On the structure of Selmer groups*

V. A. Kolyvagin

Steklov Mathematical Institute, Vavilova 42, SU-117966 Moscow, GSP-1, USSR

Received June 29, 1990; in revised form April 15, 1991

The paper contains some applications of explicit cohomology classes (which the author has constructed earlier using Heegner points) to the theory of Selmer groups of a modular elliptic curve. Moreover, some generalizations of Selmer groups are considered.

The case when the Heegner point over the imaginary-quadratic field has infinite order was studied in the work [1]. In fact, the theory of [1] is valid under a more general assumption which is, hypothetically, always true and discussed below.

For the convenience of the reader, we recall in part 1 the definitions of the Selmer groups and of our explicit cohomology classes, and formulate some of our results. The second part is essentially based on the work [1] and requires some familiarity with it. The second part contains proofs of results for $l \in B(E)$ (see below for notations), formulations of corresponding results for $l \notin B(E)$, and some global consequences of these results.

1 Selmer groups and explicit cohomology classes

Let E be an elliptic curve over the field of rational numbers \mathbb{Q} . For an arbitrary abelian group A and a natural number M we let A_M denote the maximal M-torsion subgroup of A. We use the abbreviation A/M = A/MA. Let $E_M = E(\mathbb{Q})_M$. If R is some extension of \mathbb{Q} , then the exact sequence $0 \rightarrow E_M \rightarrow E(\overline{R}) \rightarrow E(\overline{R}) \rightarrow 0$ induces the exact sequence

$$0 \to E(R)/M \to H^1(R, E_M) \to H^1(R, E)_M \to 0.$$
⁽¹⁾

If L/R is a Galois extension, then G(L/R) denotes its Galois group, $H^{1}(R, A) := H^{1}(G(\overline{R}/R), A)$ for a $G(\overline{R}/R)$ -module $A, H^{1}(R, E) := H^{1}(R, E(\overline{R}))$.

^{*} This paper was partly prepared during my stay at the Max-Planck-Institut für Mathematik in Bonn. I want to express my gratitude for the support and the hospitality provided by this institute

Now let R be a finite extension of Q. For a place v of R, we let R(v) denote the corresponding completion of R, for $x \in H^1(R, E_M)$, x(v) denotes its natural image in $H^1(R(v), E_M)$. The Selmer group $S(R, E_M) \subset H^1(R, E_M)$, by definition, consists of all elements x such that for all places v of R, $x(v) \in E(R(v))/M$. We recall that the Shafarevich-Tate group $\coprod (R, E)$ is ker $(H^1(R, E) \to \prod_v H^1(R(v), E))$, so (1) induces the exact sequence:

$$0 \rightarrow E(R)/M \rightarrow S(R, E_M) \rightarrow \coprod (R, E)_M \rightarrow 0$$
.

By the weak Mordell-Weil theorem, the Selmer group $S(K, E_M)$ is finite, by the Mordell-Weil theorem, $E(R) \simeq F \times \mathbb{Z}^{\operatorname{rank} E(R)}$, where $F \simeq E(R)_{\operatorname{tor}}$ is finite, $0 \leq \operatorname{rank} E(R) \in \mathbb{Z}$.

It is conjectured that $\coprod (R, E)$ is finite. Only recently Rubin and the author proved this conjecture in some cases. I shall give some examples below.

We suppose further that E is modular. Let N be the conductor of E, $\gamma: X_0(N) \rightarrow E$ be a modular parametrization. Here $X_0(N)$ is the modular curve over **Q** which parametrizes isomorphism classes of isogenies of elliptic curves with cyclic kernel of order N. We note that, according to the Taniyama-Shimura-Weil conjecture, every elliptic curve over **Q** is modular.

