Math. Ann. 291, 253-259 (1991) mﬂm

@© Springer-Verlag 1991

On the structure of Selmer groups *
V. A. Kolyvagin
Steklov Mathematical Institute, Vavilova 42, SU-117966 Moscow, GSP-1, USSR

Received June 29, 1990; in revised form April 15, 1991

The paper contains some applications of explicit cohomology classes (which the
author has constructed earlier using Heegner points) to the theory of Selmer
groups of a modular elliptic curve. Moreover, some generalizations of Selmer
groups are considered.

The case when the Heegner point over the imaginary-quadratic field has infinite
order was studied in the work [1]. In fact, the theory of [1] is valid under a more
general assumption which is, hypothetically, always true and discussed below.

For the convenience of the reader, we recall in part 1 the definitions of the
Selmer groups and of our explicit cohomology classes, and formulate some of our
results, The second part is essentially based on the work [1] and requires some
familiarity with it. The second part contains proofs of results for / € B(E) (see below
for notations), formulations of corresponding results for I ¢ B(E), and some global
consequences of these results.

1 Selmer groups and explicit cohomology classes

Let E be an elliptic curve over the field of rational numbers Q. For an arbitrary
abelian group A and a natural number M welet 4,, denote the maximal M-torsion
subgroup of A. We use the abbreviation A/M = A4/MA. Let E,,=E(@),,. If R is
some extension of @, then the exact sequence 0— E,,— E(R)— E(R)—0 induces the
€xact sequence

0—>E(R)/M—H(R, E,)—H'R, E) 0. 1)

If L/R is a Galois extension, then G(L/R) denotes its Galois group,
H'(R, 4):= HY(G(R/R), 4) for a G(R/R)-module 4, H'(R, E):=H'(R, E(R)).

\ﬁ-
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Now let R be a finite extension of Q. For a place v of R, we let R(v) denote the
corresponding completion of R, for x € H(R, E,,), x(v) denotes its natural image in
HR(v), Ey,). The Selmer group S(R, E,,)C H'(R, E,,), by definition, consists of all
elements x such that for all places v of R, x(v)e E(R(v))/M. We recall that the
Shafarevich-Tate group] I (R, E) is ker(H*(R, E)— I] H'(R(v),E)), so (1) induces
the exact sequence:

0—E(R)/M —S(R, E\)—~11I(R, E),,—0.

By the weak Mordell-Weil theorem, the Selmer group S(K, E,,) is finite,
by the Mordell-Weil theorem, E(R)~F x Z™"*E® where F~E(R),, is finite,
O0<rankE(R)eZ.

It is conjectured that] [ [(R, E) is finite. Only recently Rubin and the author
proved this conjecture in some cases. I shall give some examples below.

We suppose further that E is modular. Let N be the conductor of E,
7: X o{ N)— E be a modular parametrization. Here X ((N)is the modular curve over
@ which parametrizes isomorphism classes of isogenies of elliptic curves with
cyclic kernel of order N. We note that, according to the Taniyama-Shimura-Weil
conjecture, every elliptic curve over @ is modular.

We now define explicit cohomology classes, we start from the definition of
Heegner points. Let K =Q(\/5) be a field of discriminant D such that
0> D=[](mod4N), D+ —3, —4. We fix an ideal i, of the ring of integers O, of K
such that Q,/i, ~Z/NZ (such an ideal exists because of the conditions on D). If
AeNN, let K, be the ring class field of K of conductor 4. It is a finite abelian
extension of K. In particular, K, is the maximal abelian unramified extension of K.
If(A,N)=1,welet 0,=Z+10,,i,=1i,n0,, z, will be the point of X (N) rational
over K, corresponding to the class of theisogeny €/0,—C/i; ! (herei; ' D 0, is the
inverse of i, in the group of proper 0,-ideals). We set y, =y(z;) € E(K,), P, € E(K)is
the norm of y, from K, to K. The points y,, P, are called Heegner points.

Let @ be End(E), 0=0Q®Q. Let I be a ratlonal prime, T'= }LrgEln be the Tate-
module and @ = ORZ,. We let B(E) denote the set of odd rational primes which do
not divide the discriminant of ¢ and for which the natural representation
0:G(Q/Q)—>Aut, T is surjective. It is known (from the theory of complex
multiplication and Serre’s theory, resp.) that almost all (all but a finite number of)
primes belong to B(E). For example, if O=Z and N is squarefree, then =11
belongs to B(E) according to a theorem of Mazur.

