rho(g)\left(e_{1}^{0}, e_{1}^{1}\right)$. Since $\ell \in B(E)$, it follows that $\operatorname{Im}(\rho)=\mathrm{GL}_{2}\left(\mathbb{Z} / M^{\prime} \mathbb{Z}\right)$. Furthermore, the homorphism $\rho: \operatorname{Gal}(V / K) \rightarrow \mathrm{GL}_{2}\left(\mathbb{Z} / M^{\prime} \mathbb{Z}\right)$ is an injection, and is an isomorphism when $K \subset \mathbb{Q}\left(E\left[M^{\prime}\right]\right)$. The field K is a subfield of $\mathbb{Q}\left(E\left[M^{\prime}\right]\right)$ if and only if $\ell \equiv 3(\bmod 4)$ and $K=\mathbb{Q}(\sqrt{-1})$, in which case $\rho(\operatorname{Gal}(V / K))=\operatorname{ker}\left(\delta^{\prime}\right)$, where the homomorphism $\delta^{\prime}: \mathrm{GL}_{2}\left(\mathbb{Z} / M^{\prime} \mathbb{Z}\right) \rightarrow\{ \pm 1\}$ is induced by det : $\mathrm{GL}_{2}\left(\mathbb{Z} / M^{\prime} \mathbb{Z}\right) \rightarrow\left(\mathbb{Z} / M^{\prime} \mathbb{Z}\right)^{*}$ and the unique nontrivial homomorphism $\delta:\left(\mathbb{Z} / M^{\prime} \mathbb{Z}\right)^{*} \rightarrow\{ \pm 1\}$ (cf. [?, §4]).

Let $g_{0} \in \operatorname{Gal}(V / K)$ be such that $\rho\left(g_{0}\right)=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. Substituting $g g_{0}$ for g in (5.9), we obtain the equality

$$
\begin{equation*}
\left[h^{0}(z), g e^{0}\right]_{M}=\left[h^{1}(z), g e^{1}\right]_{M}^{\alpha(g)} \tag{5.10}
\end{equation*}
$$

Let $K \subset \mathbb{Q}\left(E\left[M^{\prime}\right]\right)$. Then there exists an element $g_{1} \in \operatorname{Gal}\left(V / \mathbb{Q}\left(E\left[M^{\prime}\right]\right)\right)$ such that $\alpha\left(g_{1}\right)=-1$. The relations (5.9) and (5.10) for $g=1$ and $g=g_{1}$, respectively, together imply that for $i=0,1,\left[h^{0}(z), e^{i}\right]_{M}=1$ and $\left[h^{1}(z), e^{i}\right]_{M}=1$, hence $h^{0}(z)=h^{1}(z)=0$.

Suppose that $K \subset Q\left(E\left[M^{\prime}\right]\right)$. Then $K=\mathbb{Q}(\sqrt{-1})$, hence $\ell>3$, since we are assuming that $K \neq \mathbb{Q}(\sqrt{-3})$. Since $\ell>3$, there exists an element $a \in \mathbb{Z} / M^{\prime} \mathbb{Z}$ such that $\delta(a)=1$ but $a \not \equiv 1(\bmod \ell)$. Let $g_{2} \in \operatorname{Gal}(V / K)$ be such that $\rho\left(g_{2}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & a\end{array}\right)$. Comparing (5.9) and (5.10) for $g=1$ and $g=g_{2}$, respectively, we obtain $h^{0}(z)=h^{1}(z)=0$.

Thus $\operatorname{res}_{K}^{V}(h)=0$. It remains to show that

$$
\operatorname{res}_{K}^{V}: H[M] \rightarrow H^{1}(V, E[M])
$$

is an injection. Let $g_{3} \in \operatorname{Gal}(V / K)$ be such that $\rho\left(g_{3}\right)=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$ and $G_{3}=\left\{1, g_{3}\right\}$. Then G_{3} is a subgroup of order 2 in the center of $\operatorname{Gal}(V / K)$. We have $E[M]=0$ and $H^{1}\left(G_{3}, E[M]\right)=0$. In view of inf-res-transgression applied to the group $\operatorname{Gal}(V / K)$ and its normal subgroup G_{3}, we see that $\operatorname{ker}\left(\operatorname{res}_{K}^{V}\right)=H^{1}(\operatorname{Gal}(V / K), E[M])$ is the trivial group.

We need the following corollary to Proposition 5.1.
Corollary 5.2. Let A^{0} and A^{1} be finite subgroups of $H[M]^{0}$ and $H[M]^{1}$. For $i=0,1$ and $j=1,2$, let

$$
f_{j}^{i}: \operatorname{Hom}\left(A^{i}, \mathbb{Z} / M\right) \rightarrow C_{j}^{i}
$$

be four surjective homomorphisms, and suppose that $n^{\prime} \geq n$. Then there are infinitely many primes p such that $M^{\prime} \mid M_{p}$ and

$$
\# f_{j}^{i}\left(\text { restriction of } \psi_{p, n}^{i} \text { to } A^{i}\right)=\# C_{j}^{i} .
$$

Proof. By virtue of Proposition 5.1, it is enough to prove the existence of characters $\psi^{i} \in \operatorname{Hom}\left(A^{i}, \mathbb{Z} / M \mathbb{Z}\right)$ such that $e\left(f_{j}^{i}\left(\psi^{i}\right)\right)=e\left(C_{j}^{i}\right)$. There exists a character ψ^{ν}, since otherwise $\operatorname{Hom}\left(A^{\nu}, \mathbb{Z} / M \mathbb{Z}\right)$ is the union of two proper subgroups, which is impossible.

Let $\lambda \in \Lambda^{r}, \delta \in \Lambda^{k}$ and $\delta \mid \lambda$. Let $S_{\lambda, \delta, n}$ denote the group $S_{\lambda, n}$ when $\delta=1$, and denote the intersection of $S_{\lambda, n}$ with the kernels of the characters $\psi_{p, n}$ for all $p \mid \delta$ when $\delta>1$. We have the following proposition.

Proposition 5.3. Let $\nu \in\{0,1\}$ and $r-k>0$. Then $\# S_{\lambda, \delta, n}^{\nu}=n$.
Proof. Since $S_{\lambda, \delta, n-1}^{\nu}$ is the subgroup of $S_{\lambda, \delta, n}^{\nu}$ of all elements of order ℓ^{n-1}, it is sufficient to prove the equality

$$
\begin{equation*}
\#\left(\frac{S_{\lambda, \delta, n}^{\nu}}{S_{\lambda, \delta, n-1}^{\nu}}\right) \geq \ell^{r-k} . \tag{5.11}
\end{equation*}
$$

Note that (5.11) implies that the multiplicity of n in the sequence of invariants of $S_{\lambda, \delta, n}^{\nu}$ is $\geq(r-k) / n$.