We now define explicit cohomology classes, we start from the definition of Heegner points. Let $K = \mathbb{Q}(|\sqrt{D})$ be a field of discriminant D such that $0 > D \equiv [](\mod 4N), D \neq -3, -4$. We fix an ideal i_1 of the ring of integers O_1 of Ksuch that $O_1/i_1 \simeq \mathbb{Z}/N\mathbb{Z}$ (such an ideal exists because of the conditions on D). If $\lambda \in \mathbb{N}$, let K_{λ} be the ring class field of K of conductor λ . It is a finite abelian extension of K. In particular, K_1 is the maximal abelian unramified extension of K. If $(\lambda, N) = 1$, we let $O_{\lambda} = \mathbb{Z} + \lambda O_1, i_{\lambda} = i_1 \cap O_{\lambda}, z_{\lambda}$ will be the point of $X_0(N)$ rational over K_{λ} corresponding to the class of the isogeny $\mathbb{C}/O_{\lambda} \to \mathbb{C}/i_{\lambda}^{-1}$ (here $i_{\lambda}^{-1} \supset O_{\lambda}$ is the inverse of i_{λ} in the group of proper O_{λ} -ideals). We set $y_{\lambda} = \gamma(z_{\lambda}) \in E(K_{\lambda}), P_1 \in E(K)$ is the norm of y_1 from K_1 to K. The points y_{λ}, P_1 are called Heegner points.

Let \mathcal{O} be End(*E*), $Q = \mathcal{O} \otimes \mathbb{Q}$. Let *l* be a rational prime, $T = \lim_{n \to \infty} E_n$ be the Tatemodule and $\hat{\mathcal{O}} = \mathcal{O} \otimes \mathbb{Z}_l$. We let B(E) denote the set of odd rational primes which do not divide the discriminant of \mathcal{O} and for which the natural representation $\varrho: G(\overline{Q}/Q) \to \operatorname{Aut}_{\mathcal{O}} T$ is surjective. It is known (from the theory of complex multiplication and Serre's theory, resp.) that almost all (all but a finite number of) primes belong to B(E). For example, if $\mathcal{O} = \mathbb{Z}$ and N is squarefree, then $l \ge 11$ belongs to B(E) according to a theorem of Mazur.

In my paper "Euler systems" I proved that rank E(K) = 1 and $\coprod (K, E)$ is finite when P_1 has infinite order. Then, in the paper "On the structure of Shafarevich-Tate groups" I determined the structure of $\coprod (K, E)_{l^{\infty}}$ for $l \in B(E)$, under the same condition. Moreover, our explicit cohomology classes give information on the structure of $S(K, E_{l^m})$ under some more general condition (which, hypothetically, always holds). It will be discussed later, now we continue with the definition of the cohomology classes.

We fix a prime $l \in B(E)$. Further in the paper we use the notation p or p_k , where $k \in \mathbb{N}$, only for rational primes which do not divide N, remain prime in K and satisfy $n(p) := \operatorname{ord}_l(p+1, a_p) > 1$, where $a_p = p+1 - [\tilde{E}(\mathbb{Z}/p)]$, \tilde{E} is the reduction of E modulo p. For natural r we let $\Lambda^r = \{p_1 \dots p_r\}$ denote the set of all products of r distinct such primes. The set Λ^0 , by definition, consists only of $p_0 := 1$. We let $\Lambda = \bigcup_{r \geq 0} \Lambda^r$. If r > 0, $\lambda \in \Lambda^r$, we let $n(\lambda) = \min_{p \mid \lambda} n(p_0) := \infty$.

The set T of explicit cohomology classes consists of $\tau_{\lambda,n} \in H^1(K, E_M)$, where $\lambda \operatorname{runs}$ through Λ , $1 \leq n \leq n(\lambda)$, $M = l^n$. To define these note that the condition $l \in B(E)$

implies the triviality of $E(K_{\lambda})_{l^{\infty}}$. So, by a spectral sequence, the restriction homomorphism res: $H^{1}(K, E_{M}) \rightarrow H^{1}(K_{\lambda}, E_{M})^{G(K_{\lambda}/K)}$ is an isomorphism and $\tau_{\lambda, n}$ is uniquely defined by the value res $(\tau_{\lambda, n})$ which we will now exhibit.