In my paper “Euler systems” I proved that rank E(K)=1 and][[(K, E) is finite
when P, has infinite order. Then, in the paper “On the structure of Shafarevich-
Tate groups” I determined the structure of [1[(K, E),.. for [ € B(E), under the same
condition. Moreover, our explicit cohomology classes give information on the
structure of S(K, E;») under some more general condition (which, hypothetically,
always holds). It will be discussed later, now we continue with the definition of the
cohomology classes.

We fix a prime l e B(E). Further in the paper we use the notation por py, where
keN, only for rational primes which do not divide N, remain prime in K and
satisfy n(p):=ord,(p+1,a,)>1, wherea,=p+1~ [E(Z/p)] E is the reduction of
modulo p. For natural r we let A"= {p, . p,} denote the set of all products of 7
distinct such primes. The set A, by definition, consists only of py:=1. We let
A=) A" r>0, Led’, we let n(A) Inilil n(p), n(po):=

i 4

rz0
The set T of explicit cohomology classes consists of T, ,e H ‘(K, E,,), where A runs
through 4, 1<n<n(i), M= To define these note that the condition !e B(E)
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implies the triviality of E(K,)... So, by a spectral sequence, the restriction
homomorphism res: H'(K, E,;)—»HY(K,, E,,)°*+® i5 an isomorphism and t, , is
uniquely defined by the value res(z, ,) which we will now exhibit.

We need more notations. We use standard facts on ring class fields. If 1 <le N,
then the natural homomorphism G(K /K ,) H G(K /K ;) is an isomorphism and

pla
we also have G(K /K ) - G(K /K, }>Z/(p+ 1)
For each p, fix a generator t,€ G(K /K, ) and let ¢, also denote the correspond-

ing generator of G(K,/K,,,). Let I, = — Z jth, 1= T1 1,e Z[G(K ,/K,)]. Let K

be the composite of K, when A’ runs through the setIA We let J, =2, where g
runs through a fixed set of representatives of G(KK/K) modulo G(IK/K ), g is the
restriction of g to K, so {g} is a set of representatives of G(K,/K) modulo
G(K,/K,). Let P,=J,1,y,€ E(K,). Then

res(t,, ) =P, imod ME(K)).

Now we formulate some of our results on the invariants of S(K, E,,), see
Theorems 2 and 3 of the second part for more general statements.

There is a bijective correspondence between the set of isomorphism classes
of finite abelian [-groups and the set of sequences of nonnegative integers {n;}
such that i=1, m=n;,,, n;=0 for all sufficiently large i. Concretely,
{n;} e class of ¥ Z/I". For a group A we let Inv(4) denote the sequence of

invariants of class A4, we call it the sequence of invariants of A.

Let L(l;?, s) be the canonical L-function of E over Q, g=ord,_, I(E,s),
e=(—1)"".

If G is a group of order 2 with generator ¢ and A isa Z,[G]—modu]e then for
ve{0,1} we let A” denote the submodule (1 —(—1)’20)A. Then A is the direct sum
of A° and A! and ¢ acts on A® via multiplication by (—1)*~ 1

Let S, =S(K, E ), G=G(K/Q). We are interested in the sequence Inv(S},). For
the formulation of the results we need some more notations.

Let m'(1) be the maximal nonnegative integer such that P, e ™ PE(K ;). We let
mA)=m'(d) if m'(A)<n(l), m(A)=oco otherwise. Let m,=minm(l) when A runs
through A". In particular, I is the maximal power of ! which divides P,, so
My< 00 <> P, has infinite order. Let m= mmm

The condition m<oo is equivalent to the condition T+{0}. It is the
generalization of the condition that P, has infinite order.

Conjecture A. T+ {0}.

Assume for the following that Conjecture A is true (for the field K and the prime
.. Let f be the minimal r such that m, < co. In particular, f=0<> P, has infinite
order,

We let (r)=1if r is odd, (r)=0 if r is even. We have

Theorem 1. Suppose Conjecture A is true. Then the inequality m,=m, , ; holds for
r20. Let n>my, c=f +v, where ve {0,1} as usual. Then

InV(Sﬁ)= ...... mc_mc+ l,mc_mc+1,“., e+ 2k
cvaiues
—Meyap+ 1Mot 2k~ Met2k4 150045

Where k=0,1, ... . Moreover nif v=1.

