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The paper contains some applications of explicit cohomology classes (which the 
author has constructed earlier using Heegner points) to the theory of Selmer 
groups of a modular elliptic curve. Moreover, some generalizations of Selmer 
groups are considered. 

The case when the Heegner point over the imaginary-quadratic field has infinite 
order was studied in the work [-1]. In fact, the theory of [1] is valid under a more 
general assumption which is, hypothetically, always true and discussed below. 

For the convenience of the reader, we recall in part 1 the definitions of the 
Selmer groups and of our explicit cohomology classes, and formulate some of our 
results. The second part is essentially based on the work I1] and requires some 
familiarity with it. The second part contains proofs of results for l ~ B(E) (see below 
for notations), formulations of corresponding results for l ~ B(E), and some global 
consequences of these results. 

1 Selmer groups and explicit cohomology classes 

Let E be an elliptic curve over the field of rational numbers Q. For an arbitrary 
abelian group A and a natural number M we let A~ denote the maximal M-torsion 
subgroup of A. We use the abbreviation AIM = ALMA. Let EM = E(O.)~t. If R is 
some extension of ~ ,  then the exact sequence 0 ~EM ~ E(g)---,E(g)~0 induces the 
exact sequence 

O-+ E(R)/M ~ HI(R, EM)~ HI(R, E)M--*O . (I) 

If L/R is a Galois extension, then G(L/R) denotes its Galois group, 
tfl(R, A): = HI(G(R/R), A) for a G(R/R)-module A, Ht(R, E) :=  Hi(R, E(I~)). 

"It TMs paper was partly prepared during my stay at the Max-Planck-Institut fiir Mathematik in 
Bonn. I want to express my gratitude for the support and the hospitality provided by this 
institute 
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Now let R be a finite extension of Q. For a place v of R, we let R(v) denote the 
corresponding completion of R, for x ~ Hi(R, Eu), x(v) denotes its natural image in 
HI(R(v), EM). The Selmer group S(R, E•)C Hi(R, EM), by definition, consists of all 
elements x such that for all places v of R, x(v)~ E(R(v))/M. We recall that the 
Shafarevich-Tate group]_]_/(R, E) is ker(Hl(R, E)~ ]1 HI(R(v), E)), so (1) induces 
the exact sequence: v 

O-~E(R)/M-~S(R, ~,~)-qJ_I(R, E),~--,0. 

By the weak Mordell-Weil theorem, the Selmer group S(K, EM) is finite, 
by the Mordell-Weil theorem, E(R) 'F  x Z ranking), where F=E(R),o, is finite, 
0 < rank E(R) ~ 7.. 

It is conjectured tha t |  I |(R, E) is finite. Only recently Rubin and the author 
proved this conjecture in some cases. I shall give some examples below. 

We suppose further that E is modular. Let N be the conductor of E, 
7: Xo(N)~E be a modular parametrization. Here Xo(N) is the modular curve over 
Q which parametrizes isomorphism classes of isogenies of elliptic curves with 
cyclic kernel of order N. We note that, according to the Taniyama-Shimura-Weil 
conjecture, every elliptic curve over ~ is modular. 

We now define explicit cohomology classes, we start from the definition of 
Heegner points. Let K = t l ~ l / ~  ) be a field of discriminant D such that 
0 > D = l--](mod4N), D ~e - 3, - 4. We fix an ideal i~ of the ring Of integers 01 of K 
such that O~/i~ ~Ts (such an ideal exists because of the conditions on D). If 
2 e N ,  let K h be the ring class field of K of conductor 2. It is a finite abelian 
extension of K. In particular, K ~ is the maximal abelian unramified extension of K. 
If (2, N) = 1, we let Oh = Z + 20~, i h = i~ c~ Oh, zh will be the point of Xo(N ) rational 
over K~ corresponding to the class of the isogeny IE/O~C/i;  ~ (here i~- ~ 30x  is the 
inverse of i h in the group of proper Ox-ideals). We set Yz = y(zx) E E(Kh), P1 ~ E(K) is 
the norm of y~ from K~ to K. The points Yh, P~ are called Heegner points. 

