On the Structure of Shafarevich-Tate Groups

V. A. Kolyvagin

Steklov Mathematical Institute, 117966, Moscow, GSP-1 Vavilova St. 42, USSR.

1989

Contents

1	Introduction	1
2	Statement of Main Theorem of [?]	5
3	Notation	7
4	Properties of the Classes $\tau_{\lambda,n}$ 4.1 The Definition of the Classes $\tau_{\lambda,n}$ 4.2 Properties of the Points y_{λ} 4.3 Properties of the Localization of $\tau_{\lambda,n}$	8 8 9 10
5	The Orthoganality Relation and the Characters $\Psi_{p,n}$	16
6	A Structure Theorem for $\operatorname{III}(E/K)[\ell^{\infty}]$	22
7	Parametrization of $\operatorname{III}(E/K)[\ell^{\infty}]$	28

1 Introduction

Let E be a Weil elliptic curve over the fied of rational numbers \mathbb{Q} . Note that, according to the Weil-Taniyama conjecture, ever elliptic curve over \mathbb{Q} is a Weil curve. Let R be a finite extension of \mathbb{Q} and E(R) the group of points of Eover R. According to the Mordell-Weil theorem, E(R) is a finite generated (abelian) group, that is, $E(R)_{tor}$ is finite and $E(R) \cong E(R)_{tor} \times \mathbb{Z}^{g(R,E)}$, where $0 \leq g(R, E) \in \mathbb{Z}$ is the rank of E over R. Let L(E, R, s) denote the Lfunction of E over R (which is defined modulo the product of a finite number of Euler factors). According to the Birch-Swinnerton-Dyer conjecture (which we abbreviate as BS), g(R, E) is the order of the zero of L(E, R, s) at s = 1.

Another important arithmetic invariant of E is the Shafarevich-Tate group of E over R:

$$\mathrm{III}(R,E) = \ker\left(H^1(R,E) \to \prod_v H^1(R(v),E)\right)$$

(v runs through the set of all places of R; see the section on notation at the end of the introduction). It is known (the weak Mordell-Weil theorem) that $\operatorname{III}(R, E)$ is a torsion group and for all natural M its subgroup $\operatorname{III}(E, R)_M$ of M-torsion elements is finite.

It is conjectured that $\operatorname{III}(R, E)$ is finite. In that case, BS suggests an expression for the order of $\operatorname{III}(R, E)$ as a product of $L^{(g(R,E))}(E, R, 1)$ and some other nonzero values connected with E (for examples, see (1) in [1] for the case $R = \mathbb{Q}$, and see Theorem 1.2 below). Let $[\operatorname{III}(R, E)]^?$ denote the hypothetical order of $\operatorname{III}(R, E)$; then, according to BS, we have the quality $[\operatorname{III}(R, E)] = [\operatorname{III}(R, E)]^?$.

For a long time, no examples of E and R were known where $\operatorname{III}(R, E)$ is finite. Only recently, Rubin [2] proved that $\operatorname{III}(R, E)$ is finite if E has complex multiplication, R is the field of complex multiplication, and $L(E, \mathbb{Q}, 1) \neq 0$; the author [1], [3], [4] proved finiteness of III for some family (see below) of Weil curves and imaginary quadratic extensions of \mathbb{Q} . For a more detailed exposition of these methods, results, and examples, see the introductions to [1] and [4].

We now state some results [4] from which we begin the study of III in this article.

Let N be the conductor of E and $\gamma : X_N \to E$ a Weil parametrization. here X_N is the modular curve over \mathbb{Q} which parameterizes isomorphism classes of isogenies $E' \to E''$ of elliptic curves with cyclic kernel of order N. The field $K = \mathbb{Q}(\sqrt{D})$ has discriminant D satisfying $0 > D \equiv$ square (mod 4N)., where $D \neq -3$ or -4. Fix an ideal i_1 of the ring of integers O_1 of K for which $O_1/i_1 \cong \mathbb{Z}/N$. If $\lambda \in \mathbb{N}$, let K_{λ} be the ring class field of K with conductor λ . In particular, K_1 is the maximal abelian unramified extension of K. If $(\lambda, N) = 1$, $O_{\lambda} = \mathbb{Z} + \lambda O_1$, and $i_{\lambda} = i_1 \cap O_{\lambda}$, let z_{λ} denote the point of X_N over K_{λ} corresponding to the isogeny $\mathbb{C}/O_{\lambda} \to \mathbb{C}/i_{\lambda}^{-1}$ (here $i_{\lambda}^{-1} \supset O_{\lambda}$ is the inverse of I_{λ} in the group of proper $O_{|lambda}$ -ideals). Set $y_{\lambda} = \gamma(z_{\lambda}) \in E(K_{\lambda})$; the point P_1 is the norm of y_1 from K_1 to K. The points y_{λ} and P_1 are called Heegner points.

Let $\mathcal{O} = \operatorname{End}(E)$ and $Q = \mathcal{O} \otimes \mathbb{Q}$. Let ℓ be a rational prime, $T = \varprojlim E_{\ell^n}$ the Tate module, and $\hat{\mathcal{O}} = \mathcal{O} \otimes \mathbb{Z}_{\ell}$. Let B(E) denote the set of odd rational primes which do not divide the discriminant of \mathcal{O} and for which the natural representation $\rho : G(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{Aut}_{\mathcal{O}} T$ is surjective. It is known (from the theory of complex multiplication and Serre theory) that the set of primes not belonging to B(E) is finite. Moreover, according to the Mazur theorem, if $\mathcal{O} = \mathbb{Z}$ and N is square-free, then all $\ell \geq 11$ belong to B(E).

If the point P_1 has infinite order, (that is, $P_1 \notin E(K)_{tor}$) and g(K, E) = 1, let C_K denote the integer $[E(K)/\mathbb{Z}P_1]$. The author proved the following theorem in [4].

Theorem 1.1. Suppose that P_1 has infinite order. Then g(K, E) = 1, the group $\operatorname{III}(K, E)$ is finite, and $[\operatorname{III}(K, E)]$ divides dC_K^2 , where for all $\ell \in B(E)$ we have $\operatorname{ord}_{\ell}(d) = 0$.

In Theorem 1.1, d is an integer which depends upon E but not upon K. The application of Theorem ?? to BS is clear from the following result of Gross and Zagier [5] for (D, 2N) = 1.

Theorem 1.2. The function L(E, K, s) vanishes at s = 1. The point P_1 has infinite order $\iff L'(E, K, 1) \neq 0$. If P_1 has infinite order, then the conjecture that the group $\operatorname{III}(K, E)$ is finite and BS for E over K, together, are equivalent to the following statement: g(K, E) = 1, $\operatorname{III}(K, E)$ is finite, and $[\operatorname{III}(K, E)] = \left(C_K / \left(c \prod_{q|N} b \langle q \rangle\right)\right)^2$.

In Theorem 1.2, the integer c is defined in terms of the parameterization γ (cf. [5]), and the integer $b\langle q \rangle$, where $q \mid N$ is prime, is the index in $E(\mathbb{Q}_q)$ of the subgroup of points which have nonsingular reduction modulo q.

Let $\sum_{n=1}^{\infty} a_n n^{-s}$, where $a_n \in \mathbb{Z}$, be the canonical *L*-series of *E*. It converges absolutely for $\operatorname{Re}(s) > 3/2$ and has an analytical continuation to an entire function of the complex argument. Let L(E, s) denote this function; it is the canonical *L*-function over \mathbb{Q} of the elliptic curve *E*. The function

$$\Xi(E,s) = (2\pi)^{-s} N^{s/2} \Gamma(s) L(E,s)$$

satisfies the following functional equation:

$$\Xi(E, 2-s) = (-\varepsilon)\Xi(E, s),$$

where $\varepsilon = \varepsilon(E)$ is equal to 1 or -1.

Fix a prime $\ell \in B(E)$. Let $n(p) = \operatorname{ord}_{\ell}(p+1, a_p)$, where p is a rational prime. Hereafter in this article we use the notation p or p_k , where $k \in \mathbb{N}$, only for rational primes which do not divide N, remain prime in K, and for which n(p) > 0. If $r \in \mathbb{N}$, let Λ^r denote the set of all products of rdistinct such primes. The set Λ^0 contains only $P_0 := 1$, and $\Lambda = \bigcup_{r\geq 0} \Lambda^r$. If r > 0 and $\lambda \in \Lambda^r$, let $n(\lambda)$ denote $\min_{p|\lambda} n(p)$; then $M_{\lambda} = \ell^{n(\lambda)}$ and $n(1) = \infty$. Let $\lambda \in \Lambda$, $1 \leq n \leq n(\lambda)$, and $M = \ell^n$. In [4], we constructed some cohomology classes $\tau_{\lambda,n} \in H^1(K, E_M)$ which played a central role in the proof of Theorem 1.1.

If R is an extension of \mathbb{Q} , then the exact sequence

$$0 \to E_M \to E(\overline{R}) \to \xrightarrow{\times M} 0$$

induces the exact squence

$$0 \to E(R)/M \to H^1(R, E_M) \to H^1(R, E)_M \to 0.$$

If R/L is a Galois extension, then

$$\operatorname{res}_{R/L}: H^1(L, E_M) \to H^1(R, E_M)^{G(R/L)}$$

is the restriction homomorphism, which is an isomorphism when the ℓ component of the torsion part of E(R) is trivial (because of the spectral sequence). It is easily seen that the condition $\ell \in B(E)$ leads to the triviality of the ℓ -component of the torsion subgroup of $E(K_{\lambda})$ (cf. [6] for the case $\mathcal{O} = \mathbb{Z}$; the case $\mathcal{O} \neq \mathbb{Z}$ can be considered analogously). In particular, the value res_{K_{\lambda}/K} completely determines the element $\tau_{\lambda,n}$. We now give an expression for this value. We use the standard facts about ring class fields (which follow from Galois theory and class field theory, cf. §1 in [3]). If $1 \leq \lambda \in \Lambda$, then the natural homomorphism $G(K_{\lambda}/K_1) \to \prod_{p|\lambda} G(K_p/K_1)$ is an isomorphism, and we also have the isomorphisms

$$G(K_{\lambda}/K_{\lambda/p}) \xrightarrow{\cong} G(K_p/K_1) \xrightarrow{\cong} \mathbb{Z}/(p+1).$$

For all p, fix a generator $t_p \in G(K_p/K_1)$ and let t_p also denote the generator of $G(K_{\lambda}/K_{\lambda/p})$ corresponding to this t_p .

2 Statement of Main Theorem of [?]

Let ℓ be an odd prime and A a finite abelian group of ℓ -power order. The sequence of invariants of A is the nonincreasing sequence of nonnegative integers $\{n_1, n_2, \ldots\}$ such that

$$A \approx \bigoplus_{i \ge 1} \mathbb{Z}/\ell^{n_i} \mathbb{Z}.$$

Fix an elliptic curve E over \mathbb{Q} and let ε denote the *negative* of the sign of the functional equation of E, and let K be a field that satisfies the Heegner hypothesis.

Suppose A is equipped with an action of complex conjugation σ . For $\nu = 0, 1$ let A^{ν} denote the submodule $(1 - (-1)^{\nu} \varepsilon \sigma) A$. Since ℓ is odd, $A = A^0 \oplus A^1$, and σ acts on A^{ν} as multiplication by $(-1)^{\nu-1} \varepsilon$. Proof:

$$\sigma(1-(-1)^{\nu}\varepsilon\sigma)x = (\sigma-(-1)^{\nu}\varepsilon)x = (-1)^{\nu-1}\varepsilon x + \sigma x,$$

and

$$(-1)^{\nu-1}\varepsilon(1-(-1)^{\nu}\varepsilon\sigma)x = ((-1)^{\nu-1}\varepsilon-(-1)^{2\nu-1}\sigma)x = ((-1)^{\nu-1}\varepsilon+\sigma)x.$$

Let $X = \operatorname{III}(E/K)[\ell^{\infty}]$, and for $\nu = 0, 1$, let $\{x_i^{\nu}\}$ be the sequence of invariants of X^{ν} . If $r \in \mathbb{N}$, let $\nu(r) \in \{0, 1\}$ be such that $r - \nu(r) - 1$ is even. Set

$$\xi(r,\nu) = r - |\nu - \nu(r)|.$$

Let B(E) denote the set of odd rational primes which do not divide the discriminant of $\mathcal{O} = \operatorname{End}(E)$ and for which $\rho : G_{\mathbb{Q}} \to \operatorname{Aut}_{\mathcal{O}}(T_{\ell}(E))$ is surjective. Fix $\ell \in B(E)$ and for any prime p let $n(p) = \operatorname{ord}_{\ell}(\operatorname{gcd}(p+1, a_p))$. Let Λ^r denote the set of all products of r distinct primes $p \nmid N$ such that pis inert in K, and for which n(p) > 0. Let Λ be the union of the Λ^r , and for any $\lambda \in \Lambda$ let $n(\lambda) = \min_{p|\lambda} n(p)$.