If v is a place of K, let $H_{v, n}$ denote $H^{1}(K(v), E[M])$ and $A_{v, n}$ denote $E(K(v)) / M E(K(v))$. If β is a set of places of K, let $H_{\beta, n}$ denote the locallycompact group $\coprod_{v \mid \beta} H_{v, n}$. The pairing

$$
\langle,\rangle_{\beta, n}=\sum_{v \mid \beta}\langle,\rangle_{v, n}
$$

identifies the group $H_{\beta, n}$ with its dual group. We use multiplicative notation: $v \mid \beta$ signifies that $v \in \beta$ and $\beta_{1} \beta_{2}$ denotes the cup product $\beta_{1} \cup \beta_{2}$. An
element of Λ is identified with its set of prime divisors. Let $\beta=\lambda / \delta$ and let Z_{n} be the image of $S_{\lambda, \delta, n}$ in $H_{\beta, n}$. It is sufficient to prove that Z_{n} is an isotropic subgroup of $H_{\beta, n}$, because then Z_{n}^{ν} is an isotropic subgroup of $H_{\beta, n}^{\nu}$, hence

$$
\# Z_{n}=\sqrt{\# H_{\beta, n}}=M^{r-k}
$$

and $\# Z_{n-1}^{\nu}=(M / \ell)^{r-k}$ (the latter equality holds since, in the previous equality, n is any natural number $\leq n(\lambda))$. Thus, $\#\left(Z_{n}^{\nu} / Z_{n-1}^{\nu}\right)=\ell^{r-k}$, whence follows (5.11).

Let α be the set of all places of K. By Poitou-Tate duality, the image Y_{1} of the group $H[M]$ in $H_{\alpha, n}$ is an isotropic subgroup of $H_{\alpha, n}$. Let

$$
Y_{3}:=\prod_{p \mid \delta} B_{p, n} \cdot \prod_{\operatorname{gcd}(v, \lambda)=1} A_{v, n}
$$

By local Tate duality $A_{v, n}$ is an isotropic subgroup of $H_{v, n}$, and $B_{p, n}$ is an isotropic subgroup of $H_{p, n}$, so Y_{3} is an isotropic subgroup of $H_{\alpha / \beta, n}$.

Let $Y_{2}=H_{\beta, n} \times Y_{3}$. We have $Z_{n}=\pi_{\beta}\left(Y_{1} \cap Y_{2}\right)$. (I do not know for certain exactly what Kolyvagin means by π_{β}, and he doesn't bother to say.) Obviously, the equality $\left\langle Z_{n}, Z_{n}\right\rangle_{\beta, n}=0$ holds. Let $z \in H_{\beta, n}$ and $\left\langle Z_{n}, z\right\rangle_{\beta, n}=$ 0 . Let z^{\prime} denote an element of $H_{\alpha, n}$ such that $\pi_{\beta}\left(z^{\prime}\right)=z$ and $\pi_{\alpha / \beta}\left(z^{\prime}\right)=0$. Since z^{\prime} is orthogonal to $Y_{1} \cap Y_{2}$, by Pontrjagin theory, $z^{\prime}=z_{1}+z_{2}$, where $z_{1} \in Y_{1}^{\perp}=Y_{1}$ and $z_{2} \in Y_{2}^{\perp}$. We have $\pi_{\beta}\left(z_{2}\right) \in H_{\beta, n}^{\perp}=0$ and $\pi_{\alpha / \beta}\left(z_{2}\right) \in$ $Y_{3}^{\perp}=Y_{3}$. Hence $z^{\prime}-z_{2}=z_{1} \in Y_{1} \cap Y_{2}$ and $\pi_{\beta}\left(z^{\prime}-z_{2}\right)=z$, so $z \in Z_{n}$.

We now have all that is necessary for the study of the group $X=$ $\amalg(E / K)\left[\ell^{\infty}\right]$.

6 A Structure Theorem for $\amalg(E / K)\left[\ell^{\infty}\right]$

Let Λ_{n}^{r} denote the subset of Λ^{r} consisting of all elements λ such that $n(\lambda) \geq n$; then

$$
\Lambda_{n}=\bigcup_{r \geq 0} \Lambda_{n}^{r} .
$$

Let $\varphi_{p, n}^{\nu}$ be the restriction of $\psi_{p, n}^{\nu}$ to the Selmer group $S_{M}^{\nu}=S_{1, n}^{\nu}$ and $\Phi_{\lambda, n}^{\nu}$ the subgroup of $\operatorname{Hom}\left(S_{M}^{\nu}, \mathbb{Z} / M \mathbb{Z}\right)$ generated by $\varphi_{p, n}^{\nu}$ for all $p \mid \lambda$.

In the sequel, we shall assume that $n^{\prime \prime} \geq n^{\prime} \geq n$.

Proposition 6.1. Let $\delta \in \Lambda_{n^{\prime \prime}}^{k}, n>m(\delta), \delta q \in \Lambda_{n^{\prime \prime}}^{k+1}$, and $e\left(\Psi_{q, n}\left(\tau_{\delta, n}\right)\right)=$ $e\left(\tau_{\delta, n}\right)$. Then $m(\delta q) \leq m(\delta)$. If, moreover, $n^{\prime \prime}-n \geq m(\delta q)$ and $\iota=1-\nu(k)$, then

$$
e\left(\varphi_{q, n}^{\iota}\left(\bmod \psi_{\delta, n}^{\iota}\right)\right) \leq m(\delta)-m(\delta q) .
$$

Proof. By Proposition 4.5,

$$
\tau_{\delta q, n}(q)=\varepsilon \psi_{q, n}\left(\tau_{\delta, n}\right) b_{q, n}^{\iota}
$$

Then, in view of (5.3) and our assumptions, we have

$$
n-m(\delta q)=e\left(\tau_{\delta q, n}\right) \geq e\left(\psi_{q, n}\left(\tau_{\delta, n}\right)\right)=e\left(\tau_{\delta, n}\right)=n-m(\delta)
$$

Hence $m(\delta q) \leq m(\delta)$.
It is a consequence of (5.6) that $a \varphi_{q, n}^{\iota} \in \Phi_{\delta, n}^{\iota}$, where

$$
a=\frac{\psi_{q, n^{\prime}}\left(\tau_{\delta, n^{\prime}}\right)}{\ell^{m(\delta q)}} \in \mathbb{Z} / M \mathbb{Z}
$$

and $n^{\prime}=n+m(\delta q)$. Since

$$
\operatorname{ord}_{\ell}\left(\psi_{q, n}\left(\tau_{\delta, n}\right)\right)=n-e\left(\tau_{\delta, n}\right)=m(\delta)
$$

and (5.1) holds, it follows that $\operatorname{ord}_{\ell}(a)=m(\delta)-m(\delta q)$.
If $\delta \in \Lambda^{k}$, where $r \geq k$, let

$$
m_{r}(\delta)=\min _{\lambda \in \Lambda^{r}, \delta \mid \lambda} m(\lambda) .
$$

Proposition 6.2. If $\delta \in \Lambda^{k}$ is such that $m(\delta)<\infty$, then $m_{k+1}(\delta) \leq m(\delta)$.
Proof. Let $n=n(\delta)$; then $n>m(\delta)$, since $m(\delta)<\infty$. Accoding to Corollary 5.2, there exists q such that $\delta q \in \Lambda_{n}^{k+1}$ and $e\left(\psi_{q, n}\left(\tau_{\delta, n}\right)=e\left(\tau_{\delta, n}\right)\right.$. The, by Proposition 6.1, we have the inequality $m(\delta q) \leq m(\delta)$.