Let d~ be End(E), Q = t~| Let I be a rational prime, T= l imE~  be the Tare- 
module and ~ = d~| We let B(E) denote the set of odd rational'---:- primes which do 
not divide the discriminant of (9 and for which the natural representation 
o:G(Q,/Q)~Aut~T is surjective. It is known (from the theory of complex 
multiplication and Serre's theory, resp.) that almost all (all but a finite number of) 
primes belong to B(E). For example, if (9=7. and N is squarefree, then 1>__11 
belongs to B(E) according to a theorem of Mazur. 

In my paper "Euler systems" I proved that rankE(K) = 1 andLLl(K, E) is finite 
when P~ has infinite order. Then, in the paper "On the structure of Shafarevich- 
Tate groups" I determined the structure of I l l (K,  E)~o~ for l~ B(E), under the same 
condition. Moreover, our explicit cohomology classes give information on the 
structure of S(K, E~,,) under some more general condition (which, hypothetically, 
always holds). It will be discussed later, now we continue with the definition of the 
cohomology classes. 

We fix a prime l ~ B(E). Further in the paper we use the notation p or Pk, where 
k e N, only for rational primes which do not divide N, remain prime in K and 
satisfy n(p): = ordi(p + 1, a~,) > 1, where ap = p + 1 - [/7,(Z/p)], g is the reduction of E 
modulo p. For  natural r we let A' = {p~ ... p,} denote the set of all products of r 
distinct such primes. The set A ~ by definition, consists only of Po : = 1. We let 
A = U A'. If r > 0, 2 e A', we let n().) = mian n(p), n(Po): = oo. 

r~0 
The set T of explicit cohomology classes consists ofz~.,eH~(K, am), where 2 runs 

through A, 1 <n_< n(2), M =  l ~. To define these note that the condition l~ B(E) 
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implies the triviality of E(Ka)t~. So, by a spectral sequence, the restriction 
homomorphism res :Hi(K, Eu)~HI(K~, EM) Gtx~/r) is an isomorphism and Za.n is 
uniquely defined by the value res(zx, n) which we will now exhibit. 

We need more notations. We use standard facts on ring class fields. If 1 < 2 e IN, 
then the natural homomorphism G(K~/K O---r p~a G(Kp/K1) is an isomorphism and 

we also have G(KdK~/p)~G(Kp/K1)-~-rZ/(p+ 1). 
For each p, fix a generator tp e G(Kp/KO and let tp also denote the correspond- 

P 

Jng generator of G(Ka/Kx/p). Let Ip= - ~, jt~, 14= I-[ IpeZ[G(K~/KO]. Let K 
j=l pl~ 

be the composite of Ka, when 2' runs through the set d. We let Jz = Z'g, where g 
runs through a fixed set of representatives of G(~/K) modulo G(~/K1) , ~ is the 
restriction of g to K~, so {~} is a set of representatives of G(Kz/K) modulo 
G(Kz/KO. Let Pa = Jzl~ya e E(Ka). Then 

res (x~,,) = P~(mod ME(K~)). 

Now we formulate some of our results on the invariants of S(K, EM), see 
Theorems 2 and 3 of the second part for more general statements. 

There is a bijective correspondence between the set of isomorphism classes 
of finite abelian/-groups and the set of sequences of nonnegative integers {nz} 
such that i_>_l, n~>ni+l, ni=O for all sufficiently large i. Concretely, 
{ni},~-~class of ~ Z / l  ~'. For a group A we let Inv(A) denote the sequence of 

i 

invariants of class A, we call it the sequence of invariants of A. 
Let L(E,s) be the canonical L-function of E over ~ ,  g=ord,=lL(E,s ), 

~=(-1)~-L 
If G is a group of order 2 with generator ~r and A is a Zl[G]-module, then for 

v e (0,1 } we let A" denote the submodule (1 - ( -  1)~a)A. Then A is the direct sum 
of A ~ and A I and o- acts on A ~ via multiplication by (-1)~-1e.  