PO n,.
c values
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Theorem 1 is a special case of Theorems 2 and 3, see Sect. 2. For further results
on the ordinary Selmer groups see the Sect. 2 after the proof of Theorem 3.

2 An application of the theory [1]

We use the notations and definitions from [1] with those already defined here,

First, we note that all wordings and proofs in the basic text of [1, Sects. 1-4]
remain valid in the following situation provided one changes notations as is to be
explained. We can use instead of the condition m(1) < o (or, equivalently, that the
Heegner point P, has infinite order) the weaker condition that there exists A, € 4%,
where 120, such that 2m(1,) <n(A;). Then we let p, be some such 1, to be fixed
throughout, and redefine 4" to be set of products of the form pyp, ... p, with
distinct primes p,, ..., p, that do not divide po. We let 4” denote (1 —(—1)"*“ca)4,
where v=0 or 1, as usual. Then consider X =S, .. upo)-mipoy/(ZiTpo, npo) (5€€
Sect. 2 of [1] for the definition of S; ; ,). In the case p,=1, S, ;, ,=lmS, ; ,and
8. 1..=351,,=S) is the ordinary Selmer group of E over K of level M=1".

The notations n, n’, n” are used only for natural numbers Zn(p,). Of course, the
definitions in 1] must now be adapted to these new notations; for example,
m,=m,(p,). Instead of the group S, , the group S,  ,, , must be used.

In the sequence (24) the group (E(K)/M)’ must be replaced by the group
Z/M't,, ., wheren'=n+m,. To use (38) with the isomorphism B3 it is necessary to
require that 3m(p,) <n(p,). When p,=1 we return to the original setup.

Now generalize this further: We fix p, for which we require only that the
sequence {m,} becomes eventually finite, m, < co for some r=0. Or, equivalently,
we require that {t, ,} + {0} (4 runs through the set A). Then we let f denote the
minimal r such that m,<oo and if p,>1 we require moreover that m, <m(p),
where 6=2 or 3 (as may be needed).

If 4 is a finite Z,-module, then, for j>1, {inv;(4)} denotes the sequence of
invariants of 4 (see Sect. 1 above). Finally, (i) denotes the representative of i(mod2)
in the set {0,1}.

The following is a generalization of Theorem 1 in [1].

Theorem 2. Suppose Conjecture A is true. Letr>f,n>mz,n'=n+m,. Then the set
Q. is nonempty. Moreover, for all we ™", there exists p, such that the sequence
(@,p,) €. Let we Q. Then, for 1 SjSr, %0, (Taii-1),)= ¥Tog—1),n d I
ve{0,1} is such that r>f +v, then, for 1 +v+ f S j<r, c=f+v, we have

# @) (mod B} ) )=, ) — 1 — M, (=107, (S}, ) -
The proof duplicates the proof of Theorem 1 of [1] (the case f=0) if we note
that Vk> f 34 € A* such that m(A)=m, and # T} ,=inv, (S’ ,,.») for v=0and

v=1. This is a consequence of the analog of [1, Proposition 8] (proved
analogously) where condition 3) is replaced by the condition # ¢Z ,(mod 5 )

=4 ’I:{m a
Furthermore, we get

Theorem 3. Suppose Conjecture A is true. Then 3pop; ... py ;41 € A ** such that
Jor 1<i< f+1o0rdyy,,,, wln)=m, where '1:=Tpop,...?l,i_,,,.,, Then the subgroup

Po, po,8
1< j< f+1 we have that inv,(SY D ) =n.