Recall that, for $r \geq 0, m_{r}$ denotes $m_{r}(1)$.
Proposition 6.3. The sequence $\left\{m_{r}\right\}$ is such that $m_{r} \geq m_{r+1}$.
Proof. By assumption the point P_{1} has infinite order. Hence $m_{0}<\infty$, since m_{0} is the exponent of the highest powe of ℓ dividing P_{1} in $E(K)$. Now apply Proposition 6.2 and use induction on r.

Let $T_{\delta, n}^{\nu}$ denote the quotient group of $\operatorname{Hom}\left(S_{M}^{\nu}, \mathbb{Z} / M \mathbb{Z}\right)$ with respect to $\Phi_{\delta, n}^{\nu}$. Recall that ν^{\prime} denotes $1-\nu$, where $\nu \in\{0,1\}$.

Proposition 6.4. Let $k \geq 0, r \geq k, \alpha=\nu(k), \beta=\nu(r)$, and $n^{\prime \prime} \geq n^{\prime} \geq n$. Let $\delta \in \Lambda_{n^{\prime \prime}}^{k}$ be such that $x:=m_{r}(\delta)<n$ and $\lambda \in \Lambda_{n}^{r}$ such that $m(\lambda)=x$. Then there exists $q \in \Lambda^{1}$ satisfying the following conditions:

1. $\xi(q, \lambda)=1$ and $M^{\prime \prime} \mid M_{q}$;
2. $e\left(\psi_{q, n^{\prime}}^{\beta}\left(\tau_{\lambda, n^{\prime}}\right)\right)=e\left(\tau_{\lambda, n^{\prime}}\right)$;
3. at our discretion, one of the following two conditions is fullfilled:
(a) $e\left(\psi_{q, n}^{\alpha^{\prime}}\left(\bmod \Phi_{\delta, n^{\prime}}^{\alpha^{\prime}}\right)\right)=e\left(T_{\delta, n^{\prime}}^{\alpha^{\prime}}\right)$;
(b) if $k \geq 1$, then for a preassigned $p_{1} \mid \delta$,

$$
e\left(\varphi_{q, n^{\prime}}^{\alpha^{\prime}}\left(\tau_{\delta / p_{1}, n^{\prime}}\right)\right)=e\left(\tau_{\delta / p_{1}, n^{\prime}}\right)
$$

4. $e\left(\psi_{q, n^{\prime}}^{\alpha}\left(\tau_{\delta, n^{\prime}}\right)\right)=e\left(\tau_{\delta, n^{\prime}}\right)$;
5. there exists $p \mid(\lambda / \delta)$ such that $m(\lambda q / p)=x$.

Moreover, if $\alpha=\beta^{\prime}$ and $n^{\prime \prime}-n \geq y:=m(\delta)$, then we may choose a p satisfying condition 5 so that the following condition is fulfilled:
6. $e\left(\psi_{p, n}^{\alpha}\left(\tau_{\delta, n}\right)\right)=e\left(\tau_{\delta, n}\right)$.

Proof. By Proposition ??, there exists $s \in S_{\lambda, \delta, n}^{\beta^{\prime}}$ such that $e(s)=n$. According to Proposition ??, there exists $q \in \Lambda^{1}$ satisfying conditions (1)-(4) and the following condition:

$$
\text { 7. } \quad e\left(\psi_{q, n^{\prime}}^{\beta^{\prime}}(s)\right)=e(s)=n \text {. }
$$

Since $\tau_{\lambda q, n}$ and s are orthogonal (see ()), we have the relation

$$
\sum_{p \left\lvert\, \frac{\lambda}{\delta}\right.} \psi_{p, n}^{\beta^{\prime}}(s) \psi_{p, n}^{\beta}\left(\tau_{\lambda q / p, n}\right)=-\psi_{q, n}^{\beta^{\prime}}(s) \psi_{q, n}^{\beta}\left(\tau_{\lambda, n}\right):=z \in \mathbb{Z} / M \mathbb{Z} .
$$

It follows from () and () that conditions (2) and (7) are satisfied as well after the substitution $n^{\prime} \mapsto n$. Hence $e(z)=n-x>0$. By the definition of x, we have

$$
e\left(\psi_{p, n}^{\beta}\left(\tau_{\lambda q / p, n}\right) \leq e\left(\tau_{\lambda q / p, n}\right) \leq n-x .\right.
$$

Thus, there exists $p \mid(\lambda / \delta)$ such that the following conditions are fulfilled:

$$
\begin{aligned}
& \text { 8. } \quad e\left(\psi_{p, n}^{\beta}\left(\tau_{\lambda q / p, n}\right)=n-x \text { and, hence, } m(\lambda q / p)=x\right. \text {; } \\
& \text { 9. } \quad e\left(\psi_{p, n}^{\beta^{\prime}}(s)=n\right. \text {. }
\end{aligned}
$$

If $\alpha=\beta^{\prime}$ and $n^{\prime \prime}-n \geq y$, then we may take the element $\tau_{\delta, n+y}$ to be s. If $\tau_{\delta, n}=0$, then (6) holds. Otherwise $e\left(\tau_{\delta, n}\right)=n-y>0$, and (6) follows from (9), since $\tau_{\delta, n}=\ell^{y} \tau_{\delta, n+y}$.

Proposition 6.5. Let $n>m_{0}$ and $n^{\prime}=n+m_{0}$. (It says " $m+m_{0}$ " in [?], but m isn't defined anywhere.) Suppose that $r=k+1 \geq 1, \delta \in \Lambda_{n^{\prime}}^{k}$, and $m(\delta)=m_{r-1}$. Then there exists a prime number p_{r} such that $\delta p_{r} \in \Lambda^{r}$ and $m\left(\delta p_{r}\right)=m_{r}(\delta)$. For every such p_{r}, if $\beta=\nu(r)$, we have

$$
\begin{align*}
e\left(\varphi_{p_{r}, n}^{\beta}\left(\bmod \Phi_{\delta, n}^{\beta}\right)\right) & =e\left(T_{\delta, n}^{\beta}\right)=m_{r-1}-m_{r}(\delta) \tag{6.1}\\
e\left(\psi_{p_{r}, n}\left(\tau_{\delta, n}\right)\right) & =e\left(\tau_{\delta, n}\right), \tag{6.2}\\
e\left(\phi_{p_{r}, n}^{\beta^{\prime}}\left(\bmod \Phi_{\delta, n}^{\beta^{\prime}}\right)\right) & \geq m_{r-2}-m_{r-1}, \quad \text { where } r \geq 2 \tag{6.3}
\end{align*}
$$

Proof. Let $\lambda \in \Lambda_{x+1}^{r}$, where $x=m(\delta)$, be such that $m(\lambda)=x$. The existence of p_{r} follows from Proposition 6.4 applied to δ and λ (and $n^{\prime \prime}=n^{\prime}, n^{\prime}=n$, $n=x+1$).

