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ABSTRACT

In [PR87] Perrin-Riou formulates a form of the Iwasawa main conjecture which relates
Heegner points to the Selmer group of an elliptic curve defined over Q, as one goes up
the anticyclotomic Z,-extension of a quadratic imaginary field K. Building on the earlier
work of Bertolini on this conjecture, and making use of the recent work of Mazur and
Rubin on Kolyvagin’s theory of Euler systems, we prove one divisibility of Perrin-Riou’s
conjectured equality. As a consequence, one obtains an upper bound on the rank of the
Mordell-Weil group E(K) in terms of Heegner points.

0. Introduction

In this paper we modify the notion of a Kolyvagin system, as defined in [MRO04], to include the
system of cohomology classes which result from the application of Kolyvagin’s derivative operators
to the Heegner point Euler system. The resulting theory yields a simplified proof of a theorem of
Kolyvagin, stated below as Theorem A. Our true sights, however, are set on the Iwasawa theory of
Heegner points in the anticyclotomic Z,-extension of a quadratic imaginary field.

Fix forever a rational prime p. If E is an elliptic curve defined over a number field L, we denote
by Sely~ (E/L) and S,(E/L) the usual p-power Selmer groups which fit into the descent sequences

0 — E(L)®Qp/Z, — Selyo(E/L) — llpe — 0
0 - E(L)®Z, — S,(E/L) — limII,» — 0.

Fix once and for all an elliptic curve F/Q with conductor N and a quadratic imaginary field K
of discriminant D # —3, —4 satisfying the Heegner hypothesis that all primes dividing N are split
in K. Let T'= T,(E) be the p-adic Tate module of E. The theory of complex multiplication gives
a family of points on the modular curve Xo(N) which are rational over abelian extensions of K.
More precisely, in Section 1.7 we will attach to every squarefree product n of rational primes inert
in K a point hy, € Xo(N)(K[n]), where K[n] is the ring class field of K of conductor n. Fixing a
modular parametrization of E by Xo(N) yields a family of points P[n] € E(K[n]) which satisfy
Euler system-like relations relative to the norm operators. To each point P[n] one applies first the
Kummer map and then Kolyvagin’s derivative operator D,, to obtain a cohomology class over K,

kin € Hip( (K, T/I,T) © Gy
where G, = Gal(K[{]/K|[1]), I, is an ideal of Z,, and
Ln p
Hy, (K, T/I,T) C H'(K,T/I,T)
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is the generalized Selmer group of Definition 1.2.2 obtained by modifying the usual local conditions
which define S,(E/K) at primes of K dividing n. The classes , form a Kolyvagin system, as defined
in Section 1.2. The class k1 € H]l:(l)(K, T) = Sp(E/K) is just the image under the Kummer map of
the norm of P[1], and the celebrated theorem of Gross and Zagier says that ords—; L(s, E/K) =1
iff k1 has infinite order. In Section 1 we will give a proof of the following theorem.

THEOREM A. (Kolyvagin) Assume p is odd and the integers p, D, and N are pairwise coprime.
Assume also that Gal(K/K) — Autg, (T) is surjective. If k1 # 0 then S,(E/K) is free of rank one
over Z, and there is a finite Z,-module M such that
Selye (E/K) 2 (Qp/Zy) & M & M
with
lengthy (M) < lengthy (Sp(E/K)/Zpk1).

Assume now that F is ordinary at p. Let K, be the anticyclotomic Z,-extension of K, I' =
Gal(K/K), and A = Z,[[I']]. Let K,, C K be the unique subfield with [K,, : K] = p". In Section
2.2 we define, in the manner of [Gre89], two generalized Selmer groups

Hy (K, T) C limH'(K,,T) Hr (K,A) Clim H'(K,, E[p™]),
where T = T ® A and A = Hom(T, p1p ), such that there are pseudo-isomorphisms of A-modules
Hr (K, T) ~lim S,(E/K,) Hr, (K, A) ~ limSely= (E/Kp).

Define X = Hom(H}A (K,A),Qp/Z,), and let X5_tors denote the A-torsion submodule of X. In
the spirit of the Iwasawa Main Conjecture we view the characteristic ideal char(Xy_iors) as a sort
of algebraically defined p-adic L-function.

In Section 2.3 we use Heegner points to construct a Kolyvagin system "8 for the A-module T.
The class Hlfg €H }A(K , T) is nonzero by the work of Cornut and Vatsal. At a height-one prime
of A, a Kolyvagin system for T reduces to a Kolyvagin system for T ® Sy where Sg is the integral
closure of A/B. Applying at every prime of A the same machinary used to prove Theorem A gives
the following result.

THEOREM B. Keep the assumptions on T, p, D, and N of Theorem A, and assume also that p does
not divide the class number of K. We continue to assume that FE is ordinary at p. Let H denote
the A-submodule of H}A (K, T) generated by n{lg, and let . : A — A be the involution induced by
inversion in I'.

The A-module H }A(K , T) is torsion-free of rank one, and there is a finitely-generated torsion
A-module M such that

(a) char(M) = char(M)*
(b) X~Aeo Mo M
(c) char(M) divides char(H, (K, T)/H)

where char denotes characteristic ideal.

We remark that parts (a) and (b) are already known by the combined results of Bertolini,
Cornut, and Nekovar [Ber95, Cor02, Nek01b] and have the following important consequence: by
Mazur’s control theorem one has

rankz, X /(v — 1)X = corankgz,Sel,~ (£/K),

and therefore the corank of the Selmer group over K odd. This is compatible with the Birch and
Swinnerton-Dyer conjecture: the Heegner hypothesis forces the sign of the functional equation of
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L(s,E/K) to be —1, and so ords—1L(s, E/K) is odd. Similarly, part (c¢) of the theorem, together
with the control theorem, gives the inequality

rankz, Sp(E/K) <1+ 2-ord;(L) (1)

where J C A is the augmentation ideal and L = Char(H }A (K,T) /H) One does not typically
expect equality to hold; see (2) below. Theorem B can be generalized in many ways, for example
by replacing E by an abelian variety with real multiplication, replacing the modular curve Xo(N)
by an appropriate Shimura curve (allowing one to weaken the Heegner hypothesis), and replacing
K by a CM-field. See [How04b] for work in this direction.

The Main Conjecture for Heegner points was formulated by Perrin-Riou in [PR87] and predicts
that

char(M) = ¢~ - char(Hf, (K, T)/H)
where ¢ € Z, is the Manin constant associated to our choice of modular parametrization of F
(the proof that our H agrees with the module considered by Perrin-Riou is part of the content of
Theorem 2.3.7). The theory of derived p-adic height pairings, introduced by Bertolini and Darmon
and further developed by the author [BD01, How04a], leads one to conjecture that the the torsion
module M of Theorem B has the form
M~ (A @ (A T2 M

for a A-module M’ with characteristic ideal prime to J, and
rt —r7|—1

2

where r* is the rank of the +-eigenspace of S,(E/K) under complex conjugation. Combining this
with the Main Conjecture, we see that one should expect

e1 = min(r*,r7) €9 =

ord;(L) = e1 + 2e2 = max(r,r7) — 1. (2)

Since the left hand side of (1) is 1 4 2e; + 2e5 by Mazur’s control theorem, one expects equality to
hold there exactly when e; = 0.

The following conventions will remain in effect throughout. By a coefficient ring, R, we mean
a complete, Noetherian, local ring with finite residue field of characteristic p. The cases of interest
are when R is the ring of integers O of a finite extension of Q,, a quotient of O, or the Iwasawa
algebra A. The maximal ideal of R is denoted m. We denote by R(1) the Tate twist of R, i.e. the
free rank-one R-module on which Galois acts through the cyclotomic character.

If M is any R-module and I C R is an ideal then M[I] is the submodule of M consisting of
elements annihilated by every r € I. We define M (1) = M ®rR(1). If L is a perfect field (which is all
we shall ever have need to consider), then L denotes the algebraic closure of L, and G, = Gal(L/L).
If L is a local field we let L"™" denote the maximal unramified extension of L and denote by Fr the
Frobenius automorphism of L' /L.

1. Kolyvagin systems

Throughout Section 1 we fix a coefficient ring R and a quadratic imaginary field K. If L is a perfect
field, we denote by Modpg 1, the category of finitely-generated R-modules equipped with continuous,
linear actions of G, assumed to be unramified outside of a finite set of primes in the case where L
is a global field. The letter T will always denote an object of this category (for some field L). Let
7 € Gq be a fixed complex conjugation.
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Sections 1.1, 1.2, and 1.3 follow [MRO04] very closely. Sections 1.5 and 1.6 do as well, but with
modifications unique to the case of Heegner points. The results of Section 1.4, which rely crucially
on the self-duality of the Tate module T),(E), have no analogue in [MR04].