Let S~r = S(K, Eu), G = G(K/ff2). We are interested in the sequence Inv(S~). For  
the formulation of the results we need some more notations. 

Let m'(2) be the maximal nonnegative integer such that Pa e Im'(a)E(K~). We let 
m(2)=m'(2) if m'(2)<n(2), m(2)=oo otherwise. Let mr=minm(2 ) when 2 runs 
through A'. In particular, 1 m~ is the maximal power of 1 which divides P1, so 
m0< oo <:~P~ has infinite order. Let m =  minm,. 

r_>0  

The condition m <oo  is equivalent to the condition T4:{0}. It is the 
generalization of the condition that P~ has infinite order. 

Conjecture A. T~= {0}. 

Assume for the following that Conjecture A is true (for the field K and the prime 
/). Let f be the minimal r such that m, < ~ .  In particular, f =  0.r PI has infinite 
order. 

We let (r)= 1 if r is odd, (r)= 0 if r is even. We have 

Theorem 1. Suppose Conjecture A is true. Then the inequality m r >_ m,+ 1 holds for 
r>.O. Let n>mf,  c = f  +v, where re{O, 1} as usual. Then 

Inv(S~) = ~ m  c -  me+ l,mc-mc+ 1 ... . .  rnc + 2k 

- - m c +  2k+ l ,  m c +  2 k - - m c +  2k+ 1 , . . .  , 

where k = 0 , 1 , . . . .  M o r e o v e r , ~  n, ..... n if v = 1. 
c va lues  
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Theorem 1 is a special case of Theorems 2 and 3, see Sect. 2. For further results 
on the ordinary Selmer groups see the Sect. 2 after the proof of Theorem 3. 

2 An application of the theory [1] 

We use the notations and definitions from [1] with those already defined here. 
First, we note that all wordings and proofs in the basic text of [1, Sects. 1-4] 

remain valid in the following situation provided one changes notations as is to be 
explained. We can use instead of the condition re(l) < c~ (or, equivalently, that the 
Heegner point PI has infinite order) the weaker condition that there exists 2o ~ A ~, 
where u > 0, such that 2m(2o) < n(2o). Then we let Po be some such 20, to be fixed 
throughout, and redefine A" to be set of products of the form POP1... Pr with 
distinct primes pl . . . .  , P, that do not divide Po. We let A ~ denote (1 - ( -  1)v + ~e~r)A, 
where v = 0  or 1, as usual. Then consider X=Spo ,  po.HCpo~_m~po~/(ZlZpo.,tpo~)(see 
Sect. 2 of [1] for the definition of S~,~,,). In the case Po = 1, SI, 1, ~ = li__~S1, l.n and 
$1,1., = St,,  =SM is the ordinary Selmer group of E over K of level M = P. 

The notations n, n', n" are used only for natural numbers =< n(p0). Of course, the 
definitions in [1] must now be adapted to these new notations; for example, 
m,=mr(Po). Instead of the group SI.n the group Spo, po, ~ must be used. 

In the sequence (24) the group (E(K)/M)" must be replaced by the group 
Z/M'Zpo.,,,, where n' = n + me. To use (38) with the isomorphism fl] it is necessary to 
require that 3m(po) < n(po). When Po = 1 we return to the original setup. 

Now generalize this further: We fix Po for which we require only that the 
sequence {m,} becomes eventually finite, m~ < oo for some r > 0, Or, equivalently, 
we require that {rz,,} 4= {0} (2 runs through the set A). Then we let f denote the 
minimal r such that mr < ov and if Po > 1 we require moreover that Omj < m(p0), 
where 0 = 2 or 3 (as may be needed). 

If A is a finite Zrmodule,  then, for j__> 1, {invj(A)} denotes the sequence of 
invariants of A (see Sect. I above)�9 Finally, (i) denotes the representative of i(mod2) 
in the set {0,1 }. 