Now apply Proposition 6.4 to δ and $\lambda=\delta p_{r}$ (where $n^{\prime \prime}=n^{\prime}$ and $n^{\prime}=n$). Select a q corresponding to condition (3a)). From conditions (2) and (3a), and Proposition 6.1, it follows that $e\left(T_{\delta, n}^{\beta}\right) \leq y-x$, where $y=m(\delta)=m_{r-1}$. The element $a=\tau_{\delta q, y}$ belongs to $S_{1, y}^{\beta} \subset S_{1, n}^{\beta}$, by virtue of Proposition 4.5 and the relation $\tau_{\delta^{\prime}, y^{\prime}}=0$ for all $\delta^{\prime} \in \Lambda_{y}^{r-1}$ (by definition of $m_{r-1}=y$). Since $a=\ell^{n-y} \tau_{\delta, n}$, it then follows from (8) that

$$
e\left(\varphi_{p_{r}, n}^{\beta}(a)\right)=e\left(\varphi_{p_{r}, n}^{\beta}\left(\tau_{\delta q, n}\right)\right)-(n-y)=y-x .
$$

Since $a \perp \Phi_{\delta, n}$, we have that

$$
e\left(\varphi_{p_{r}, n}^{\beta}\left(\bmod \Phi_{\delta, n}^{\beta}\right)\right) \geq y-x
$$

hence (6.1) is true.
Analogously, the element $b=\tau_{\delta, m_{r-2}}$ lies in $S_{1, n}^{\beta^{\prime}}$ and $b \perp \Phi_{\delta, n}^{\beta^{\prime}}$. According to (6), (6.2) is true, hence $e\left(\varphi_{p_{r}, n}^{\beta^{\prime}}(b)=m_{r-2}-y\right.$, and (6.3) holds.

If ω is a sequence $\left(p_{0}, \ldots, p_{r}\right)$ of integers, for $0 \leq i \leq r$ let $\omega(i)=p_{0} \cdots p_{i}$. [Note, this is not how Kolyvagin defines $\omega(i)$, but his definition doesn't make any sense.] Define Ω_{n}^{r} to be the set of sequences $\omega=\left(p_{0}, \ldots, p_{r}\right)$ such that $\omega(r) \in \Lambda_{n}^{r}$ and $m(\omega(i))=m_{i}$ for $0 \leq i \leq r$. In particular, Ω_{n}^{0} contains only $\left(p_{0}\right):=(1)$.

A priori, by the Mordell-Weil theorem, and because $E(K)\left[\ell^{\infty}\right]$ is trivial, $(E(K) / M E(K))^{\nu} \cong(\mathbb{Z} / M \mathbb{Z})^{g^{\nu}}$, where $g^{0}+g^{1}$ is the rank of E over K. The sequence

$$
0 \rightarrow E(K) / M E(K) \rightarrow H^{1}(K, E[M]) \rightarrow H^{1}(K, E)[M] \rightarrow 0
$$

induces the exact sequence

$$
\begin{equation*}
0 \rightarrow(E(K) / M E(K))^{\nu} \rightarrow S_{1, n}^{\nu} \rightarrow X_{1, n}^{\nu} \rightarrow 0 \tag{6.4}
\end{equation*}
$$

Here $X_{1, n}^{\nu}=X_{M}^{\nu}$. By the weak Mordell-Weil theorem, the group $S_{1, n}^{\nu}$ is finite.
Recall that the Heegner point P_{1} has a unique representation $P_{1}=\ell^{m_{0}} \mathbf{x}$ where $\mathbf{x} \in E(K)-\ell E(K)$ (set-theoretic difference).

Let $n>m_{0}, r=1, \omega=p_{0}=1$, and choose p_{1} as in Proposition 6.5. Then $T_{\delta, n}^{0}=\operatorname{Hom}\left(S_{1, n}^{0}, \mathbb{Z} / M \mathbb{Z}\right)$ and $m_{1}(\delta)=m_{1}$. According to (6.1), we have

$$
e\left(S_{1, n}^{0}\right)=e\left(T_{\delta, n}^{0}\right)=m_{0}-m_{1}<n .
$$

Hence, in view of (6.4), it follows that $g^{0}=0, S_{1, n}^{0}=S_{1, m_{0}-m_{1}}^{0}$, and $X^{0}=$ $X_{1, n}^{0}=X_{1, m_{0}-m_{1}}^{0}$ is a finite group. In particular, the invariants x_{i}^{0} of X^{0} coincide with the invariants of $T_{1, n}^{0}$.

Moreover, it follows from (6.2) that

$$
e\left(\varphi_{p_{1}, n}^{1}(\mathbf{x}(\bmod M E(K)))\right)=n,
$$

hence, $S_{1, n}^{1}$ is the direct sum of $\mathbb{Z} / M \mathbf{x} \mathbb{Z}(\bmod M E(K))=\mathbb{Z} / M \mathbb{Z}$ and $Y=$ $\operatorname{ker} \varphi_{p_{1}, n}^{1}$.

Let $r=2, \omega=\left(1, p_{1}\right)$, and $\delta=p_{1}$. Then $T_{\delta, n}^{1}$ is the dual group for Y. Hence, it follows from 6.1 that

$$
e(Y)=e\left(T_{\delta, n}^{1}\right)=m_{1}-m_{2}(\delta)
$$

and by (6.4), we have $g^{1}=1$ and $X^{1}=X_{1, n}^{1}=X_{1, m_{1}-m_{2}}^{1}(\delta)$ is finite and isomorphic to Y. In particular, the invariants x_{i}^{1} of the group X^{1} coincide with the invariants of the group $T_{p_{1}, n}^{1}$.

In [?] it was proved that $g^{0}=0$, and in [?] that $g^{1}=1$ and $\# X \mid \ell^{2 m_{0}}$.
Recall that, for $\nu \in\{0,1\}$ and $j \in \mathbb{N} \nu(j)$ denotes the element of $\{0,1\}$ such that $j-\nu(j)-1$ is even, and $\xi(j, \nu)=j-|\nu-\nu(j)|$.

Theorem 6.6. Let $r>0, n>m_{0}$, and $n^{\prime}=n+m_{0}$. Then $\Omega_{n^{\prime}}^{r} \neq \emptyset$. Moreover, for all $\omega \in \Omega_{n^{\prime}}^{r-1}$, there exists $p_{r} \mid \xi\left(\omega, p_{r}\right) \in \Omega_{n^{\prime}}^{r}$. Let $\omega \in \Omega_{n^{\prime}}^{r}$. Then for $1 \leq j \leq r$,

$$
e\left(\varphi_{p, n}\left(\tau_{\omega(j-1), n}\right)\right)=e\left(\tau_{\omega(j-1), n^{\prime}}\right)
$$

and if $\nu \in\{0,1\}$ is such that $r-\nu>0$, then for $1+\nu \leq j \leq r$ we have

$$
e\left(\phi_{p_{j}, n}^{\nu}\left(\bmod \Phi_{\omega(j-1), n}^{\nu}\right)\right)=m_{\xi(j, \nu)-1}-m_{\xi(j, \nu)}=x_{j-\nu}^{\nu}
$$