We need more notations. We use standard facts on ring class fields. If $1 < \lambda \in \mathbb{N}$, then the natural homomorphism $G(K_{\lambda}/K_1) \rightarrow \prod_{p|\lambda} G(K_p/K_1)$ is an isomorphism and we also have $G(K_1/K_1) \rightarrow G(K_1/K_2) \cong \mathbb{Z}/(p+1)$

we also have $G(K_{\lambda}/K_{\lambda/p}) \rightarrow G(K_p/K_1) \cong \mathbb{Z}/(p+1)$. For each p, fix a generator $t_p \in G(K_p/K_1)$ and let t_p also denote the correspond-

ing generator of $G(K_{\lambda}/K_{\lambda/p})$. Let $I_p = -\sum_{j=1}^p jt_p^j$, $I_{\lambda} = \prod_{p|\lambda} I_p \in \mathbb{Z}[G(K_{\lambda}/K_1)]$. Let \mathbb{K} be the composite of $K_{\lambda'}$ when λ' runs through the set Λ . We let $J_{\lambda} = \Sigma \overline{g}$, where g runs through a fixed set of representatives of $G(\mathbb{K}/K)$ modulo $G(\mathbb{K}/K_1)$, \overline{g} is the restriction of g to K_{λ} , so $\{\overline{g}\}$ is a set of representatives of $G(K_{\lambda}/K)$ modulo $G(K_{\lambda}/K)$ modulo $G(K_{\lambda}/K)$.

$$\operatorname{res}(\tau_{\lambda,n}) = P_{\lambda}(\operatorname{mod} ME(K_{\lambda})).$$

Now we formulate some of our results on the invariants of $S(K, E_M)$, see Theorems 2 and 3 of the second part for more general statements.

There is a bijective correspondence between the set of isomorphism classes of finite abelian *l*-groups and the set of sequences of nonnegative integers $\{n_i\}$ such that $i \ge 1$, $n_i \ge n_{i+1}$, $n_i = 0$ for all sufficiently large *i*. Concretely, $\{n_i\} \leftrightarrow \text{class of } \sum_i \mathbb{Z}/l^{n_i}$. For a group *A* we let Inv(*A*) denote the sequence of

invariants of class A, we call it the sequence of invariants of A.

Let L(E, s) be the canonical L-function of E over \mathbb{Q} , $g = \operatorname{ord}_{s=1} L(E, s)$, $\varepsilon = (-1)^{g-1}$.

If G is a group of order 2 with generator σ and A is a $\mathbb{Z}_{l}[G]$ -module, then for $v \in \{0, 1\}$ we let A^{v} denote the submodule $(1 - (-1)^{v} \varepsilon \sigma)A$. Then A is the direct sum of A^{0} and A^{1} and σ acts on A^{v} via multiplication by $(-1)^{v-1} \varepsilon$.

Let $S_M = S(K, E_M)$, $G = G(K/\mathbb{Q})$. We are interested in the sequence $Inv(S_M^{\nu})$. For the formulation of the results we need some more notations.

Let $m'(\lambda)$ be the maximal nonnegative integer such that $P_{\lambda} \in l^{m'(\lambda)}E(K_{\lambda})$. We let $m(\lambda) = m'(\lambda)$ if $m'(\lambda) < n(\lambda)$, $m(\lambda) = \infty$ otherwise. Let $m_r = \min m(\lambda)$ when λ runs through Λ' . In particular, l^{m_0} is the maximal power of l which divides P_1 , so $m_0 < \infty \Leftrightarrow P_1$ has infinite order. Let $m = \min_{r \ge 0} m_r$.

The condition $m < \infty$ is equivalent to the condition $T \neq \{0\}$. It is the generalization of the condition that P_1 has infinite order.

Conjecture A. $T \neq \{0\}$.

Assume for the following that Conjecture A is true (for the field K and the prime 1). Let f be the minimal r such that $m_r < \infty$. In particular, $f = 0 \Leftrightarrow P_1$ has infinite order.