Suppose $\lambda \in \Lambda$. Let $m'(\lambda)$ be the exponent of the highest power of ℓ that divides P_{λ} in $E(K_{\lambda})$. Let

$$m(\lambda) = \begin{cases} m'(\lambda) & \text{if } m'(\lambda) < n(\lambda), \\ \infty & \text{otherwise.} \end{cases}$$

Let $m_r = \min_{\lambda \in \Lambda^r} m(\lambda)$. For example, $m_0 = \operatorname{ord}_{\ell}([E(K) : \mathbb{Z}P_1])$. Let

$$m = \min_{\lambda \in \Lambda} m(\lambda).$$

Theorem 2.1 (Kolyvagin). If $\nu \in \{0, 1\}$ and $r \ge 1 + \nu$, then

$$x_{r-\nu}^{\nu} = m_{\xi(r,\nu)-1} - m_{\xi(r,\nu)}$$

Theorem 2.2 (Kolyvagin). $\# \operatorname{III}(E/K)[\ell^{\infty}] = \ell^{2(m_0-m)}$

Theorem 2.3 (Kolyvagin). The full Birch and Swinnerton-Dyer conjecture is true for E over K if and only if $m = \operatorname{ord}_{\ell}\left(c\prod_{q|N} c_q\right)$, where c is the Manin constant, and the c_q are the Tamagawa numbers.

3 Notation

Let ℓ be a prime and A an abelian group of ℓ -power order.

 $\ell = a \text{ prime}$ A = abelian group of ℓ -power order $M = \ell^n$ A[M] = kernel of multiplication by MA/MA = cokernel of multiplication by M \overline{L} = algebraic closure of L, embedded in \mathbb{C} $\operatorname{Gal}(R/L) = \operatorname{Galois group of } R/L$, when defined $H^1(L, A) = H^1(\operatorname{Gal}(\overline{L}/L), A)$ $\mathcal{O}^* =$ units in the ring \mathcal{O} R(v) = completion of R at the place v $K_{\lambda} =$ ring class field of K of conductor λ \mathcal{K} = the unramified quadratic extension of \mathbb{Q}_p $H^1(R, A) \ni \tau \mapsto \tau_v = \tau(v) \in H^1(R_v, A)$ $\overline{\mathbb{Q}}_p \approx \overline{K}(\mathfrak{p}) = \bigcup_{v \in V} R_v$, where \mathfrak{p} is a fixed place over $p \in \Lambda^1$ $H_{p,n} = (\text{see page 12})$ $X = \operatorname{III}(E/K)[\ell^{\infty}]$ $n(\lambda) = \min_{p|\lambda} \operatorname{ord}_{\ell}(\gcd(p+1, a_p))$ $m'(\lambda) = \operatorname{ord}_{\ell}(P_{\lambda} \in E(K_{\lambda}))$ $m(\lambda) = \begin{cases} m'(\lambda) & \text{if } m'(\lambda) < n(\lambda), \\ \infty & \text{otherwise} \end{cases}$ $m_r = \min_{\lambda \in \Lambda^r} m(\lambda)$ $m_0 = \operatorname{ord}_{\ell}([E(K) : \mathbb{Z}P_1])$ $\nu \in \{0, 1\}$ (fixed) $\nu(r) \in \{0,1\}$ has opposite parity to that of r $\xi(r,\nu) = r - |\nu - \nu(r)|$ $\Lambda^r = \{ \text{ all products of } r \text{ distinct } p \nmid N \text{ s.t. } p \text{ is inert in } K \text{ and } n(p) > 0 \}$ $\Lambda = \cup_{r > 0} \Lambda^r$ $\Lambda_n^r = \{\lambda \in \Lambda^r : n(\lambda) \ge n\}$ $\Lambda_n = \bigcup_{r \ge 0} \Lambda_n^r$ 7 $e(A) = e_{\ell}(A) = \min\{k \ge 0 : \ell^k A = 0\}$ (here A is a torsion \mathbb{Z}_{ℓ} -module) $e(a) = e_{\ell}(a) = e(\mathbb{Z}_{\ell} \cdot a) = \log_{\ell}(\operatorname{order}(a))$ $\psi_{p,n}^{\nu} = \text{(see page 14)}$ $u(\nu) = (\text{see page } 28)$

We use n, n', n'' for natural numbers and M, M', M'', resp., for $\ell^n, \ell^{n'}$, and $\ell^{n''}$.

4 Properties of the Classes $\tau_{\lambda,n}$

4.1 The Definition of the Classes $\tau_{\lambda,n}$

Fix $\lambda \in \Lambda$ and $\ell \in B(E)$. Let $M = \ell^n$, where $1 \leq n \leq n(\lambda)$. We construct a class $\tau_{\lambda,n} \in H^1(K, E[M])$.

Let K_{λ} be the ring class field of K with conductor λ . Thus K_1 is the Hilbert class field of K and if $\lambda > 1$, then

$$\operatorname{Gal}(K_{\lambda}/K_1) \longrightarrow \prod_{p|\lambda} \operatorname{Gal}(K_p/K_1)$$

is an isomorphism and

$$\operatorname{Gal}(K_{\lambda}/K_{\lambda/p}) \xrightarrow{\cong} \operatorname{Gal}(K_p/K_1) \xrightarrow{\cong} \mathbb{Z}/(p+1)\mathbb{Z}.$$

For each $p \mid \lambda$, fix a generator $t_p \in \text{Gal}(K_{\lambda}/K_{\lambda/p})$.

Let $\mathcal{O}_{\lambda} = \mathbb{Z} + \lambda \mathcal{O}_{K}$ and $\mathcal{I}_{\lambda} = \mathcal{N} \cap \mathcal{O}_{\lambda}$, where $\mathcal{O}_{K}/\mathcal{N} \cong \mathbb{Z}/N\mathbb{Z}$. Let $z_{\lambda} \in X_{0}(N)(K_{\lambda})$ be the point corresponding to the cyclic N-isogeny

$$(\mathbb{C}/\mathcal{O}_{\lambda} \to \mathbb{C}/\mathcal{I}_{\lambda}^{-1})$$

Set

$$y_{\lambda} = \pi_E(z_{\lambda}) \in E(K_{\lambda}).$$

Since $\ell \in B(E)$,

$$\operatorname{res}_{K}^{K_{\lambda}} : H^{1}(K, E[M]) \to H^{1}(K_{\lambda}, E[M])^{\operatorname{Gal}(K_{\lambda}/K)}$$

is an *isomorphism*. Thus to construct an element of $H^1(K, E[M])$, it suffices to give an element of $H^1(K_{\lambda}, E[M])^{\operatorname{Gal}(K_{\lambda}/K)}$, which is what we now do.

Let

$$I_p = -\sum_{i=1}^p it_p^i$$

and

$$I_{\lambda} = \prod_{p|\lambda} I_p \in \mathbb{Z}[\operatorname{Gal}(K_{\lambda}/K_1)].$$

Let $J_{\lambda} = \sum g$, where g runs through a set of coset representatives for $\operatorname{Gal}(K_{\lambda}/K_1)$ inside $\operatorname{Gal}(K_{\lambda}/K)$. Then $J_{\lambda}I_{\lambda} \in \mathbb{Z}[\operatorname{Gal}(K_{\lambda}/K)]$ and we let

$$P_{\lambda} = J_{\lambda} I_{\lambda} y_{\lambda} \in E(K_{\lambda}).$$

Then

$$\operatorname{res}_{K}^{K_{\lambda}}(\tau_{\lambda,n}) = P_{\lambda} (\operatorname{mod} ME(K_{\lambda})) \in E(K_{\lambda})/ME(K_{\lambda}) \hookrightarrow H^{1}(K_{\lambda}, E[M]).$$

$$(4.1)$$

Remark 4.1. If P_1 has infinite order, then Kolyvagin proved that

 $\#\mathrm{III}(E/K)[\ell^{\infty}] \mid \ell^{2m_0},$

where $m_0 = \operatorname{ord}_{\ell}([E(K) : \mathbb{Z}P_1]).$

4.2 Properties of the Points y_{λ}

Suppose $p \mid \lambda$ and set $\operatorname{Tr}_p = \sum_{i=0}^p t_p^i$. Then

$$\operatorname{Tr}_p y_{\lambda} = a_p y_{\lambda/p}.$$

Let $\overline{\mathbb{F}}_p$ denote the residue class field of \overline{K}_p , and set $\tilde{E} = E_{/\mathbb{F}_p}$.

$$E(\overline{K}_{\mathfrak{p}}) \ni \alpha \mapsto \tilde{\alpha} \in \tilde{E}(\overline{\mathbb{F}}_p).$$

Let $\operatorname{Fr}_p : \overline{\mathbb{F}}_p \to \overline{\mathbb{F}}_p$ be the *p*th power automorphism. For all $g \in \operatorname{Gal}(K_{\lambda}/\mathbb{Q})$, we have

$$\widetilde{gy_{\lambda}} = \operatorname{Fr}_p(\widetilde{gy_{\lambda/p}}).$$

Let θ_{λ} be the Artin reciprocity homomorphism from the group of classes of \mathcal{O}_{λ} ideals to $\operatorname{Gal}(K_{\lambda}/K)$, and let σ denote complex conjugation. We have

$$\sigma(y_{\lambda}) \equiv \varepsilon \theta_{\lambda}(\mathcal{I}_{\lambda}) y_{\lambda} \pmod{E(\mathbb{Q})_{\text{tor}}}.$$
(4.2)

We have

$$(t_p - 1)I_p = \operatorname{Tr}_p - (p+1).$$

If $M \mid \gcd(p+1, a_p)$, then for all $g \in \operatorname{Gal}(K_{\lambda}/\mathbb{Q})$, we have

$$gP_{\lambda} \equiv P_{\lambda} \pmod{ME(K_{\lambda})}$$

so (4.1) really does defines an element $\tau_{\lambda,n} \in H^1(K, E[M])$. Since $\sigma g = g^{-1}\sigma$ for all $g \in \text{Gal}(K_{\lambda}/K)$, it follows that

$$\sigma I_p \equiv -I_p \sigma \pmod{M}.$$

This and (4.2) imply that if $\lambda \in \Lambda^r$, then

$$\sigma P_{\lambda} = \varepsilon (-1)^r P_{\lambda} \pmod{ME(K_{\lambda})}, \text{ and } \sigma \tau_{\lambda,n} = \varepsilon (-1)^r \tau_{\lambda,n}.$$

4.3 Properties of the Localization of $\tau_{\lambda,n}$

Recall that p is a prime of good reduction for E which is inert in K and that

$$a_p \equiv p + 1 \equiv 0 \pmod{M}.$$

The primes p that we will actually use to prove things will be given by a Chebaterov density argument, so we can safely assume that p > 2 (so that the appropriate reduction maps are injective). For all $M = \ell^{n'}$, we have

$$E[M] \subset E(\mathbb{Q}_p^{\mathrm{un}})$$

and reduction induces a $G_p = \operatorname{Gal}(\mathbb{Q}_p^{\mathrm{un}}/\mathbb{Q}_p)$ isomorphism

$$E[M] \xrightarrow{\cong} \tilde{E}(\overline{\mathbb{F}}_p)[M].$$

We have

$$\operatorname{Fr}_p^2 - a_p \operatorname{Fr}_p + p = 0$$

on E[M] and $\tilde{E}(\overline{\mathbb{F}}_p)[M]$. Since $a_p \equiv p+1 \equiv 0 \pmod{M}$,

$$\operatorname{Fr}_p^2 - 1 = 0 \qquad \text{on } E[M],$$

so $E[M] \subset E[\mathcal{K}]$, where \mathcal{K} is the unramified quadratic extension of \mathbb{Q}_p . Since p is inert in K, it follows that $\mathcal{K} = K(p)$.

Let $F = \mathbb{F}_{p^2}$ denote the residue class field of \mathcal{K} .

Lemma 4.2. We have a commutative square of isomorphisms

$$\begin{split} E(\mathcal{K})/ME(\mathcal{K}) & \xrightarrow{\cong} E[M] \\ & & \downarrow \cong & \downarrow \cong \\ \tilde{E}(F)/M\tilde{E}(F) & \xrightarrow{\cong} \tilde{E}[M], \end{split}$$

where

$$f_{p,n} = \frac{\operatorname{Fr}_{p^2} - 1}{M}, \qquad \tilde{f}_{p,n} = \frac{a_p}{M} \operatorname{Fr}_p - \frac{p+1}{M}.$$

(The meaning of $f_{p,n}$ is "first make a choice of Mth root, then apply $\operatorname{Fr}_{p^2} - 1$ "; this is well defined since different choices differ by an Mth root, and the Mth roots are fixed by Fr_{p^2} , since they are rational over \mathcal{K} .)