1.1 Selmer groups

Fix a finite place v of K, and denote by Z, the inertia subgroup of Gk, , Fr, € Gal(K™/K,) the
Frobenius element, and k, the residue field of K. Let T' be an object of Modpg g, -

DEFINITION 1.1.1. A local condition on T (over K,) is a choice of R-submodule of H'(K,,T). We
will frequently use F to denote a local condition, in which case the submodule will be denoted
HL(K,,T) C H'(K,,T).

Given an R[|Gk,]]-submodule (resp. quotient) S of T" and a local condition F on T we define
the propagated condition, still denoted by F, on S to be the preimage (resp. image) of H}(KU, T)
under the natural map

HY(K,,S) - HYK,,T)
(resp. H (K., T) — H(K,,S)).

We will be concerned primarily (but not entirely) with local conditions of the following types.
(a) The relazed and strict conditions (respectively)

Hl (K, T)=H\K,T) H!

rel str

(K,,T) =0,
(b) the unramified condition

HY (K, T) = ker(H' (K, T) — HY(K™,T)),

unr

(c) the L-transverse condition
H} (K, T) =ker(H'(K,,T) — H'(L,T))

where K, has residue characteristic # p and L is a maximal totally tamely ramified abelian
p-extension of K.

If K, has residue characteristic different from p and T is unramified (i.e. the inertia group Z,
acts trivially on T'), then we shall also refer to the unramified condition on 7" as the finite condition
H}(K,,T). We then define the singular quotient H}(K,,T) by exactness of

0 - H}(K,T) - HY(K,,T) — HXK,T) — 0.

If 7 is a subcategory of Modr x, then by a local condition functorial over T we mean a subfunctor
of HY(K,, ),

T— HY(K,,T) c HY(K,,T).
The local conditions defined above are all functorial over Modpg , .
DEFINITION 1.1.2. A local condition F functorial over a subcategory 7 of Modg g, is cartesian if

for any injective morphism « : S — T the local condition F on S is the same as the local condition
obtained by propagating F from T to S.

DEFINITION 1.1.3. For T" an object of Modg, k, we define the quotient category of T' Quot(T") to be
the category whose objects are quotients T'/IT of T by ideals of R and the morphisms from 7'/IT
to T'/JT are the maps induced by scalar multiplications r € R with rI C J.

Any local condition on 7" defines a local condition functorial over Quot(7") by propagation.
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Remark 1.1.4. Of special interest is the case where R is principal and Artinian of length k& and T
is a free R-module. Let m = 7R be the maximal ideal of R. A local condition on Quot(7") being
cartesian implies that for i < k the local condition on the submodule T[m‘] (propagated from T')
agrees with the local condition on T /m‘T when the two modules are identified via the isomorphism

. ﬂ.kfi .
T/m'T —— T[m'].

LEMMA 1.1.5. The unramified local condition is cartesian on any subcategory of Modpg i, whose
objects are unramified G'i,-modules.

Proof. This is Lemma 1.1.9 of [MRO04]. O

DEFINITION 1.1.6. Set T* = Hom(T, R(1)). We give T™ the structure of a G, ,-module by letting

o € Gk, act on f(t) by f(t) — of(c't). Local Tate duality gives a perfect R-bilinear pairing
(,):H(K,T)x H(K,T") — H(K,,R(1)) => R

and for any local condition F on T" we define the dual local condition, F*, on T* to be orthogonal

complement of F under the above local pairing.

PROPOSITION 1.1.7. Assume that v does not divide p, T is unramified at v, and that |k |- T = 0.
There are canonical isomorphisms

HY(K,,T) = T/(Fr, — )T HY(Ky, T) 0 K = TF=1,

Proof. This is Lemma 1.2.1 of [MRO04]. The first map is given on cocycles by evaluation at the
Frobenius automorphism, and the second by c® a + ¢(0,) where o, € Gal(K2’/K") is the Artin
symbol of any lift of o to K. O

DEFINITION 1.1.8. If v does not divide p, Gk, acts trivially on T, and |k;| - T = 0, we define the
finite-singular comparison map to be the isomorphism

¢y Hi (K, T) =T = H}(K,,T) ® k;
given by Proposition 1.1.7.

PropPOSITION 1.1.9. Keep the assumptions of Definition 1.1.8. We fix a maximal totally tamely ram-
ified abelian p-extension L/K,, and hence a choice of L-transverse condition on T'. The transverse
submodule H..(K,,T) projects isomorphically onto H}(K,,T) giving a splitting
HY(K,,T) = H} (K,,T) ® H{.(K,,T).
Furthermore, under the local Tate pairing
(a) H}(K,,T) and H}(K,,T*) are exact orthogonal complements,
(b) HL(K,,T) and H.(K,,T*) are exact orthogonal complements.

Proof. These statements are Lemma 1.2.4 and Proposition 1.3.2 of [MRO04]. O

We now consider global cohomology groups. Fix an object T of Modpg .

DEFINITION 1.1.10. By a Selmer structure F on T (over K) we mean a finite set of places X(F) of
K containing p, all archimedean places, and all places at which T is ramified, and for each v € X(F)
a choice of local condition Hx(K,,T). Given a Selmer structure F on T we define the associated
Selmer module

Hp(K,T) c HY(K,T)
5
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to be the kernel of
H'(Kyr) /K, T) — @ H'(K,,T)/Hp(K,,T)
veEX(F)
where Ky is the maximal extension of K unramified away from the places of ¥(F).

Given a Selmer structure F we will usually write H (K, T) for H} (K,,T) for a prime v ¢ X(F).
Then HJ(K,T) is nothing more than the set of classes in H'(K,T) whose localization lives in
H }(Kv, T) at every place v. There is a natural partial ordering on the set of all Selmer structures,
namely we write F < G iff H-(K,,T) C Hé(KU, T) for every place v of K. Clearly if F < G we have
Hy(K,T) C HY(K,T). If F is a Selmer structure on T' then the collection of dual local conditions
gives a Selmer structure F* on 7™ with 3(7") = X(T™). The following theorem is the fundamental
tool which turns Kolyvagin systems into bounds on Selmer groups.

THEOREM 1.1.11. (Poitou-Tate global duality) Suppose F < G are Selmer structures on T'. There
are exact sequences

loc

0 — Hp(K,T) — H§(K,T) = @ Hg(K,, T)/Hp(K,,T)
0 — HE(K,T*) — Hk(K,T*) 2% @ Hk (Ko, T")/Hg (K., T7)

and the images of the rightmost arrows are exact orthogonal complements under the sum of the
local pairings of Definition 1.1.6.

Proof. See [Mil86] 1.4.10 or [Rub00] 1.7.3. O

1.2 Kolyvagin systems

Let T be an object of Modp k, and denote by Lo = Lo(T") the set of degree two primes of K which
do not divide p or any prime at which T is ramified. We will consistently confuse a prime of Lg
with the rational prime below it, and if the distinction needs to be made we will write £ | A € Ly to
indicate that £ is the rational prime and A the prime of K.

DEeFINITION 1.2.1.
(a) For each £ | A € Ly, define Iy to be the smallest ideal of R containing ¢ + 1 for which Fry acts
trivially on T'/I,T.
(b) For every k € Z* define £}, = Li(T) = {¢ € Lo | I, C p*Z,}.
(c) For £ | X € Ly let G; = k3 /k;* where k; and k) are the residue fields of £ and X, respectively.
(d) Let Nj denote the set of squarefree products of primes of L. For n € Ny define
I,=> LCR Gn = (X) Gy
ln ln

By convention 1 € N}, for every k, I; = 0, and G = Z.

For ¢ | A € Ly we denote by K[¢] the ring class field of conductor ¢. Since A splits completely in
the Hilbert class field of K, the maximal p-subextension of the local extension K[¢],/K) (call it L)
is a maximal totally tamely ramified abelian p-extension of K whose Galois group is canonically
identified with the p-Sylow subgroup of G, by class field theory. We therefore have for such a A a
canonical choice of L-transverse condition as in Section 1.1, which we denote by H (K, T).

By a Selmer triple (T',F, L) we mean an object T of Modp i, a choice of Selmer structure F
on T, and a (typically infinite) subset £ C Ly which is disjoint from 3(F). We define N' = N (L)
to be the set of squarefree products of primes of £, with the convention that 1 € N (L).