We let (r) = 1 if r is odd, (r) = 0 if r is even. We have

Theorem 1. Suppose Conjecture A is true. Then the inequality $m_r \ge m_{r+1}$ holds for $r \ge 0$. Let $n > m_f$, c = f + v, where $v \in \{0, 1\}$ as usual. Then

$$Inv(S_{M}^{(c)}) = \underbrace{\dots, \dots, m_{c+1}, m_{c} - m_{c+1}, \dots, m_{c+2k}}_{-m_{c+2k+1}, m_{c+2k} - m_{c+2k+1}, \dots, m_{c+2k} - m_{c+2k+1}, \dots, m_{c+2k}}$$

where $k = 0, 1, \dots$. Moreover, $\underbrace{\dots, n}_{c \text{ values}} = n, \dots, n \text{ if } v = 1.$

Theorem 1 is a special case of Theorems 2 and 3, see Sect. 2. For further results on the ordinary Selmer groups see the Sect. 2 after the proof of Theorem 3.

2 An application of the theory [1]

We use the notations and definitions from [1] with those already defined here.

First, we note that all wordings and proofs in the basic text of [1, Sects. 1-4] remain valid in the following situation provided one changes notations as is to be explained. We can use instead of the condition $m(1) < \infty$ (or, equivalently, that the Heegner point P_1 has infinite order) the weaker condition that there exists $\lambda_0 \in A^u$, where $u \ge 0$, such that $2m(\lambda_0) < n(\lambda_0)$. Then we let p_0 be some such λ_0 , to be fixed throughout, and redefine A^r to be set of products of the form $p_0p_1 \dots p_r$ with distinct primes p_1, \dots, p_r that do not divide p_0 . We let A^v denote $(1 - (-1)^{v+u} \varepsilon \sigma)A$, where v=0 or 1, as usual. Then consider $X = S_{p_0, p_0, n(p_0)} - m(p_0)/(\mathbb{Z}_l \tau_{p_0, n(p_0)})$ (see Sect. 2 of [1] for the definition of $S_{\lambda, \delta, n}$). In the case $p_0 = 1$, $S_{1, 1, \infty} = \lim_{n \to \infty} S_{1, 1, n}$ and $S_{1, 1, n} = S_{1, n} = S_M$ is the ordinary Selmer group of E over K of level $M = l^n$.

The notations n, n', n'' are used only for natural numbers $\leq n(p_0)$. Of course, the definitions in [1] must now be adapted to these new notations; for example, $m_r = m_r(p_0)$. Instead of the group $S_{1,n}$ the group $S_{p_0, p_0, n}$ must be used.

In the sequence (24) the group $(E(K)/M)^{\nu}$ must be replaced by the group $\mathbb{Z}/M'\tau_{p_0,n'}$, where $n'=n+m_0$. To use (38) with the isomorphism β_3^{ν} it is necessary to require that $3m(p_0) < n(p_0)$. When $p_0 = 1$ we return to the original setup.

Now generalize this further: We fix p_0 for which we require only that the sequence $\{m_r\}$ becomes eventually finite, $m_r < \infty$ for some $r \ge 0$. Or, equivalently, we require that $\{\tau_{\lambda,n}\} \neq \{0\}$ (λ runs through the set Λ). Then we let f denote the minimal r such that $m_r < \infty$ and if $p_0 > 1$ we require moreover that $\theta m_f < m(p_0)$, where $\theta = 2$ or 3 (as may be needed).

If A is a finite \mathbb{Z}_{i} -module, then, for $j \ge 1$, $\{inv_{j}(A)\}$ denotes the sequence of invariants of A (see Sect. 1 above). Finally, (i) denotes the representative of $i \pmod{2}$ in the set $\{0, 1\}$.

The following is a generalization of Theorem 1 in [1].

Theorem 2. Suppose Conjecture A is true. Let $r > f, n > m_f, n' = n + m_f$. Then the set $\Omega'_{n'}$ is nonempty. Moreover, for all $\omega \in \Omega'_{n'}^{-1}$, there exists p_r such that the sequence $(\omega, p_r) \in \Omega'_{n'}$. Let $\omega \in \Omega'_{n'}$. Then, for $1 \le j \le r$, $\# \varphi_{p_j,n}(\tau_{\omega(j-1),n}) = \# \tau_{\omega(j-1),n}$ and if $v \in \{0,1\}$ is such that r > f + v, then, for $1 + v + f \le j \le r$, c = f + v, we have

$$\# \varphi_{p_j,n}^{(c)}(\text{mod}\,\varphi_{\omega(j-1),n}^{(c)}) = m_{(j,(c))-1} - m_{(j,(c))} = \text{inv}_j(S_{p_0,p_0,n}^{(c)})$$