Proof. Suppose $f_{p,n}(P) = 0$, so there is $Q \in E(\overline{\mathbb{Q}}_p)$ such that MQ = Pand $(\operatorname{Fr}_p^2 - 1)(Q) = 0$. Thus $Q \in E(\mathcal{K})$, so $P \mod ME(\mathcal{K})) = 0$, and $f_{p,n}$ is injective. The diagram commutes because $\operatorname{Fr}_p^2 - 1 = a_p \operatorname{Fr}_p - (p+1)$ on $E(\overline{\mathbb{F}}_p)[\ell^{\infty}]$. The leftmost vertical map is surjective, by Hensel's lemma, and hence an isomorphism because, as mentioned above, the rightmost vertical map is an isomorphism (and $f_{p,n}$ is injective). Because $f_{p,n}$ is injective so is $\tilde{f}_{p,n}$, so to complete the proof it suffices to show that $\tilde{f}_{p,n}$ is surjective. Since $\#\tilde{E}(F)$ is finite,

$$\#\left(\frac{\tilde{E}(F)}{M\tilde{E}(F)}\right) = \frac{\#\tilde{E}(F)}{\#M\tilde{E}(F)} = \frac{\#\tilde{E}(F)}{\#\tilde{E}(F)/\#\tilde{E}[M]} = \#\tilde{E}[M].$$

Thus $f_{p,n}$ and hence $f_{p,n}$ must be surjective.

Let

$$[,]_M : E[M] \times E[M] \longrightarrow \mu_M$$

denote the Weil pairing. We have

$$[\gamma(e_1), \gamma(e_2)]_M = \gamma([e_1, e_2]_M)$$
(4.3)

for all $\gamma \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$.

Let $E[M] = E[M]^0 \oplus E[M]^1$ be the decomposition of E[M] with respect to the involution Fr_p , as described in Section 2. **Lemma 4.3.** $E[M]^{\nu} \approx \mathbb{Z}/M\mathbb{Z}$ for $\nu = 0, 1$.

Proof. If the lemma is false, then $\operatorname{Fr}_p = 1$ or $\operatorname{Fr}_p = -1$ on $E[\ell]$ (I don't 100% see this, though I don't see how it could be wrong either), and we have for any $e_1, e_2 \in E[M]$,

$$[e_1, e_2]_{\ell} = [\operatorname{Fr}_p(e_1), \operatorname{Fr}_p(e_2)]_{\ell} = \operatorname{Fr}_p[e_1, e_2]_{\ell}$$
$$= ([e_1, e_2]_{\ell})^p = [e_1, e_2]_{\ell}^{-1},$$

so $[e_1, e_2]_{\ell} = 1$, since ℓ is odd. (In the last equality, we used that $p \equiv -1 \pmod{\ell}$.) This is impossible, because $[,]_{\ell}$ is nondegenerate.

Let

$$H_{p,n} := H^1(\mathcal{K}, E[M]) = \operatorname{Hom}(G_p^{\mathrm{ab}}/(G_p^{\mathrm{ab}})^M, E[M]) \cong \operatorname{Hom}(\mathcal{K}^*/(\mathcal{K}^*)^M, E[M]),$$

where we have used the isomorphism $\theta_p : \mathcal{K}^*/(\mathcal{K}^*)^M \to G_p^{ab}/(G_p^{ab})^M$ from local class field theory. We have

$$\mathcal{K}^*/(\mathcal{K}^*)^M = \mathcal{A}_n \oplus \mathcal{B}_n$$

where $\mathcal{A}_n = \langle p \rangle = p^{\mathbb{Z}}/p^{M\mathbb{Z}}$ and $\mathcal{B}_n = \mathcal{O}_{\mathcal{K}}^*/(\mathcal{O}_{\mathcal{K}}^*)^M$. Then

$$H_{p,n} = A_{p,n} \oplus B_{p,n}$$

where $A_{p,n}$ (resp., $B_{p,n}$) is the subgroup of $H_{p,n}$ of homomorphisms that are trivial on \mathcal{B}_n (resp., $\mathcal{A}_{p,n}$). Note that $A_{p,n} = E(\mathcal{K})/ME(\mathcal{K})$, since

$$E(\mathcal{K})/ME(\mathcal{K}) \subset A_{p,n} = H_{p,n}^{\mathrm{un}}$$

and $\#(E(\mathcal{K})/ME(\mathcal{K})) = M^2 = \#A_{p,n}$ (see Lemma 4.2).

If $\mathcal{L}_{p,n}$ is the class field of \mathcal{K} that corresponds to the subgroup $(\mathcal{K}^*)^M p^{\mathbb{Z}}$ of \mathcal{K}^* , then $B_{p,n} = H^1(G_{p,n}, E[M])$, where

$$G_{p,n} = \operatorname{Gal}(\mathcal{L}_{p,n}/\mathcal{K}).$$

Because $H_{p,n} = A_{p,n} \oplus B_{p,n}$, it follows that $H_{p,n}^{\nu}$ decomposes into a direct sum of the cyclic subgroups $A_{p,n}^{\nu}$ and $B_{p,n}^{\nu}$ of order M.

Let \mathcal{K}_p be the class field of \mathcal{K} corresponding to the subgroup $p^{\mathbb{Z}}(\mathbb{Z}_p^* + p\mathcal{O}_{\mathcal{K}})$. The field \mathcal{K}_p is a cyclic totally ramified extension of \mathcal{K} of degree p + 1 and $\mathcal{L}_{p,n}$ is a subextension of \mathcal{K}_p of degree M over \mathcal{K} . Suppose that $\lambda \in \Lambda$ is a multiple of p. The completion of $K_{\lambda/p}$ in $\overline{K}(\mathfrak{p})$ is the field \mathcal{K} , the completion of K_{λ} is the field \mathcal{K}_p , and the embedding (as decomposition group)

$$\operatorname{Gal}(\overline{\mathcal{K}}(\mathfrak{p})/\mathcal{K}) \hookrightarrow \operatorname{Gal}(\overline{\mathcal{K}}/K_{\lambda/p})$$

induces an isomorphism between $\operatorname{Gal}(\mathcal{K}_p/\mathcal{K})$ and $\operatorname{Gal}(K_{\lambda}/K_{\lambda/p})$. Thus the generator $t_p \in \operatorname{Gal}(K_{\lambda}/K_{\lambda/p})$ can also be viewed as a generator of $\operatorname{Gal}(\mathcal{K}_p/\mathcal{K})$. Let $t_{p,n}$ denote the generator of $G_{p,n}$ which is the image of t_p .

For $e \in E[M]$, let $b_{p,n}(e)$ be the element of $H_{p,n}$ which sends $t_{p,n} \in G_{p,n}$ to e. We define a nondegenerate alternating pairing

$$\langle , \rangle'_{p,n} : H_{p,n} \times H_{p,n} \longrightarrow Z/M\mathbb{Z}$$

by the following conditions: the group $H_{p,n}^0$ is orthogonal to the group $H_{p,n}^1$, and for $s \in A_{p,n}$ and all $e \in E[M]$ we have

$$\zeta_{p,n}^{\langle s, b_{p,n}(e) \rangle_{p,n}'} = [f_{p,n}(s), e]_M$$

where

$$\zeta_{p,n} \equiv \left(\theta_p^{-1}(t_{p,n})\right)^{(p^2-1)/M} \pmod{p}.$$

Let

$$\langle \,,\,\rangle_{p,n}: H_{p,n} \times H_{p,n} \to \mathbb{Z}/M\mathbb{Z}$$

be the alternating pairing induced by cup product, the pairing $[,]_M$, and the canonical isomorphism $H^2(\mathcal{K}, \mu_M) \to \mathbb{Z}/M\mathbb{Z}$. This is a pairing of $\operatorname{Gal}(\mathcal{K}/\mathbb{Q}_p)$ modules, hence $H^0_{p,n}$ is orthogonal to $H^1_{p,n}$. According to formula (5) of [?],

$$\langle s, b_{p,n}(e) \rangle_{p,n} = \langle s, b_{p,n}(e) \rangle'_{p,n}$$

for all s and e, it follows that

$$\langle \,,\,\rangle_{p,n}=\langle \,,\,\rangle_{p,n}^{\prime}.$$

Fix generators e_p^{ν} of the groups $E_{M_p}^{\nu}$, where $M_p = \ell^{n(p)}$, such that

$$[e_p^0, e_p^1]_M = \zeta_{p,n(p)}.$$

Set

$$e_{p,n}^{\nu} = \frac{M_p}{M} e_p^{\nu}.$$

Then $[e_{p,n}^0, e_{p,n}^1] = \zeta_{p,n}$, since $[N\beta, N\alpha]_M = [\alpha, \beta]_{M_p}^N$ for all $\alpha, \beta \in E[M_p]$ and $N = M_p/M$. (I'm not sure this makes any sense, but it's my best guess at what Kolvagin means; what he writes makes no sense.)

Definition 4.4 $(\psi_{p,n}^{\nu})$. Define a homomorphism

$$\psi_{p,n}^{\nu}: H_{p,n}^{\nu} \to \mathbb{Z}/M\mathbb{Z}$$

by $\psi_{p,n}^{\nu}(x) = \langle x, b_{p,n}^{\nu} \rangle_{p,n}$, where $b_{p,n}^{\nu} = b_{p,n}(e_{p,n}^{1-\nu})$.

Then $\psi_{p,n}^{\nu}$ is trivial on $B_{p,n}^{\nu} = \langle b_{p,n}^{\nu} \rangle$ and induces an isomorphism between $A_{p,n}^{\nu}$ and $\mathbb{Z}/M\mathbb{Z}$ such that for all $s \in A_{p,n}^{\nu}$ we have

$$\psi_{p,n}^{\nu}(s)e_{p,n}^{\nu} = (-1)^{\nu}f_{p,n}(s).$$
(4.4)

Let $\psi_{p,n} = \psi_{p,n}^0 + \psi_{p,n}^1$ and, abusing notation, let $\psi_{p,n}$ also denote the homomorphism $H^1(K, E[M]) \to \mathbb{Z}/M\mathbb{Z}$ which is the composition of $\psi_{p,n}$ and the localization homomorphism $H^1(K, E[M]) \to H_{p,n}$.

Let $S_{\lambda,n}$ be the subgroup of $\alpha \in H^1(K, E[M])$ such that $\alpha(v) \in E(K(v))/ME(K(v))$ for all places v of K that do not divide λ . (Equivalently, the image of α in $H^1(K(v), E)$ is trivial for all $v \nmid \lambda$.) Thus $S_{\lambda,n}$ contains $\operatorname{Sel}^{(M)}(E/K)$, but $S_{\lambda,n}$ might be bigger because there is no local condition at places that divide λ .

Proposition 4.5. Let $\lambda \in \Lambda^r$. Then $\tau_{\lambda,n} \in S_{\lambda,n}^{\nu(r)}$. If $\xi(p,\lambda) = 1$, then

$$\tau_{p,n}(p) = P_{\lambda} \pmod{ME(K_p)} \in E(K_p)/ME(K_p).$$

If $p \mid \lambda$, then

$$\tau_{\lambda,n}(p) = \varepsilon \cdot \psi_{p,n}(\tau_{\lambda/p,n}) \cdot b_{p,n}^{\beta}, \qquad \text{where } \beta = \nu(r) \qquad (4.5)$$

$$\varepsilon \cdot \psi_{p,n}(\tau_{\lambda/p,n}) \cdot e_{p,n}^{\beta'} = \left((-1)^{\beta} \cdot \frac{p+1}{M} \cdot \varepsilon - \frac{a_p}{M} \right) \widetilde{P_{\lambda/p}}.$$
(4.6)

Proof. The cohomology class $\tau_{\lambda,n}$ contains the cocycle

$$k_{\lambda,n}(\gamma) = \left(\gamma\left(\frac{P_{\lambda}}{M}\right) - \frac{P_{\lambda}}{M}\right) + \frac{(1-\gamma)P_{\lambda}}{M},\tag{4.7}$$

where

$$\frac{(1-\gamma)P_{\lambda}}{M} \in E(K_{\lambda})$$

is the unique (since $E(K_{\lambda})[\ell^{\infty}]$ is trivial) solution to the equation $Mx = (1 - \gamma)P_{\lambda} \in ME(K_{\lambda})$. If $\xi(p, \lambda) = 1$, then $K_{\lambda} \subset \mathcal{K}$ and $\operatorname{Gal}(\overline{K}(\mathfrak{p})/\mathcal{K}) \subset \operatorname{Gal}(\overline{K}/K_{\lambda})$, hence, in view of (4.7), we see that $\tau_{\lambda,n}(p) = P(\operatorname{mod} ME(\mathcal{K}))$.

