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1 Introduction

Let E be a Weil elliptic curve over the fied of rational numbers Q. Note that,
according to the Weil-Taniyama conjecture, ever elliptic curve over Q is a
Weil curve. LetR be a finite extension of Q and E(R) the group of points of E
over R. According to the Mordell-Weil theorem, E(R) is a finitey generated
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(abelian) group, that is, E(R)tor is finite and E(R) ∼= E(R)tor × Zg(R,E),
where 0 ≤ g(R,E) ∈ Z is the rank of E over R. Let L(E,R, s) denote the L-
function of E over R (which is defined modulo the product of a finite number
of Euler factors). According to the Birch-Swinnerton-Dyer conjecture (which
we abbreviate as BS), g(R,E) is the order of the zero of L(E,R, s) at s = 1.

Another important arithmetic invariant ofE is the Shafarevich-Tate group
of E over R:

X(R,E) = ker

(
H1(R,E)→

∏
v

H1(R(v), E)

)

(v runs through the set of all places of R; see the section on notation at the
end of the introduction). It is known (the weak Mordell-Weil theorem) that
X(R,E) is a torsion group and for all natural M its subgroup X(E,R)M
of M -torsion elements is finite.

It is conjectured that X(R,E) is finite. In that case, BS suggests an
expression for the order of X(R,E) as a product of L(g(R,E))(E,R, 1) and
some other nonzero values connected with E (for examples, see (1) in [1] for
the case R = Q, and see Theorem 1.2 below). Let [X(R,E)]? denote the
hypothetical order of X(R,E); then, according to BS, we have the quality
[X(R,E)] = [X(R,E)]?.

For a long time, no examples of E and R were known where X(R,E) is
finite. Only recently, Rubin [2] proved that X(R,E) is finite if E has complex
multiplication, R is the field of complex multiplication, and L(E,Q, 1) 6= 0;
the author [1], [3], [4] proved finiteness of X for some family (see below) of
Weil curves and imaginary quadratic extensions of Q. For a more detailed
exposition of these methods, results, and examples, see the introductions to
[1] and [4].

We now state some results [4] from which we begin the study of X in
this article.

Let N be the conductor of E and γ : XN → E a Weil parametriza-
tion. here XN is the modular curve over Q which parameterizes isomorphism
classes of isogenies E ′ → E ′′ of elliptic curves with cyclic kernel of order
N . The field K = Q(

√
D) has discriminant D satisfying 0 > D ≡ square

(mod 4N)., where D 6= −3 or −4. Fix an ideal i1 of the ring of integers O1

of K for which O1/i1 ∼= Z/N . If λ ∈ N, let Kλ be the ring class field of
K with conductor λ. In particular, K1 is the maximal abelian unramified
extension of K. If (λ,N) = 1, Oλ = Z +λO1, and iλ = i1 ∩Oλ, let zλ denote
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the point of XN over Kλ corresponding to the isogeny C/Oλ → C/i−1
λ (here

i−1
λ ⊃ Oλ is the inverse of Iλ in the group of proper O|lambda-ideals). Set
yλ = γ(zλ) ∈ E(Kλ); the point P1 is the norm of y1 from K1 to K. The
points yλ and P1 are called Heegner points.

Let O = End(E) and Q = O⊗Q. Let ` be a rational prime, T = lim←−E`n
the Tate module, and Ô = O⊗ Z`. Let B(E) denote the set of odd rational
primes which do not divide the discriminant of O and for which the natural
representation ρ : G(Q/Q) → AutO T is surjective. It is known (from the
theory of complex multiplication and Serre theory) that the set of primes not
belonging to B(E) is finite. Moreover, according to the Mazur theorem, if
O = Z and N is square-free, then all ` ≥ 11 belong to B(E).

If the point P1 has infinite order, (that is, P1 6∈ E(K)tor) and g(K,E) = 1,
let CK denote the integer [E(K)/ZP1]. The author proved the following
theorem in [4].

Theorem 1.1. Suppose that P1 has infinite order. Then g(K,E) = 1, the
group X(K,E) is finite, and [X(K,E)] divides dC2

K, where for all ` ∈ B(E)
we have ord`(d) = 0.

In Theorem 1.1, d is an integer which depends upon E but not upon K.
The application of Theorem ?? to BS is clear from the following result of
Gross and Zagier [5] for (D, 2N) = 1.

Theorem 1.2. The function L(E,K, s) vanishes at s = 1. The point P1

has infinite order ⇐⇒ L′(E,K, 1) 6= 0. If P1 has infinite order, then the
conjecture that the group X(K,E) is finite and BS for E over K, together,
are equivalent to the following statement: g(K,E) = 1, X(K,E) is finite,

and [X(K,E)] =
(
CK/

(
c
∏

q|N b〈q〉
))2

.

In Theorem 1.2, the integer c is defined in terms of the parameterization
γ (cf. [5]), and the integer b〈q〉, where q | N is prime, is the index in E(Qq)
of the subgroup of points which have nonsingular reduction modulo q.

Let
∑∞

n=1 ann
−s, where an ∈ Z, be the canonical L-series of E. It con-

verges absolutely for Re(s) > 3/2 and has an analytical continuation to an
entire function of the complex argument. Let L(E, s) denote this function;
it is the canonical L-function over Q of the elliptic curve E. The function

Ξ(E, s) = (2π)−sN s/2Γ(s)L(E, s)
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satisfies the following functional equation:

Ξ(E, 2− s) = (−ε)Ξ(E, s),

where ε = ε(E) is equal to 1 or −1.
Fix a prime ` ∈ B(E). Let n(p) = ord`(p + 1, ap), where p is a rational

prime. Hereafter in this article we use the notation p or pk, where k ∈ N,
only for rational primes which do not divide N , remain prime in K, and
for which n(p) > 0. If r ∈ N, let Λr denote the set of all products of r
distinct such primes. The set Λ0 contains only P0 := 1, and Λ =

⋃
r≥0 Λr.

If r > 0 and λ ∈ Λr, let n(λ) denote minp|λ n(p); then Mλ = `n(λ) and
n(1) = ∞. Let λ ∈ Λ, 1 ≤ n ≤ n(λ), and M = `n. In [4], we constructed
some cohomology classes τλ,n ∈ H1(K,EM) which played a central role in
the proof of Theorem 1.1.

If R is an extension of Q, then the exact sequence

0→ EM → E(R)→ ×M−−−−−−→ 0

induces the exact squence

0→ E(R)/M → H1(R,EM)→ H1(R,E)M → 0.

If R/L is a Galois extension, then

resR/L : H1(L,EM)→ H1(R,EM)G(R/L)

is the restriction homomorphism, which is an isomorphism when the `-
component of the torsion part of E(R) is trivial (because of the spectral
sequence). It is easily seen that the condition ` ∈ B(E) leads to the triv-
iality of the `-component of the torsion subgroup of E(Kλ) (cf. [6] for the
case O = Z; the case O 6= Z can be considered analogously). In particular,
the value resKλ/K completely determines the element τλ,n. We now give an
expression for this value. We use the standard facts about ring class fields
(which follow from Galois theory and class field theory, cf. §1 in [3]). If
1 ≤ λ ∈ Λ, then the natural homomorphism G(Kλ/K1) →

∏
p|λG(Kp/K1)

is an isomorphism, and we also have the isomorphisms

G(Kλ/Kλ/p)
∼=−→ G(Kp/K1)

∼=−→ Z/(p+ 1).

For all p, fix a generator tp ∈ G(Kp/K1) and let tp also denote the generator
of G(Kλ/Kλ/p) corresponding to this tp.
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2 Statement of Main Theorem of [?]

Let ` be an odd prime and A a finite abelian group of `-power order. The
sequence of invariants of A is the nonincreasing sequence of nonnegative
integers {n1, n2, . . .} such that

A ≈
⊕
i≥1

Z/`niZ.

Fix an elliptic curve E over Q and let ε denote the negative of the sign of
the functional equation of E, and let K be a field that satisfies the Heegner
hypothesis.

Suppose A is equipped with an action of complex conjugation σ. For
ν = 0, 1 let Aν denote the submodule (1 − (−1)νεσ)A. Since ` is odd,
A = A0 ⊕ A1, and σ acts on Aν as multiplication by (−1)ν−1ε. Proof:

σ(1− (−1)νεσ)x = (σ − (−1)νε)x = (−1)ν−1εx+ σx,

and

(−1)ν−1ε(1− (−1)νεσ)x = ((−1)ν−1ε− (−1)2ν−1σ)x = ((−1)ν−1ε+ σ)x.