6
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DEFINITION 1.2.2. Given a Selmer triple (T, F, £) and abc € N (L) we define a new Selmer triple
(T, F¢(c), L(abc)) by taking X(F7(c)) to be 3(F) together with all prime divisors of abe, and taking
L(abc) to be £ with all prime divisors of abc removed. At any place A of K define the local condition
Fi(c) to be

Hrlel

(K)\,T) if A ’ a
(c)(K>nT) = Hsltr(KAaT) if A | b

HL(K\,T) ifX]e

i}

b
and retain the original local condition

H]l-_g(c) (K, T) = Hjl-'(K/\’ T)
if A does not divide abc. If any one of a, b, or ¢ is 1 we omit it from the notation.

For any nf € Ny, we may identify the p-Sylow subgroups of Gy and k; /k/ via the Artin symbol,
and let

OF : HH (K, T/ IyT) = HY (K, T/IT) ® Gy

be the finite-singular comparison map at £. We have maps

H}T(n)(K, T/1,T) ® Gy, (3)

llocz

HYEK, T/1T) ® Gy,

lq%s@l
1
H () (B, T/ 16 T) @ Ge == HY (K, T/16T) © Ging.

DEFINITION 1.2.3. Given a Selmer triple (7', F, £) we define a Kolyvagin system r for (T',F, L) to
be a collection of cohomology classes
Kin € Hip() (K, T/I,T) © G,

one for each n € N'(L), such that for any nf € N'(L) the images of x,, and k¢ in H} (K¢, T/I,T) ®
Gne under the maps of (3) agree. We denote the R-module of all Kolyvagin systems for (T, F, L)
by KS(T, F, L).

Remark 1.2.4. The module of Kolyvagin systems has the following functorial properties:
(a) if £ C L then there is a map KS(T,F,L) — KS(T,F,L'),
(b) if Hx(K,,T) C HY(K,,T) at every place v then there is a map
KS(T,F,L) — KS(T,G,L),
(c) if R — R'is aring homomorphism then there is a map
KS(T,F,L)yor R — KS(T'®@r R, F®r R, L)
where the local condition F ®p R’ is defined as the image of
Hy(K,,T)®r R — H'(K,,T®r R
for v € ¥(F), and X(F @g R') = X(F).
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1.3 Hypotheses
In this subsection R is a coefficient ring and 7" is an object of Modpg, ¢, . The maximal ideal of R
is denoted m, and 7' = T'/mT is the residual representation of 7. We denote by Tw(7T") denote the
Gr-module whose underlying R-module is T' and on which G acts through the automorphism
conjugation by 7. The identity map on the underlying R-modules T — Tw(T') and the automor-
phism of G given by conjugation by 7 induce a “change of group” (Gg,T) ~ (G, Tw(T)) which
induces an isomorphism on cohomology

HY(K,T)= H(K,Tw(T)).
Similarly at any place v of K conjugation by 7 induces an isomorphism

H' (K, T) = H'(K,, Tw(T))
where v = v7.

We fix a Selmer triple (7', F, £) and record some desirable hypotheses which it may satisfy:
H.0 T is a free, rank 2 R-module.
H.1 T is an absolutely irreducible representation of (R/m)[[Gk]].
H.2 There is a Galois extension F/Q such that K C F, G acts trivially on T', and
H'(F () /K, T) = 0.
H.3 For every v € X(F) the local condition F at v is cartesian on the category Quot(7T) (see
Definitions 1.1.2 and 1.1.3).

H.4 There is a perfect, symmetric, R-bilinear pairing
(,):TxT — R(1)

which satisfies (s“,tmfl) = (s,t)? for every s,t € T and o0 € Gg. Equivalently there is
G i-invariant pairing
TxTw(T) — R(1)
which is symmetric when the underlying group of Tw(T) is identified with that of 7. We
assume that the local condition F is its own exact orthogonal complement under the induced
local pairing
(,):H (K,,T) x H (K, T) — R
for every place v of K.
H.5 (a) The action of G on T extends to an action of Gq and the action of 7 splits T = T+ & T~
into one-dimensional eigenspaces,

(b) The condition F propagated to T is stable under the action of Gq,
(c) If H.4 is assumed to hold then the residual pairing

TxT — (R/m)(1)
satisfies (s7,t7) = (s,t)7 for all s,t € T.

While Hypotheses H.0-H.3 are similar to hypotheses used in [MRO04], Hypothesis H.4, the self-
duality of T" (up to a twist), is not used by those authors, but plays an essential role here. Hypothesis
H.5 is made to overcome a technical difficulty: in the applications to Iwasawa theory, we will want
to deal with T' = T,(E) ® A, where E,q is an elliptic curve and A is the Iwasawa algebra associated

to the anti-cyclotomic Zy-extension of K. The natural action of Gx on T,(E) ® A does not extend
naturally to an action of Gq, but the action on the residual representation does.

We remark that the choice of £ plays no role in any of the hypotheses. Hypothesis H.3 implies
that the local condition F is cartesian on Quot(7') at every place of K by Lemma 1.1.5. When

8
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hypothesis H.4 holds, it can be shown the local pairing
HY(K\,T) x H(K\,T) — R
at any degree two prime A of K is symmetric.

Remark 1.3.1. It is easily seen that hyotheses H.0—H.5 are stable under base change in the obvious
sense. See Remark 1.2.4.

Remark 1.3.2. The reader who is puzzled by the pairing of H.4 would do well to keep the following
example in mind. If R = Z,, T is the p-adic Tate module of an elliptic curve over Q, and e :
T xT — Zpy(1) is the Weil pairing, then the pairing (s,t) = e(s,t”) has the desired properties.
The function ¢ — ™ defines a Gk, ,-module isomorphism Tw(7) — T such that the composition
of isomorphisms

HY(K;,T) — HYK,,Tw(T)) — H'(K,,T)
is the usual action of complex conjugation. Using this identification the local pairing of H.4 is exactly
the usual local Tate pairing.

More generally, whenever the action of G on T' extends to an action of Gq, the existence of
a pairing of the type described in H.4 is equivalent to the existence of a skew-symmetric, Galois-
equivariant pairing on 7. As noted above, in the applications to Iwasawa theory we will want to
deal with modules for which the action does not extend.

LEMMA 1.3.3. Suppose R is principal and Artinian of length k, and that H.1 and H.3 hold. If
0 <i <k and 7 is a generator of m, then the maps
T/miT ™ Tmi] — T
induce isomorphisms
HY(K,T/miT) — HE(K,Tl]) — Hy(K,T)[m].
Proof. See Remark 1.1.4, and Lemma 3.5.4 of [MRO04]. O

1.4 The Cassels-Tate pairing

In this subsection we construct a generalized form of the Cassels-Tate pairing. Our exposition closely
follows that of [F1la90]. See also [Guo93] and [Mil86].

Let R be a principal Artinian coefficient ring of length & and 7" an object of Modg g, . Fix a
generator 7 of the maximal ideal m of R. Let T* = Hom(7', R(1)) and fix a Selmer structure F on
T. Let F* denote the dual Selmer structure on 7*. In all that follows we assume that (7', F) and
(T*, F*) satisfy hypotheses H.0-H.5

At every place v of K set
H}p(K,,T) = H' (K, T)/Hp(K,,T)

and similarly for T*. Hypothesis H.3 implies that for any positive integers s and t with s + ¢ < k,
and any place v of K, there are exact sequences

0 — H}p(Ko,T/m'T) & H} (K, T/w*+'T) — H}p(K,,T/m*T) (4)

Hh (K, T*[m®]) — Hho (K, T*[m*H)) & HL (K, T*[m']) — 0 (5)
where the arrows labeled € are induced by 7° : T" — T.

We want to construct a pairing
HE(K,T/m’T) x He. (K, T*[m']) — R
9
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for any positive integers s and ¢t with s+t < k. Suppose we are given classes in H }(K ,T/m*T) and
HL.(K,T*[m']) represented by cocycles

a€ ZN K, T/m°T) be ZY K, T*[m']).
We will repeatedly use the fact that for any topological group G the continous cochain funtor

C' (G, ) from R-modules to R-modules is exact, and so in particular we have surjective maps

s

CHK,T/m*HT) — CYK,T/m*T) CHK,T*[m*t]) = CYK,T*[m'])

Choose cochains o € CH(K,T/m*TT) and 3 € C*(K,T*[m*™?]) which map to a and b respec-
tively. Let d be the coboundary operator. From 7°d3 = db it follows that dj is killed by 7°, and
similarly do reducing to zero in C?(K, T/m*T') implies that da is divisible by 7* in C?(K, T//m**T).
Therefore dao U dfB = 0 and

d(daUpB) =d*aUB +daUds =0

so that daUg lives in Z3(K, R(1)) (we view the cup product as taking values in R(1)-valued cochains
using the natural pairing T ® T* — R(1)). By Theorem 1.4.10 of [Mil86], H3(K, R(1)) = 0, and
so there is an € € C?(K, R(1)) with

de = da U S.