Proof. For $r=1$ the theorem was proved above. Therefore, by induction, it suffices to prove the theorem for $r \geq 2$, assume it is true for all $r^{\prime}<r$. Let $\omega \in \Omega_{n^{\prime}}^{r-1}, \delta=\omega(r-1)$, and choose p_{r} as in Proposition 6.5 so that, in particular, the relations (6.1)-(6.3) hold. Since the theorem is true for $r-1$, it follows that $e\left(T_{\delta, n}^{\nu}\right)=x_{r-\nu}^{\nu}$, and for $\beta=\nu(r)$,

$$
x_{r-1-\beta^{\prime}}^{\beta^{\prime}}=m_{r-2}-m_{r-1} .
$$

Hence the equality $x_{r-\beta^{\prime}}^{\beta^{\prime}}=m_{r-2}-m_{r-1}$ holds, by (6.3) and the inequality $x_{r-\beta^{\prime}}^{\beta^{\prime}} \leq x_{r-1-\beta^{\prime}}^{\beta^{\prime}}$. In view of (6.1), (6.2), and the induction hypothesis, it remains only to prove that $m_{r}(\delta)=m_{r}$. This will be done if we prove that $\Omega_{n^{\prime}}^{r} \neq \emptyset$. Indeed, using the fact that $\xi\left(\omega^{\prime}, p^{\prime}\right) \in \Omega_{n^{\prime}}^{r}$, as above, we then have

$$
m_{r-1}-m_{r}=x_{r-\beta}^{\beta}=m_{r-1}-m_{r}(\delta)
$$

If $u=m_{r}+1$ for $0 \leq k \leq r$, let U^{k} be the set of pairs $\omega \in \Omega_{n^{\prime}}^{k}, \lambda \in \Lambda_{u}^{r}$ such that $\omega(k) \mid \lambda$ and $m(\lambda)=m_{r}$. It follows from Proposition 6.5 that $\Omega_{n^{\prime}}^{r}$ is nonempty if U^{r-1} is nonempty. Then, since U^{0} is nonempty, it is sufficient to prove that U^{k+1} is nonempty if $k<r-1$ and U^{k} is nonempty. Then, by induction, U^{r-1} is nonempty. Let $\xi(\omega, \lambda) \in U^{k}$. Apply Proposition 6.4 to $\delta=\omega(k), \lambda$ (and $n^{\prime \prime}=n^{\prime}, n=u$), and choose a q corresponding to condition (3a). We need to show that $m(\delta q)=m_{k+1}$; then the pair $((\omega, q), \lambda q / p)$ will belong to U^{k+1}. By Theorem 6.6 for $k+1 \leq r-1$, we have

$$
m_{k}-m_{k+1}=x_{k+1-\alpha^{\prime}}^{\alpha^{\prime}}=e\left(T_{\delta, n}^{\alpha^{\prime}}\right)
$$

where $\alpha=\nu(k)$. On the other hand, in view of Proposition 6.1 and condition (3a), we see that $e\left(T_{\delta, n}\right) \leq m_{k}-m(\delta q)$. Hence $m(\delta q) \leq m_{k+1}$, but, by the definition of m_{k+1}, we have $m_{k+1} \leq m(\delta q)$. Thus $m(\delta q)=m_{k+1}$.

$7 \quad$ Parametrization of $\amalg(E / K)\left[\ell^{\infty}\right]$

The purpose of this section is the parameterization of X and its dual group by a sequence of prime numbers more arbitrary than Ω. This is essential for an effective description of the structure of X and its dual group, and for the parameterization of X by the classes $\tau_{\lambda, n}$ and of its dual group by the characters $\varphi_{p, n}$.

Let n^{\prime} be a nonnegative integer (I think). For $r \geq 0$ let $\Pi_{n^{\prime}}^{r}$ be the set of sequence $\pi=\left(p_{0}, \ldots, p_{r}\right)$ such that $\pi(r) \in \Lambda_{n^{\prime}}^{r}$; if $r>0$ and $1 \leq j \leq r$, then

$$
\begin{equation*}
e\left(\Psi_{p_{j}, n^{\prime}}\left(\tau_{\pi(j-1), n^{\prime}}\right)\right)=e\left(\tau_{\pi(j-1), n^{\prime}}\right) \tag{7.1}
\end{equation*}
$$

and, if $r \geq 2$ and $2 \leq j \leq r$, moreover,

$$
\begin{equation*}
e\left(\Psi_{p_{j}, n^{\prime}}\left(\tau_{\pi(j-1) / p_{1}, n^{\prime}}\right)=e\left(\tau_{\pi(j-1) / p_{1}, n^{\prime}}\right)\right. \tag{7.2}
\end{equation*}
$$

Recall that

$$
m=\min _{r \geq 0} m_{r}=\lim _{r \rightarrow \infty} m_{r}
$$

Let $\lambda \in \Lambda^{r}$ be such that $m(\lambda)=m$. As in the above proof of the nonemptiness of U^{r-1}, using Proposition 6.4, condition (3b), and induction, we shall prove that for all n^{\prime} there exists $\pi \in \Pi_{n^{\prime}}^{r}$ such that $m(\pi(r))=m$. We shall say that $\pi \in \Pi_{n^{\prime}}^{r}$ is minimal if $m(\pi(r))=m$. From Proposition 6.1 and 6.4 it follows that if $\pi^{\prime} \in \Pi_{n^{\prime}}^{r-1}$ is minimal, then there exists p_{r} such that $\left(\pi^{\prime}, p_{r}\right) \in \Pi_{n^{\prime}}^{r}$ is minimal.

Let $n>m_{0}$ and $n^{\prime} \geq n+m_{0}$. Assume that $r \geq 2$, that $\pi \in \Pi_{n^{\prime}}^{r}$ is minimal, and $\pi-p_{r}$ is minimal as well.

Definition $7.1(u(\nu))$. If $\nu \in\{0,1\}$, then $u(\nu)$ denotes $r-\nu$ if $r-\nu$ is even (i.e., $\nu=\nu(r+1)$), otherwise (i.e., when $\nu=\nu(r)), u(v)=r-\nu-1$.

Let $\lambda^{\nu}=\pi(u(\nu)+\nu)$. By Proposition 6.5, $T_{\lambda^{\nu}, n}^{\nu}=0$, that is, $\varphi_{p_{j}, n}^{\nu}, 1 \leq$ $j \leq u(\nu)+\nu$, generate $\operatorname{Hom}\left(S_{M}^{\nu}, \mathbb{Z} / M \mathbb{Z}\right)$. In particular, the homomorphism α_{2}^{ν} in (??) below is an isomorphism. For $1-\nu \leq i \leq u(\nu)$, set

$$
\lambda_{i}^{\nu}=\pi(i+\nu) / p_{\nu(i)}
$$

and

$$
z_{i}^{\nu}=\tau_{\lambda_{i}^{\nu}, n+m\left(\lambda_{i}^{\nu}\right)} \in S_{\lambda_{i}^{\nu}, n} .
$$

For $1 \leq i \leq u(\nu)$ and $1-\nu \leq j \leq u(\nu)$, define the elements $a_{i j}^{\nu} \in \mathbb{Z} / M \mathbb{Z}$ as follows: if $j>i$, or if $j+\nu=1$ and i is even, then

$$
\begin{equation*}
a_{i j}^{\nu}=0, \tag{7.3}
\end{equation*}
$$

and for the remaining pairs $i j$:

$$
\begin{equation*}
a_{i j}^{\nu}=\psi_{p_{j+\nu}, n+m\left(\lambda_{i}^{\nu}\right)}\left(\tau_{\lambda_{i}^{\nu} / p_{j+\nu}, n+m\left(\lambda_{i}^{\nu}\right)}\right) / \ell^{m\left(\lambda_{i}^{\nu}\right)} . \tag{7.4}
\end{equation*}
$$