Let X = X(E/K)[`∞], and for ν = 0, 1, let {xνi } be the sequence of
invariants of Xν . If r ∈ N, let ν(r) ∈ {0, 1} be such that r− ν(r)− 1 is even.
Set

ξ(r, ν) = r − |ν − ν(r)|.
Let B(E) denote the set of odd rational primes which do not divide

the discriminant of O = End(E) and for which ρ : GQ → AutO(T`(E)) is
surjective. Fix ` ∈ B(E) and for any prime p let n(p) = ord`(gcd(p+ 1, ap)).
Let Λr denote the set of all products of r distinct primes p - N such that p
is inert in K, and for which n(p) > 0. Let Λ be the union of the Λr, and for
any λ ∈ Λ let n(λ) = minp|λ n(p).

Suppose λ ∈ Λ. Let m′(λ) be the exponent of the highest power of ` that
divides Pλ in E(Kλ). Let

m(λ) =

{
m′(λ) if m′(λ) < n(λ),

∞ otherwise.

Let mr = minλ∈Λr m(λ). For example, m0 = ord`([E(K) : ZP1]). Let

m = min
λ∈Λ

m(λ).
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Theorem 2.1 (Kolyvagin). If ν ∈ {0, 1} and r ≥ 1 + ν, then

xνr−ν = mξ(r,ν)−1 −mξ(r,ν).

Theorem 2.2 (Kolyvagin). #X(E/K)[`∞] = `2(m0−m)

Theorem 2.3 (Kolyvagin). The full Birch and Swinnerton-Dyer conjecture

is true for E over K if and only if m = ord`

(
c
∏

q|N cq

)
, where c is the

Manin constant, and the cq are the Tamagawa numbers.
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3 Notation

Let ` be a prime and A an abelian group of `-power order.

` = a prime
A = abelian group of `-power order
M = `n

A[M ] = kernel of multiplication by M
A/MA = cokernel of multiplication by M

L = algebraic closure of L, embedded in C
Gal(R/L) = Galois group of R/L, when defined

H1(L,A) = H1(Gal(L/L), A)
O∗ = units in the ring O

R(v) = completion of R at the place v
Kλ = ring class field of K of conductor λ
K = the unramified quadratic extension of Qp

H1(R,A) 3 τ 7→ τv = τ(v) ∈ H1(Rv, A)

Qp ≈ K(p) =
⋃
p|v

Rv, where p is a fixed place over p ∈ Λ1

Hp,n = (see page 12)
X = X(E/K)[`∞]

n(λ) = min
p|λ

ord`(gcd(p+ 1, ap))

m′(λ) = ord`(Pλ ∈ E(Kλ))

m(λ) =

{
m′(λ) if m′(λ) < n(λ),
∞ otherwise

mr = min
λ∈Λr

m(λ)

m0 = ord`([E(K) : ZP1])
ν ∈ {0, 1} (fixed)

ν(r) ∈ {0, 1} has opposite parity to that of r
ξ(r, ν) = r − |ν − ν(r)|

Λr = { all products of r distinct p - N s.t. p is inert in K and n(p) > 0 }
Λ = ∪r≥0Λr

Λrn = {λ ∈ Λr : n(λ) ≥ n}

Λn =
⋃
r≥0

Λrn

e(A) = e`(A) = min{k ≥ 0 : `kA = 0} (here A is a torsion Z`-module)
e(a) = e`(a) = e(Z` · a) = log`(order(a))
ψνp,n = (see page 14)

u(ν) = (see page 28)
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We use n, n′, n′′ for natural numbers and M,M ′,M ′′, resp., for `n, `n
′
,

and `n
′′
.

4 Properties of the Classes τλ,n

4.1 The Definition of the Classes τλ,n

Fix λ ∈ Λ and ` ∈ B(E). Let M = `n, where 1 ≤ n ≤ n(λ). We construct a
class τλ,n ∈ H1(K,E[M ]).

Let Kλ be the ring class field of K with conductor λ. Thus K1 is the
Hilbert class field of K and if λ > 1, then

Gal(Kλ/K1) −→
∏
p|λ

Gal(Kp/K1)

is an isomorphism and

Gal(Kλ/Kλ/p)
∼=−→ Gal(Kp/K1)

∼=−→ Z/(p+ 1)Z.

For each p | λ, fix a generator tp ∈ Gal(Kλ/Kλ/p).
Let Oλ = Z + λOK and Iλ = N ∩ Oλ, where OK/N ∼= Z/NZ. Let

zλ ∈ X0(N)(Kλ) be the point corresponding to the cyclic N -isogeny

(C/Oλ → C/I−1
λ ).

Set
yλ = πE(zλ) ∈ E(Kλ).

Since ` ∈ B(E),

resKλK : H1(K,E[M ])→ H1(Kλ, E[M ])Gal(Kλ/K)

is an isomorphism. Thus to construct an element of H1(K,E[M ]), it suffices
to give an element of H1(Kλ, E[M ])Gal(Kλ/K), which is what we now do.

Let

Ip = −
p∑
i=1

itip
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and
Iλ =

∏
p|λ

Ip ∈ Z[Gal(Kλ/K1)].

Let Jλ =
∑
g, where g runs through a set of coset representatives for

Gal(Kλ/K1) inside Gal(Kλ/K). Then JλIλ ∈ Z[Gal(Kλ/K)] and we let

Pλ = JλIλyλ ∈ E(Kλ).

Then

resKλK (τλ,n) = Pλ (mod ME(Kλ)) ∈ E(Kλ)/ME(Kλ) ↪→ H1(Kλ, E[M ]).
(4.1)

Remark 4.1. If P1 has infinite order, then Kolyvagin proved that

#X(E/K)[`∞] | `2m0 ,

where m0 = ord`([E(K) : ZP1]).

4.2 Properties of the Points yλ

Suppose p | λ and set Trp =
∑p

i=0 t
i
p. Then

Trp yλ = apyλ/p.

Let Fp denote the residue class field of Kp, and set Ẽ = E/Fp .

E(Kp) 3 α 7→ α̃ ∈ Ẽ(Fp).

Let Frp : Fp → Fp be the pth power automorphism. For all g ∈ Gal(Kλ/Q),
we have

g̃yλ = Frp(g̃yλ/p).

Let θλ be the Artin reciprocity homomorphism from the group of classes
of Oλ ideals to Gal(Kλ/K), and let σ denote complex conjugation. We have

σ(yλ) ≡ εθλ(Iλ)yλ (mod E(Q)tor). (4.2)

We have
(tp − 1)Ip = Trp−(p+ 1).
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If M | gcd(p+ 1, ap), then for all g ∈ Gal(Kλ/Q), we have

gPλ ≡ Pλ (mod ME(Kλ)),

so (4.1) really does defines an element τλ,n ∈ H1(K,E[M ]).
Since σg = g−1σ for all g ∈ Gal(Kλ/K), it follows that

σIp ≡ −Ipσ (mod M).

This and (4.2) imply that if λ ∈ Λr, then

σPλ = ε(−1)rPλ (mod ME(Kλ)), and

στλ,n = ε(−1)rτλ,n.

4.3 Properties of the Localization of τλ,n

Recall that p is a prime of good reduction for E which is inert in K and that

ap ≡ p+ 1 ≡ 0 (mod M).

The primes p that we will actually use to prove things will be given by a
Chebaterov density argument, so we can safely assume that p > 2 (so that
the appropriate reduction maps are injective). For all M = `n

′
, we have

E[M ] ⊂ E(Qun
p )

and reduction induces a Gp = Gal(Qun
p /Qp) isomorphism

E[M ]
∼=−→ Ẽ(Fp)[M ].

We have
Fr2

p−ap Frp +p = 0

on E[M ] and Ẽ(Fp)[M ]. Since ap ≡ p+ 1 ≡ 0 (mod M),

Fr2
p−1 = 0 on E[M ],

so E[M ] ⊂ E[K], where K is the unramified quadratic extension of Qp.
Since p is inert in K, it follows that K = K(p).

Let F = Fp2 denote the residue class field of K.
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Lemma 4.2. We have a commutative square of isomorphisms

E(K)/ME(K)
∼=
fp,n

//

∼=

��

E[M ]

∼=

��

Ẽ(F )/MẼ(F )
∼=
f̃p,n

// Ẽ[M ],

where

fp,n =
Frp2 −1

M
, f̃p,n =

ap
M

Frp−
p+ 1

M
.

(The meaning of fp,n is “first make a choice of Mth root, then apply
Frp2 −1”; this is well defined since different choices differ by an Mth root,
and the Mth roots are fixed by Frp2 , since they are rational over K.)

Proof. Suppose fp,n(P ) = 0, so there is Q ∈ E(Qp) such that MQ = P
and (Fr2

p−1)(Q) = 0. Thus Q ∈ E(K), so P(mod ME(K)) = 0, and fp,n
is injective. The diagram commutes because Fr2

p−1 = ap Frp−(p + 1) on

E(Fp)[`∞]. The leftmost vertical map is surjective, by Hensel’s lemma, and
hence an isomorphism because, as mentioned above, the rightmost vertical
map is an isomorphism (and fp,n is injective). Because fp,n is injective so is
f̃p,n, so to complete the proof it suffices to show that f̃p,n is surjective. Since
#Ẽ(F ) is finite,

#

(
Ẽ(F )

MẼ(F )

)
=

#Ẽ(F )

#MẼ(F )
=

#Ẽ(F )

#Ẽ(F )/#Ẽ[M ]
= #Ẽ[M ].