of SY*V eenerated by 1, is isomorphic to the group Y Z/M. In particular, for
i1



On the structure of Selmer groups 257

Proof. Let ny=pop)...py€ A}, ,y is such that m(y;)=m,. By means of [1,
Proposition 8] we can, by induction, replace pj,...,p; by py,...,p, such that
f11="Do --- Py € A} and m(n,)=m, (this step is trivial when f=0). Then we again use
[1, Proposition 8] (which is true for r =k as well, see the proof) and by induction
find a suitable . Because of [1, Proposition 1] and (for f>0) the condition
T,w=0 Viea[~" it then follows that n,eSY"" [we recall that complex
conjugation acts on 71, , as multiplication by (—1)e if Aed;). We set
Rij=®p,.;nw(m) for 154, j< f+1. Then R;;=0 for j <i because (sce [1, Sect. 11)
¥, (t2,)=0 when p|A. We have R;; e "™/(Z/M)*. If } an;=0, then by applying to
this identity the characters ¢, , for j=1,..,f+1 we obtain that
w,=0modM). [

Hence Theorems 2 and 3 fully determine the sequence of invariants for S¢ %0, .

Further, we suppose that po=1 and {7, ,}+{0}. The group S$'=lim§;. is
isomorphic to a direct sum of (Q/Z,)" and a finite group 2. The group S}
coincides with the maximal I-torsion subgroup of S* and with the Selmer group of
level I" for E* over Q. Here E*is E if (—1)**'¢=1, and E" is the form of E over K
otherwise. A priori, rank E"(@Q) <r’, and equality is equivalent to the statement that
HI(®, E"), is a finite group, which will then be isomorphic to Z*. We have

Theorem 4. Suppose Conjecture A is true. Then YtV =f 4+1,r"< f, and f—rV is
even. For jg 1 + v+f il’lV '_r(c)(g(c)) = m(]’ (C))“ 1 - m(j’ (C))'

Proof. Because of Theorems 2 and 3 it is enough to explain why f—r"" is even.
From Theorem 2 we have that the (parity of nonzero invariants of 2 with index
2 f+1—rY)is even, but the common parity of nonzero invariants of " is even
because of the existence of a non-degenerate alternating Cassels form on 2.
Hence f—r"Y is even.

Let g*=ord,. ; L(E* s). We recall that according to the conjecture of Birch and
Swinnerton-Dyer, g =rank E'(@Q). Since (—1)?" = —¢ or ¢ according as E*'=E or
E'=form of E over K, we have from Theorem 4:

Theorem 5. Suppose Conjecture A is true. Then r*—g" is even for v=0 and
v=1. [

If f and m are known, then we have an algorithm (see the beginning of this
section, and Sect. 4 of [1]) for computing some n’ and g=p;, ... p, ;.1 €45* ! such

that n'>3m(q), minm/(g)=m, with a parametrization of #=S{}", where
r

n=n'~m(g), by finite linear combinations of elements of {r, , }. Moreover, such a
procedure can be combined with the selection of py,...p; (po=1) such that
Do ... Papy €A+ and ord, Ry =ordy(m(n))=n'—nfor 1 i< f +1. Then (see the

proof of Theorem 3) the group 2 cSY 'Y generated by #; is isomorphic to the
F+1 +1

group ¥ Z/M and its pairing with Y Z/Mo}/*) is non-degenerate. Hence

S¢+o is tllle direct sum of % and ¥ = Si{ + V@ ~ gV + Y, The parametrization for
¥ induces a parametrization for %" and, as a consequence, we obtain its complete
Structure. In particular, we have an algorithm for computing the sequence of
nvariants for Y +1.

By using Proposition 9 of [1] (with the condition n>m, replaced by n>m, _ ,)
we have that for p, ... p;€ A} with m(p, ... p)=m<n, the characters ¢ ., ..., 02,
generate Hom(S$), Z/M). So we can apply this to the effective solution of the
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problem when a principal homogeneous space over E has a rational point, in the
same vein as at the end of [1] for the case f=0.

We recall that we considered I e B(E) [see Sect. 1 for the definition of B(E)]. For
¢ B(E) the theory in [1] and above holds with modifications in the manner of [2].
Let I now be an arbitrary rational prime. In particular, 7, ,€ H(K, E,) is defined
forall Ae 4,,,,", where [*2E(K),.. =0, K the composite of K, for all Ae A [ko=0
for ie B(E)].