The following is a generalization of Theorem 1 in [1]. 

Theorem 2. Suppose Conjecture A is true. Le t  r > f , n > m I ,  n' = n + m f . Then the set 
f~'., is nonempty. Moreover,  for  all to ~ IT.71, there exists p. such that the sequence 
(to, p r ) ~ , .  Le t  to~12".,. Then, for  1 <=j<=r, ~ppj,.(z,0t~_l~,~)= 4~z,o~j-l),. and if 
re{0,1} is such that r > f + v ,  then, for  1 + v +  f < j < r ,  c = f  +v,  we have 

4~ .^(c) / , - , . ,~d ~C,:) _ -  Co) ~%, ~t . . . . . .  ~cJ- 1),.) = m( j, (o) - ~ - mti,(c))- mvj (Spo ' re, .) " 

The proof duplicates the proof of Theorem 1 of [1] (the case f = 0 )  if we note 
that V k _-> f 3 ~[ ~ A ~ such that m(2) =mk and @ T~'. = invk + 1 (Spo, po..) for v = 0 and 
v = l ,  This is a consequence of the analog of [1, Proposition 8] (proved 
analogously) where condition 3) is replaced by the condmon @ ~p~,~ (mode6 ,,) 
= ~# TZ.. [ ]  

Furthermore, we get 

Theorem 3. Suppose Conjecture A is true. Then 3pop1 ... P2f + 1 ~ A 2 /  +1 such that 
for  1 _~ i_-< f + 1 ord~pp~ + ~,.,(~) = mr, where ~h = ~pop,... ~7~- ~' "'' Then the subgroup 

o f - i f +  ~) ~'po.Po, n generated by ~h is isomorphic to the group Y, Z / M .  In particular, for 
i = l  

1 <=j<=f+l  we have that " c~+1~ _ lnvj (Spo ' ~o,,) - n. 
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t i r f �9 Proof. Let r h = p o p l . . . p I ~ A ~ §  ns such that m(rl'~)=mf. By means of [1, 
Proposition 8] we can, by induction, replace pl . . . .  ,p~ by Pl . . . . .  py such that 
rh = Po. . .  Py ~ AI. " and m0h) = m r (this step is trivial when f =  0). Then we again use 
[1, Proposition 8] (which is true for r = k as well, see the proof) and by induction 
find a suitable qi- Because of [1, Proposition 1] and (for f > 0 )  the condition 

~,~o'+1~ [we recall that complex z~,,,=0 V2GA~, -1 it then follows that ' l i--po,~o,. 
conjugation acts on za,., as multiplication by (-1) '~ if 2eA', ,) .  We set 
Rij=tP~r.j  .,(qi) for 1 < i , j < f + l .  Then Ri~=O f o r j < i  because (see [1, Sect. 1]) 
~pr(Za,.,) = 0 when p l2. We have R u ~_ lms(Z/M) *. If Y, ~ir/i = 0, then by applying to 
this identity the characters q~pr+J for j = l  .. . . .  f + l  we obtain that 
~t i=0(modM). [] 

Hence Theorems 2 and 3 fully determine the sequence of invariants fnr ,~r + 1) 
Further, we suppose that p o = l  and {z~,,}:~{0}. The group S~=limS~, is 

isomorphic to a direct sum of (l~l/Zz) '~ and a finite group Y'~. The group S~, 
coincides with the maximal/"-torsion subgroup of S ~ and with the Selmer group of 
level l" for E ~ over Q. Here E ~ is E if ( -  1) "+ :e=  1, and E ~ is the form of E over K 
otherwise. A priori, rank Y(~)  < r ~, and equality is equivalent to the statement that 
L[_I(Q, Egz| is a finite group, which will then be isomorohic to ~f~, We have 

Theorem 4. Suppose Conjecture A is true. Then rcy + 1) = f + 1, r if) < f ,  and f - r  (I) is 
even. For j > 1 + v + f invj_,~o)(S((c)) = m c j, c~))- l - m~ j. (~)). 