If R is a field and $\alpha \in H^1(R, E[M])$, denote by (α) the image of α in $H^1(R, E)[M]$. Again, in view of (4.7), we see that the class $(\tau_{\lambda,n})$ contains the cocycle

$$k_{\lambda,n}'(\gamma) = \frac{(1-\gamma)P_{\lambda}}{M}.$$

In particular,

$$(\tau_{\lambda,n}) \in H^1(\operatorname{Gal}(K_{\lambda}/K), E(K_{\lambda}))$$

Let v be a place of K that does not divide λ . Then since K_{λ}/K is unramified outside λ , it follows that $(\tau_{\lambda,n})_v \in H^1(K_v, E)^{\text{un}}$. This group is always finite and is trivial if (v, N) = 1. Gross observed that in the case $v \mid \lambda$, we have $(\tau_{\lambda,n})_v = 0$ as well. (Huh?) Hence $\tau_{\lambda,n} \in S^{\beta}_{\lambda,n}$. Suppose that $p \mid \lambda$. Since reduction induces an isomorphism between

Suppose that $p \mid \lambda$. Since reduction induces an isomorphism between E[M] and E(F)[M], the elment $k_{\lambda,n}(\gamma)$ may be defined by its reduction. We shall show that if

$$\gamma \in \operatorname{Gal}(K(\mathfrak{p})/\mathcal{K}) \subset \operatorname{Gal}(K/K_{\lambda/p}),$$

then the eduction of the first term of (4.7) is trivial. Indeed, it is equal to

$$\tilde{\gamma}\frac{\tilde{P}_{\lambda}}{M} - \frac{\tilde{P}_{\lambda}}{M} = 0,$$

since, by virtue of ... and the definition of P_{λ} , we have

$$\tilde{P}_{\lambda} = -(1+2+\cdots+p)\operatorname{Fr}_{p}\tilde{P}_{\lambda/p} \in ME(F).$$

Hence

$$\tau_{\lambda,n}(p) \in H^1(\operatorname{Gal}(\mathcal{K}_p/\mathcal{K}), E[M]) = B_{p,n}$$

It remains to calculate the value of $\tau_{\lambda,n}(p)$ at t_p . We have

$$\frac{(1-t_p)P_{\lambda}}{M} = \frac{(1-t_p)I_pI_{\lambda/p}J_{\lambda}y_{\lambda}}{M}$$
$$= \frac{(p+1-\mathrm{Tr}_p)I_{\lambda/p}J_{\lambda}y_{\lambda}}{M}$$
$$= \frac{p+1}{M}I_{\lambda/p}J_{\lambda}y_{\lambda} - \frac{a_p}{M}P_{\lambda/p},$$

and for its reduction, in view of, we have the expression

$$\left(\frac{p+1}{M}\operatorname{Fr}_{p}-\frac{a_{p}}{M}\right)\tilde{P}_{\lambda/p} = \tilde{f}_{p,n}\left(-\operatorname{Fr}_{p}\tilde{P}_{\lambda/p}\right)$$
$$= \tilde{f}_{p,n}\left((-1)^{\beta'}\cdot\varepsilon\cdot\tilde{P}_{\lambda/p}\right)$$
$$= \varepsilon\cdot\psi_{p,n}(\tau_{\lambda/p})\cdot e_{p,n}^{\beta'}.$$

5 The Orthoganality Relation and the Characters $\Psi_{p,n}$

Let R be an extension of \mathbb{Q} , $n \leq n'$ and n'' = n' - n. The exact sequence

$$0 \to E[M] \to E[M'] \xrightarrow{M} E[M''] \to 0$$

induces the exact sequence

$$E(R)[M'']/ME(R)[M'] \hookrightarrow H^1(R, E[M]) \xrightarrow{\alpha_{n,n'}} H^1(R, E[M']) \xrightarrow{\alpha_{n',n''}} H^1(R, E[M']).$$

Suppose that for all integer n, n' with $n \leq n'$ we have E(R)[M''] = ME(R)[M']. Then the maps $\alpha_{n,n'}$ are injections and the image of $\alpha_{n,n'}$ is $H^1(R, E[M'])[M]$, since $\alpha_{n'',n'}$ is also an injection and $\alpha_{n'',n'} \circ \alpha_{n',n''}$ is multiplication by M. (This is sneaky. Here $\alpha_{n'',n'} : H^1(R, E[M']) \to H^1(R, E[M'])$) is defined because $n'' = n' - n \leq n'$, and by hypothesis $\alpha_{n'',n'}$ is an injection.) In this situation, it is useful to identify $H^1(R, E[M])$ with $H^1(R, E[M'])[M]$. Specifically, we have the following two cases in which the hypothesis assumed at the beginning of this paragraph is satisfied. First, suppose that R = K. In this case, since $E(K)[\ell^{\infty}] = 0$, we identify $H^1(R, E[M])$ with H[M], where

$$H := H^1(K, E[\ell^{\infty}]) = \lim_{\substack{M' \to \infty}} H^1(K, E[M']).$$

Note that $S_{\lambda,n}$ coincides with $S_{\lambda,n'}[M]$ under this identification. The second case is when R = K(p) (completion of K at prime over p) and $n' \leq n(p) = \operatorname{ord}_{\ell}(\operatorname{gcd}(a_p, p+1))$. Then E(R)[M'] = E[M'], hence, ME(R)[M'] = E[M''] = E[M''] = E(R)[M'']. Let $n \leq n' \leq n(\lambda)$. It follows from (4.1) that

$$\tau_{\lambda,n} = \alpha_{n',n} \tau_{\lambda,n'}$$

or

$$\tau_{\lambda,n} = M'' \tau_{\lambda,n''},$$

in view of the identifications. From (4.4) and Proposition 4.5, for p a prime with $p \nmid \lambda$ and $s \in S_{\lambda,n}$, we obtain the relations

$$\psi_{p,n'}(\tau_{\lambda,n'}) = \psi_{p,n}(\tau_{\lambda,n}) \pmod{M}$$
(5.1)

and

$$\psi_{p,n'}(s) = M''\psi_{p,n}(s) \pmod{M'}.$$
 (5.2)

If A is a torsion \mathbb{Z}_{ℓ} -module, then $e(A) = e_{\ell}(A)$ denotes the minimum nonnegative integer k such that $\ell^k A = 0$, so e(A) is \log_{ℓ} of the exponent of A. If $a \in A$, then $e(a) = e_{\ell}(a) = e(\mathbb{Z}_{\ell} \cdot a)$, i.e., \log_{ℓ} of the order of a. For example, when $m(\lambda) < \infty$ then

$$m(\lambda) = n(\lambda) - e_{\ell}(P_{\lambda} \pmod{\ell^{n(\lambda)}E(K_{\lambda})}).$$

Suppose $n \leq n' \leq n(\lambda)$. By definition of $m(\lambda)$, $\tau_{\lambda,n'} \neq 0$ if and only if $n' > m(\lambda)$, and in that case we have

$$e(\tau_{\lambda,n'}) = e(P_{\lambda}(\text{mod } \ell^{n'} E(K_{\lambda})))$$
(5.3)

$$= e(P_{\lambda}(\text{mod } \ell^{n(\lambda)}E(K_{\lambda}))) - (n(\lambda) - n')$$
(5.4)

$$= n' - m(\lambda). \tag{5.5}$$

Suppose $n' \in [m(\lambda), n(\lambda)]$ and let $n \in [n' - m(\lambda), n']$, so

$$n' - m(\lambda) \le n \le n' \le n(\lambda).$$

Let $p \mid \lambda \in \Lambda^r$. Then $\tau_{\lambda,n'} \in S_{\lambda,n}^{\nu(r)}$. From (4.5), in view of the equalities $M\tau_{\lambda,n'} = 0$ and $b_{p,n}^{\nu(r)} = M'' b_{p,n}^{\nu(r)}$, it follows that $M'' \mid \psi_{p,n'}(\tau_{\lambda/p}, n')$ and

$$\tau_{\lambda,n'}(p) = \varepsilon(\psi_{p,n'}(\tau_{\lambda/p,n'})/M'')b_{p,n}^{\nu(r)}.$$

If $s \in S_{\lambda,n}^{\nu(r)}$, then, in consequence of the reciprocity law, we have the orthogonality relation

$$\sum_{p|\lambda} \langle \tau_{\lambda,n'}(p), s(p) \rangle_{p,n} = 0.$$

This relation, taking into account the previous equality and the definition of the homomorphism $\psi_{p,n}$, gives us the relation

$$\sum_{p|\lambda} \left(\psi_{p,n'}(\tau_{\lambda/p,n'})/M'' \right) \cdot \psi_{p,n}(s) \equiv 0 \pmod{M}.$$
(5.6)

The universality of the characters $\psi_{p,n}$ (with $n \leq n(p)$) is evident from the following proposition. We use the decomposition $H = H^0 \oplus H^1$ relative to the action of $\operatorname{Gal}(K/\mathbb{Q})$.

Proposition 5.1. Let A^0 and A^1 be finite subgroups of $H^0[M]$ and $H^1[M]$, respectively. For i = 0 or i = 1, let $\psi^i \in \text{Hom}(A^i, \mathbb{Z}/M\mathbb{Z})$ and $n' \ge n$. Then there are infinitely many primes p such that $M' \mid M_p$ (i.e., $n' \le n(p)$) and

$$\mathbb{Z}/M\mathbb{Z}$$
 (restriction of $\psi_{p,n}^i$ to A^i) = $(\mathbb{Z}/M\mathbb{Z})\psi^i$.

Proof. We consider in detail the case where E does not have complex multiplication. The other case is handled analogously.

Let $E[M] = E[M]^0 \oplus E[M]^1$ be the decomposition of E[M] relative to the action of $\Sigma = \{1, \sigma\}$, where σ is the automorphism of complex conjugation. Since $\sigma\zeta = \zeta^{-1}$ for all $\zeta \in \mu_M$, it follows that $E[M]^i \approx \mathbb{Z}/M\mathbb{Z}$ for i = 0, 1(cf. (4.3) and below). Let e^i be a generator of $E[M]^i$. Let V = K(E[M']), where $M' = \ell^{n'}$. Note that $\mu_{M'} \subset V$ because of nondegeneracy of the Weil pairing.

Define the homomorphism

$$f: H[M] \to H^1(V, \mu_m) \cong \operatorname{Hom}(G_V^{ab}, \mu_M)$$

as follows: for all $z \in G_V^{ab}$ and $h = h^0 + h^1 \in H[M]$, we have

$$f(h): z \mapsto [h^0(z), e^1]^2_M \cdot [h^1(z), e^0]^2_M.$$
 (5.7)

I have to check that this is well-defined and is a homomorphism, and I also have to figure out *what* this is! It might be res^V composed with cupping with two elements of $H^0(V, E[M])$, and ?

Suppose that f is an injection. Let W be the abelian extension of V corresponding to f(A), where $A = A^0 \oplus A^1$. That is, W is the fixed field of

$$\ker f(A) = \bigcap_{\varphi \in f(A)} \ker \varphi \subset G_V^{\mathrm{ab}}.$$

By Kummer theory, the natural homomorphism

$$\operatorname{Gal}(W/V) \to \operatorname{Hom}(f(A), \mu_M)$$

is an isomorphism, hence, in view of the isomorphism $f: A \to f(A)$, we have the isomorphism

$$\operatorname{Gal}(W/V) \to \operatorname{Hom}(A, \mu_M).$$

Suppose that $\eta \in \operatorname{Gal}(W/V)$ corresponds to the element $\chi \in \operatorname{Hom}(A, \mu_M)$ such that $\chi = \zeta^{\psi^{\nu}}$ on A^{ν} , where $\zeta = [e^0, e^1]_M$. Let $\beta = \eta \sigma_1 \in \operatorname{Gal}(W/\mathbb{Q})$, where σ_1 is the restriction of complex conjugation to W. According to the Chebotarev density theorem, there exists infinitely many rational primes qwhich do not divide $N\ell$, are unramified in W, and such that

$$\beta = \operatorname{Fr} := \operatorname{Fr}_{W(w)/\mathbb{Q}_q}$$

for some place w of W dividing q. We shall show that such primes q satisfy the conditions of the proposition.