Thus f̃p,n and hence fp,n must be surjective.

Let
[ , ]M : E[M ]× E[M ] −→ µM

denote the Weil pairing. We have

[γ(e1), γ(e2)]M = γ([e1, e2]M) (4.3)

for all γ ∈ Gal(Q/Q).
Let E[M ] = E[M ]0 ⊕E[M ]1 be the decomposition of E[M ] with respect

to the involution Frp, as described in Section 2.
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Lemma 4.3. E[M ]ν ≈ Z/MZ for ν = 0, 1.

Proof. If the lemma is false, then Frp = 1 or Frp = −1 on E[`] (I don’t 100%
see this, though I don’t see how it could be wrong either), and we have for
any e1, e2 ∈ E[M ],

[e1, e2]` = [Frp(e1),Frp(e2)]` = Frp[e1, e2]`

= ([e1, e2]`)
p = [e1, e2]−1

` ,

so [e1, e2]` = 1, since ` is odd. (In the last equality, we used that p ≡ −1
(mod `).) This is impossible, because [ , ]` is nondegenerate.

Let

Hp,n := H1(K, E[M ]) = Hom(Gab
p /(G

ab
p )M , E[M ]) ∼= Hom(K∗/(K∗)M , E[M ]),

where we have used the isomorphism θp : K∗/(K∗)M → Gab
p /(G

ab
p )M from

local class field theory. We have

K∗/(K∗)M = An ⊕ Bn

where An = 〈p〉 = pZ/pMZ and Bn = O∗K/(O∗K)M . Then

Hp,n = Ap,n ⊕Bp,n

where Ap,n (resp., Bp,n) is the subgroup of Hp,n of homomorphisms that are
trivial on Bn (resp., Ap,n). Note that Ap,n = E(K)/ME(K), since

E(K)/ME(K) ⊂ Ap,n = Hun
p,n

and #(E(K)/ME(K)) = M2 = #Ap,n (see Lemma 4.2).
If Lp,n is the class field of K that corresponds to the subgroup (K∗)MpZ

of K∗, then Bp,n = H1(Gp,n, E[M ]), where

Gp,n = Gal(Lp,n/K).

Because Hp,n = Ap,n⊕Bp,n, it follows that Hν
p,n decomposes into a direct

sum of the cyclic subgroups Aνp,n and Bν
p,n of order M .

Let Kp be the class field of K corresponding to the subgroup pZ(Z∗p+pOK).
The field Kp is a cyclic totally ramified extension of K of degree p + 1 and
Lp,n is a subextension of Kp of degree M over K. Suppose that λ ∈ Λ is a
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multiple of p. The completion of Kλ/p in K(p) is the field K, the completion
of Kλ is the field Kp, and the embedding (as decomposition group)

Gal(K(p)/K) ↪→ Gal(K/Kλ/p)

induces an isomorphism between Gal(Kp/K) and Gal(Kλ/Kλ/p). Thus the
generator tp ∈ Gal(Kλ/Kλ/p) can also be viewed as a generator of Gal(Kp/K).
Let tp,n denote the generator of Gp,n which is the image of tp.

For e ∈ E[M ], let bp,n(e) be the element of Hp,n which sends tp,n ∈ Gp,n

to e. We define a nondegenerate alternating pairing

〈 , 〉′p,n : Hp,n ×Hp,n −→ Z/MZ

by the following conditions: the group H0
p,n is orthogonal to the group H1

p,n,
and for s ∈ Ap,n and all e ∈ E[M ] we have

ζ
〈s, bp,n(e)〉′p,n
p,n = [fp,n(s), e]M

where
ζp,n ≡

(
θ−1
p (tp,n)

)(p2−1)/M
(mod p).

Let
〈 , 〉p,n : Hp,n ×Hp,n → Z/MZ

be the alternating pairing induced by cup product, the pairing [ , ]M , and the
canonical isomorphism H2(K, µM)→ Z/MZ. This is a pairing of Gal(K/Qp)
modules, hence H0

p,n is orthogonal to H1
p,n. According to formula (5) of [?],

〈s, bp,n(e)〉p,n = 〈s, bp,n(e)〉′p,n
for all s and e, it follows that

〈 , 〉p,n = 〈 , 〉′p,n.

Fix generators eνp of the groups Eν
Mp

, where Mp = `n(p), such that

[e0
p, e

1
p]M = ζp,n(p).

Set

eνp,n =
Mp

M
eνp.

Then [e0
p,n, e

1
p,n] = ζp,n, since [Nβ,Nα]M = [α, β]NMp

for all α, β ∈ E[Mp] and
N = Mp/M . (I’m not sure this makes any sense, but it’s my best guess at
what Kolvagin means; what he writes makes no sense.)
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Definition 4.4 (ψνp,n). Define a homomorphism

ψνp,n : Hν
p,n → Z/MZ

by ψνp,n(x) = 〈x, bνp,n〉p,n, where bνp,n = bp,n(e1−ν
p,n ).

Then ψνp,n is trivial on Bν
p,n = 〈bνp,n〉 and induces an isomorphism between

Aνp,n and Z/MZ such that for all s ∈ Aνp,n we have

ψνp,n(s)eνp,n = (−1)νfp,n(s). (4.4)

Let ψp,n = ψ0
p,n + ψ1

p,n and, abusing notation, let ψp,n also denote the
homomorphism H1(K,E[M ]) → Z/MZ which is the composition of ψp,n
and the localization homomorphism H1(K,E[M ])→ Hp,n.

Let Sλ,n be the subgroup of α ∈ H1(K,E[M ]) such that α(v) ∈ E(K(v))/ME(K(v))
for all places v of K that do not divide λ. (Equivalently, the image of α in
H1(K(v), E) is trivial for all v - λ.) Thus Sλ,n contains Sel(M)(E/K), but Sλ,n
might be bigger because there is no local condition at places that divide λ.

Proposition 4.5. Let λ ∈ Λr. Then τλ,n ∈ Sν(r)
λ,n . If ξ(p, λ) = 1, then

τp,n(p) = Pλ (mod ME(Kp)) ∈ E(Kp)/ME(Kp).

If p | λ, then

τλ,n(p) = ε · ψp,n(τλ/p,n) · bβp,n, where β = ν(r) (4.5)

ε · ψp,n(τλ/p,n) · eβ′p,n =

(
(−1)β · p+ 1

M
· ε− ap

M

)
P̃λ/p. (4.6)

Proof. The cohomology class τλ,n contains the cocycle

kλ,n(γ) =

(
γ

(
Pλ
M

)
− Pλ
M

)
+

(1− γ)Pλ
M

, (4.7)

where
(1− γ)Pλ

M
∈ E(Kλ)

is the unique (since E(Kλ)[`
∞] is trivial) solution to the equation Mx =

(1 − γ)Pλ ∈ ME(Kλ). If ξ(p, λ) = 1, then Kλ ⊂ K and Gal(K(p)/K) ⊂
Gal(K/Kλ), hence, in view of (4.7), we see that τλ,n(p) = Pλ(mod ME(K)).
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If R is a field and α ∈ H1(R,E[M ]), denote by (α) the image of α in
H1(R,E)[M ]. Again, in view of (4.7), we see that the class (τλ,n) contains
the cocycle

k′λ,n(γ) =
(1− γ)Pλ

M
.

In particular,
(τλ,n) ∈ H1(Gal(Kλ/K), E(Kλ)).

Let v be a place of K that does not divide λ. Then since Kλ/K is unramified
outside λ, it follows that (τλ,n)v ∈ H1(Kv, E)un. This group is always finite
and is trivial if (v,N) = 1. Gross observed that in the case v | λ, we have
(τλ,n)v = 0 as well. (Huh?) Hence τλ,n ∈ Sβλ,n.

Suppose that p | λ. Since reduction induces an isomorphism between
E[M ] and E(F )[M ], the elment kλ,n(γ) may be defined by its reduction. We
shall show that if

γ ∈ Gal(K(p)/K) ⊂ Gal(K/Kλ/p),

then the eduction of the first term of (4.7) is trivial. Indeed, it is equal to

γ̃
P̃λ
M
− P̃λ
M

= 0,

since, by virtue of ... and the definition of Pλ, we have

P̃λ = −(1 + 2 + · · ·+ p) Frp P̃λ/p ∈ME(F ).

Hence
τλ,n(p) ∈ H1(Gal(Kp/K), E[M ]) = Bp,n.