From the orthogonality relation (??), with $n^{\prime}=n+m\left(\lambda_{i}^{\nu}\right)$ and $\lambda=\lambda_{i}^{\nu}$, it follows that for $1 \leq i \leq u(\nu)$, we have

$$
\begin{equation*}
\sum_{j=1-\nu}^{u(\nu)} a_{i j} \varphi_{p_{j+\nu}, n}=0 \tag{7.5}
\end{equation*}
$$

Let $a=\left(a_{i j}\right)$ be a square matrix of dimension u with coefficients in $\mathbb{Z} / M \mathbb{Z}$. Let $A(a)$ denote the abelian M-torsion group given by generators 1_{j}, where $1 \leq j \leq n$, and relations $\sum_{j=1}^{u} a_{i j} 1_{j}=0$. By identifying 1_{j} with the element of $(\mathbb{Z} / M \mathbb{Z})^{u}$ having the j th component equal to 1 and the others equal to zero, we can identify $A(a)$ with the quotient group of $(\mathbb{Z} / M \mathbb{Z})^{u}$ with respect to the subgroup generated by the rows of a.

Let $r \geq 2+\nu, a^{\nu}=\left\{a_{i j}^{\nu}\right\}$ for $1 \leq i, j \leq u(\nu)$, and $A^{\nu}=A\left(a^{\nu}\right)$. Sending 1_{j} to $\left.\varphi_{p_{j+\nu}, n}^{\nu} \bmod \varphi_{p_{\nu}, n}^{\nu}\right)$ and taking (7.5) into account, we define the surjective homomorphisms α_{i}^{ν} in () below. We have the isomorphisms

Here $\varphi_{p_{0}, n}^{0}:=1$ and $\left(\varphi_{p_{\nu}, n}^{\nu}\right)$ is the subgroup generated by $\varphi_{p_{\nu}, n}^{\nu}$. We proved above that the natural injection α_{2}^{ν} is an isomorphism. The isomorphism α_{3}^{ν} is induced by the exact sequence (?), and α_{4}^{ν} is any isomorphism between X^{ν} and its dual group. We shall prove below that α_{1}^{ν} is an isomorphism as well.

If $b \in \mathbb{Z} / M \mathbb{Z}$, then $\operatorname{ord}_{\ell}(b):=n-e(b)$. Using Proposition ??, (?), and (?), we obtain the relation

$$
\begin{equation*}
\operatorname{ord}_{\ell}\left(a_{i i}^{\nu}\right)=m\left(\lambda_{i}^{\nu} / p_{i+\nu}\right)-m\left(\lambda_{i}^{\nu}\right) \leq m_{0}<n . \tag{7.7}
\end{equation*}
$$

Since $a_{i j}=0$ if $j>i$, it then follows that

$$
\operatorname{ord}_{\ell}\left(A^{\nu}\right) \leq z^{\nu}:=\sum_{i=1}^{u(\nu)} \operatorname{ord}_{\ell}\left(a_{i i}^{\nu}\right)
$$

Equation (7.7) implies that

$$
z^{0}+z^{1}=2 m_{0}-m(\pi(r-1))-m\left(\pi(r) / p_{1}\right) .
$$

We shall show that $m\left(\pi(r) / p_{1}\right)=m$. Since $m(\pi(r-1))=m$, by the conditions on π, it follows that

$$
\begin{equation*}
\operatorname{ord}_{\ell}\left(\left[A^{0}\right]\left[A^{1}\right]\right) \leq z^{0}+z^{1}=2 m_{0}-2 m . \tag{7.8}
\end{equation*}
$$

Let $\lambda=\pi(r)$. Since $\tau_{\lambda, n+m}$ and $s=\tau_{\lambda /\left(p_{1} p_{r}\right), n+m}$ are orthogonal, considered as elements of $S_{\lambda, n}$ (cf. (?)), then if

$$
\theta_{1}=\psi_{p_{1}, n+m}\left(\tau_{\lambda / p_{1}, n+m}\right) / \ell^{m}
$$

it follows that

$$
\theta_{1} \psi_{p_{1}, n}(s)=\theta_{2}:=-\left(\varphi_{p_{r}, n+m}\left(\tau_{\lambda / p_{r}, n+m}\right) / \ell^{m}\right) \psi_{p_{r}, n}(s)
$$

From conditions ?? and ?? and the equality $m\left(\lambda / p_{r}\right)=m$, we obtain that $e\left(\theta_{2}\right)=e(s)>0$. Thus, $\theta_{1} \in(\mathbb{Z} / M \mathbb{Z})^{*}$ and $m\left(\lambda / p_{1}\right)=m$, since otherwise $m\left(\lambda / p_{1}\right)>m$, which implies that $\theta_{1} \in \ell(\mathbb{Z} / M \mathbb{Z})$.

Since $\operatorname{ord}_{\ell}\left(\left[X^{0}\right]\left[X^{1}\right]\right)=2 m_{0}-2 m(c f . \quad ? ?)$ and ?? holds, it follows that the surjective homomorphisms α_{1}^{0} and α_{1}^{1} are isomorphisms.

Note that $\psi_{p_{j+\nu, n}}\left(z_{i}^{\nu}\right)=0$ for $1 \leq j \leq i$, because then, by Proposition ??, $z_{i}^{\nu}\left(p_{j+\nu}\right) \in B_{p_{j+\nu}, n}^{\nu}$ and $\psi_{p, n}\left(B_{p, n}\right)=0$ (cf. Section ??). We see from ?? and ?? that, if $u(\nu) \geq 2$ and $i<u(\nu)$, then $\varphi_{p_{i+1+\nu}}\left(z_{i}^{\nu}\right) \in(\mathbb{Z} / M \mathbb{Z})^{*}$. According to (??),

$$
e\left(z_{i}^{\nu}\right)=n+m\left(\lambda_{i}^{\nu}\right)-m\left(\lambda_{i}^{\nu}\right)=n .
$$

We shall show that if $\left(c_{1}, \ldots, c_{u(\nu)}\right) \in(\mathbb{Z} / M \mathbb{Z})^{u(\nu)}$ is such that

$$
\begin{equation*}
\sum_{i=1}^{u(\nu)} c_{i} z_{i}^{\nu}=0 \tag{7.9}
\end{equation*}
$$

then $c_{i}=0$ for $1 \leq i \leq u(\nu)$. It is sufficient to consider the case $u(\nu) \geq 2$. Then for $2 \leq j \leq u(\nu)+\nu$, we apply the characters $\psi_{p_{j+\nu}, n}$ to (7.9). By the
properties of z^{ν} noted above, we obtain $c_{1}=\cdots=c_{u(\nu)-1}=0$ and, hence, $c_{u(\nu)}=0$ as well.