We let U, CEK)/M,H,SCH denote respectively the groups E(K),./M,
lim H'(K, E,), lim S(K, E,;). We have the exact sequence 0~ U, —~H YK,E\x)—H,,
— E(K),—0 and we identify the group H'(K, E,)/U,, with its image in H,,. We
recall that, for [ e B(E), E(K),» =0 and we identified H(K, E,), S(K, E,,) with H,,,
Sa respectively. We let 7, be the image of 7, , in Hy,, and forn=1, k> kg, r =0,
¥}, is the subgroup of H), generated by 1) , when A runs through A4; ,,. We say that
{,.a} is a strong nonzero system if 3»>0 such that

V2 ko 3n| V] 0. @

There exists k(r) = k, such that the condition (2) is equivalent to the condition that
In| V] s *+0. We know that, for e B(E), k(r)=0 satisfies this property. We now
formulate

Conjecture B. For all I, {, ,} is a strong nonzero system.
For le B(E), this is equivalent to the statement that {z, ,} 0.
Conjecture C. m==0 for only a finite set of primes in B(E).

If A is a Z[1,6]-module and ve {0,1}, then A*:={be A|ob=(—1)"*1¢b}.

Let SD=1I"S, so SD’~(@Q/Z)" . Let leB(E). Because of the relation
It s =T (Which is true for an arbitrary I) and the relation I™ &V 1=,
it then follows that ¥/, CSD{*". From Theorem 3 we have that
Ykzm, V] =I"SDY*Y, For arbitrary | 3k,,k, such that for k2k,
JeSDYF VS, CSDYG .

Interpolating the sitvation of the case f=0 we formulate

Conjecture, D. There exist ve{0,1} and a subgroup V C(E(K)/E(K),,,)” such that
1<rankV=v(mod2) and for all sufficiently large k and all n, one has
Vax= V(mod M(E(K)/E(K),y,)), where a=rank V—1.

Conjecture D, by definition, is the union V1 of Conjectures, D with a universal
¥ (independent of {). We note that such V is uniquely determined (by the usual
description of a lattice over Z by its completions) of it exists.

It is clear that 2V C E*(Q)/E*(Q),,-

For the following implications we use the arguments above with the Theorems
2-5 [with a natural modification for /¢ B(E)].

First, Conjecture, D implies that {t, ,} is a strong nonzero system with f=4
(for the last statement we use the Propositions 1, 2, and 5 of [1]), rank E"(@
=rank¥, r'’<rankV, [11(@Q,E"),. is finite. Moreover, if /e B(E), thefi
VRZ,=I"EQQZ), [1LIQ,E)]I1P™, ™I@Q E).=0, rank E(Q)=8
=v(mod2), r' "=g! *=1—v(mod?2).

! In [3] 7, is defined for all Ae 4, as in the case /e B(E)
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Conjecture, D is equivalent to the statement: {z, ,} is a strong nonzero system
and [IT(@Q, EY *Y),., is finite.

We note that 3k, which is zero for e B(E), such that if the condition from
Conjecture; D holds with some k' = k; then it holds for all k= k'.

From Conjecture D we have, with the union of consequences from
Conjectures; D, that Conjecture C holds and [T (@, E*) is finite. Conjecture D is
equivalent to the statement: Conjectures B and C hold, f +1 is independent of /,
[ 1K@, EY*Y) is finite; for only a finite set of le B(E) inv 4y _,1-»% ' *+0. In
particular, Conjecture D holds when Conjectures B and C hold and [I[ (K, E) is
finite.

Of course, for the case that the Heegner point P, has infinite order (f=0)
Conjecture D holds with v=1, V=ZP (mod E(K),,,).

Recall that g=ord,_, L(E,s). It is known that there exists an imaginary
quadratic field K such that g®+ g’ —g =1 or 0 according as g is even or odd. For
g<1it is known that rank E(Q)=g and] 1 I(@Q, E) is finite. Let g>1 and for K as
above g=g". Then ord,_, L(E,K,s)=g" +g' "' >1, so P, has finite order by the
formula of Gross and Zagier. Suppose that for K Conjecture; D holds for some /.
Then v=1 because otherwise g* ~"'=f+1>1but g' *>' <1. So we have for E=E"
all consequences of the Conjecture; D (see above), in particular, that
rank E(@) =rank ¥ and [11(®, E);- is finite. If Conjecture D holds for K, we also
have that][] (@, E) is finite and rank E(@)=g(mod?2). Of course, rank E(Q)=g if
the equality g=rank V holds.
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