It remains to calculate the value of τλ,n(p) at tp. We have

(1− tp)Pλ
M

=
(1− tp)IpIλ/pJλyλ

M

=
(p+ 1− Trp)Iλ/pJλyλ

M

=
p+ 1

M
Iλ/pJλyλ −

ap
M
Pλ/p,

15



and for its reduction, in view of ...., we have the expression(
p+ 1

M
Frp−

ap
M

)
P̃λ/p = f̃p,n(−Frp P̃λ/p)

= f̃p,n

(
(−1)β

′ · ε · P̃λ/p
)

= ε · ψp,n(τλ/p) · eβ
′

p,n.

5 The Orthoganality Relation and the Char-

acters Ψp,n

Let R be an extension of Q, n ≤ n′ and n′′ = n′ − n. The exact sequence

0→ E[M ]→ E[M ′]
M−→ E[M ′′]→ 0

induces the exact sequence

E(R)[M ′′]/ME(R)[M ′] ↪→ H1(R,E[M ])
αn,n′−−−→ H1(R,E[M ′])

αn′,n′′−−−→ H1(R,E[M ′′]).

Suppose that for all integer n, n′ with n ≤ n′ we have E(R)[M ′′] =
ME(R)[M ′]. Then the maps αn,n′ are injections and the image of αn,n′ is
H1(R,E[M ′])[M ], since αn′′,n′ is also an injection and αn′′,n′◦αn′,n′′ is multipli-
cation by M . (This is sneaky. Here αn′′,n′ : H1(R,E[M ′′]) → H1(R,E[M ′])
is defined because n′′ = n′−n ≤ n′, and by hypothesis αn′′,n′ is an injection.)
In this situation, it is useful to identify H1(R,E[M ]) with H1(R,E[M ′])[M ].
Specifically, we have the following two cases in which the hypothesis assumed
at the beginning of this paragraph is satisfied. First, suppose that R = K. In
this case, since E(K)[`∞] = 0, we identify H1(R,E[M ]) with H[M ], where

H := H1(K,E[`∞]) = lim−→
M ′→∞

H1(K,E[M ′]).

Note that Sλ,n coincides with Sλ,n′ [M ] under this identification. The sec-
ond case is when R = K(p) (completion of K at prime over p) and n′ ≤
n(p) = ord`(gcd(ap, p+ 1)). Then E(R)[M ′] = E[M ′], hence, ME(R)[M ′] =
E[M ′′] = E(R)[M ′′].
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Let n ≤ n′ ≤ n(λ). It follows from (4.1) that

τλ,n = αn′,nτλ,n′

or
τλ,n = M ′′τλ,n′′ ,

in view of the identifications. From (4.4) and Proposition 4.5, for p a prime
with p - λ and s ∈ Sλ,n, we obtain the relations

ψp,n′(τλ,n′) = ψp,n(τλ,n) (mod M) (5.1)

and

ψp,n′(s) = M ′′ψp,n(s) (mod M ′). (5.2)

If A is a torsion Z`-module, then e(A) = e`(A) denotes the minimum
nonnegative integer k such that `kA = 0, so e(A) is log` of the exponent
of A. If a ∈ A, then e(a) = e`(a) = e(Z` · a), i.e., log` of the order of a. For
example, when m(λ) <∞ then

m(λ) = n(λ)− e`(Pλ (mod `n(λ)E(Kλ)).

Suppose n ≤ n′ ≤ n(λ). By definition of m(λ), τλ,n′ 6= 0 if and only if
n′ > m(λ), and in that case we have

e(τλ,n′) = e(Pλ(mod `n
′
E(Kλ))) (5.3)

= e(Pλ(mod `n(λ)E(Kλ))) − (n(λ)− n′) (5.4)

= n′ −m(λ). (5.5)

Suppose n′ ∈ [m(λ), n(λ)] and let n ∈ [n′ −m(λ), n′], so

n′ −m(λ) ≤ n ≤ n′ ≤ n(λ).

Let p | λ ∈ Λr. Then τλ,n′ ∈ S
ν(r)
λ,n . From (4.5), in view of the equalities

Mτλ,n′ = 0 and b
ν(r)
p,n = M ′′b

ν(r)
p,n , it follows that M ′′ | ψp,n′(τλ/p, n′) and

τλ,n′(p) = ε(ψp,n′(τλ/p,n′)/M
′′)bν(r)

p,n .
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If s ∈ Sν(r)
λ,n , then, in consequence of the reciprocity law, we have the orthog-

onality relation ∑
p|λ

〈τλ,n′(p), s(p)〉p,n = 0.

This relation, taking into account the previous equality and the definition of
the homomorphism ψp,n, gives us the relation∑

p|λ

(
ψp,n′(τλ/p,n′)/M

′′) · ψp,n(s) ≡ 0 (mod M). (5.6)

The universality of the characters ψp,n (with n ≤ n(p)) is evident from
the following proposition. We use the decomposition H = H0 ⊕H1 relative
to the action of Gal(K/Q).

Proposition 5.1. Let A0 and A1 be finite subgroups of H0[M ] and H1[M ],
respectively. For i = 0 or i = 1, let ψi ∈ Hom(Ai,Z/MZ) and n′ ≥ n. Then
there are infinitely many primes p such that M ′ |Mp (i.e., n′ ≤ n(p)) and

Z/MZ
(
restriction of ψip,n to Ai

)
= (Z/MZ)ψi.

Proof. We consider in detail the case where E does not have complex multi-
plication. The other case is handled analogously.

Let E[M ] = E[M ]0⊕E[M ]1 be the decomposition of E[M ] relative to the
action of Σ = {1, σ}, where σ is the automorphism of complex conjugation.
Since σζ = ζ−1 for all ζ ∈ µM , it follows that E[M ]i ≈ Z/MZ for i = 0, 1
(cf. (4.3) and below). Let ei be a generator of E[M ]i. Let V = K(E[M ′]),
where M ′ = `n

′
. Note that µM ′ ⊂ V because of nondegeneracy of the Weil

pairing.
Define the homomorphism

f : H[M ]→ H1(V, µm) ∼= Hom(Gab
V , µM)

as follows: for all z ∈ Gab
V and h = h0 + h1 ∈ H[M ], we have

f(h) : z 7→ [h0(z), e1]2M · [h1(z), e0]2M . (5.7)

I have to check that this is well-defined and is a homomorphism, and I also
have to figure out what this is! It might be resV composed with cupping with
two elements of H0(V,E[M ]), and ?

18



Suppose that f is an injection. Let W be the abelian extension of V
corresponding to f(A), where A = A0 ⊕ A1. That is, W is the fixed field of

ker f(A) =
⋂

ϕ∈f(A)

kerϕ ⊂ Gab
V .

By Kummer theory, the natural homomorphism

Gal(W/V )→ Hom(f(A), µM)

is an isomorphism, hence, in view of the isomorphism f : A→ f(A), we have
the isomorphism

Gal(W/V )→ Hom(A, µM).

Suppose that η ∈ Gal(W/V ) corresponds to the element χ ∈ Hom(A, µM)
such that χ = ζψ

ν
on Aν , where ζ = [e0, e1]M . Let β = ησ1 ∈ Gal(W/Q),

where σ1 is the restriction of complex conjugation to W . According to the
Chebotarev density theorem, there exists infinitely many rational primes q
which do not divide N`, are unramified in W , and such that

β = Fr := FrW (w)/Qq

for some place w of W dividing q. We shall show that such primes q satisfy
the conditions of the proposition.

Since β is nontrivial on K, it follows that q is a prime of K. Furthermore,
M ′ | (q + 1), since for ξ ∈ µM ′ ⊂ V , we have

ξ−1 = ξσ = ξβ = ξFr = ξq.

We see that Fr2 = σ2
1 = 1 on E[M ′] and, on the other hand, Fr2−aq Fr +q = 0

on E[M ′]. Hence aq Fr = q + 1 = 0 on E[M ′], or, equivalently, M ′ | aq.
Therefore M ′ |Mq.

Let g ∈ Gal(V/Q) and let α(g) = 1 if g ∈ Gal(V/K), and α(g) =
−1, otherwise. If (−1)ν−1ε = 1, then, by definition, σ acts trivially on
H[M ]ν , hence hν(zg) = ghν(z). If (−1)ν−1ε = −1, then σ acts on H[M ]ν

by multiplication by −1, hence hν(zg) = α(g)ghν(z). Using (4.3) as well, for
hν ∈ Aν , we have

[hν(Fr2), eν
′
]M = [hν(η), eν

′
]2M = χν(hν) = [e0, e1]bM ,

where b = ψν(hν). Hence, considering (4.4), we see that ψνq,n is proportional
to ψν by a factor from (Z/MZ)∗.
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Now we shall prove that f is an injection. Let h ∈ ker(f). Then it follows
from (5.7) that for all z ∈ Gab

V we have

[h0(z), e1]M = [h1(z), e0]−1
M . (5.8)

The substitution z 7→ zg
−1

gives us the equality

[h0(z), ge1]M = [h1(z), ge0]
−α(g)
M . (5.9)

For i = 0, 1, let ei be the generator of Ei such that (M ′/M)ei1 = ei. De-
fine the homomorphism ϕ : Gal(V/K) → GL2(Z/M ′Z) so that g(e0

1, e
1
1) =

ρ(g)(e0
1, e

1
1). Since ` ∈ B(E), it follows that Im(ρ) = GL2(Z/M ′Z). Fur-

thermore, the homorphism ρ : Gal(V/K) → GL2(Z/M ′Z) is an injection,
and is an isomorphism when K ⊂ Q(E[M ′]). The field K is a subfield of
Q(E[M ′]) if and only if ` ≡ 3 (mod 4) and K = Q(

√
−1), in which case

ρ(Gal(V/K)) = ker(δ′), where the homomorphism δ′ : GL2(Z/M ′Z)→ {±1}
is induced by det : GL2(Z/M ′Z) → (Z/M ′Z)∗ and the unique nontrivial
homomorphism δ : (Z/M ′Z)∗ → {±1} (cf. [?, §4]).