Since β is nontrivial on K, it follows that q is a prime of K. Furthermore, $M' \mid (q+1)$, since for $\xi \in \mu_{M'} \subset V$, we have

$$\xi^{-1} = \xi^{\sigma} = \xi^{\beta} = \xi^{\operatorname{Fr}} = \xi^{q}.$$

We see that $\operatorname{Fr}^2 = \sigma_1^2 = 1$ on E[M'] and, on the other hand, $\operatorname{Fr}^2 - a_q \operatorname{Fr} + q = 0$ on E[M']. Hence $a_q \operatorname{Fr} = q + 1 = 0$ on E[M'], or, equivalently, $M' \mid a_q$. Therefore $M' \mid M_q$.

Let $g \in \operatorname{Gal}(V/\mathbb{Q})$ and let $\alpha(g) = 1$ if $g \in \operatorname{Gal}(V/K)$, and $\alpha(g) = -1$, otherwise. If $(-1)^{\nu-1}\varepsilon = 1$, then, by definition, σ acts trivially on $H[M]^{\nu}$, hence $h^{\nu}(z^g) = gh^{\nu}(z)$. If $(-1)^{\nu-1}\varepsilon = -1$, then σ acts on $H[M]^{\nu}$ by multiplication by -1, hence $h^{\nu}(z^g) = \alpha(g)gh^{\nu}(z)$. Using (4.3) as well, for $h^{\nu} \in A^{\nu}$, we have

$$[h^{\nu}(\mathrm{Fr}^2), e^{\nu'}]_M = [h^{\nu}(\eta), e^{\nu'}]_M^2 = \chi^{\nu}(h^{\nu}) = [e^0, e^1]_M^b,$$

where $b = \psi^{\nu}(h^{\nu})$. Hence, considering (4.4), we see that $\psi^{\nu}_{q,n}$ is proportional to ψ^{ν} by a factor from $(\mathbb{Z}/M\mathbb{Z})^*$.

Now we shall prove that f is an injection. Let $h \in \text{ker}(f)$. Then it follows from (5.7) that for all $z \in G_V^{\text{ab}}$ we have

$$[h^0(z), e^1]_M = [h^1(z), e^0]_M^{-1}.$$
(5.8)

The substitution $z \mapsto z^{g^{-1}}$ gives us the equality

$$[h^{0}(z), ge^{1}]_{M} = [h^{1}(z), ge^{0}]_{M}^{-\alpha(g)}.$$
(5.9)

For i = 0, 1, let e^i be the generator of E^i such that $(M'/M)e_1^i = e^i$. Define the homomorphism $\varphi : \operatorname{Gal}(V/K) \to \operatorname{GL}_2(\mathbb{Z}/M'\mathbb{Z})$ so that $g(e_1^0, e_1^1) = \rho(g)(e_1^0, e_1^1)$. Since $\ell \in B(E)$, it follows that $\operatorname{Im}(\rho) = \operatorname{GL}_2(\mathbb{Z}/M'\mathbb{Z})$. Furthermore, the homorphism $\rho : \operatorname{Gal}(V/K) \to \operatorname{GL}_2(\mathbb{Z}/M'\mathbb{Z})$ is an injection, and is an isomorphism when $K \subset \mathbb{Q}(E[M'])$. The field K is a subfield of $\mathbb{Q}(E[M'])$ if and only if $\ell \equiv 3 \pmod{4}$ and $K = \mathbb{Q}(\sqrt{-1})$, in which case $\rho(\operatorname{Gal}(V/K)) = \ker(\delta')$, where the homomorphism $\delta' : \operatorname{GL}_2(\mathbb{Z}/M'\mathbb{Z}) \to \{\pm 1\}$ is induced by det $: \operatorname{GL}_2(\mathbb{Z}/M'\mathbb{Z}) \to (\mathbb{Z}/M'\mathbb{Z})^*$ and the unique nontrivial homomorphism $\delta : (\mathbb{Z}/M'\mathbb{Z})^* \to \{\pm 1\}$ (cf. [?, §4]).

Let $g_0 \in \text{Gal}(V/K)$ be such that $\rho(g_0) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Substituting gg_0 for g in (5.9), we obtain the equality

$$[h^0(z), ge^0]_M = [h^1(z), ge^1]_M^{\alpha(g)}.$$
(5.10)

Let $K \subset \mathbb{Q}(E[M'])$. Then there exists an element $g_1 \in \operatorname{Gal}(V/\mathbb{Q}(E[M']))$ such that $\alpha(g_1) = -1$. The relations (5.9) and (5.10) for g = 1 and $g = g_1$, respectively, together imply that for $i = 0, 1, [h^0(z), e^i]_M = 1$ and $[h^1(z), e^i]_M = 1$, hence $h^0(z) = h^1(z) = 0$.

Suppose that $K \subset Q(E[M'])$. Then $K = \mathbb{Q}(\sqrt{-1})$, hence $\ell > 3$, since we are assuming that $K \neq \mathbb{Q}(\sqrt{-3})$. Since $\ell > 3$, there exists an element $a \in \mathbb{Z}/M'\mathbb{Z}$ such that $\delta(a) = 1$ but $a \not\equiv 1 \pmod{\ell}$. Let $g_2 \in \operatorname{Gal}(V/K)$ be such that $\rho(g_2) = \begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix}$. Comparing (5.9) and (5.10) for g = 1 and $g = g_2$, respectively, we obtain $h^0(z) = h^1(z) = 0$.

Thus $\operatorname{res}_{K}^{V}(h) = 0$. It remains to show that

$$\operatorname{res}_K^V : H[M] \to H^1(V, E[M])$$

is an injection. Let $g_3 \in \operatorname{Gal}(V/K)$ be such that $\rho(g_3) = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ and $G_3 = \{1, g_3\}$. Then G_3 is a subgroup of order 2 in the center of $\operatorname{Gal}(V/K)$. We have E[M] = 0 and $H^1(G_3, E[M]) = 0$. In view of inf-res-transgression applied to the group $\operatorname{Gal}(V/K)$ and its normal subgroup G_3 , we see that $\operatorname{ker}(\operatorname{res}_K^V) = H^1(\operatorname{Gal}(V/K), E[M])$ is the trivial group. \Box We need the following corollary to Proposition 5.1.

Corollary 5.2. Let A^0 and A^1 be finite subgroups of $H[M]^0$ and $H[M]^1$. For i = 0, 1 and j = 1, 2, let

$$f_i^i: \operatorname{Hom}(A^i, \mathbb{Z}/M) \to C_i^i$$

be four surjective homomorphisms, and suppose that $n' \ge n$. Then there are infinitely many primes p such that $M' \mid M_p$ and

$$#f_j^i$$
 (restriction of $\psi_{p,n}^i$ to A^i) = $#C_j^i$.

Proof. By virtue of Proposition 5.1, it is enough to prove the existence of characters $\psi^i \in Hom(A^i, \mathbb{Z}/M\mathbb{Z})$ such that $e(f_j^i(\psi^i)) = e(C_j^i)$. There exists a character ψ^{ν} , since otherwise $Hom(A^{\nu}, \mathbb{Z}/M\mathbb{Z})$ is the union of two proper subgroups, which is impossible.

Let $\lambda \in \Lambda^r$, $\delta \in \Lambda^k$ and $\delta \mid \lambda$. Let $S_{\lambda,\delta,n}$ denote the group $S_{\lambda,n}$ when $\delta = 1$, and denote the intersection of $S_{\lambda,n}$ with the kernels of the characters $\psi_{p,n}$ for all $p \mid \delta$ when $\delta > 1$. We have the following proposition.

Proposition 5.3. Let $\nu \in \{0,1\}$ and r-k > 0. Then $\#S_{\lambda,\delta,n}^{\nu} = n$.

Proof. Since $S_{\lambda,\delta,n-1}^{\nu}$ is the subgroup of $S_{\lambda,\delta,n}^{\nu}$ of all elements of order ℓ^{n-1} , it is sufficient to prove the equality

$$\#\left(\frac{S_{\lambda,\delta,n}^{\nu}}{S_{\lambda,\delta,n-1}^{\nu}}\right) \ge \ell^{r-k}.$$
(5.11)

Note that (5.11) implies that the multiplicity of n in the sequence of invariants of $S_{\lambda,\delta,n}^{\nu}$ is $\geq (r-k)/n$.

If v is a place of K, let $H_{v,n}$ denote $H^1(K(v), E[M])$ and $A_{v,n}$ denote E(K(v))/ME(K(v)). If β is a set of places of K, let $H_{\beta,n}$ denote the locally-compact group $\coprod_{v\mid\beta} H_{v,n}$. The pairing

$$\langle \,,\,
angle_{eta,n} = \sum_{v|eta} \langle \,,\,
angle_{v,n}$$

identifies the group $H_{\beta,n}$ with its dual group. We use multiplicative notation: $v \mid \beta$ signifies that $v \in \beta$ and $\beta_1\beta_2$ denotes the cup product $\beta_1 \cup \beta_2$. An element of Λ is identified with its set of prime divisors. Let $\beta = \lambda/\delta$ and let Z_n be the image of $S_{\lambda,\delta,n}$ in $H_{\beta,n}$. It is sufficient to prove that Z_n is an isotropic subgroup of $H_{\beta,n}$, because then Z_n^{ν} is an isotropic subgroup of $H_{\beta,n}^{\nu}$, hence

$$\#Z_n = \sqrt{\#H_{\beta,n}} = M^{r-k}$$

and $\#Z_{n-1}^{\nu} = (M/\ell)^{r-k}$ (the latter equality holds since, in the previous equality, n is any natural number $\leq n(\lambda)$). Thus, $\#(Z_n^{\nu}/Z_{n-1}^{\nu}) = \ell^{r-k}$, whence follows (5.11).

Let α be the set of all places of K. By Poitou-Tate duality, the image Y_1 of the group H[M] in $H_{\alpha,n}$ is an isotropic subgroup of $H_{\alpha,n}$. Let

$$Y_3 := \prod_{p|\delta} B_{p,n} \cdot \prod_{\gcd(v,\lambda)=1} A_{v,n}$$

By local Tate duality $A_{v,n}$ is an isotropic subgroup of $H_{v,n}$, and $B_{p,n}$ is an isotropic subgroup of $H_{p,n}$, so Y_3 is an isotropic subgroup of $H_{\alpha/\beta,n}$.

Let $Y_2 = H_{\beta,n} \times Y_3$. We have $Z_n = \pi_\beta(Y_1 \cap Y_2)$. (I do not know for certain exactly what Kolyvagin means by π_β , and he doesn't bother to say.) Obviously, the equality $\langle Z_n, Z_n \rangle_{\beta,n} = 0$ holds. Let $z \in H_{\beta,n}$ and $\langle Z_n, z \rangle_{\beta,n} =$ 0. Let z' denote an element of $H_{\alpha,n}$ such that $\pi_\beta(z') = z$ and $\pi_{\alpha/\beta}(z') = 0$. Since z' is orthogonal to $Y_1 \cap Y_2$, by Pontrjagin theory, $z' = z_1 + z_2$, where $z_1 \in Y_1^{\perp} = Y_1$ and $z_2 \in Y_2^{\perp}$. We have $\pi_\beta(z_2) \in H_{\beta,n}^{\perp} = 0$ and $\pi_{\alpha/\beta}(z_2) \in$ $Y_3^{\perp} = Y_3$. Hence $z' - z_2 = z_1 \in Y_1 \cap Y_2$ and $\pi_\beta(z' - z_2) = z$, so $z \in Z_n$.

We now have all that is necessary for the study of the group $X = \operatorname{III}(E/K)[\ell^{\infty}]$.

6 A Structure Theorem for $\operatorname{III}(E/K)[\ell^{\infty}]$

Let Λ_n^r denote the subset of Λ^r consisting of all elements λ such that $n(\lambda) \ge n$; then

$$\Lambda_n = \bigcup_{r \ge 0} \Lambda_n^r$$

Let $\varphi_{p,n}^{\nu}$ be the restriction of $\psi_{p,n}^{\nu}$ to the Selmer group $S_{M}^{\nu} = S_{1,n}^{\nu}$ and $\Phi_{\lambda,n}^{\nu}$ the subgroup of Hom $(S_{M}^{\nu}, \mathbb{Z}/M\mathbb{Z})$ generated by $\varphi_{p,n}^{\nu}$ for all $p \mid \lambda$.

In the sequel, we shall assume that $n'' \ge n' \ge n$.