Then, from the definition of z_{i}^{ν} and Proposition ??, it follows that

$$
z_{i}^{\nu}\left(p_{j+\nu}\right)=a_{i j}^{\nu} b_{j+\nu, n}^{\nu} \quad\left(\bmod E\left(K\left(p_{j+\nu}\right)\right) / M\right)
$$

Thus

$$
w=\sum_{i=1}^{u(\nu)} c_{i} z_{i}^{\nu} \in S_{p_{\nu}, n}^{\nu}
$$

and the following relation holds for $1 \leq j \leq u(\nu)$:

$$
\begin{equation*}
\sum_{i=1}^{u(\nu)} c_{i} a_{i j}^{\nu}=0 . \tag{7.10}
\end{equation*}
$$

Note that the orthogonality between elements of $S_{p_{1}, n}^{1}$ and $\mathbf{x}(\bmod M E(K))$, in view of the fact that

$$
\varphi_{p_{1}, n}\left(\mathbf{x} \quad(\bmod M E(K)) \in(\mathbb{Z} / M \mathbb{Z})^{*}\right.
$$

and (??), implies that $S_{p_{1}, n}^{1}=S_{M}^{1}$. Therefore, (??) is the condition that w belongs to the group S_{M}^{ν}. Let $B^{\nu}=\left\{c_{1}, \ldots, c_{u(v)}\right\}$ be the subgroup of $(\mathbb{Z} / M \mathbb{Z})^{u(\nu)}$ defined by (7.10). If a is a matrix, then $a^{\text {tr }}$ denotes the transpose of the matrix a.

The pairing

$$
(\mathbb{Z} / M \mathbb{Z})^{u(\nu)} \times(\mathbb{Z} / M \mathbb{Z})^{u(\nu)} \rightarrow \mathbb{Z} / M \mathbb{Z},
$$

under which $\left(1_{j}, 1_{j}\right)=\delta_{i j}$ (the Kronecker symbol), induces the isomorphism β_{2}^{ν} in (??). The isomorphism β_{1}^{ν} is any isomorphism of the dual groups. The β_{3}^{ν} is an injection $\left(c_{1}, \ldots, c_{u(\nu)}\right) \mapsto w$. The isomorphism β_{4}^{ν} is induced by the homomorphism $S_{M}^{\nu} \rightarrow X^{\nu}$ in (??). We have

$$
\begin{equation*}
A\left(a^{\nu \operatorname{tr}}\right) \xrightarrow[\cong]{\cong} \operatorname{\beta om}\left(A\left(a^{\nu \operatorname{tr}}\right), \mathbb{Z} / M \mathbb{Z}\right) \xrightarrow[\cong]{\cong} B^{\nu} \xrightarrow[\cong]{\cong} \operatorname{ker}\left(\psi_{p_{2 \nu}}^{\nu}\right) \xrightarrow[\cong]{\beta_{4}^{\nu}} X^{\nu} \tag{7.11}
\end{equation*}
$$

We shall show that, for $n>2 m_{0}, \beta_{3}^{\nu}$ is also an isomorphism. Let a be a $u \times u$ matrix over $\mathbb{Z} / M \mathbb{Z}$ such that $a_{i j}=0$ for $j>i$ and

$$
\xi=\sum_{i=1}^{u} \operatorname{ord}_{\ell}\left(a_{i i}\right) \leq n
$$

Using induction on u and our assumption, we see that $\operatorname{ord}_{\ell}(A(a))=\xi$.
In particular, if $n>2 m$ and $a=a^{\nu \text { tr }}$, then $\xi \leq n$, by virtue of (?), and hence, $\operatorname{ord}_{\ell_{0}}\left(B^{\nu}\right)=\xi=z^{\nu}$. Thus, since ord $\left(\left[X^{0}\right]\left[X^{1}\right]\right)=z^{0}+z^{1}=2 m_{0}-2 m$, and β_{3}^{0} and β_{3}^{1} are injections, it follows that β_{3}^{0} and β_{3}^{1} are isomorphisms.

Note that since $\ell^{m_{0}} X^{\nu}=0$, for $n=m_{0}$ and $n^{\prime}>2 m_{0}$, we have the isomorphism α_{k}^{ν}, and for $n^{\prime}>3 m_{0}$, the isomorphisms β_{k}^{ν} for $1 \leq k \leq 4$ (obtained by reduction modulo $\ell^{m_{0}}$ of the corresponding homomorphisms for $n=m_{0}+1$).

Fix $\theta=2$ or $\theta=3$. Assume that the value of m is known, for example, $m=m^{?}$; that is, the ℓ-component of the Birch and Swinnerton-Dyer conjecture for E over K is true. Assume as well that we can effectively calculate the values of $\psi_{p, n^{\prime \prime}}$ on $\tau_{\lambda^{\prime}, n^{\prime \prime}}$ for $\lambda^{\prime} \in \Lambda$ and $\left(p, \lambda^{\prime}\right)=1$, i.e., in view of (?), we can calculate the coordinates of $\tilde{P}_{\lambda^{\prime}} \in \tilde{E}(F)$, where F is the residue field of $K(p)$.

Then the above exposition gives us an algorithm for calculating m_{0} for some $r \geq 1, n^{\prime} \geq \theta m_{0}+1$, and $\pi=\left(p_{0}, \ldots, p_{r}\right) \in \Pi_{n^{\prime}}^{r}$, such that $m(\lambda)=$ $m\left(\lambda / p_{1}\right)=m$, where $\lambda=\pi(r)$, and for calculating the coefficients $a_{i j}^{\nu} \in$ $\mathbb{Z} / M_{0} \mathbb{Z}$, where $M_{0} \in \ell^{m_{0}}$. Then for $n=m_{0}$, we obtain the isomorphism (?), in particular, the isomorphism $A^{\nu} \cong X^{\nu}$ and the parametrization of the dual group of X^{ν} by the characters $\psi_{p, m_{0}}^{\nu}$ for $p \mid\left(\lambda^{\nu} / p\right)$. If $\theta=3$, then we also obtain the isomorphisms in (?), in particular, the parameterization of X^{ν} by means of $\left\{z_{i}^{\nu}\right\}$. We can, of course, use the explicit matrix $a^{\nu}=\left\{a_{i j}\right\}$ to calculate the invariants of X^{ν}.

Now we shall demonstrate the algorithm. Sort out (in any order) a triple $n^{\prime}>m, r \geq 1, \pi$ such that $\lambda \in \Lambda_{n^{\prime}}^{r}$, until one is obtained which satisfies the following conditions.