The proof duplicates the proof of Theorem 1 of [1] (the case f=0) if we note that $\forall k \ge f \exists \lambda \in \Lambda^k$ such that $m(\lambda) = m_k$ and $\# T^{\nu}_{\lambda,n} = \operatorname{inv}_{k+1}(S^{\nu}_{p_0,p_0,n})$ for $\nu = 0$ and $\nu = 1$. This is a consequence of the analog of [1, Proposition 8] (proved analogously) where condition 3) is replaced by the condition $\# \varphi^{\alpha}_{q,n'}(\mod \Phi^{\alpha}_{\delta,n'}) = \# T^{\alpha}_{\delta,n}$. \Box

Furthermore, we get

Theorem 3. Suppose Conjecture A is true. Then $\exists p_0 p_1 \dots p_{2f+1} \in A_n^{2f+1}$ such that for $1 \leq i \leq f+1$ ord_i $\psi_{p_{f+1},n'}(\eta_i) = m_f$, where $\eta_i = \tau_{p_0 p_1 \dots p_{j+\frac{1}{2}-1,n'}}$. Then the subgroup of $S_{p_0,p_0,n}^{(f+1)}$ generated by η_i is isomorphic to the group $\sum_{i=1}^{\infty} \mathbb{Z}/M$. In particular, for $1 \leq j \leq f+1$ we have that $\operatorname{inv}_j(S_{p_0,p_0,n}^{(f+1)}) = n$.

Proof. Let $\eta'_1 = p_0 p'_1 \dots p'_f \in A^f_{m_f+1}$ is such that $m(\eta'_1) = m_f$. By means of [1, Proposition 8] we can, by induction, replace p'_1, \dots, p'_f by p_1, \dots, p_f such that $\eta_1 = p_0 \dots p_f \in A^f_{n'}$ and $m(\eta_1) = m_f$ (this step is trivial when f = 0). Then we again use [1, Proposition 8] (which is true for r = k as well, see the proof) and by induction find a suitable η_i . Because of [1, Proposition 1] and (for f > 0) the condition $\tau_{\lambda,n'} = 0 \quad \forall \lambda \in A^{f^{-1}}_{n'}$ it then follows that $\eta_i \in S^{(f+1)}_{p_0, p_0, n}$ [we recall that complex conjugation acts on $\tau_{\lambda,n'}$ as multiplication by $(-1)^r \varepsilon$ if $\lambda \in A'_{n'}$). We set $R_{ij} = \varphi_{p_f+j,n'}(\eta_i)$ for $1 \leq i, j \leq f+1$. Then $R_{ij} = 0$ for j < i because (see [1, Sect. 1]) $\psi_p(\tau_{\lambda,n'}) = 0$ when $p \mid \lambda$. We have $R_{ii} \in l^{m_j}(\mathbb{Z}/M)^*$. If $\sum \alpha_i \eta_i = 0$, then by applying to this identity the characters φ_{p_f+j} for $j=1, \dots, f+1$ we obtain that $\alpha_i \equiv 0 \pmod{M}$. \Box

Hence Theorems 2 and 3 fully determine the sequence of invariants for $S_{po,P,o,r}^{(f+1)}$. Further, we suppose that $p_0 = 1$ and $\{\tau_{\lambda,n}\} \neq \{0\}$. The group $S^{\nu} = \varinjlim S_{ln}^{\mu} S_{ln}^{\nu}$ is isomorphic to a direct sum of $(\mathbb{Q}_l/\mathbb{Z}_l)^{r^{\nu}}$ and a finite group \mathscr{X}^{ν} . The group S_{ln}^{ν} coincides with the maximal *l*ⁿ-torsion subgroup of S^{ν} and with the Selmer group of level l^n for E^{ν} over \mathbb{Q} . Here E^{ν} is E if $(-1)^{\nu+1}\varepsilon = 1$, and E^{ν} is the form of E over K otherwise. A priori, rank $E^{\nu}(\mathbb{Q}) \leq r^{\nu}$, and equality is equivalent to the statement that $\coprod (\mathbb{Q}, E^{\nu})_{l^{\infty}}$ is a finite group, which will then be isomorphic to \mathscr{X}^{ν} . We have

Theorem 4. Suppose Conjecture A is true. Then $r^{(f+1)} = f+1$, $r^{(f)} \leq f$, and $f-r^{(f)}$ is even. For $j \geq 1 + v + f$ in $v_{j-r^{(c)}}(\mathscr{X}^{(c)}) = m_{(j,(c))-1} - m_{(j,(c))}$.