Proposition 6.1. Let $\delta \in \Lambda_{n''}^k$, $n > m(\delta)$, $\delta q \in \Lambda_{n''}^{k+1}$, and $e(\Psi_{q,n}(\tau_{\delta,n})) = e(\tau_{\delta,n})$. Then $m(\delta q) \le m(\delta)$. If, moreover, $n'' - n \ge m(\delta q)$ and $\iota = 1 - \nu(k)$, then

$$e(\varphi_{q,n}^{\iota} \pmod{\psi_{\delta,n}^{\iota}}) \le m(\delta) - m(\delta q).$$

Proof. By Proposition 4.5,

$$\tau_{\delta q,n}(q) = \varepsilon \psi_{q,n}(\tau_{\delta,n}) b_{q,n}^{\iota}.$$

Then, in view of (5.3) and our assumptions, we have

$$n - m(\delta q) = e(\tau_{\delta q,n}) \ge e(\psi_{q,n}(\tau_{\delta,n})) = e(\tau_{\delta,n}) = n - m(\delta).$$

Hence $m(\delta q) \leq m(\delta)$.

It is a consequence of (5.6) that $a\varphi_{q,n}^{\iota} \in \Phi_{\delta,n}^{\iota}$, where

$$a = \frac{\psi_{q,n'}(\tau_{\delta,n'})}{\ell^{m(\delta_q)}} \in \mathbb{Z}/M\mathbb{Z}$$

and $n' = n + m(\delta q)$. Since

$$\operatorname{ord}_{\ell}(\psi_{q,n}(\tau_{\delta,n})) = n - e(\tau_{\delta,n}) = m(\delta)$$

and (5.1) holds, it follows that $\operatorname{ord}_{\ell}(a) = m(\delta) - m(\delta q)$.

If $\delta \in \Lambda^k$, where $r \geq k$, let

$$m_r(\delta) = \min_{\lambda \in \Lambda^r, \, \delta \mid \lambda} m(\lambda).$$

Proposition 6.2. If $\delta \in \Lambda^k$ is such that $m(\delta) < \infty$, then $m_{k+1}(\delta) \le m(\delta)$.

Proof. Let $n = n(\delta)$; then $n > m(\delta)$, since $m(\delta) < \infty$. According to Corollary 5.2, there exists q such that $\delta q \in \Lambda_n^{k+1}$ and $e(\psi_{q,n}(\tau_{\delta,n}) = e(\tau_{\delta,n}))$. The, by Proposition 6.1, we have the inequality $m(\delta q) \le m(\delta)$.

Recall that, for $r \ge 0$, m_r denotes $m_r(1)$.

Proposition 6.3. The sequence $\{m_r\}$ is such that $m_r \ge m_{r+1}$.

Proof. By assumption the point P_1 has infinite order. Hence $m_0 < \infty$, since m_0 is the exponent of the highest powe of ℓ dividing P_1 in E(K). Now apply Proposition 6.2 and use induction on r.

-	_	_	
			L
			L
			L

Let $T_{\delta,n}^{\nu}$ denote the quotient group of $\operatorname{Hom}(S_{M}^{\nu}, \mathbb{Z}/M\mathbb{Z})$ with respect to $\Phi_{\delta,n}^{\nu}$. Recall that ν' denotes $1 - \nu$, where $\nu \in \{0, 1\}$.

Proposition 6.4. Let $k \ge 0$, $r \ge k$, $\alpha = \nu(k)$, $\beta = \nu(r)$, and $n'' \ge n' \ge n$. Let $\delta \in \Lambda_{n''}^k$ be such that $x := m_r(\delta) < n$ and $\lambda \in \Lambda_n^r$ such that $m(\lambda) = x$. Then there exists $q \in \Lambda^1$ satisfying the following conditions:

- 1. $\xi(q, \lambda) = 1$ and $M'' \mid M_q;$
- 2. $e(\psi_{q,n'}^{\beta}(\tau_{\lambda,n'})) = e(\tau_{\lambda,n'});$
- 3. at our discretion, one of the following two conditions is fullfilled:
 - (a) $e(\psi_{a,n}^{\alpha'}(\text{mod }\Phi_{\delta,n'}^{\alpha'})) = e(T_{\delta,n'}^{\alpha'});$
 - (b) if $k \ge 1$, then for a preassigned $p_1 \mid \delta$,

$$e(\varphi_{q,n'}^{\alpha'}(\tau_{\delta/p_1,n'})) = e(\tau_{\delta/p_1,n'});$$

4.
$$e(\psi_{q,n'}^{\alpha}(\tau_{\delta,n'})) = e(\tau_{\delta,n'});$$

5. there exists $p \mid (\lambda/\delta)$ such that $m(\lambda q/p) = x$.

Moreover, if $\alpha = \beta'$ and $n'' - n \ge y := m(\delta)$, then we may choose a p satisfying condition 5 so that the following condition is fulfilled:

6.
$$e(\psi_{p,n}^{\alpha}(\tau_{\delta,n})) = e(\tau_{\delta,n}).$$

Proof. By Proposition ??, there exists $s \in S_{\lambda,\delta,n}^{\beta'}$ such that e(s) = n. According to Proposition ??, there exists $q \in \Lambda^1$ satisfying conditions (1)–(4) and the following condition:

7.
$$e(\psi_{q,n'}^{\beta'}(s)) = e(s) = n.$$

Since $\tau_{\lambda q,n}$ and s are orthogonal (see ()), we have the relation

$$\sum_{p\mid\frac{\lambda}{\delta}}\psi_{p,n}^{\beta'}(s)\psi_{p,n}^{\beta}(\tau_{\lambda q/p,n}) = -\psi_{q,n}^{\beta'}(s)\psi_{q,n}^{\beta}(\tau_{\lambda,n}) := z \in \mathbb{Z}/M\mathbb{Z}$$

It follows from () and () that conditions (2) and (7) are satisfied as well after the substitution $n' \mapsto n$. Hence e(z) = n - x > 0. By the definition of x, we have

$$e(\psi_{p,n}^{\beta}(\tau_{\lambda q/p,n}) \le e(\tau_{\lambda q/p,n}) \le n-x.$$

Thus, there exists $p \mid (\lambda/\delta)$ such that the following conditions are fulfilled:

8.
$$e(\psi_{p,n}^{\beta}(\tau_{\lambda q/p,n}) = n - x \text{ and, hence, } m(\lambda q/p) = x;$$

9. $e(\psi_{p,n}^{\beta'}(s) = n.$

If $\alpha = \beta'$ and $n'' - n \ge y$, then we may take the element $\tau_{\delta,n+y}$ to be s. If $\tau_{\delta,n} = 0$, then (6) holds. Otherwise $e(\tau_{\delta,n}) = n - y > 0$, and (6) follows from (9), since $\tau_{\delta,n} = \ell^y \tau_{\delta,n+y}$.

Proposition 6.5. Let $n > m_0$ and $n' = n + m_0$. (It says " $m + m_0$ " in [?], but m isn't defined anywhere.) Suppose that $r = k + 1 \ge 1$, $\delta \in \Lambda_{n'}^k$, and $m(\delta) = m_{r-1}$. Then there exists a prime number p_r such that $\delta p_r \in \Lambda^r$ and $m(\delta p_r) = m_r(\delta)$. For every such p_r , if $\beta = \nu(r)$, we have

$$e(\varphi_{p_r,n}^{\beta} \pmod{\Phi_{\delta,n}^{\beta}}) = e(T_{\delta,n}^{\beta}) = m_{r-1} - m_r(\delta), \tag{6.1}$$

$$e(\psi_{p_r,n}(\tau_{\delta,n})) = e(\tau_{\delta,n}), \tag{6.2}$$

$$e(\phi_{p_{r,n}}^{\beta'} \pmod{\Phi_{\delta,n}^{\beta'}}) \ge m_{r-2} - m_{r-1}, \quad where \ r \ge 2.$$
(6.3)

Proof. Let $\lambda \in \Lambda_{x+1}^r$, where $x = m(\delta)$, be such that $m(\lambda) = x$. The existence of p_r follows from Proposition 6.4 applied to δ and λ (and n'' = n', n' = n, n = x + 1).

Now apply Proposition 6.4 to δ and $\lambda = \delta p_r$ (where n'' = n' and n' = n). Select a q corresponding to condition (3a)). From conditions (2) and (3a), and Proposition 6.1, it follows that $e(T^{\beta}_{\delta,n}) \leq y - x$, where $y = m(\delta) = m_{r-1}$. The element $a = \tau_{\delta q,y}$ belongs to $S^{\beta}_{1,y} \subset S^{\beta}_{1,n}$, by virtue of Proposition 4.5 and the relation $\tau_{\delta',y'} = 0$ for all $\delta' \in \Lambda^{r-1}_y$ (by definition of $m_{r-1} = y$). Since $a = \ell^{n-y}\tau_{\delta,n}$, it then follows from (8) that

$$e(\varphi_{p_r,n}^\beta(a)) = e(\varphi_{p_r,n}^\beta(\tau_{\delta q,n})) - (n-y) = y - x.$$

Since $a \perp \Phi_{\delta,n}$, we have that

$$e(\varphi_{p_r,n}^{\beta} \pmod{\Phi_{\delta,n}^{\beta}}) \ge y - x,$$

hence (6.1) is true.

Analogously, the element $b = \tau_{\delta,m_{r-2}}$ lies in $S_{1,n}^{\beta'}$ and $b \perp \Phi_{\delta,n}^{\beta'}$. According to (6), (6.2) is true, hence $e(\varphi_{p_r,n}^{\beta'}(b) = m_{r-2} - y)$, and (6.3) holds.

If ω is a sequence (p_0, \ldots, p_r) of integers, for $0 \leq i \leq r$ let $\omega(i) = p_0 \cdots p_i$. [Note, this is not how Kolyvagin defines $\omega(i)$, but his definition doesn't make any sense.] Define Ω_n^r to be the set of sequences $\omega = (p_0, \ldots, p_r)$ such that $\omega(r) \in \Lambda_n^r$ and $m(\omega(i)) = m_i$ for $0 \leq i \leq r$. In particular, Ω_n^0 contains only $(p_0) := (1)$.

A priori, by the Mordell-Weil theorem, and because $E(K)[\ell^{\infty}]$ is trivial, $(E(K)/ME(K))^{\nu} \cong (\mathbb{Z}/M\mathbb{Z})^{g^{\nu}}$, where $g^0 + g^1$ is the rank of E over K. The sequence

$$0 \to E(K)/ME(K) \to H^1(K, E[M]) \to H^1(K, E)[M] \to 0.$$

induces the exact sequence

$$0 \to (E(K)/ME(K))^{\nu} \to S_{1,n}^{\nu} \to X_{1,n}^{\nu} \to 0.$$
 (6.4)

Here $X_{1,n}^{\nu} = X_M^{\nu}$. By the weak Mordell-Weil theorem, the group $S_{1,n}^{\nu}$ is finite. Recall that the Heegner point P_1 has a unique representation $P_1 = \ell^{m_0} \mathbf{x}$

where $\mathbf{x} \in E(K) - \ell E(K)$ (set-theoretic difference).

Let $n > m_0$, r = 1, $\omega = p_0 = 1$, and choose p_1 as in Proposition 6.5. Then $T^0_{\delta,n} = \operatorname{Hom}(S^0_{1,n}, \mathbb{Z}/M\mathbb{Z})$ and $m_1(\delta) = m_1$. According to (6.1), we have

$$e(S_{1,n}^0) = e(T_{\delta,n}^0) = m_0 - m_1 < n.$$

Hence, in view of (6.4), it follows that $g^0 = 0$, $S^0_{1,n} = S^0_{1,m_0-m_1}$, and $X^0 = X^0_{1,n} = X^0_{1,m_0-m_1}$ is a finite group. In particular, the invariants x^0_i of X^0 coincide with the invariants of $T^0_{1,n}$.

Moreover, it follows from (6.2) that

$$e(\varphi_{p_1,n}^1(\mathbf{x} \pmod{ME(K)})) = n,$$

hence, $S_{1,n}^1$ is the direct sum of $\mathbb{Z}/M\mathbf{x}\mathbb{Z} \pmod{ME(K)} = \mathbb{Z}/M\mathbb{Z}$ and $Y = \ker \varphi_{p_1,n}^1$.

Let r = 2, $\omega = (1, p_1)$, and $\delta = p_1$. Then $T^1_{\delta,n}$ is the dual group for Y. Hence, it follows from 6.1 that

$$e(Y) = e(T_{\delta,n}^1) = m_1 - m_2(\delta)$$

and by (6.4), we have $g^1 = 1$ and $X^1 = X^1_{1,n} = X^1_{1,m_1-m_2}(\delta)$ is finite and isomorphic to Y. In particular, the invariants x^1_i of the group X^1 coincide with the invariants of the group $T^1_{p_1,n}$.

In [?] it was proved that $g^0 = 0$, and in [?] that $g^1 = 1$ and $\#X \mid \ell^{2m_0}$.

Recall that, for $\nu \in \{0, 1\}$ and $j \in \mathbb{N}$ $\nu(j)$ denotes the element of $\{0, 1\}$ such that $j - \nu(j) - 1$ is even, and $\xi(j, \nu) = j - |\nu - \nu(j)|$.