By the exact sequence (5) there is a 3, € ZL.(K,,T*[m*t]) such that 73, = b,, where
Zp Ky, T*[m*)) C Z1(K,, T*[m**]) is the preimage of H. (K, T*[m']) under multiplication by
7. The cochain a, U 3, — €, € C?(K,, R(1)) is in fact a coboundary, and we define the pairing

(a,0)sr = > _invy(ay U B — €). (6)

v
It can be checked that this is independent of all choices made.
ProrosiTiON 1.4.1. For positive integers s and t with s +t < k there is a pairing
(, Vst HR(K, T/m*T) x Hp (K, T*[m']) — R
whose kernels on the left and right are the images of
HE(K, T/m*™T) — HH(K,T/m*T)
s

Hr (K, T*[m**"])) = HE. (K, T*[m"]).

Proof. The construction of the pairing is above. The computation of the kernels is a straightforward
modification of the methods of [F1a90]. O

THEOREM 1.4.2. There is an R-module M and an integer € such that
Hp (K, T) 2 R°® M@ M.
By the structure theorem for finitely-generated modules over R, we may assume € € {0, 1}.
Proof. Abbreviate H = H:(K,T), and for 1 < s < k define
Ve = H[m®]/mH[m* ] Wy = H[m]/m*H[m*].

We claim that for 0 < s < k, the R/m-vector space Vs is even dimensional. The claim then follows
easily from this and the structure theorem for finitely-generated R-modules.

There is an exact sequence

0= Viig — Vs =0 W,
Using hypothesis H.4 and Lemma 1.3.3, we may identify
HE: (K, T*[m]) = H-(K, T[m]) = H[m]
10
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and Hx(K,T/m*T) = H[m®]. Proposition 1.4.1 therefore gives a nondegenerate pairing of R/m-
vector spaces

(5 Vet : Ve x Wy 2 H[m®]/mH[m* ] x H[m]/m*H[m*T] — R[m)].

We define a pairing
<, >:VS><Vg — R[m]
by (a,b) = (a,7*"1b)s1. The kernel on the right is V1. If we can show that this pairing is alter-

nating, then V;/Vs_1 is even dimensional for every 1 < s < k, and the claim follows. To check that
this is alternating we must verify

(a, 7 b)s1 = —(b, 7 a)s1.
We denote by ¢ : T' — Tw(T) the identity map on underlying groups and by v the change of
group isomorphisms
(Gk,T) — (Gk,Tw(T)) (Gk,,T) — (Gr;, Tw(T))
of Section 1.3. We also denote by v the induced map on cochains and cohomology. Fix o and (§ in

CH(F, Tim**1]) with 7a = a and 78 = b, and choose €; and e in C?(F, R(1)) satisfying
daUy(B) = de dp U p(a) = des

and for every place v of F' elements o, and 3, in Hj(F,, T[m**!]) which map to a, and b, under
multiplication by 7. Then

(a, 7Ts_lb)s,l = Z invv(av U @Z)(ﬂ{‘;) - 51,1})

(2

(b, ta)sn = Y invy(By Uth(ah) — €2,)

v

where unprimed cochains are localizations of global cochains, and primed cochains are (typically)
not. Both o, — o/, and 3, — 3, lie in C*(F,, T[m]), and so
(o — o) U (B — B5) = 0
which implies
ay Uh(f) + o, Uv(B;) = e Uh(3;) + o, U (o). (7)
Given a topological group G, if R* is the standard resolution of Z by projective G-modules
then one can form the tensor square resolution R* ® R*. For a topological G-module M denote by
CC*(G, M) the cochain complex Hom(R*®@R*, M) of continuous homomorphisms. The cohomology
of CC* agrees with the usual continuous cohomology (see [F1a90]) and the automorphism p of CC*

induced by the automorphism ry ® ro — ro @ 11 of R* ® R* induces the identity on cohomology. It
follows from the results of V.3.6 of [Bro82] that there is a commutative diagram of complexes

C*(K,,T) ® C*(Ky, Tw(T)) L CC*(K,,T ® Tw(T)) —= CC*(K,, R(1))

| o }
C*(Ky, Tw(T)) @ C*(K,, T) =—= CC*(K,, Tw(T) ® T) — CC*(K,, R(1))
| X -
C* (K3, T) ® CH Ky, Tw(T)) ~— CC*(Ky, T @ Tw(T)) — CC*(Ky, R(1))
in which tr: T® Tw(T) — Tw(T) ® T takes t; ® ty to ta ® t1, s is the map
a®@b — (—1)dsl@del)y g g
11
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and 7 is the change of group (Gk,,R(1)) — (Gk,, R(1)) which is conjugation by 7 on the groups
and action by 7 on R(1). Commutativity of the bottom right square follows from the symmetry
(t1,0(t2)) = (t2,¢(t1)) of the pairing of H.4. The upshot of the diagram is the relation

U (y) = (~1)1E BTy Yy (a)T (8)

where z and y are in C*(K,,T) and C*(Ky,T), respectively. There is a similar global diagram
obtained by ignoring all v’s and 9’s, and the relation (8) holds for z,y € C*(K,T).

From (7) we now deduce
(@UD(B) —er = (e2)7), + cq, Uh(B;) = (9)
ay U(B;) — 1w + ay, U (Bs) — (e2.0)"
It follows from (8) and the definition of ¢; that o U (8) — €1 + (€2)” is a 2-cocycle, and so by the
reciprocity law of class field theory the sum of its local inraviants is zero. The local invariant of
ol U(B%) is zero by the assumption that F is everywhere self-orthogonal under the local pairing.
Again using (8) we obtain

Zinvv(ay Uy(Bs) — e1n) = — Z inv,, (B Utp(ay) — €25)7)

and the claim now follows from Galois invariance of the local invariant map. O

1.5 Modules over principal Artinian rings

Throughout Subsection 1.5 we fix a coefficient ring R which is assumed to be principal and Artinian
of length k. Let (T, F, L) be a Selmer triple satisfying hypotheses H.0-H.5. We assume that £ C
Ly (T), so that I,R = 0 for every n € N' = N(£). By H.0 and Proposition 1.1.7, this implies that
the local conditions H{ (K, T) and H{.(Ky,T) are free rank two R-modules.

Set T'= T/mT, and abbreviate
Hi(e) = Hh o (K.T)  H(e) = Hby o (K, T)
for abc € N' = N'(L). For any ¢ € H'(K,T) and any place v of K we denote by ¢, the image of c
in H'(K,,T) and by { , ), the local Tate pairing
HY K, T)x HY (K3, T) — R
of H.4. For any integer n, v(n) denotes the number of prime divisors of n. Recall that 7 € Gal(Q/Q)

is a fixed complex conjugation. If M is any R/m-vector space on which 7 acts we denote by M+
and M~ the subspaces on which 7 acts by +1 and —1 respectively.

LEMMA 1.5.1. The Selmer triple (T, F(n),L(n)) satisfies H.O-H.5 for any n € N.
Proof. See Lemma 3.7.4 of [MRO04] for the case of H.3. The other cases are trivial. O

DEFINITION 1.5.2. For any n € N we let p(n)* be the R/m-dimension of H(n)*, and set p(n) =
p(n)* + p(n)~
LEMMA 1.5.3. For any nf € N
(a) iflocg(H(n)*) # 0 then p(nf)® = p(n)* — 1 and loc,(H(nt)*) =0,
(b) ifloce(H(n)*) =0 then p(nf)* = p(n)* + 1.
In particular this implies that p( ) od 2) is independent of n € N.

(m
Proof. Assume that 1005( Fn ) ) # 0 and consider the exact sequences

0 — H]:g(n)(K7T) — Hp, (K, T) — H{ (K, T) (10)

0 — Hzy(K,T) = Hzopy (K, T) — H{ (K, T).
12
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By global duality (Theorem 1.1.11) the images of the rightmost arrows are exact orthogonal com-
plements under the Gq-invariant local Tate pairing. Furthermore the action of complex conjugation
splits H{ (K, T) and H}(Ky, T) each into one-dimensional eigenspaces by H.5 and the isomorphisms
H{ (K, T) =T = Hy (K, T) @ k*

of Propositi_on 1.1.7. Tt follows that H]l_.(n)(K, T)* = Hy,,,(K,T)* and therefore H]I_-l(n)(K, T)* =
H}wn)(K, T)*. This proves (a).