Proof. Because of Theorems 2 and 3 it is enough to explain why $f-r^{(f)}$ is even. From Theorem 2 we have that the (parity of nonzero invariants of $\mathscr{X}^{(f)}$ with index $\geq f+1-r^{(f)}$) is even, but the common parity of nonzero invariants of $\mathscr{X}^{(f)}$ is even because of the existence of a non-degenerate alternating Cassels form on $\mathscr{X}^{(f)}$. Hence $f-r^{(f)}$ is even.

Let $g^{\nu} = \operatorname{ord}_{s=1} L(E^{\nu}, s)$. We recall that according to the conjecture of Birch and Swinnerton-Dyer, $g^{\nu} = \operatorname{rank} E^{\nu}(\mathbb{Q})$. Since $(-1)^{g^{\nu}} = -\varepsilon$ or ε according as $E^{\nu} = E$ or $E^{\nu} = \operatorname{form}$ of E over K, we have from Theorem 4:

Theorem 5. Suppose Conjecture A is true. Then $r^v - g^v$ is even for v = 0 and v = 1. \Box

If f and m are known, then we have an algorithm (see the beginning of this section, and Sect. 4 of [1]) for computing some n' and $q = p_{f+1} \dots p_{2f+1} \in A_n^{f+1}$ such that n' > 3m(q), $\min_r n_r(q) = m$, with a parametrization of $\mathcal{Y} = S_{q,q,n}^{(f+1)}$, where n = n' - m(q), by finite linear combinations of elements of $\{\tau_{\lambda,n'}\}$. Moreover, such a procedure can be combined with the selection of $p_0 \dots p_f$ ($p_0 = 1$) such that $p_0 \dots p_{2f+1} \in A_{n'}^{2f+1}$ and $\operatorname{ord}_i R_{ii} = \operatorname{ord}_i (m(\eta_i)) = n' - n$ for $1 \leq i \leq f+1$. Then (see the proof of Theorem 3) the group $\mathcal{X} \subset S_M^{(f+1)}$ generated by η_i is isomorphic to the group $\sum_{i=1}^{f+1} \mathbb{Z}/M$ and its pairing with $\sum_{i=1}^{j=1} \mathbb{Z}/M \varphi_{p_i+f,n}^{(f+1)}$ is non-degenerate. Hence $S_M^{(f+1)}$ is the direct sum of \mathcal{X} and $\mathcal{W} = S_M^{(f+1)} \cap \mathcal{Y} \simeq \mathcal{X}^{(f+1)}$. The parametrization for \mathcal{Y} induces a parametrization for \mathcal{W} and, as a consequence, we obtain its complete structure. In particular, we have an algorithm for computing the sequence of invariants for $\mathcal{X}^{(f+1)}$.

By using Proposition 9 of [1] (with the condition $n > m_0$ replaced by $n > m_{r-1}$) we have that for $p_1 \dots p_j \in \Lambda_n^j$ with $m(p_1 \dots p_j) = m < n$, the characters $\varphi_{p_1,n}^{(j)}, \dots, \varphi_{p_j,n}^{(j)}$ generate Hom $(S_M^{(j)}, \mathbb{Z}/M)$. So we can apply this to the effective solution of the problem when a principal homogeneous space over E has a rational point, in the same vein as at the end of [1] for the case f=0.

We recall that we considered $l \in B(E)$ [see Sect. 1 for the definition of B(E)]. For $l \notin B(E)$ the theory in [1] and above holds with modifications in the manner of [2]. Let l now be an arbitrary rational prime. In particular, $\tau_{\lambda,n} \in H^1(K, E_M)$ is defined for all $\lambda \in \Lambda_{n+k_0}^{-1}$, where $l^{k_0/2} E(\mathbb{K})_{l^{\infty}} = 0$, \mathbb{K} the composite of K_{λ} for all $\lambda \in \Lambda [k_0 = 0$ for $l \in B(E)$].