Proof. Because of Theorems 2 and 3 it is enough to explain why f - r  cy) is even. 
From Theorem 2 we have that the (parity of nonzero invariants of Y'tY) with index 
>-_ f + 1 - r of)) is even, but the common parity of nonzero invariants of Y'ff) is even 
because of the existence of a non-degenerate alternating Cassels form on Y'tY). 
Hence f - r  ts) is even. 

Let g~ = ord,= ~ L(Y, s). We recall that according to the conjecture of Birch and 
Swinnerton-Dyer, g~= rankY(Q). Since (-1)g~= - ~  or e according as E~= E or 
F = f o r m  of E over K, we have from Theorem 4: 

Theorem 5 .  Suppose Conjecture A is true. Then r ' - g  ~ is even for  v = 0  and 
v=l.  [] 

If f and m are known, then we have an algorithm (see the beginning of this 
section, and Sect. 4 of [1]) for computing some n' and q = Pl + 1... P2y + l e A ~  ,+ 1 such 
that n'>3m(q),  m inm, (q )=m,  with a parametrization of ~r where 

n = n ' -m(q) ,  by finite linear combinations of elements of {~a,,,}. Moreover, such a 
procedure can be combined with the selection of Po ... P~ (P0 = 1) such that 
Po... P2f + 1 G A 2 !  + 1 and ordeR u = ord~(m(rh)) = n' - n for 1 < i < f + 1. Then (see the 
proof of Theorem 3) the group ~ c S ~  +1) generated by q~ is isomorphic to the 

f + l  f + l  
Z/Mq~p,+t,. is non-degenerate. Hence group y. Z / M  and its pairing with Y. ~f+1~ 

+ i=i 

S~ 1) is the direct sum of ~ and W = S~ =+11) c~ ~ "~ ~"{f + 1). The parametrization for 
induces a parametrization for ~ and, as a consequence, we obtain its complete 

structure. In particular, we have an algorithm for computing the sequence of 
invariants for t~ <f+ 1). 

By using Proposition 9 of [1] (with the condition n >mo replaced by n > m,_ a) 
the cha acters q~p,..,..., q~,,,  we have that for p t . . .  P~ ~ A~ with re(p1... P~) = m < n, r ~J) ~J) 

generate H o m ( S ~ ) , E / M ) .  So we can apply this to the effective solution of the 
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problem when a principal homogeneous space over E has a rational point, in the 
same vein as at the end of [1] for the case f = 0 .  

We recall that we considered l E B(E) [see Sect. 1 for the definition of B(E)]. For 
Ir BIE) the theory in [1] and above holds with modifications in the manner of I-2]. 
Let ! now be an arbitrary rational prime. In particular, za.. eHI(K, EM) is defined 
for all 2 e An+ k. 1, where Ik~ = 0, ~( the composite of K~ for all 2 ~ A [k o = 0 
for le  B(E)]. 

We let UMCE(K)/M,H, SCH denote respectively the groups E(K)tor/M , 
lin] H I(K, Eu), ~ S(K, E~). We have the exact sequence 0 ~ UM--* H 1 (K, EM)--* HM 
~ E ( K ) M ~ 0  and we identify the group HI(K, E~)/UM with its image in HM. We 
recall that, for l ~ B(E), E(K)~ = 0 and we identified HI(K, EM), S(K, EM) with HM, 
S~t, respectively. We let ~ .  n be the image of zz,. in HM, and for n > 1, k > ko, r > 0, 
E'.k is the subgroup of Hu generated by z~,, when ;t runs through A~ +k. We say that 
{T~,.} is a strong nonzero system if 3 r > 0  such that 

Vk >=ko 3nl V~k 4:0. (2) 

There exists k(r) > k o such that the condition (2) is equivalent to the condition that 
3 n lV.; k(,)4= 0. We know that, for Is B(E), k(r)= 0 satisfies this property. We now 
formulate 

Conjecture B. For all l, {z~,.} is a strong nonzero system. 