First, we verify the condition

$$
\begin{equation*}
\psi_{p_{r}, m+1}\left(\tau_{\lambda / p, m+1}\right)=0 \tag{7.12}
\end{equation*}
$$

It follows from (7.12) that $m(\lambda / p)=m$ and, in view of Proposition 6.1, that $m(\lambda)=m$. If $r=1$, then (7.12) implies that $m_{0}=m$, hence $X=0$, since $\# X=\ell^{2 m-2 m_{0}}$, and we complete the calculations. If $r>1$, then we verify the conditions

$$
\begin{equation*}
\frac{n^{\prime}-1}{\theta} \geq m_{0}^{\prime}:=\min _{1 \leq j \leq u(1)+1} \operatorname{ord}_{\ell}\left(\psi_{p_{j}, n}\left(\tau_{1, n^{\prime}}\right)\right) \tag{7.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi_{p_{2}, m_{0}^{\prime}+1}\left(\tau_{1, m_{0}+1}\right) \neq 0 \tag{7.14}
\end{equation*}
$$

It follows from (7.13) that $m_{0}=m_{0}^{\prime}$. If $r>2$, then we verify the condition

$$
\begin{equation*}
\psi_{p_{1}, m_{0}+1}\left(\tau_{1, m_{0}+1}\right) \neq 0 \tag{7.15}
\end{equation*}
$$

Furthermore, for $1 \leq i \leq u(\nu)$, we can calculate the values $m\left(\lambda_{i}^{\nu}\right)$ according to the formula

$$
\begin{equation*}
m\left(\lambda_{i}^{\nu}\right)=\min _{j=\nu(i)-\nu, i<j \leq u(\nu)} \operatorname{ord}_{\ell} \psi_{p_{j+\nu}, m_{0}+1}\left(\tau_{\lambda_{i}^{\nu}, m_{0}+1}\right) . \tag{7.16}
\end{equation*}
$$

Recall that $\xi(r, \nu)=r$ if $r-\nu$ is odd and $\xi(r, \nu)=r-1$, otherwise. Then for $\nu=0$, and for $\nu=1$ and $1 \leq i \leq \xi(r, \nu)-\nu-1$ (if such i exist), we verify the condition

$$
\begin{equation*}
\psi_{p_{i+\nu+1}, m\left(\lambda_{i}^{\nu}\right)+1}\left(\tau_{\lambda_{i}^{\nu}, m\left(\lambda_{i}^{\nu}\right)+1}\right) \neq 0 \tag{7.17}
\end{equation*}
$$

The conditions (7.12), (7.14), and (7.13) if $r=2$, or (7.15) and (7.17) if $r>2$, are equivalent to the conditions (7.1) and (7.2); thus, we require a triple n^{\prime}, r, π for which (7.12) and (7.13) hold, and, if $r=2$, (7.15) and (7.17) hold as well (for the case $r=1$, see above).

The coefficients of a^{ν} for $r-\nu \geq 2$ are calculated using (7.3) and (7.4).
If $r=2$ or 3 , then $m_{2}=m\left(p_{1}, p_{2}\right)=m$, hence, $m_{r}=m$ for $r \geq 2$. Furthermore, $u(0)=2$ and the matrix a^{0} is a square diagonal matrix such that $\operatorname{ord}_{\ell}\left(a_{11}^{0}\right)=m_{0}-m\left(p_{1}\right)$. In view of Theorem ? and (?), we obtain that $m_{1}=m\left(p_{1}\right)$ and $\operatorname{ord}_{\ell}\left(a_{22}^{0}\right)=m_{0}-m\left(p_{1}\right)$. Then (?), as well as (?), holds already (if $n=m_{0}$) for $\theta=2$. In particular, $X^{0} \cong S_{M_{0}}^{0} \cong\left(\mathbb{Z} / \ell^{m_{0}-m_{1}}\right)^{2}$; moreover, $\tau_{p_{1}, m_{0}}$ and $\tau_{p_{2}, m_{0}}$ form a basis for $S_{M_{0}}^{0}$, and $\varphi_{p_{1}, m_{0}}^{0}$ and $\varphi_{p_{2}, m_{0}}^{0}$ form a basis for $\operatorname{Hom}\left(S_{M_{0}}^{0}, \mathbb{Z} / M_{0} \mathbb{Z}\right)$. If $r=2$, then $m_{1}=m\left(p_{1}\right)=m$; if $r=3$, then $p_{1}=\lambda_{1}^{0}$ and, according to (7.16),

$$
m_{1}=\operatorname{ord}_{\ell}\left(\psi_{p_{2}, m_{0}+1}\left(\tau_{p_{1}, m_{0}+1}\right)\right)
$$

If $r=2$, then

$$
e\left(X^{1}\right)=m_{1}-m_{2}=m-m=0
$$

so $X^{1}=0$. Suppose that $r=3$. Then

$$
Y=\operatorname{ker}\left(\varphi_{p_{1}, m_{0}}\right) \cong X^{1} \cong\left(\mathbb{Z} / \ell^{m\left(p_{1}\right)-m}\right)^{2}
$$

and $\varphi_{p_{2}, m_{0}}^{1}$ and $\varphi_{p_{3}, m_{0}}^{1}$, restricted to Y, form a basis of $\operatorname{Hom}\left(Y, \mathbb{Z} / M_{0} \mathbb{Z}\right)$.
For $r>3$, the group $A^{\nu} \cong X^{\nu}$ splits into the direct sum of two isomorphic subgroups (according to Theorem ?). Such a decomposition is obtained as
a result of the orthogonality between $\tau_{\lambda^{\prime}, m_{0}}$ and $\tau_{\lambda^{\prime \prime}, m_{0}}$ for $\lambda^{\prime} \mid \lambda$ and $\lambda^{\prime \prime} \mid \lambda$. This permits more rapid calculation of the invariants of X^{ν}.

Recall (cf. Theorem ?) that the ℓ-component of the Birch and SwinnertonDyer conjecture is the equality $m=m^{?}$. If it is known that $m \geq m^{?}$, which is automatically true when $m^{?}=0$, then we can use the algorithm, as above, with m ? in place of m. A calculation using this procedure ends if and only if $m=m^{?}$, hence it allows us to obtain the information above simultaneously with the proof of the equality $m=m^{\text {? }}$.

Let C be a curve of genus 1 over K having a point over $K(v)$ for all places v of K. Suppose that

- C is a principal homogeneous space over E,
- $(z) \in H^{1}(K, E)$ is the cohomology class corresponding to C,
- M is the order of (z),
- every rational prime dividing M belongs to $B(E)$,
- $z \in S_{M}$ is the element of the Selmer group which lies over (z), and
- for all $\ell \mid M$ and $p \in \Lambda^{1}$ we can calculate the value $z(p) \in E(K(p)) / M E(K(p))$.

Adding to z, if necessary, the element $T\left(\sum_{\ell \mid M} \ell^{-m_{0}}\right) P_{1}(\bmod M E(K))$, with the corresponding $T \subset \mathbb{N}$, we may assume that for all $\ell \mid M$ we have

$$
z\left(p_{1}\right)^{1} \equiv 0 \quad\left(\bmod \ell^{m_{0}-m}\right)
$$

Then we have the following effective criterion (necessary and sufficient) for the curve C to have a point over K (with m, m_{0}, and λ, of course, corresponding to ℓ):

$$
\begin{equation*}
\text { for all } \ell \mid M, \text { for all } p \mid \lambda, z(p) \equiv 0 \quad\left(\bmod \ell^{m_{0}-m} E(K(p))\right) \tag{7.18}
\end{equation*}
$$

If the curve C is defined over \mathbb{Q} and has a point over $\mathbb{Q}(v)$ for all places of \mathbb{Q}, then the effective criterion for C to have a point over \mathbb{Q} is the criterion (7.18) with $z(p)^{\nu}$ in place of $z(p)$, where $(1)^{\nu-1} \varepsilon=1$.