We let $U_M \subset E(K)/M, H, S \subset H$ denote respectively the groups $E(K)_{tor}/M$, $\varinjlim H^1(K, E_M), \varinjlim S(K, E_M)$. We have the exact sequence $0 \to U_M \to H^1(K, E_M) \to H_M$ $\to E(K)_M \to 0$ and we identify the group $H^1(K, E_M)/U_M$ with its image in H_M . We recall that, for $l \in B(E), E(K)_{l\infty} = 0$ and we identified $H^1(K, E_M), S(K, E_M)$ with H_M , S_M , respectively. We let $\tau'_{\lambda,n}$ be the image of $\tau_{\lambda,n}$ in H_M , and for $n \ge 1, k \ge k_0, r \ge 0$, V_{nk}^r is the subgroup of H_M generated by $\tau'_{\lambda,n}$ when λ runs through Λ'_{n+k} . We say that $\{\tau_{\lambda,n}\}$ is a strong nonzero system if $\exists r \ge 0$ such that

$$\forall k \ge k_0 \; \exists n \mid V_{n,k}^r \neq 0. \tag{2}$$

There exists $k(r) \ge k_0$ such that the condition (2) is equivalent to the condition that $\exists n \mid V_{n,k(r)}^r \neq 0$. We know that, for $l \in B(E)$, k(r) = 0 satisfies this property. We now formulate

Conjecture B. For all l, $\{\tau_{\lambda,n}\}$ is a strong nonzero system.

For $l \in B(E)$, this is equivalent to the statement that $\{\tau_{\lambda,n}\} \neq 0$.

Conjecture C. $m \neq 0$ for only a finite set of primes in B(E).

If A is a $\mathbb{Z}[1,\sigma]$ -module and $v \in \{0,1\}$, then $A^{v} := \{b \in A \mid \sigma b = (-1)^{v+1} \varepsilon b\}$.

Let $SD = l^{m}S$, so $SD^{\nu} \simeq (\mathbf{Q}_{l}/\mathbf{Z}_{l})^{r^{\nu}}$. Let $l \in B(E)$. Because of the relation $l^{k}\tau'_{\lambda,n+k} = \tau'_{\lambda,n}$ (which is true for an arbitrary l) and the relation $l^{m_{f+1}}\mathcal{X}^{(f+1)} = 0$, it then follows that $V_{n,m_{f+1}}^{f} \subset SD_{M}^{(f+1)}$. From Theorem 3 we have that $\forall k \ge m_{f} \quad V_{n,k}^{f} = l^{m_{f}}SD^{(f+1)}$. For arbitrary $l \exists k_{1}, k_{2}$ such that for $k \ge k_{1}$ $l^{k_{2}}SD_{M}^{(f+1)} \subset V_{n,k}^{f} \subset SD_{M}^{(f+1)}$.

Interpolating the situation of the case f=0 we formulate

Conjecture₁ **D.** There exist $v \in \{0, 1\}$ and a subgroup $V \subset (E(K)/E(K)_{tor})^v$ such that $1 \leq \operatorname{rank} V \equiv v \pmod{2}$ and for all sufficiently large k and all n, one has $V_{n,k}^a = V \pmod{(E(K)/E(K)_{tor})}$, where $a = \operatorname{rank} V - 1$.

Conjecture D, by definition, is the union $\forall l$ of Conjectures_l D with a universal V (independent of l). We note that such V is uniquely determined (by the usual description of a lattice over \mathbb{Z} by its completions) of it exists.

It is clear that $2V \in E^{\nu}(\mathbb{Q})/E^{\nu}(\mathbb{Q})_{tor}$.

For the following implications we use the arguments above with the Theorems 2-5 [with a natural modification for $l \notin B(E)$].