Let g0 ∈ Gal(V/K) be such that ρ(g0) = ( 0 1
−1 0 ). Substituting gg0 for g

in (5.9), we obtain the equality

[h0(z), ge0]M = [h1(z), ge1]
α(g)
M . (5.10)

Let K ⊂ Q(E[M ′]). Then there exists an element g1 ∈ Gal(V/Q(E[M ′]))
such that α(g1) = −1. The relations (5.9) and (5.10) for g = 1 and
g = g1, respectively, together imply that for i = 0, 1, [h0(z), ei]M = 1 and
[h1(z), ei]M = 1, hence h0(z) = h1(z) = 0.

Suppose that K ⊂ Q(E[M ′]). Then K = Q(
√
−1), hence ` > 3, since

we are assuming that K 6= Q(
√
−3). Since ` > 3, there exists an element

a ∈ Z/M ′Z such that δ(a) = 1 but a 6≡ 1 (mod `). Let g2 ∈ Gal(V/K) be
such that ρ(g2) = ( 1 0

0 a ) . Comparing (5.9) and (5.10) for g = 1 and g = g2,
respectively, we obtain h0(z) = h1(z) = 0.

Thus resVK(h) = 0. It remains to show that

resVK : H[M ]→ H1(V,E[M ])

is an injection. Let g3 ∈ Gal(V/K) be such that ρ(g3) =
( −1 0

0 −1

)
and

G3 = {1, g3}. Then G3 is a subgroup of order 2 in the center of Gal(V/K).
We have E[M ] = 0 and H1(G3, E[M ]) = 0. In view of inf-res-transgression
applied to the group Gal(V/K) and its normal subgroup G3, we see that
ker(resVK) = H1(Gal(V/K), E[M ]) is the trivial group.
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We need the following corollary to Proposition 5.1.

Corollary 5.2. Let A0 and A1 be finite subgroups of H[M ]0 and H[M ]1. For
i = 0, 1 and j = 1, 2, let

f ij : Hom(Ai,Z/M)→ Ci
j

be four surjective homomorphisms, and suppose that n′ ≥ n. Then there are
infinitely many primes p such that M ′ |Mp and

#f ij
(
restriction of ψip,n to Ai

)
= #Ci

j.

Proof. By virtue of Proposition 5.1, it is enough to prove the existence of
characters ψi ∈ Hom(Ai,Z/MZ) such that e(f ij(ψ

i)) = e(Ci
j). There exists

a character ψν , since otherwise Hom(Aν ,Z/MZ) is the union of two proper
subgroups, which is impossible.

Let λ ∈ Λr, δ ∈ Λk and δ | λ. Let Sλ,δ,n denote the group Sλ,n when
δ = 1, and denote the intersection of Sλ,n with the kernels of the characters
ψp,n for all p | δ when δ > 1. We have the following proposition.

Proposition 5.3. Let ν ∈ {0, 1} and r − k > 0. Then #Sνλ,δ,n = n.

Proof. Since Sνλ,δ,n−1 is the subgroup of Sνλ,δ,n of all elements of order `n−1, it
is sufficient to prove the equality

#

(
Sνλ,δ,n
Sνλ,δ,n−1

)
≥ `r−k. (5.11)

Note that (5.11) implies that the multiplicity of n in the sequence of invariants
of Sνλ,δ,n is ≥ (r − k)/n.

If v is a place of K, let Hv,n denote H1(K(v), E[M ]) and Av,n denote
E(K(v))/ME(K(v)). If β is a set of places of K, let Hβ,n denote the locally-
compact group

∐
v|βHv,n. The pairing

〈 , 〉β,n =
∑
v|β

〈 , 〉v,n

identifies the group Hβ,n with its dual group. We use multiplicative notation:
v | β signifies that v ∈ β and β1β2 denotes the cup product β1 ∪ β2. An
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element of Λ is identified with its set of prime divisors. Let β = λ/δ and
let Zn be the image of Sλ,δ,n in Hβ,n. It is sufficient to prove that Zn is an
isotropic subgroup of Hβ,n, because then Zν

n is an isotropic subgroup of Hν
β,n,

hence
#Zn =

√
#Hβ,n = M r−k

and #Zν
n−1 = (M/`)r−k (the latter equality holds since, in the previous

equality, n is any natural number ≤ n(λ)). Thus, #(Zν
n/Z

ν
n−1) = `r−k,

whence follows (5.11).
Let α be the set of all places of K. By Poitou-Tate duality, the image Y1

of the group H[M ] in Hα,n is an isotropic subgroup of Hα,n. Let

Y3 :=
∏
p|δ

Bp,n ·
∏

gcd(v,λ)=1

Av,n.

By local Tate duality Av,n is an isotropic subgroup of Hv,n, and Bp,n is
an isotropic subgroup of Hp,n, so Y3 is an isotropic subgroup of Hα/β,n.

Let Y2 = Hβ,n × Y3. We have Zn = πβ(Y1 ∩ Y2). (I do not know for
certain exactly what Kolyvagin means by πβ, and he doesn’t bother to say.)
Obviously, the equality 〈Zn, Zn〉β,n = 0 holds. Let z ∈ Hβ,n and 〈Zn, z〉β,n =
0. Let z′ denote an element of Hα,n such that πβ(z′) = z and πα/β(z′) = 0.
Since z′ is orthogonal to Y1 ∩ Y2, by Pontrjagin theory, z′ = z1 + z2, where
z1 ∈ Y ⊥1 = Y1 and z2 ∈ Y ⊥2 . We have πβ(z2) ∈ H⊥β,n = 0 and πα/β(z2) ∈
Y ⊥3 = Y3. Hence z′ − z2 = z1 ∈ Y1 ∩ Y2 and πβ(z′ − z2) = z, so z ∈ Zn.

We now have all that is necessary for the study of the group X =
X(E/K)[`∞].

6 A Structure Theorem for X(E/K)[`∞]

Let Λr
n denote the subset of Λr consisting of all elements λ such that n(λ) ≥ n;

then
Λn =

⋃
r≥0

Λr
n.

Let ϕνp,n be the restriction of ψνp,n to the Selmer group SνM = Sν1,n and Φν
λ,n

the subgroup of Hom(SνM ,Z/MZ) generated by ϕνp,n for all p | λ.
In the sequel, we shall assume that n′′ ≥ n′ ≥ n.
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Proposition 6.1. Let δ ∈ Λk
n′′, n > m(δ), δq ∈ Λk+1

n′′ , and e(Ψq,n(τδ,n)) =
e(τδ,n). Then m(δq) ≤ m(δ). If, moreover, n′′−n ≥ m(δq) and ι = 1− ν(k),
then

e(ϕιq,n (mod ψιδ,n)) ≤ m(δ)−m(δq).

Proof. By Proposition 4.5,

τδq,n(q) = εψq,n(τδ,n)bιq,n.

Then, in view of (5.3) and our assumptions, we have

n−m(δq) = e(τδq,n) ≥ e(ψq,n(τδ,n)) = e(τδ,n) = n−m(δ).

Hence m(δq) ≤ m(δ).
It is a consequence of (5.6) that aϕιq,n ∈ Φι

δ,n, where

a =
ψq,n′(τδ,n′)

`m(δq)
∈ Z/MZ

and n′ = n+m(δq). Since

ord`(ψq,n(τδ,n)) = n− e(τδ,n) = m(δ)

and (5.1) holds, it follows that ord`(a) = m(δ)−m(δq).

If δ ∈ Λk, where r ≥ k, let

mr(δ) = min
λ∈Λr, δ|λ

m(λ).

Proposition 6.2. If δ ∈ Λk is such that m(δ) <∞, then mk+1(δ) ≤ m(δ).

Proof. Let n = n(δ); then n > m(δ), since m(δ) < ∞. Accoding to Corol-
lary 5.2, there exists q such that δq ∈ Λk+1

n and e(ψq,n(τδ,n) = e(τδ,n). The,
by Proposition 6.1, we have the inequality m(δq) ≤ m(δ).