Assume that loc, (H jlr(n) (K, T)i) = 0. Again applying global duality to the exact sequences (10)
we see that it suffices to show H}e(n)(K, T* = Hjl_.(ng)(K, TY*. Ifce Hjl:e(n) (K, T)* then the local

image of ¢ at ¢ is self-orthogonal under the local pairing. Indeed, the reciprocity law of class field
theory and the isotropy of the local conditions F(n) (by H.4) imply

{cosco)e = Z(Q;,C@)U =0

(2

(n)

where the sum is over all places of K. Therefore the localization of H }_g(n)(K ,T)* at £ is a max-

imal isotropic subspace of H(K,, T )i_ and an elementziry linear algebra exercise _shovvs that the
only two such subspaces are H} (K, T)* and HL(K,,T)*. Therefore HL, (K, T)* is equal to

_ _ Ft(n)
either Hjl_.(n)(K, T)* or H}(M)(K, T)*. Returning to the exact sequences (10) we see that the first

possibility contradicts the assumption locy (H ]1:(”) (K, T )i) =0. O

By Theorem 1.4.2 and Lemma 1.5.1, for each n € A there is an R-module M (n) and an integer
€ such that

H(n) = R°*® M(n) ® M(n). (11)
By the structure theorem for finitely-generated modules over R, we can (and do) take € € {0,1}. It

will be seen momentarily that e is independent of n.

DEFINITION 1.5.4. For n € N and with notation as in the preceeding theorem we define
(8) A(n) = length(M(n)),
(b) the stub Selmer module S(n) = m ™ H (n).

The reader is invited to compare the above definitions with Definitions 4.1.2 and 4.3.1 of [MR04].

PROPOSITION 1.5.5. The integer € appearing in the decomposition (11) is congruent to p(n) (mod 2)
and is therefore independent of n € N' by Lemma 1.5.3.

Proof. We have
€ + 2ditm g M () [m] = ity H(m) [m] = p(n),
the second equality by Lemma 1.3.3. O

LEMMA 1.5.6. For mn € N, the image of H™(n) in Diim HY(K,,T) is maximal isotropic under
the sum of the local Tate pairings.

Proof. Let A be the image of H™(n) in @, HY(K,,T). The local condition F™(n) is maximal
isotropic away from m under the local Tate pairing, and the reciprocity law of class field theory
implies that for any ¢, d € Hlm(n)(K, T)

Z<C)\,d)\>)\ = Z<Cvad1‘;>v =0

Alm all v

13
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which shows that A C A+. By global duality (Theorem 1.1.11)
length(A) = length(H™(n)/H(n)) + length(H(n)/Hm(n))
=2k -v(n).
The sum of the lengths of A and A+ must be 4k-v(m) and we conclude that length(A) = length(A~)
and so A = AL, O
LEMMA 1.5.7. For some ¢ > 0, H'(n)/(H(n) + H(¢n)) = (R/m?)2.
Proof. We first construct a non-degenerate, alternating, R-bilinear, R-valued pairing on the module
H(n)/(H(n) + H(¢n)). Let A be the local image of H’(n) in H'(K,, T). A is maximal isotropic by
the previous lemma. Write A and Ay, for the intersections of A with H{ (Ky,T) and HL(K,,T),
respectively. Localization at £ gives an isomorphism
H(n)/(H(n) + H(tn)) = A/ (Af + Aw)
and it is on this R-module that we define the pairing.

If x € A write x¢ and xt, for the projections of x onto the finite and transverse submodules.
For z,y € A we define the symbol [z,y] € R by [z,y] = (zf,y). That [z,y] = —[y, 2| follows
immediately from (x,y) = 0 and the isotropy of the finite and transverse submodules. Suppose
x € A is in the kernel of this pairing, then 0 = (¢, yir) = (xy,y) for every y € A and so xy € A
by maximal isotropy of A. It follows that xy, € A and so © € As + Ay, proving that the pairing is
non-degenerate.

‘We now have that
H'(n)/(H(n) + H(fn)) = D@ D
for some R-module D. Since H*(n)/H(n) injects into H}(K,,T) which is free of rank 2, it follows
that H%(n)/(H(n) + H(¢n)) can be generated by two elements. Therefore D is cyclic. O

LEMMA 1.5.8. There are a, b, and § greater than or equal to zero such that in the following diagram
the cokernel of each inclusion is a direct sum of two cyclic R-modules of the indicated lengths.

k—a, k—%’ \a+5 b+46

n)

ak /;ﬁ—a—é k—b—24¢
He(n)

Proof. The relation between the lower left and upper left quotients follows from global duality, and
similarly for the lower and upper right quotients. The relation between lower left and upper right
quotients, and also the relation between lower right and upper left, follows from the preceeding
lemma. O

PROPOSITION 1.5.9. For nf € N
locy(S(n)) =0 = locy(S(¢n)) = 0.

Proof. Keeping the notation as in the diagram of Lemma 1.5.8, loc,(S(n)) = 0 implies that m*(™
kills the lower left quotient, and so a,b < A(n). The diagram immediately implies

A(nl) =An)+k—a—-b—-0
>k—a—0d, k—b—9¢
so that m (") kills the lower right quotient. The claim follows. O

14
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1.6 Bounding the Selmer group

Throughout this subsection R is a fixed discrete valuation ring with uniformizing parameter 7. Let
(T, F, L) be a Selmer triple satisfying Hypotheses H.0-H.5, and suppose Ls(T") C L for s > 0. If @
denotes the field of fractions of R, D = ®/R, and A = T ®r D, then we obtain a Selmer structure on
A, still denoted F, by propagating F ® ® from T ® & to A. The following theorem is the technical
core of this paper.

THEOREM 1.6.1. Suppose there is a Kolyvagin system r € KS(T, F, L) with k1 # 0. Then Hx-(K,T)

is a free rank-one R module, and there is a finite R-module M such that
HHK,A)=DoMa M,

Furthermore lengthp(M) < lengthr(HE(K,T)/R - k1).

We will prove this through a series of lemmas. For any k£ > 0 we define
R®) = R/m* T®) = T/mkT L£L* = £ Ly(T).

By Remark 1.3.1, the Selmer triple (T®), F, £(*)) satisfies hypotheses H.0-H.5, and we may invoke
the definitions and results of the preceeding section. In particular for £ € N®) = N/(£*)) we have
a decomposition

Hp (K, T®) = RW< 6 M® (n) & M® (n)
in which € € {0,1} is independent of both n and k (by Lemma 1.5.3). We define

A®) (n) = lengthr (M® (n)) S®(n) =M HL (5, TW),
We obtain, by Remark 1.2.4, a Kolyvagin system «*) ¢ KS(T"®), F LK),
LEMMA 1.6.2. Suppose we are given elements
ct e HY(K,T)*" ¢ € HY(K,T)".
There are infinitely many primes A\ € L2~V such that ¢* #0 = locy(cF) # 0.

Proof. We consider only the case where ¢, ¢~ are both nonzero, the other case being entirely
similar. Let F//Q be the extension of Hypothesis H.2, and let L be the Galois closure (over Q) of
K(T@k1) pip2e-1). Since F/Q is Galois by hypothesis, L C F'(jp~), and so restriction

HYK,T) — H'(L,T)%E/5) = Hom(Gy, T)CEL/K)

is an injection. We identify ¢ with its image under restriction. Let E be the smallest extension of
L with ¢*(Gg) = 0, and set G = Gal(E/L). Then G is an F,-vector space with a natural action of
Gal(L/Q), and we let G* be the +-eigenspace for the action of 7.

We claim that the maps

ct:Gt - T* c Gt — T~ (12)
are nontrivial. Indeed, if ¢™(G*) = 0 then ¢*(G) = ¢*(G7) C T~, and so R - c¢*(G) is an R[G]-
submodule of T' contained in T~. This contradicts Hypotheses H.1 and H.5 (a). Similar considera-
tions apply to ¢™.

The kernels of the maps (12) have codimension > 1, and so there is an € G* for which ¢* ()
are both nonzero, and we may choose some o € G such that = (70)2. By the Cebotarev theorem,
there are infinitely many primes ¢ of Q whose Frobenius class in Gal(E/Q) is equal to 7o, and at
which the localizations of ¢* are unramified. For such an ¢, the image of ¢* under

HYK,T) - HYK,,T) — H}

unr

(K¢, T)=T
15
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(the final isomorphism being evaluation at the Frobenius of the prime of K above /) is equal to

Blct) £0. .
LEMMA 1.6.3. If n € N1 and S®)(n) # 0 then the image of

Hp (K, T D) — Hp o (K, TW)
is a free, rank-one R®)-submodule.