First, Conjecture, D implies that $\{\tau_{\lambda,n}\}$ is a strong nonzero system with f=a(for the last statement we use the Propositions 1, 2, and 5 of [1]), rank $E^{\nu}(\mathbb{Q})$ = rank V, $r^{1-\nu} < \operatorname{rank} V$, $\coprod (\mathbb{Q}, E^{\nu})_{l^{\infty}}$ is finite. Moreover, if $l \in B(E)$, then $V \otimes \mathbb{Z}_{l} = l^{m_{f}}(E^{\nu}(\mathbb{Q}) \otimes \mathbb{Z}_{l})$, $[\coprod (\mathbb{Q}, E^{\nu})_{l^{\infty}}] | l^{2m_{f}}$, $l^{m_{f}} \coprod (\mathbb{Q}, E^{\nu})_{l^{\infty}} = 0$, rank $E^{\nu}(\mathbb{Q}) \equiv g^{\nu}$ $\equiv \nu \pmod{2}$, $r^{1-\nu} \equiv g^{1-\nu} \equiv 1-\nu \pmod{2}$.

¹ In [3] $\tau_{\lambda,n}$ is defined for all $\lambda \in \Lambda_n$ as in the case $l \in B(E)$

Conjecture_l D is equivalent to the statement: $\{\tau_{\lambda,n}\}$ is a strong nonzero system and $\coprod (\mathbb{Q}, E^{(f+1)})_{l^{\infty}}$ is finite.

We note that $\exists k_3$, which is zero for $l \in B(E)$, such that if the condition from Conjecture, D holds with some $k' \ge k_3$ then it holds for all $k \ge k'$.

From Conjecture D we have, with the union of consequences from Conjectures, D, that Conjecture C holds and $\coprod (\mathbb{Q}, E^{\nu})$ is finite. Conjecture D is equivalent to the statement: Conjectures B and C hold, f + 1 is independent of l, $\coprod (\mathbb{Q}, E^{(f+1)})$ is finite; for only a finite set of $l \in B(E)$ inv_{f+1-r^{1-v}} $\mathscr{X}^{1-\nu} \neq 0$. In particular, Conjecture D holds when Conjectures B and C hold and $\coprod (K, E)$ is finite.

Of course, for the case that the Heegner point P_1 has infinite order (f=0)Conjecture D holds with v=1, $V=\mathbb{Z}P_1(\text{mod }E(K)_{\text{tor}})$.

Recall that $g = \operatorname{ord}_{s=1} L(E, s)$. It is known that there exists an imaginary quadratic field K such that $g^0 + g^1 - g = 1$ or 0 according as g is even or odd. For $g \leq 1$ it is known that rank $E(\mathbb{Q}) = g$ and $\prod (\mathbb{Q}, E)$ is finite. Let g > 1 and for K as above $g = g^{v'}$. Then $\operatorname{ord}_{s=1} L(E, K, s) = g^{v'} + g^{1-v'} > 1$, so P_1 has finite order by the formula of Gross and Zagier. Suppose that for K Conjecture, D holds for some l. Then v = v' because otherwise $g^{1-v'} = f + 1 > 1$ but $g^{1-v'} \leq 1$. So we have for $E = E^v$ all consequences of the Conjecture, D (see above), in particular, that rank $E(\mathbb{Q}) = \operatorname{rank} V$ and $\prod (\mathbb{Q}, E)_{l^{\infty}}$ is finite. If Conjecture D holds for K, we also have that $\prod (\mathbb{Q}, E)$ is finite and rank $E(\mathbb{Q}) \equiv g(\operatorname{mod} 2)$. Of course, rank $E(\mathbb{Q}) = g$ if the equality $g = \operatorname{rank} V$ holds.

References

- 1. Kolyvagin, V.A.: On the structure of Shafarevich-Tate groups. Proceedings of USA-USSR Symposium on Algebraic Geometry, Chicago, 1989 (Lect. Notes Math. vol. 1479) Berlin Heidelberg New York: Springer 1991
- 2. Kolyvagin, V.A.: Euler systems, Birkhäuser volume in honor of Grothendieck. Progr. Math. 87, 435–483 (1990)
- 3. Kolyvagin, V.A.: On the Mordell-Weil group and the Shafarevich-Tate group of modular elliptic curves. Proceedings of ICM-90 in Kyoto (to appear)