Theorem 6.6. Let r > 0, $n > m_0$, and $n' = n + m_0$. Then $\Omega_{n'}^r \neq \emptyset$. Moreover, for all $\omega \in \Omega_{n'}^{r-1}$, there exists $p_r \mid \xi(\omega, p_r) \in \Omega_{n'}^r$. Let $\omega \in \Omega_{n'}^r$. Then for $1 \le j \le r$,

$$e\left(\varphi_{p,n}\left(\tau_{\omega(j-1),n}\right)\right) = e(\tau_{\omega(j-1),n'}),$$

and if $\nu \in \{0,1\}$ is such that $r - \nu > 0$, then for $1 + \nu \le j \le r$ we have

$$e\left(\phi_{p_{j},n}^{\nu} \left(\mod \Phi_{\omega(j-1),n}^{\nu} \right) \right) = m_{\xi(j,\nu)-1} - m_{\xi(j,\nu)} = x_{j-\nu}^{\nu}.$$

Proof. For r = 1 the theorem was proved above. Therefore, by induction, it suffices to prove the theorem for $r \ge 2$, assume it is true for all r' < r. Let $\omega \in \Omega_{n'}^{r-1}$, $\delta = \omega(r-1)$, and choose p_r as in Proposition 6.5 so that, in particular, the relations (6.1)–(6.3) hold. Since the theorem is true for r-1, it follows that $e(T_{\delta,n}^{\nu}) = x_{r-\nu}^{\nu}$, and for $\beta = \nu(r)$,

$$x_{r-1-\beta'}^{\beta'} = m_{r-2} - m_{r-1}.$$

Hence the equality $x_{r-\beta'}^{\beta'} = m_{r-2} - m_{r-1}$ holds, by (6.3) and the inequality $x_{r-\beta'}^{\beta'} \leq x_{r-1-\beta'}^{\beta'}$. In view of (6.1), (6.2), and the induction hypothesis, it remains only to prove that $m_r(\delta) = m_r$. This will be done if we prove that $\Omega_{n'}^r \neq \emptyset$. Indeed, using the fact that $\xi(\omega', p') \in \Omega_{n'}^r$, as above, we then have

$$m_{r-1} - m_r = x_{r-\beta}^{\beta} = m_{r-1} - m_r(\delta).$$

If $u = m_r + 1$ for $0 \le k \le r$, let U^k be the set of pairs $\omega \in \Omega_{n'}^k$, $\lambda \in \Lambda_u^r$ such that $\omega(k) \mid \lambda$ and $m(\lambda) = m_r$. It follows from Proposition 6.5 that $\Omega_{n'}^r$ is nonempty if U^{r-1} is nonempty. Then, since U^0 is nonempty, it is sufficient to prove that U^{k+1} is nonempty if k < r-1 and U^k is nonempty. Then, by induction, U^{r-1} is nonempty. Let $\xi(\omega, \lambda) \in U^k$. Apply Proposition 6.4 to $\delta = \omega(k), \lambda$ (and n'' = n', n = u), and choose a q corresponding to condition (3a). We need to show that $m(\delta q) = m_{k+1}$; then the pair $((\omega, q), \lambda q/p)$ will belong to U^{k+1} . By Theorem 6.6 for $k + 1 \le r - 1$, we have

$$m_k - m_{k+1} = x_{k+1-\alpha'}^{\alpha'} = e(T_{\delta,n}^{\alpha'}),$$

where $\alpha = \nu(k)$. On the other hand, in view of Proposition 6.1 and condition (3a), we see that $e(T_{\delta,n}) \leq m_k - m(\delta q)$. Hence $m(\delta q) \leq m_{k+1}$, but, by the definition of m_{k+1} , we have $m_{k+1} \leq m(\delta q)$. Thus $m(\delta q) = m_{k+1}$. \Box

7 Parametrization of $\operatorname{III}(E/K)[\ell^{\infty}]$

The purpose of this section is the parameterization of X and its dual group by a sequence of prime numbers more arbitrary than Ω . This is essential for an effective description of the structure of X and its dual group, and for the parameterization of X by the classes $\tau_{\lambda,n}$ and of its dual group by the characters $\varphi_{p,n}$.

Let n' be a nonnegative integer (I think). For $r \ge 0$ let $\Pi_{n'}^r$ be the set of sequence $\pi = (p_0, \ldots, p_r)$ such that $\pi(r) \in \Lambda_{n'}^r$; if r > 0 and $1 \le j \le r$, then

$$e(\Psi_{p_j,n'}(\tau_{\pi(j-1),n'})) = e(\tau_{\pi(j-1),n'})$$
(7.1)

and, if $r \ge 2$ and $2 \le j \le r$, moreover,

$$e(\Psi_{p_j,n'}(\tau_{\pi(j-1)/p_1,n'}) = e(\tau_{\pi(j-1)/p_1,n'}).$$
(7.2)

Recall that

$$m = \min_{r \ge 0} m_r = \lim_{r \to \infty} m_r.$$

Let $\lambda \in \Lambda^r$ be such that $m(\lambda) = m$. As in the above proof of the nonemptiness of U^{r-1} , using Proposition 6.4, condition (3b), and induction, we shall prove that for all n' there exists $\pi \in \Pi_{n'}^r$ such that $m(\pi(r)) = m$. We shall say that $\pi \in \Pi_{n'}^r$ is minimal if $m(\pi(r)) = m$. From Proposition 6.1 and 6.4 it follows that if $\pi' \in \Pi_{n'}^{r-1}$ is minimal, then there exists p_r such that $(\pi', p_r) \in \Pi_{n'}^r$ is minimal.

Let $n > m_0$ and $n' \ge n + m_0$. Assume that $r \ge 2$, that $\pi \in \prod_{n'}^r$ is minimal, and $\pi - p_r$ is minimal as well.

Definition 7.1 $(u(\nu))$. If $\nu \in \{0, 1\}$, then $u(\nu)$ denotes $r - \nu$ if $r - \nu$ is even (i.e., $\nu = \nu(r+1)$), otherwise (i.e., when $\nu = \nu(r)$), $u(\nu) = r - \nu - 1$.

Let $\lambda^{\nu} = \pi(u(\nu) + \nu)$. By Proposition 6.5, $T^{\nu}_{\lambda^{\nu},n} = 0$, that is, $\varphi^{\nu}_{p_j,n}, 1 \leq j \leq u(\nu) + \nu$, generate Hom $(S^{\nu}_M, \mathbb{Z}/M\mathbb{Z})$. In particular, the homomorphism α^{ν}_2 in (??) below is an isomorphism. For $1 - \nu \leq i \leq u(\nu)$, set

$$\lambda_i^{\nu} = \pi (i + \nu) / p_{\nu(i)}$$

and

$$z_i^{\nu} = \tau_{\lambda_i^{\nu}, n+m(\lambda_i^{\nu})} \in S_{\lambda_i^{\nu}, n}.$$

For $1 \leq i \leq u(\nu)$ and $1 - \nu \leq j \leq u(\nu)$, define the elements $a_{ij}^{\nu} \in \mathbb{Z}/M\mathbb{Z}$ as follows: if j > i, or if $j + \nu = 1$ and i is even, then

$$a_{ij}^{\nu} = 0,$$
 (7.3)

and for the remaining pairs ij:

$$a_{ij}^{\nu} = \psi_{p_{j+\nu}, n+m(\lambda_i^{\nu})} \left(\tau_{\lambda_i^{\nu}/p_{j+\nu}, n+m(\lambda_i^{\nu})} \right) / \ell^{m(\lambda_i^{\nu})}.$$
(7.4)

From the orthogonality relation (??), with $n' = n + m(\lambda_i^{\nu})$ and $\lambda = \lambda_i^{\nu}$, it follows that for $1 \leq i \leq u(\nu)$, we have

$$\sum_{j=1-\nu}^{u(\nu)} a_{ij}\varphi_{p_{j+\nu},n} = 0.$$
(7.5)

Let $a = (a_{ij})$ be a square matrix of dimension u with coefficients in $\mathbb{Z}/M\mathbb{Z}$. Let A(a) denote the abelian M-torsion group given by generators 1_j , where $1 \leq j \leq n$, and relations $\sum_{j=1}^{u} a_{ij} 1_j = 0$. By identifying 1_j with the element of $(\mathbb{Z}/M\mathbb{Z})^u$ having the *j*th component equal to 1 and the others equal to zero, we can identify A(a) with the quotient group of $(\mathbb{Z}/M\mathbb{Z})^u$ with respect to the subgroup generated by the rows of a.

Let $r \ge 2 + \nu$, $a^{\nu} = \{a_{ij}^{\nu}\}$ for $1 \le i, j \le u(\nu)$, and $A^{\nu} = A(a^{\nu})$. Sending 1_j to $\varphi_{p_{j+\nu},n}^{\nu} \pmod{\varphi_{p_{\nu},n}^{\nu}}$ and taking (7.5) into account, we define the surjective homomorphisms α_i^{ν} in () below. We have the isomorphisms

Here $\varphi_{p_0,n}^0 := 1$ and $(\varphi_{p_\nu,n}^\nu)$ is the subgroup generated by $\varphi_{p_\nu,n}^\nu$. We proved above that the natural injection α_2^ν is an isomorphism. The isomorphism α_3^ν is induced by the exact sequence (?), and α_4^ν is any isomorphism between X^ν and its dual group. We shall prove below that α_1^ν is an isomorphism as well.

If $b \in \mathbb{Z}/M\mathbb{Z}$, then $\operatorname{ord}_{\ell}(b) := n - e(b)$. Using Proposition ??, (?), and (?), we obtain the relation

$$\operatorname{ord}_{\ell}(a_{ii}^{\nu}) = m(\lambda_i^{\nu}/p_{i+\nu}) - m(\lambda_i^{\nu}) \le m_0 < n.$$
 (7.7)

Since $a_{ij} = 0$ if j > i, it then follows that

$$\operatorname{ord}_{\ell}(A^{\nu}) \leq z^{\nu} := \sum_{i=1}^{u(\nu)} \operatorname{ord}_{\ell}(a_{ii}^{\nu}).$$

Equation (7.7) implies that

$$z^{0} + z^{1} = 2m_{0} - m(\pi(r-1)) - m(\pi(r)/p_{1}).$$

We shall show that $m(\pi(r)/p_1) = m$. Since $m(\pi(r-1)) = m$, by the conditions on π , it follows that

$$\operatorname{ord}_{\ell}([A^0][A^1]) \le z^0 + z^1 = 2m_0 - 2m.$$
 (7.8)

Let $\lambda = \pi(r)$. Since $\tau_{\lambda,n+m}$ and $s = \tau_{\lambda/(p_1p_r),n+m}$ are orthogonal, considered as elements of $S_{\lambda,n}$ (cf. (?)), then if

$$\theta_1 = \psi_{p_1,n+m} \left(\tau_{\lambda/p_1,n+m} \right) / \ell^m,$$

it follows that

$$\theta_1\psi_{p_1,n}(s) = \theta_2 := -(\varphi_{p_r,n+m}(\tau_{\lambda/p_r,n+m})/\ell^m)\psi_{p_r,n}(s).$$

From conditions ?? and ?? and the equality $m(\lambda/p_r) = m$, we obtain that $e(\theta_2) = e(s) > 0$. Thus, $\theta_1 \in (\mathbb{Z}/M\mathbb{Z})^*$ and $m(\lambda/p_1) = m$, since otherwise $m(\lambda/p_1) > m$, which implies that $\theta_1 \in \ell(\mathbb{Z}/M\mathbb{Z})$.

Since $\operatorname{ord}_{\ell}([X^0][X^1]) = 2m_0 - 2m$ (cf. ??) and ?? holds, it follows that the surjective homomorphisms α_1^0 and α_1^1 are isomorphisms.

Note that $\psi_{p_{j+\nu},n}(z_i^{\nu}) = 0$ for $1 \leq j \leq i$, because then, by Proposition ??, $z_i^{\nu}(p_{j+\nu}) \in B_{p_{j+\nu},n}^{\nu}$ and $\psi_{p,n}(B_{p,n}) = 0$ (cf. Section ??). We see from ?? and ?? that, if $u(\nu) \geq 2$ and $i < u(\nu)$, then $\varphi_{p_{i+1+\nu}}(z_i^{\nu}) \in (\mathbb{Z}/M\mathbb{Z})^*$. According to (??),

$$e(z_i^{\nu}) = n + m(\lambda_i^{\nu}) - m(\lambda_i^{\nu}) = n.$$

We shall show that if $(c_1, \ldots, c_{u(\nu)}) \in (\mathbb{Z}/M\mathbb{Z})^{u(\nu)}$ is such that

$$\sum_{i=1}^{u(\nu)} c_i z_i^{\nu} = 0, \tag{7.9}$$

then $c_i = 0$ for $1 \le i \le u(\nu)$. It is sufficient to consider the case $u(\nu) \ge 2$. Then for $2 \le j \le u(\nu) + \nu$, we apply the characters $\psi_{p_{j+\nu},n}$ to (7.9). By the properties of z^{ν} noted above, we obtain $c_1 = \cdots = c_{u(\nu)-1} = 0$ and, hence, $c_{u(\nu)} = 0$ as well.