Recall that, for r ≥ 0, mr denotes mr(1).

Proposition 6.3. The sequence {mr} is such that mr ≥ mr+1.

Proof. By assumption the point P1 has infinite order. Hence m0 <∞, since
m0 is the exponent of the highest powe of ` dividing P1 in E(K). Now apply
Proposition 6.2 and use induction on r.
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Let T νδ,n denote the quotient group of Hom(SνM ,Z/MZ) with respect to
Φν
δ,n. Recall that ν ′ denotes 1− ν, where ν ∈ {0, 1}.

Proposition 6.4. Let k ≥ 0, r ≥ k, α = ν(k), β = ν(r), and n′′ ≥ n′ ≥ n.
Let δ ∈ Λk

n′′ be such that x := mr(δ) < n and λ ∈ Λr
n such that m(λ) = x.

Then there exists q ∈ Λ1 satisfying the following conditions:

1. ξ(q, λ) = 1 and M ′′ |Mq;

2. e(ψβq,n′(τλ,n′)) = e(τλ,n′);

3. at our discretion, one of the following two conditions is fullfilled:

(a) e(ψα
′

q,n′(mod Φα′

δ,n′)) = e(Tα
′

δ,n′);

(b) if k ≥ 1, then for a preassigned p1 | δ,

e(ϕα
′

q,n′(τδ/p1,n′)) = e(τδ/p1,n′);

4. e(ψαq,n′(τδ,n′)) = e(τδ,n′);

5. there exists p | (λ/δ) such that m(λq/p) = x.

Moreover, if α = β′ and n′′ − n ≥ y := m(δ), then we may choose a p
satisfying condition 5 so that the following condition is fulfilled:

6. e(ψαp,n(τδ,n)) = e(τδ,n).

Proof. By Proposition ??, there exists s ∈ Sβ
′

λ,δ,n such that e(s) = n. Accord-
ing to Proposition ??, there exists q ∈ Λ1 satisfying conditions (1)–(4) and
the following condition:

7. e(ψβ
′

q,n′(s)) = e(s) = n.

Since τλq,n and s are orthogonal (see ()), we have the relation∑
p|λ
δ

ψβ
′

p,n(s)ψβp,n(τλq/p,n) = −ψβ′q,n(s)ψβq,n(τλ,n) := z ∈ Z/MZ.

It follows from () and () that conditions (2) and (7) are satisfied as well
after the substitution n′ 7→ n. Hence e(z) = n − x > 0. By the definition
of x, we have

e(ψβp,n(τλq/p,n) ≤ e(τλq/p,n) ≤ n− x.
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Thus, there exists p | (λ/δ) such that the following conditions are fulfilled:

8. e(ψβp,n(τλq/p,n) = n− x and, hence, m(λq/p) = x;

9. e(ψβ
′

p,n(s) = n.

If α = β′ and n′′ − n ≥ y, then we may take the element τδ,n+y to be s. If
τδ,n = 0, then (6) holds. Otherwise e(τδ,n) = n− y > 0, and (6) follows from
(9), since τδ,n = `yτδ,n+y.

Proposition 6.5. Let n > m0 and n′ = n + m0. (It says “m + m0” in [?],
but m isn’t defined anywhere.) Suppose that r = k + 1 ≥ 1, δ ∈ Λk

n′, and
m(δ) = mr−1. Then there exists a prime number pr such that δpr ∈ Λr and
m(δpr) = mr(δ). For every such pr, if β = ν(r), we have

e(ϕβpr,n (mod Φβ
δ,n)) = e(T βδ,n) = mr−1 −mr(δ), (6.1)

e(ψpr,n(τδ,n)) = e(τδ,n), (6.2)

e(φβ
′

pr,n (mod Φβ′

δ,n)) ≥ mr−2 −mr−1, where r ≥ 2. (6.3)

Proof. Let λ ∈ Λr
x+1, where x = m(δ), be such that m(λ) = x. The existence

of pr follows from Proposition 6.4 applied to δ and λ (and n′′ = n′, n′ = n,
n = x+ 1).

Now apply Proposition 6.4 to δ and λ = δpr (where n′′ = n′ and n′ = n).
Select a q corresponding to condition (3a)). From conditions (2) and (3a),
and Proposition 6.1, it follows that e(T βδ,n) ≤ y− x, where y = m(δ) = mr−1.

The element a = τδq,y belongs to Sβ1,y ⊂ Sβ1,n, by virtue of Proposition 4.5
and the relation τδ′,y′ = 0 for all δ′ ∈ Λr−1

y (by definition of mr−1 = y). Since
a = `n−yτδ,n, it then follows from (8) that

e(ϕβpr,n(a)) = e(ϕβpr,n(τδq,n))− (n− y) = y − x.

Since a ⊥ Φδ,n, we have that

e(ϕβpr,n (mod Φβ
δ,n)) ≥ y − x,

hence (6.1) is true.

Analogously, the element b = τδ,mr−2 lies in Sβ
′

1,n and b ⊥ Φβ′

δ,n. According

to (6), (6.2) is true, hence e(ϕβ
′
pr,n(b) = mr−2 − y, and (6.3) holds.
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If ω is a sequence (p0, . . . , pr) of integers, for 0 ≤ i ≤ r let ω(i) = p0 · · · pi.
[Note, this is not how Kolyvagin defines ω(i), but his definition doesn’t make
any sense.] Define Ωr

n to be the set of sequences ω = (p0, . . . , pr) such that
ω(r) ∈ Λr

n and m(ω(i)) = mi for 0 ≤ i ≤ r. In particular, Ω0
n contains only

(p0) := (1).
A priori, by the Mordell-Weil theorem, and because E(K)[`∞] is trivial,

(E(K)/ME(K))ν ∼= (Z/MZ)g
ν
, where g0 + g1 is the rank of E over K. The

sequence

0→ E(K)/ME(K)→ H1(K,E[M ])→ H1(K,E)[M ]→ 0.

induces the exact sequence

0→ (E(K)/ME(K))ν → Sν1,n → Xν
1,n → 0. (6.4)

Here Xν
1,n = Xν

M . By the weak Mordell-Weil theorem, the group Sν1,n is finite.
Recall that the Heegner point P1 has a unique representation P1 = `m0x

where x ∈ E(K)− `E(K) (set-theoretic difference).
Let n > m0, r = 1, ω = p0 = 1, and choose p1 as in Proposition 6.5. Then

T 0
δ,n = Hom(S0

1,n,Z/MZ) and m1(δ) = m1. According to (6.1), we have

e(S0
1,n) = e(T 0

δ,n) = m0 −m1 < n.

Hence, in view of (6.4), it follows that g0 = 0, S0
1,n = S0

1,m0−m1
, and X0 =

X0
1,n = X0

1,m0−m1
is a finite group. In particular, the invariants x0

i of X0

coincide with the invariants of T 0
1,n.

Moreover, it follows from (6.2) that

e(ϕ1
p1,n

(x (mod ME(K)))) = n,

hence, S1
1,n is the direct sum of Z/MxZ (mod ME(K)) = Z/MZ and Y =

kerϕ1
p1,n

.
Let r = 2, ω = (1, p1), and δ = p1. Then T 1

δ,n is the dual group for Y .
Hence, it follows from 6.1 that

e(Y ) = e(T 1
δ,n) = m1 −m2(δ)

and by (6.4), we have g1 = 1 and X1 = X1
1,n = X1

1,m1−m2
(δ) is finite and

isomorphic to Y . In particular, the invariants x1
i of the group X1 coincide

with the invariants of the group T 1
p1,n

.
In [?] it was proved that g0 = 0, and in [?] that g1 = 1 and #X | `2m0 .
Recall that, for ν ∈ {0, 1} and j ∈ N ν(j) denotes the element of {0, 1}

such that j − ν(j)− 1 is even, and ξ(j, ν) = j − |ν − ν(j)|.
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Theorem 6.6. Let r > 0, n > m0, and n′ = n + m0. Then Ωr
n′ 6= ∅.

Moreover, for all ω ∈ Ωr−1
n′ , there exists pr | ξ(ω, pr) ∈ Ωr

n′. Let ω ∈ Ωr
n′.

Then for 1 ≤ j ≤ r,

e
(
ϕp,n

(
τω(j−1),n

))
= e(τω(j−1),n′),

and if ν ∈ {0, 1} is such that r − ν > 0, then for 1 + ν ≤ j ≤ r we have

e
(
φνpj ,n (mod Φν

ω(j−1),n)
)

= mξ(j,ν)−1 −mξ(j,ν) = xνj−ν .

Proof. For r = 1 the theorem was proved above. Therefore, by induction,
it suffices to prove the theorem for r ≥ 2, assume it is true for all r′ < r.
Let ω ∈ Ωr−1

n′ , δ = ω(r − 1), and choose pr as in Proposition 6.5 so that, in
particular, the relations (6.1)–(6.3) hold. Since the theorem is true for r− 1,
it follows that e(T νδ,n) = xνr−ν , and for β = ν(r),

xβ
′

r−1−β′ = mr−2 −mr−1.