K, T®™) = Hg!}

F(n) (K, TZk=1))[m*] of Lemma 1.3.3, the above

Proof. Under the identification H jlr(n)(
map is identified with

k-1 _
H (o (K, TR0y Ty [ (K, TR0 [m],

The hypothesis S®*)(n) # 0 implies that length (M %=1 < k and that ¢ = 1, hence the image is
isomorphic as an R-module to mF—1R(Zk—1) =~ R(k), O

LEMMA 1.6.4. Ifn € N1 then £l € SH(n)® G,.

Proof. We argue by induction on both k and p)(n). Let k > 0 be the minimal integer for which
the claim is false (for some n), and fix a generator for the cyclic group Gy for every ¢ € N(Zk=1)
that we may identify Hy, (K, T®)® G, = Hy, (K, T®).

First suppose S(k)(n) #£ 0, so that in particular we are in the case e = 1, and A\(¥) (n) < k.
Let i = A(®)(n). By minimality of k, KD € S®(n). By Lemma 1.3.3 we have an isomorphism of
R-modules M® = M®[mi] = M® so that A (n) = A\*)(n) = i. This implies that S (n) = 0,

(4)

and so ky,’ = 0. Appealing again to Lemma 1.3.3, this is equivalent to 7%~? ( ) =

= 0. Now by Lemma
1.6.3, K}g,,k) is divisible by 7 in H]I_.(n) (K, T(k)), proving this special case.

Now keep k fixed as above and suppose that n € £2*=1 gives a counterexample with p(n)
minimal. The above case shows that S*)(n) = 0. By Lemma 1.3.3, p(n) = 0 or 1 implies that
S(k)(n) = H}E(n)(K, T(k)), and so we must have p(n) > 1.

Case i: p(n)™ and p(n)~ are both nonzero. Using Lemma 1.3.3 we identify H}r(n)(K, T [m] =
Hjl_.(n)(K, T). If x®)(n) # 0 then it has some nonzero multiple d € H}(n) (K, T%")[m]. This d has
nontrivial projection onto one of the 7-eigencomponents of H }:(n)(K ,T). Assume that d™ # 0. By
Lemma 1.6.2 we may choose a prime £ € £(2*=1) at which both d* and some element of H]l_.(n) (K, T)~

have nontrivial localization. By Lemma 1.5.3, p(nf) = p(n) — 2, and so by induction x*)(nf)
S®)(ne). By Proposition 1.5.9, locy(k®) (nf)) = 0, but then the Kolyvagin system relations imply
that 1OCg(H£Lk)) = 0, contradicting the choice of /.

Case ii: one of p(n)* is equal to zero. Suppose p(n)~ = 0, so that p(n)* > 1. If k®)(n) # 0
then choose a nonzero multiple of k*)(n), d € Hjl_-(n)(K, T" ) [m]*, and a prime ¢ € L&D for

which loc,(d) # 0. By Lemma 1.5.3, p(nf)* are both nonzero and p(nf) = p(n). Thus, by Case
i, ng? € S®)(nf). By Proposition 1.5.9, loc,(S®)(nf)) = 0, but the Kolyvagin system relations
guarantee that locz(mg?) # 0. This is a contradiction. O

Proof of Theorem 1.6.1.. Since H}(K, T) = lim H}(K, T®)), we must have K,gk) nonzero for k > 0.

Fix such a k. Taking n = 1 in Lemma 1.6.4, we have ngk) e S®)_ and in particular S® £ 0. Lemma
1.3.3 implies that there are isomorphisms

HE(K,TW) = HE(K, Alm?]) = HE(K, A)[m)],
16
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and we conclude that
HE(K, A)[m* =~ R/mF & M®) ¢ p®

with lengthp(M®*) < k, and so for some finite R-module M = M) there is an isomorphism
H}_—(K,A) =2=DoMaoM.

The compact Selmer group H }(K ,T) is the m-adic Tate module of H }(K , A), and is therefore
a free rank-one R-module. Let A = lengthy (M) = A(¥)(1). By Lemma 1.6.4, ng:) e mHL(K,TW),
and so by the injectivity of

HE(K,T)/m HE(K,T) — HH(K, T%)

(which is deduced from Lemma 1.3.3), k1 € m*HL(K,T). The claim follows. O

Let E/Q be an elliptic curve as in the statement of Theorem A of the introduction, and let
Sely~ (E/K) and S,(E/K) the p-power Selmer groups defined there. Define a Selmer structure F
on V =T,(F)® Qp by taking the unramified local condition at each place v of K which does not
divide p, and at v|p take the image of the local Kummer map

E(K,)®Q, — H'(K,V).

Define local conditions on T),(E) and E[p™]| = V/T,(E) by propagating F. By Proposition 1.6.8 of
[Rub00], H:(K, E[p™]) = Sel,~(E/K).

THEOREM 1.6.5. (Kolyvagin) Suppose there is an integer s for which the Selmer triple (T,(E), F, L)
admits a Kolyvagin system with k1 # 0. Then S,(E/K) is free of rank one over Z, and there is a
finite Zy,-module M such that

Selp (E/K) = (Qp/Zy) & M & M
with lengthyz (M) < lengthy (Sp(E/K)/Zp - K1)

Proof. By Theorem 1.6.1 we need only verify that Hypothesis H.0-H.5 hold. Hypothesis H.0 is triv-
ial. Hypothesis H.1 follows from our assuption that G’k surjects onto Autz, (7)(£)). This assumption
also implies that
H'(K(E[p™))/K, Elp)) = H'(GLy(Z,), F;) = 0

(for the second equality, apply the inflation-restriction sequence to the subgroup p,—1 C GL2(Zy)
embedded diagonally.) Hence H.2 holds with F' = K(E[p™>]). The fact that F is obtained by
propagation from V implies that the quotient of H'(K,,T,(E)) by H}(Ky, T,(E)) is torsion-free
for every place v, and hence Hypothesis H.3 holds by Lemma 3.7.1 of [MR04]. The pairing of H.4
is the Weil pairing, modified as in Remark 1.3.2. The orthogonality relations of that hypothesis are
equivalent to Tate local duality, by the same remark. All of the conditions of H.5 hold for T,,(E),
hence also for T' =2 E[p], using the fact that E is defined over Q. The splitting of part (a) follows from
the 7-invariance of the Weil pairing on T),(E); part (b) says that the images of the local Kummer
maps are stable under the Gg-action on (semi-) local cohomology; part (c) follows from

(sTvtT) - €(ST,t) - e(s7tT)T = (S,t)T,
where e is the Weil pairing. O

In the next section we will construct a Kolyvagin system from the Euler system of Heegner
points. Applying Theorem 1.6.5 to this Kolyvagin system proves Theorem A of the introduction.

1.7 Heegner points

In this subsection we show that our theory is nonvacuous by constructing a Kolyvagin system for
T = Ty(E) from the Heegner point Euler system. Let E,q be an elliptic curve of conductor N and
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K a quadratic imaginary field of discriminant prime to p and # —3, —4. Assume that p does not
divide NV and that all prime divisors of N are split in K. Fix an integral ideal a of O satisfying
Ok/a 2 Z/NZ. Let L = L1(T) and N = Nj. For £ € L, we denote by ay € Z the trace of the
Frobenius at £ on Tp(E). The ideal I, C Z,, is the smallest ideal containing £+ 1 for which Fry = Fr?
acts trivially on T'//I,T, and hence on which Fr, acts with characteristic polynomial X2—1. Therefore
Iy is generated by ay and £ + 1.

For every integer of the form m = p*n with n € N we let h,,, € Xo(NN) be the point corresponding
to the cyclic N-isogeny of complex tori

hm = [C/Om — C/(OmNa)™!]

where O, is the order of conductor m in Ok and (O,,Na)~! is the inverse of the invertible O,,-ideal
(Op, Na). The point h,, is rational over the ring class field of conductor m, which we denote by
K[m]. Let Jo(NN) be the Jacobian of X¢(N), and embed Xo(N) < Jo(N) by sending the cusp at
oo to the origin. The image of h,, in Jo(NN) is again denoted by h,,. Fix a modular parametrization

Jo(N) — E.

The image of h,, is now denoted by P[m] € E(K[m]), the Heegner point of conductor m. If n € N'
we have the Euler system relation ([Gro91] Proposition 3.7, or [PR87] Section 3.3, for example)
Normpg ng, i P[nf] = arPln]

and the congruence
Plnt] = <m> Pln] (mod X) (13)

where A is any prime of K[nf| above £.