For l~ B(E), this is equivalent to the statement that {z~..} 4= 0. 

Conjecture C. m~O for only a finite set of primes in B(E). 

If A is a Z [ L  a]-module and v ~ {0, 1 }, then A~:= {b e A Itrb = ( - 1 )  ~+ leb}. 
Let SD=PS, so SD'"~(QdZff ~. Let IeB(E). Because of the relation 

lk~'a,, + k = z~,,(which is true for an arbitrary l) and the relation I m~ § ~ o "  + 1) = 0, 
it then follows that V~,,+,CSD~ +1). From Theorem3 we have that 
~kks~M_/+ 1,cV"~kC/";SDD(uCs++~) ~or a r b i t r a r y /  qki, k 2 such that for k>__k~ 

Interpolating the situation of the case f =  0 we formulate 

Conjeetnrez D. There exist v ~ {0, I} and a subgroup V C(E(K)/E(K)tJ ~ such that 
l=<rankV-v(mod2)  and for all sufficiently large k and all n, one has 
V~k = V(modM(E(K)/E(K)tor)), where a = r a n k  V - 1 .  

Conjecture D, by definition, is the union Vl of Conjecturest D with a universal 
V (independent of/).  We note that such V is uniquely determined (by the usual 
description of a lattice over Z by its completions) of it exists. 

It is clear that 2V (Ev(Q)/EV(lD.)tor . 
For the following implications we use the arguments above with the Theorems 

2-5 [with a natural modification for I~ B(E)]. 
First, Conjecturel D implies that {za,.} is a strong nonzero system with f=a 

(for the last statement we use the Propositions 1, 2, and 5 of [1]), rankE~(O.) 
=rankV,  r l -~<rankV,  lIl(l~,E~)~o is finite. Moreover, if I~B(E), then 
V| =/'t(E'(O_3| [l 1 lfQ, E')t| ]l 2rat, Im~LH(Q, E~)too =0,  rankE~(~)-=g ~ 
- v(mod2), r l - ' - g  I - * -  1 -v(mod2) .  

1 In [3] z~,. is defined for all 2~A. as in the case IEB(E) 
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Conjecture~ D is equivalent to the statement: {z~.,} is a strong nonzero system 
and I l l (Q,  Eff+lJ)l~ is finite. 

We note that 3k3, which is zero for leB(E), such that if the condition from 
Conjecture~ D holds with some k '>  k 3 then it holds for all k > k'. 

From Conjecture D we have, with the union of consequences from 
Conjecturesz D, that Conjecture C holds and 111 (Q, E ~) is finite. Conjecture D is 
equivalent to the statement: Conjectures B and C hold, f +  1 is independent of l, 
LLI(Q,E ~y+~) is finite; for only a finite set of leB(E) invs+~_,,-~50-~4:0.  In 
particular, Conjecture D holds when Conjectures B and C hold and HI  (K, E) is 
finite. 

Of course, for the case that the Heegner point P1 has infinite order ( f = 0 )  
Conjecture D holds with v = 1, V=ZPx(modE(K)tor ). 

Recall that g=ords= t L(E,s). It is known that there exists an imaginary 
quadratic field K such that gO+ g~ _ g  = 1 or 0 according as g is even or odd. For  
g< 1 it is known that rankE(tD) = g  andl  II(Q, E) is finite. Let g > 1 and for K as 
above g = gV'. Then ords= t L(E, K, s) = g v, + g 1 - v' > 1, so P1 has finite order by the 
formula of Gross and Zagier. Suppose that for K Conjecture~ D holds for some I. 
Then v = v' because otherwise gl - v, = f  + 1 > 1 but gt - ~' < 1. So we have for E = E v 
all consequences of the Conjecture~D (see above), in particular, that 
rankE(~) = rank V and I H  (Q, E)t~ is finite. If Conjecture D holds for K, we also 
have that J_[_[ (~, E) is finite and r ankE(~ )=  g(mod2). Of course, rankE(O,)= g if 
the equality g = rank V holds. 
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