Hence the equality xβ
′

r−β′ = mr−2 −mr−1 holds, by (6.3) and the inequality

xβ
′

r−β′ ≤ xβ
′

r−1−β′ . In view of (6.1), (6.2), and the induction hypothesis, it
remains only to prove that mr(δ) = mr. This will be done if we prove that
Ωr
n′ 6= ∅. Indeed, using the fact that ξ(ω′, p′) ∈ Ωr

n′ , as above, we then have

mr−1 −mr = xβr−β = mr−1 −mr(δ).

If u = mr + 1 for 0 ≤ k ≤ r, let Uk be the set of pairs ω ∈ Ωk
n′ , λ ∈ Λr

u such
that ω(k) | λ and m(λ) = mr. It follows from Proposition 6.5 that Ωr

n′ is
nonempty if U r−1 is nonempty. Then, since U0 is nonempty, it is sufficient
to prove that Uk+1 is nonempty if k < r − 1 and Uk is nonempty. Then, by
induction, U r−1 is nonempty. Let ξ(ω, λ) ∈ Uk. Apply Proposition 6.4 to
δ = ω(k), λ (and n′′ = n′, n = u), and choose a q corresponding to condition
(3a). We need to show that m(δq) = mk+1; then the pair ((ω, q), λq/p) will
belong to Uk+1. By Theorem 6.6 for k + 1 ≤ r − 1, we have

mk −mk+1 = xα
′

k+1−α′ = e(Tα
′

δ,n),

where α = ν(k). On the other hand, in view of Proposition 6.1 and condition
(3a), we see that e(Tδ,n) ≤ mk −m(δq). Hence m(δq) ≤ mk+1, but, by the
definition of mk+1, we have mk+1 ≤ m(δq). Thus m(δq) = mk+1.
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7 Parametrization of X(E/K)[`∞]

The purpose of this section is the parameterization of X and its dual group
by a sequence of prime numbers more arbitrary than Ω. This is essential for
an effective description of the structure of X and its dual group, and for
the parameterization of X by the classes τλ,n and of its dual group by the
characters ϕp,n.

Let n′ be a nonnegative integer (I think). For r ≥ 0 let Πr
n′ be the set of

sequence π = (p0, . . . , pr) such that π(r) ∈ Λr
n′ ; if r > 0 and 1 ≤ j ≤ r, then

e(Ψpj ,n′(τπ(j−1),n′)) = e(τπ(j−1),n′) (7.1)

and, if r ≥ 2 and 2 ≤ j ≤ r, moreover,

e(Ψpj ,n′(τπ(j−1)/p1,n′) = e(τπ(j−1)/p1,n′). (7.2)

Recall that
m = min

r≥0
mr = lim

r→∞
mr.

Let λ ∈ Λr be such that m(λ) = m. As in the above proof of the nonempti-
ness of U r−1, using Proposition 6.4, condition (3b), and induction, we shall
prove that for all n′ there exists π ∈ Πr

n′ such that m(π(r)) = m. We shall
say that π ∈ Πr

n′ is minimal if m(π(r)) = m. From Proposition 6.1 and
6.4 it follows that if π′ ∈ Πr−1

n′ is minimal, then there exists pr such that
(π′, pr) ∈ Πr

n′ is minimal.
Let n > m0 and n′ ≥ n + m0. Assume that r ≥ 2, that π ∈ Πr

n′ is
minimal, and π − pr is minimal as well.

Definition 7.1 (u(ν)). If ν ∈ {0, 1}, then u(ν) denotes r− ν if r− ν is even
(i.e., ν = ν(r + 1)), otherwise (i.e., when ν = ν(r)), u(v) = r − ν − 1.

Let λν = π(u(ν) + ν). By Proposition 6.5, T νλν ,n = 0, that is, ϕνpj ,n, 1 ≤
j ≤ u(ν) + ν, generate Hom(SνM ,Z/MZ). In particular, the homomorphism
αν2 in (??) below is an isomorphism. For 1− ν ≤ i ≤ u(ν), set

λνi = π(i+ ν)/pν(i)

and
zνi = τλνi ,n+m(λνi ) ∈ Sλνi ,n.
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For 1 ≤ i ≤ u(ν) and 1− ν ≤ j ≤ u(ν), define the elements aνij ∈ Z/MZ
as follows: if j > i, or if j + ν = 1 and i is even, then

aνij = 0, (7.3)

and for the remaining pairs ij:

aνij = ψpj+ν ,n+m(λνi )

(
τλνi /pj+ν ,n+m(λνi )

)
/`m(λνi ). (7.4)

From the orthogonality relation (??), with n′ = n+m(λνi ) and λ = λνi , it
follows that for 1 ≤ i ≤ u(ν), we have

u(ν)∑
j=1−ν

aijϕpj+ν ,n = 0. (7.5)

Let a = (aij) be a square matrix of dimension u with coefficients in Z/MZ.
Let A(a) denote the abelian M -torsion group given by generators 1j, where
1 ≤ j ≤ n, and relations

∑u
j=1 aij1j = 0. By identifying 1j with the element

of (Z/MZ)u having the jth component equal to 1 and the others equal to
zero, we can identify A(a) with the quotient group of (Z/MZ)u with respect
to the subgroup generated by the rows of a.

Let r ≥ 2+ν, aν = {aνij} for 1 ≤ i, j ≤ u(ν), and Aν = A(aν). Sending 1j
to ϕνpj+ν ,n(mod ϕνpν ,n) and taking (7.5) into account, we define the surjective
homomorphisms ανi in () below. We have the isomorphisms

Aν ∼=

αν1 // Φν
λν ,n/(ϕ

ν
pν ,n) ∼=

αν2 // Hom(SνM ,Z/MZ)/(ϕνpν ,n)

Xν
∼=

αν4 // Hom(Xν ,Z/MZ).

αν3

OO
(7.6)

Here ϕ0
p0,n

:= 1 and (ϕνpν ,n) is the subgroup generated by ϕνpν ,n. We proved
above that the natural injection αν2 is an isomorphism. The isomorphism αν3
is induced by the exact sequence (?), and αν4 is any isomorphism between Xν

and its dual group. We shall prove below that αν1 is an isomorphism as well.
If b ∈ Z/MZ, then ord`(b) := n − e(b). Using Proposition ??, (?), and

(?), we obtain the relation

ord`(a
ν
ii) = m(λνi /pi+ν)−m(λνi ) ≤ m0 < n. (7.7)
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Since aij = 0 if j > i, it then follows that

ord`(A
ν) ≤ zν :=

u(ν)∑
i=1

ord`(a
ν
ii).

Equation (7.7) implies that

z0 + z1 = 2m0 −m(π(r − 1))−m(π(r)/p1).

We shall show that m(π(r)/p1) = m. Since m(π(r − 1)) = m, by the condi-
tions on π, it follows that

ord`([A
0][A1]) ≤ z0 + z1 = 2m0 − 2m. (7.8)

Let λ = π(r). Since τλ,n+m and s = τλ/(p1pr),n+m are orthogonal, considered
as elements of Sλ,n (cf. (?)), then if

θ1 = ψp1,n+m

(
τλ/p1,n+m

)
/`m,

it follows that

θ1ψp1,n(s) = θ2 := −(ϕpr,n+m(τλ/pr,n+m)/`m)ψpr,n(s).

From conditions ?? and ?? and the equality m(λ/pr) = m, we obtain that
e(θ2) = e(s) > 0. Thus, θ1 ∈ (Z/MZ)∗ and m(λ/p1) = m, since otherwise
m(λ/p1) > m, which implies that θ1 ∈ `(Z/MZ).

Since ord`([X
0][X1]) = 2m0 − 2m (cf. ??) and ?? holds, it follows that

the surjective homomorphisms α0
1 and α1

1 are isomorphisms.
Note that ψpj+ν ,n(zνi ) = 0 for 1 ≤ j ≤ i, because then, by Proposition ??,

zνi (pj+ν) ∈ Bν
pj+ν ,n

and ψp,n(Bp,n) = 0 (cf. Section ??). We see from ?? and
?? that, if u(ν) ≥ 2 and i < u(ν), then ϕpi+1+ν

(zνi ) ∈ (Z/MZ)∗. According
to (??),

e(zνi ) = n+m(λνi )−m(λνi ) = n.

We shall show that if (c1, . . . , cu(ν)) ∈ (Z/MZ)u(ν) is such that

u(ν)∑
i=1

ciz
ν
i = 0, (7.9)

then ci = 0 for 1 ≤ i ≤ u(ν). It is sufficient to consider the case u(ν) ≥ 2.
Then for 2 ≤ j ≤ u(ν) + ν, we apply the characters ψpj+ν ,n to (7.9). By the
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properties of zν noted above, we obtain c1 = · · · = cu(ν)−1 = 0 and, hence,
cu(ν) = 0 as well.