If n € N we set G(n) = Gal(K[n]/K) and G(n) = [ 1 Ge- Then for m dividing n we have the
equality
Gal(K[n]/K[m]) = [ Ge=G(n/m).
£|(n/m)

Define the derivative operator Dy € Z,[G(¢)] by D, = Zle io}, where o, is a fixed generator of
G({), and let Dy, =[], D¢ € Zp[G(n)]. One has the easy telescoping identity

(0’4 — 1)De =/ +1-— NOI‘mg.
Choosing a set of coset representatives S for G(n) C G(n), we define

fin =Y _ sDn(Pln]) € E(K[n]).
seS

LEMMA 1.7.1. The image of ik, in E(K|[n])/I,E(K|n]) is fixed by G(n).
Proof. For each ¢|n we have the equalities in E(K|n])/I,E(K[n])
(00 = 1)Dyn(P[n]) = (0¢ — 1) Dy D,, /¢ Pln]
= —D,,/;Norm,(P[n])
= —ayDy, 0 (Pn/{]).

Since ay € I; C I, the claim follows. O

Our assumption that the map Gx — Aut(T) is surjective guarantees that E(K|[n])[p] = 0, and
so, by the Hochschild-Serre spectral sequence, restriction gives an isomorphism

HY(K,T/I,T) HY(K[n],T/I,T)%™.
18
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If 6, : BE(K[n])/I,E(K[n]) — HY(K[n|,T/I,T) is the Kummer map, we define x,, to be the unique
preimage of d,,(k,) under restriction.

LEMMA 1.7.2. The class /{n € HY(K,T/I,T) may be given as an explicit cocycle as follows. Let
In = pMnZ, and fix a pMr-divisor of Fp, de—nn € E(K). For o0 € Gk let (U 1)”" be the unique
Mn_divisor of (0 — 1)k, in E(K[n]). Then

Fn (0 —1)fn

kn(o) =(c—1 —
TL( ) ( )pMn pMn

Proof. This is Lemma 4.1 of [Mc91]. O

LEMMA 1.7.3. Fix n € N and let F denote the Selmer structure of Theorem 1.6.5 on T, so that
HL(K,T) = Sy(E/K). Then k, € H}E(n) (K,T/L,T).

Proof. The statement that locy(k,) € Hx(K,, T/I,T) for v not dividing n is Proposition 6.2 of
[Gro91].

Assume that ¢|n and let A be the prime of K above ¢. We must show that the restriction of
kn to HY(K[f)y,T/I,T) is trivial, where )\ is the unique prime of K[¢] above ¢. The prime A of
K above / splits completely in K[n/f], and so X' splits completely in K[n]. Fixing a prime \” of
K[n] above X', we have K[(]y = K|[n]y. Therefore it suffices to show that }__ ¢ 5D, (6,(P[n])) has
trivial restriction to H'(K[n]y/, T/I,T).

Let

c=6,(P[n]) € H!

unr

(K[0x, T/1nT) = Hyne(K[n)xr, T/1nT)
and extend oy to a generator of Gal(K[(]}/"/K\™). By definition of I,,, the Frobenius automorphism,
Fry € Gal(Ky™/K)) acts trivially on T'/I,,T, and so by Proposition 1.1.7 it suffices to show that

(Dgc)(Fry) € T/I,T is zero. Since oy acts trivially on 7'/, T, we have

0+1
(Dygc)(Fry) ch Fry) = ;_ )C(FI‘)\) =0.

PROPOSITION 1.7.4. For every £ | A € L there is an automorphism
xe:T/I,T — T/I,T
such that for nt € N, x¢(kn(Fry)) = kne(oy) as elements of T /I,,T.
Proof. Fix a prime X of K above \. Identify
T/I,T = E[I;] = E(F)[L]

where E is the reduction of E at ¢ and F is the residue field of K at A. By Lemma 1.7.2 (and using
the notation of that lemma) the right hand side is given by the congruence

Y
kne(0e) = —7(071)]\4”2%% (mod \).

Combining this with the Euler system relations and the congruence (13) gives

-+ 1F
Kne(og) = %an (mod \)

(see the proof of Proposition 4.4 of [Mc91]). Define x, to be the composition

p~Me(ag—(£+1)Fry)

E(K)) — E(F) — E(F)[p™] E(F)[I] — ElL]
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where the first arrow is reduction, the second is projection onto the p-Sylow subgroup, and the last
is the canonical lift to E(K))[Is]. The action of Fr, splits the p-Sylow subgroup of E(F) into cyclic
eigencomponents whose lengths are the orders at p of 4+ 1 — ay and £+ 1 + ay, it follows that y, is
a surjection. Since E[I] is defined over K, the map x, factors through to an isomorphism

E(K))/ItE(K)) — E[I)].
Identifying
E(K))/1B(K)) = H' (K3 /Ky, E[L;]) = B[I/]
we obtain the desired automorphism of E[I]. O

The above proposition shows that the classes x, almost form a Kolyvagin system. Only a slight
modification is needed:

THEOREM 1.7.5. There is a Kolyvagin system " for (T, F, L) with k| = k1.

Proof. For n € N define an automorphism
xn: HYK,T/I,T) — HYK,T/I,T)

as follows. For each ¢ dividing n, the automorphism xy of T'/I,T induces an automorphism of
HY(K,T/I,T), again denoted by x,. It is clear from construction in the proof of Proposition 1.7.4
that the maps x, pairwise commute, and we define x,, to be the composition of of the x, as £ runs
over all divisors of n. We now define

O

The class «) is the image of Norm )/ P[1] under the Kummer map E(K) — HY(K,T), and
so is nonzero provided that L'(E/K,1) # 0, by the results of Gross and Zagier, [GZ86].

2. Iwasawa theory

Fix an elliptic curve E,q with good, ordinary reduction at p, and let K be a quadratic imaginary
field satisfying the Heegner hypothesis and with discriminant # —3, —4 and prime to p. Let Ko /K
be the anticyclotomic Z,-extension,

' = Gal(Kw/K) A =1Z,[[I],

so that K /K is characterized as the unique Z,-extension of K such that complex conjugation acts
as Tor = o ! for all o € I'. Fix a topological generator v € I so that we may identify A with the
power series ring Z,[[T]]. Let K, denote the unique subfield of K., with [K,, : K] = p". Set

T=T,E) V=T®Q, A=V/T

We assume throughout that the map Gal(K/K) — Autg, (T) is surjective, and that each prime
of K above p is totally ramified in K.

We denote by f +— f* the involution of A induced by v — y~!. We regard A as a Gx-module
in the obvious way. The symbol ¥, will always be used to indicate a finite set of height-one prime
ideals of A, and 3 will always denote a height-one prime of A.

For a height-one prime B # pA of A, denote by Sqg the integral closure of A/, by ®g the field
of fractions of Sy, and by Dy the quotient ®g/Sqp. For any Z,-module N, let Ng = N ®z, Sgp.
If N has a Gg-action, we let Gk acts on Ny by acting on both factors in the tensor product, the
action on Sg being given by the natural map Gx — A — Sg.
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Our basic tool for studying the Iwasawa module T = T),(E) ® A and its cohomology is, following
[MRO4], to consider the Syp-module Tig = T ®5 S for each height-one prime B of A. The results
of Section 1 allow one to control certain Selmer groups associated to Tig, defined using the ideas of
[CG96], and from this one may recover information about the structure of Selyoo (E/K o).

2.1 Kolyvagin systems at height-one primes

Throughout Subsection 2.1 we work with a fixed height-one prime P # pA of A. Let m be the
maximal ideal of Sq. If 9 is a generator for the absolute different of ®g3, the trace from &g to Q,
defines a surjective map

-1
Dy = p/Sp — dp/o Sy = Q,/Z,
whose kernel contains no Sgp-submodules. This map induces an isomorphism of Syp-modules
HomS«p (N7 Dqg(l)) = HOH’IZP (Nv /’Lpoo)

for any finitely or co-finitely generated Sy-module N.

If v is a prime of K above p, we define Fil,T" to be the kernel of the reduction map 7, »(E) —
T,(E) where E is the reduction of E at v. Let

Fil, Ty = (Fil,T) ® Sy Fil, Vg = (Fil,T) ® ®g.
We define the ordinary local condition at v, H&rd(Kv, Vip), to be the image of
HY(K,,Fil,Vig) — H'(K,, V).
LEMMA 2.1.1. There is a perfect Sy-bilinear pairing
ep: Ty x Tg — Sp(1)

which satisfies eqp(s?,17°7) = exq(s,t)? for s,t € Tig and 0 € G (here we regard Sy(1) as the
Tate twist of the module Sy with trivial Galois action). The submodule Fil, Ty is its own exact
orthogonal complement under this pairing.