Then, from the definition of z_i^{ν} and Proposition $\ref{eq:started}$, it follows that

$$z_i^{\nu}(p_{j+\nu}) = a_{ij}^{\nu} b_{j+\nu,n}^{\nu} \pmod{E(K(p_{j+\nu}))/M}.$$

Thus

$$w = \sum_{i=1}^{u(\nu)} c_i z_i^{\nu} \in S_{p_{\nu},n}^{\nu}$$

and the following relation holds for $1 \le j \le u(\nu)$:

$$\sum_{i=1}^{u(\nu)} c_i a_{ij}^{\nu} = 0.$$
(7.10)

Note that the orthogonality between elements of $S_{p_1,n}^1$ and $\mathbf{x} \pmod{ME(K)}$, in view of the fact that

$$\varphi_{p_1,n}(\mathbf{x} \pmod{ME(K)}) \in (\mathbb{Z}/M\mathbb{Z})^*$$

and (??), implies that $S_{p_1,n}^1 = S_M^1$. Therefore, (??) is the condition that w belongs to the group S_M^{ν} . Let $B^{\nu} = \{c_1, \ldots, c_{u(v)}\}$ be the subgroup of $(\mathbb{Z}/M\mathbb{Z})^{u(\nu)}$ defined by (7.10). If a is a matrix, then a^{tr} denotes the transpose of the matrix a.

The pairing

$$(\mathbb{Z}/M\mathbb{Z})^{u(\nu)} \times (\mathbb{Z}/M\mathbb{Z})^{u(\nu)} \to \mathbb{Z}/M\mathbb{Z},$$

under which $(1_j, 1_j) = \delta_{ij}$ (the Kronecker symbol), induces the isomorphism β_2^{ν} in (??). The isomorphism β_1^{μ} is any isomorphism of the dual groups. The β_3^{ν} is an injection $(c_1, \ldots, c_{u(\nu)}) \mapsto w$. The isomorphism β_4^{ν} is induced by the homomorphism $S_M^{\nu} \to X^{\nu}$ in (??). We have

$$A(a^{\nu \operatorname{tr}}) \xrightarrow{\beta_1^{\nu}} \operatorname{Hom}(A(a^{\nu \operatorname{tr}}), \mathbb{Z}/M\mathbb{Z}) \xrightarrow{\beta_2^{\nu}} B^{\nu} \xrightarrow{\beta_3^{\nu}} \operatorname{ker}(\psi_{p_{2\nu}}^{\nu}) \xrightarrow{\beta_4^{\nu}} X^{\nu}.$$

$$(7.11)$$

We shall show that, for $n > 2m_0$, β_3^{ν} is also an isomorphism. Let a be a $u \times u$ matrix over $\mathbb{Z}/M\mathbb{Z}$ such that $a_{ij} = 0$ for j > i and

$$\xi = \sum_{i=1}^{u} \operatorname{ord}_{\ell}(a_{ii}) \le n.$$

Using induction on u and our assumption, we see that $\operatorname{ord}_{\ell}(A(a)) = \xi$.

In particular, if n > 2m and $a = a^{\nu \operatorname{tr}}$, then $\xi \leq n$, by virtue of (?), and hence, $\operatorname{ord}_{\ell_0}(B^{\nu}) = \xi = z^{\nu}$. Thus, since $\operatorname{ord}_{\ell}([X^0][X^1]) = z^0 + z^1 = 2m_0 - 2m$, and β_3^0 and β_3^1 are injections, it follows that β_3^0 and β_3^1 are isomorphisms.

Note that since $\ell^{m_0}X^{\nu} = 0$, for $n = m_0$ and $n' > 2m_0$, we have the isomorphism α_k^{ν} , and for $n' > 3m_0$, the isomorphisms β_k^{ν} for $1 \le k \le 4$ (obtained by reduction modulo ℓ^{m_0} of the corresponding homomorphisms for $n = m_0 + 1$).

Fix $\theta = 2$ or $\theta = 3$. Assume that the value of m is known, for example, $m = m^2$; that is, the ℓ -component of the Birch and Swinnerton-Dyer conjecture for E over K is true. Assume as well that we can effectively calculate the values of $\psi_{p,n''}$ on $\tau_{\lambda',n''}$ for $\lambda' \in \Lambda$ and $(p, \lambda') = 1$, i.e., in view of (?), we can calculate the coordinates of $\tilde{P}_{\lambda'} \in \tilde{E}(F)$, where F is the residue field of K(p).

Then the above exposition gives us an algorithm for calculating m_0 for some $r \ge 1$, $n' \ge \theta m_0 + 1$, and $\pi = (p_0, \ldots, p_r) \in \prod_{n'}^r$, such that $m(\lambda) = m(\lambda/p_1) = m$, where $\lambda = \pi(r)$, and for calculating the coefficients $a_{ij}^{\nu} \in \mathbb{Z}/M_0\mathbb{Z}$, where $M_0 \in \ell^{m_0}$. Then for $n = m_0$, we obtain the isomorphism (?), in particular, the isomorphism $A^{\nu} \cong X^{\nu}$ and the parametrization of the dual group of X^{ν} by the characters ψ_{p,m_0}^{ν} for $p \mid (\lambda^{\nu}/p)$. If $\theta = 3$, then we also obtain the isomorphisms in (?), in particular, the parameterization of X^{ν} by means of $\{z_i^{\nu}\}$. We can, of course, use the explicit matrix $a^{\nu} = \{a_{ij}\}$ to calculate the invariants of X^{ν} .

Now we shall demonstrate the algorithm. Sort out (in any order) a triple $n' > m, r \ge 1, \pi$ such that $\lambda \in \Lambda_{n'}^r$, until one is obtained which satisfies the following conditions.

First, we verify the condition

$$\psi_{p_r,m+1}(\tau_{\lambda/p,m+1}) = 0. \tag{7.12}$$

It follows from (7.12) that $m(\lambda/p) = m$ and, in view of Proposition 6.1, that $m(\lambda) = m$. If r = 1, then (7.12) implies that $m_0 = m$, hence X = 0, since $\#X = \ell^{2m-2m_0}$, and we complete the calculations. If r > 1, then we verify the conditions

$$\frac{n'-1}{\theta} \ge m'_0 := \min_{1 \le j \le u(1)+1} \operatorname{ord}_{\ell}(\psi_{p_j,n}(\tau_{1,n'}))$$
(7.13)

and

$$\psi_{p_2,m_0'+1}(\tau_{1,m_0+1}) \neq 0. \tag{7.14}$$

It follows from (7.13) that $m_0 = m'_0$. If r > 2, then we verify the condition

$$\psi_{p_1,m_0+1}(\tau_{1,m_0+1}) \neq 0. \tag{7.15}$$

Furthermore, for $1 \leq i \leq u(\nu)$, we can calculate the values $m(\lambda_i^{\nu})$ according to the formula

$$m(\lambda_i^{\nu}) = \min_{j=\nu(i)-\nu, i < j \le u(\nu)} \operatorname{ord}_{\ell} \psi_{p_{j+\nu}, m_0+1}(\tau_{\lambda_i^{\nu}, m_0+1}).$$
(7.16)

Recall that $\xi(r, \nu) = r$ if $r - \nu$ is odd and $\xi(r, \nu) = r - 1$, otherwise. Then for $\nu = 0$, and for $\nu = 1$ and $1 \le i \le \xi(r, \nu) - \nu - 1$ (if such *i* exist), we verify the condition

$$\psi_{p_{i+\nu+1},m(\lambda_i^{\nu})+1}\left(\tau_{\lambda_i^{\nu},m(\lambda_i^{\nu})+1}\right) \neq 0.$$
(7.17)

The conditions (7.12), (7.14), and (7.13) if r = 2, or (7.15) and (7.17) if r > 2, are equivalent to the conditions (7.1) and (7.2); thus, we require a triple n', r, π for which (7.12) and (7.13) hold, and, if r = 2, (7.15) and (7.17) hold as well (for the case r = 1, see above).

The coefficients of a^{ν} for $r - \nu \ge 2$ are calculated using (7.3) and (7.4).

If r = 2 or 3, then $m_2 = m(p_1, p_2) = m$, hence, $m_r = m$ for $r \ge 2$. Furthermore, u(0) = 2 and the matrix a^0 is a square diagonal matrix such that $\operatorname{ord}_{\ell}(a_{11}^0) = m_0 - m(p_1)$. In view of Theorem ? and (?), we obtain that $m_1 = m(p_1)$ and $\operatorname{ord}_{\ell}(a_{22}^0) = m_0 - m(p_1)$. Then (?), as well as (?), holds already (if $n = m_0$) for $\theta = 2$. In particular, $X^0 \cong S^0_{M_0} \cong (\mathbb{Z}/\ell^{m_0-m_1})^2$; moreover, τ_{p_1,m_0} and τ_{p_2,m_0} form a basis for $S^0_{M_0}$, and $\varphi^0_{p_1,m_0}$ and $\varphi^0_{p_2,m_0}$ form a basis for $Hom(S^0_{M_0}, \mathbb{Z}/M_0\mathbb{Z})$. If r = 2, then $m_1 = m(p_1) = m$; if r = 3, then $p_1 = \lambda_1^0$ and, according to (7.16),

$$m_1 = \operatorname{ord}_{\ell}(\psi_{p_2,m_0+1}(\tau_{p_1,m_0+1})).$$

If r = 2, then

$$e(X^1) = m_1 - m_2 = m - m = 0,$$

so $X^1 = 0$. Suppose that r = 3. Then

$$Y = \ker(\varphi_{p_1,m_0}) \cong X^1 \cong (\mathbb{Z}/\ell^{m(p_1)-m})^2,$$

and φ_{p_2,m_0}^1 and φ_{p_3,m_0}^1 , restricted to Y, form a basis of Hom $(Y, \mathbb{Z}/M_0\mathbb{Z})$.

For r > 3, the group $A^{\nu} \cong X^{\nu}$ splits into the direct sum of two isomorphic subgroups (according to Theorem ?). Such a decomposition is obtained as a result of the orthogonality between τ_{λ',m_0} and τ_{λ'',m_0} for $\lambda' \mid \lambda$ and $\lambda'' \mid \lambda$. This permits more rapid calculation of the invariants of X^{ν} .

Recall (cf. Theorem ?) that the ℓ -component of the Birch and Swinnerton-Dyer conjecture is the equality $m = m^2$. If it is known that $m \ge m^2$, which is automatically true when $m^2 = 0$, then we can use the algorithm, as above, with m^2 in place of m. A calculation using this procedure ends if and only if $m = m^2$, hence it allows us to obtain the information above simultaneously with the proof of the equality $m = m^2$.

Let C be a curve of genus 1 over K having a point over K(v) for all places v of K. Suppose that

- C is a principal homogeneous space over E,
- $(z) \in H^1(K, E)$ is the cohomology class corresponding to C,
- M is the order of (z),
- every rational prime dividing M belongs to B(E),
- $z \in S_M$ is the element of the Selmer group which lies over (z), and
- for all $\ell \mid M$ and $p \in \Lambda^1$ we can calculate the value $z(p) \in E(K(p))/ME(K(p))$.

Adding to z, if necessary, the element $T\left(\sum_{\ell|M} \ell^{-m_0}\right) P_1 \pmod{ME(K)}$, with the corresponding $T \subset \mathbb{N}$, we may assume that for all $\ell \mid M$ we have

$$z(p_1)^1 \equiv 0 \pmod{\ell^{m_0 - m}}.$$

Then we have the following effective criterion (necessary and sufficient) for the curve C to have a point over K (with m, m_0 , and λ , of course, corresponding to ℓ):

for all
$$\ell \mid M$$
, for all $p \mid \lambda, z(p) \equiv 0 \pmod{\ell^{m_0 - m} E(K(p))}$. (7.18)

If the curve C is defined over \mathbb{Q} and has a point over $\mathbb{Q}(v)$ for all places of \mathbb{Q} , then the effective criterion for C to have a point over \mathbb{Q} is the criterion (7.18) with $z(p)^{\nu}$ in place of z(p), where $(1)^{\nu-1}\varepsilon = 1$.