Then, from the definition of zνi and Proposition ??, it follows that

zνi (pj+ν) = aνijb
ν
j+ν,n (mod E(K(pj+ν))/M).

Thus

w =

u(ν)∑
i=1

ciz
ν
i ∈ Sνpν ,n

and the following relation holds for 1 ≤ j ≤ u(ν):

u(ν)∑
i=1

cia
ν
ij = 0. (7.10)

Note that the orthogonality between elements of S1
p1,n

and x (mod ME(K)),
in view of the fact that

ϕp1,n(x (mod ME(K)) ∈ (Z/MZ)∗

and (??), implies that S1
p1,n

= S1
M . Therefore, (??) is the condition that

w belongs to the group SνM . Let Bν = {c1, . . . , cu(v)} be the subgroup of
(Z/MZ)u(ν) defined by (7.10). If a is a matrix, then atr denotes the transpose
of the matrix a.

The pairing

(Z/MZ)u(ν) × (Z/MZ)u(ν) → Z/MZ,

under which (1j, 1j) = δij (the Kronecker symbol), induces the isomorphism
βν2 in (??). The isomorphism βν1 is any isomorphism of the dual groups. The
βν3 is an injection (c1, . . . , cu(ν)) 7→ w. The isomorphism βν4 is induced by the
homomorphism SνM → Xν in (??). We have

A(aν tr) ∼=

βν1 // Hom(A(aν tr),Z/MZ) ∼=

βν2 // Bν
∼=

βν3 // ker(ψνp2ν ) ∼=

βν4 // Xν .

(7.11)
We shall show that, for n > 2m0, βν3 is also an isomorphism. Let a be a

u× u matrix over Z/MZ such that aij = 0 for j > i and

ξ =
u∑
i=1

ord`(aii) ≤ n.
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Using induction on u and our assumption, we see that ord`(A(a)) = ξ.
In particular, if n > 2m and a = aν tr, then ξ ≤ n, by virtue of (?), and

hence, ord`0(B
ν) = ξ = zν . Thus, since ord`([X

0][X1]) = z0+z1 = 2m0−2m,
and β0

3 and β1
3 are injections, it follows that β0

3 and β1
3 are isomorphisms.

Note that since `m0Xν = 0, for n = m0 and n′ > 2m0, we have the
isomorphism ανk, and for n′ > 3m0, the isomorphisms βνk for 1 ≤ k ≤ 4
(obtained by reduction modulo `m0 of the corresponding homomorphisms for
n = m0 + 1).

Fix θ = 2 or θ = 3. Assume that the value of m is known, for example,
m = m?; that is, the `-component of the Birch and Swinnerton-Dyer conjec-
ture for E over K is true. Assume as well that we can effectively calculate
the values of ψp,n′′ on τλ′,n′′ for λ′ ∈ Λ and (p, λ′) = 1, i.e., in view of (?), we
can calculate the coordinates of P̃λ′ ∈ Ẽ(F ), where F is the residue field of
K(p).

Then the above exposition gives us an algorithm for calculating m0 for
some r ≥ 1, n′ ≥ θm0 + 1, and π = (p0, . . . , pr) ∈ Πr

n′ , such that m(λ) =
m(λ/p1) = m, where λ = π(r), and for calculating the coefficients aνij ∈
Z/M0Z, where M0 ∈ `m0 . Then for n = m0, we obtain the isomorphism (?),
in particular, the isomorphism Aν ∼= Xν and the parametrization of the dual
group of Xν by the characters ψνp,m0

for p | (λν/p). If θ = 3, then we also
obtain the isomorphisms in (?), in particular, the parameterization of Xν

by means of {zνi }. We can, of course, use the explicit matrix aν = {aij} to
calculate the invariants of Xν .

Now we shall demonstrate the algorithm. Sort out (in any order) a triple
n′ > m, r ≥ 1, π such that λ ∈ Λr

n′ , until one is obtained which satisfies the
following conditions.

First, we verify the condition

ψpr,m+1(τλ/p,m+1) = 0. (7.12)

It follows from (7.12) that m(λ/p) = m and, in view of Proposition 6.1, that
m(λ) = m. If r = 1, then (7.12) implies that m0 = m, hence X = 0, since
#X = `2m−2m0 , and we complete the calculations. If r > 1, then we verify
the conditions

n′ − 1

θ
≥ m′0 := min

1≤j≤u(1)+1
ord`(ψpj ,n(τ1,n′)) (7.13)

and
ψp2,m′0+1(τ1,m0+1) 6= 0. (7.14)
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It follows from (7.13) that m0 = m′0. If r > 2, then we verify the condition

ψp1,m0+1(τ1,m0+1) 6= 0. (7.15)

Furthermore, for 1 ≤ i ≤ u(ν), we can calculate the values m(λνi ) according
to the formula

m(λνi ) = min
j=ν(i)−ν,i<j≤u(ν)

ord` ψpj+ν ,m0+1(τλνi ,m0+1). (7.16)

Recall that ξ(r, ν) = r if r−ν is odd and ξ(r, ν) = r−1, otherwise. Then for
ν = 0, and for ν = 1 and 1 ≤ i ≤ ξ(r, ν) − ν − 1 (if such i exist), we verify
the condition

ψpi+ν+1,m(λνi )+1

(
τλνi ,m(λνi )+1

)
6= 0. (7.17)

The conditions (7.12), (7.14), and (7.13) if r = 2, or (7.15) and (7.17) if
r > 2, are equivalent to the conditions (7.1) and (7.2); thus, we require a
triple n′, r, π for which (7.12) and (7.13) hold, and, if r = 2, (7.15) and (7.17)
hold as well (for the case r = 1, see above).

The coefficients of aν for r − ν ≥ 2 are calculated using (7.3) and (7.4).
If r = 2 or 3, then m2 = m(p1, p2) = m, hence, mr = m for r ≥ 2.

Furthermore, u(0) = 2 and the matrix a0 is a square diagonal matrix such
that ord`(a

0
11) = m0 −m(p1). In view of Theorem ? and (?), we obtain that

m1 = m(p1) and ord`(a
0
22) = m0 − m(p1). Then (?), as well as (?), holds

already (if n = m0) for θ = 2. In particular, X0 ∼= S0
M0
∼= (Z/`m0−m1)2;

moreover, τp1,m0 and τp2,m0 form a basis for S0
M0

, and ϕ0
p1,m0

and ϕ0
p2,m0

form
a basis for Hom(S0

M0
,Z/M0Z). If r = 2, then m1 = m(p1) = m; if r = 3,

then p1 = λ0
1 and, according to (7.16),

m1 = ord`(ψp2,m0+1(τp1,m0+1)).

If r = 2, then
e(X1) = m1 −m2 = m−m = 0,

so X1 = 0. Suppose that r = 3. Then

Y = ker(ϕp1,m0)
∼= X1 ∼= (Z/`m(p1)−m)2,

and ϕ1
p2,m0

and ϕ1
p3,m0

, restricted to Y , form a basis of Hom(Y,Z/M0Z).
For r > 3, the group Aν ∼= Xν splits into the direct sum of two isomorphic

subgroups (according to Theorem ?). Such a decomposition is obtained as
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a result of the orthogonality between τλ′,m0 and τλ′′,m0 for λ′ | λ and λ′′ | λ.
This permits more rapid calculation of the invariants of Xν .

Recall (cf. Theorem ?) that the `-component of the Birch and Swinnerton-
Dyer conjecture is the equality m = m?. If it is known that m ≥ m?, which
is automatically true when m? = 0, then we can use the algorithm, as above,
with m? in place of m. A calculation using this procedure ends if and only if
m = m?, hence it allows us to obtain the information above simultaneously
with the proof of the equality m = m?.

Let C be a curve of genus 1 over K having a point over K(v) for all
places v of K. Suppose that

• C is a principal homogeneous space over E,

• (z) ∈ H1(K,E) is the cohomology class corresponding to C,

• M is the order of (z),

• every rational prime dividing M belongs to B(E),

• z ∈ SM is the element of the Selmer group which lies over (z), and

• for all ` |M and p ∈ Λ1 we can calculate the value z(p) ∈ E(K(p))/ME(K(p)).

Adding to z, if necessary, the element T
(∑

`|M `−m0

)
P1 (mod ME(K)),

with the corresponding T ⊂ N, we may assume that for all ` |M we have

z(p1)1 ≡ 0 (mod `m0−m).

Then we have the following effective criterion (necessary and sufficient) for
the curve C to have a point over K (with m, m0, and λ, of course, corre-
sponding to `):

for all ` |M , for all p | λ, z(p) ≡ 0 (mod `m0−mE(K(p))). (7.18)

If the curve C is defined over Q and has a point over Q(v) for all places of
Q, then the effective criterion for C to have a point over Q is the criterion
(7.18) with z(p)ν in place of z(p), where (1)ν−1ε = 1.
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