Proof. If e : T x T — Zp(1) is the Weil pairing, we define egs by
ep(ts ® ar,te ® ag) = e(t1,13) ® aran
for t; € T and «; € Sgp. Since Fil, T is maximal isotropic under the Weil pairing, the same is true
of Fil,Tip. O
DEFINITION 2.1.2. Define a Selmer structure Fz on Vig by
H! (Ky,Vg) ifv|p

ord

Hy, (K,, Vip) = 1
Hy, (K, Vi) else.

unr

We denote also by Fi the Selmer structures obtained by propagating this to T and to Ag = Vip/Tip.

PROPOSITION 2.1.3. Fix a positive integer s and a set of primes L O L,(Ts), and suppose the Selmer
triple (T, Fp, £) admits a nontrivial Kolyvagin system . Then H }‘n (K,Twy) is a free, rank-one
Sy-module, and

1 ~
Hfm(K,Aqg) = Dy @ My @ My
where Mgy is a finite Sqp-module with
length(Msp) < lemgth(H]l_—q3 (K, Tyg)/Sp - K1).
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Proof. By Theorem 1.6.1, we need only verify that Hypothesis H.0-H.5 hold. Hypothesis H.0 is
trivial. For Hypothesis H.1, observe that Ty = E[p] ® Sp/m. The action of Gx on Sgp/m factors
through Gx — A/(p,y —1) — Sp/m, and so is trivial on the second factor of the tensor
product. Therefore, the surjectivity of Gx — Autz, (E[p]) implies that Gk — Autg, (Ty) is
also surjective. For H.2 we take F' = K (E[p*]). Since pp~ C F and Tig = E[p| ® Sp/m, we must
show that H'(F/K, E[p]) = 0. From the surjectivity of Gx — Autgz, (E[p]), one may deduce that
E(Kx)[p] = 0 and that

H'(F/Kx, Elpl) = H'(K(E[p™))/K, E[p]) = H'(GL2(Z,), F}) = 0
(as in Theorem 1.6.5) and so the claim follows from the exactness of the inflation-restriction sequence
H'(Ko/K,E(Kx)lp)) — H'(F/K,Elp)) — H'(F/Ke, Ep]).

Hypothesis H.3 follows from Lemma 3.7.1 of [MRO04] and the fact that the Selmer structure Fy on
Tty is obtained by propagation from Vig. Hypothesis H.4 follows from Lemma 2.1.1, and H.5 follows
from the isomorphism Tip = E[p] ® Sgp/m (with G acting trivially on the second factor). O

2.2 Kolyvagin systems over A

DEFINITION 2.2.1. If M is any group on which Gk acts and L/K is a finite Galois extension we
define the induced representation

ML/K = IndL/KM = {f . GK — M | f(O'.l?) = f(ZE)U Vx € GK, o c GL}
This comes equipped with commuting actions of Gx and Gal(L/K) defined by
() (@) = f(zo) (v- M) = f(3""2)
where 0 € G, v € Gal(L/K), and 7 is any lift of v to Gk.

We view Indy ;e as an exact functor from the category of Gx-modules to the category of G-
modules with commuting Gal(L/K)-action. For M a G g-module, we define Gx-module maps

res: M — Mk cor: My g — M

by res(m)(z) = x-m and cor(f) = (Normp g f)(idg, ). Under the canonical identification of
Shapiro’s lemma HY(L, M) = H(K, My, k), res and cor induce restriction and corestriction.

LEMMA 2.2.2. If F is any extension of L, there is a canonical isomorphism
HY(F, My k) = Indp, g HY(F, M).
Proof. This follows from Proposition B.4.2 of [Rub00]. O
DEFINITION 2.2.3. Define A-modules T and A by
TzlEnIndKn/KT A:Ii_r)nIndKn/KA

the limits with respect to corestriction and restriction, respectively. We remark that there is a
canonical isomorphism of A and Gg-modules T = T ® A, where Gx acts on both factors in the
tensor product and A acts only on the second factor.

PROPOSITION 2.2.4. The Weil pairing e : T'x A — e induces a perfect G'i-equivariant pairing
en: T XA — pipeo
satisfying epx(A - t,a) = ep(t,\" -a) fort € T,a € A, and X € A.
Proof. Let T, = Indg, kT and A, = Indg, /xA. Define a pairing
n:Tn x Ay — Indg, /i (pp<)
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by é,(f, f')(z) = e(f(x), f'(x)). This pairing is easily seen to be equivariant for the actions of both
Gr and A, and to satisfy

cor(én(f,res(a))) = e(cor(f),a)
for f € T}, and a € A. Define a pairing e, : T), X A,, — pp~ by the composition
Tn X An — IndKn/K(Mpoo) = Hpoo -
Passing to the limit as n — oo yields the desired pairing ey . O

DEFINITION 2.2.5. If v is a place of K dividing p, let Fil,T" be the kernel of the reduction map
T — T,(E) where E is the reduction of E at v. Define Fil,V = Fil,7 ® Q, C V and Fil,A =
Fil,V/Fil,T C A. Define Fil,T C T and Fil,A C A by

Fil, T = lim Ind g, /g Fil, T Fil, A = lim Indg,, /xFil, A.
If N is any object for which Fil, N is defined, set gr, N = N/Fil,N.

The submodules Fil, T and Fil, A are exact orthogonal complements under the Weil pairing, and
it follows that the same is true of Fil, T and Fil, A under the pairing of Proposition 2.2.4.

DEFINITION 2.2.6. Define a Selmer structure Fa on T by taking the unramified condition at primes
of K not dividing p, and taking the image of

HY(K,,Fil,T) - HYK,,T)
at primes above p. Define a Selmer structure, also denoted Fj, on A in a similar manner.

It follows from the comments following Definition 2.2.5 that the local conditions Fj on T and
A are everywhere exact orthogonal complements under the local Tate pairing.

For any height-one prime  # pA, the involution of A induces a map Sy — Sy which we
continue to denote by ¢. Define a bijection ¢ : Ty — T by 9 (t ® a) = t” ® o*. This map satisfies

v(Az) = Xy(x) Y(x7) = ()"
for any v € Tip, A € A, and 0 € Gi. If e : Tig x Ay —  ppeo is the pairing induced by that
of Lemma 2.1.1 and the trace form, then (z,y) — eq(y"(z),y) defines a perfect, Gx-invariant
pairing
TgpL X A{B — ,LLpOO
satisfying (Az,y) = (x, \'y). Dualizing the natural map T/P‘T — Tip and using the above pairing
and the pairing of Proposition 2.2.4, we obtain a map of Gx and A-modules
Ap — A[B]. (14)
LEMMA 2.2.7. For every height-one prime ‘B # pA of A and every place v of K, the map T — Ty
and the map (14) induce maps
H}‘—A (KU? T/"BT) - H}F‘m (KU? TK»B)
H}, (K., Ag) — Hk, (K., A[F])
with finite kernels and cokernels which are bounded by constants depending only on [Sqg : A/B].
Proof. The case where v does not divide p is covered by Lemma 5.3.13 of [MRO04], so we assume
that v divides p. The kernel of the first map is bounded by the size of H°(K,, T @ Sg/(A/9)) and
so causes no problems. To bound the cokernel, it suffices to bound each cokernel in the composition
H' (K, Fily(T)) — H'(K,, Fily(T) ® A/F) (15)
— H'(K,,Fily(Tp)) — Hp, (K, Tp).
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The cokernel of the first map is controlled by H?(K,, Fil,T)[}], and by local duality it suffices to
bound

HY(K,,gr,A) & H (Ko, gr,A).
This last group is isomorphic to p-power torsion of the reduction of E at v rational over the residue
field of K, and this is finite.

The cokernel of the second arrow of (15) is controlled by H'(K,,T ® Sy/(A/%)). This group
has a bound of the desired sort, using the fact that K, has only finitely many extensions of a given
degree.

For the third arrow of (15) it suffices to bound the kernel of
Hl(Kv,grUqu) - Hl(Kvager‘B):
which is controlled by
HO (K, gr, Ag) = H'(Ky, (gr,4) @ Sg)
C H(Koop, (gr,4) ® Sp)
=~ H( Koo, gr,A) @ S
K

(
(
( U?grvA) ® S‘I}

>~ [
where the last isomorphism uses the fact that K, /K, is totally ramified, while gr, A is unramified.

Since HY(K,, gr,A) is isomorphic to the p-power torsion of E defined over the residue field of K,,
we obtain a bound of the desired sort.

Finally, to deal with the second map in the statement of the lemma, observe that the kernel and
cokernel of H!(K,, T/PB'T) — H'(K,, Ty:) are finite and have bounds of the desired sort, and so
the same is true of

H'(K,, T/$'T)/HF, (K, T/R'T) — H'(K,, Typ.)/Hp,, (K, Tip.).
Now apply local duality. O

PROPOSITION 2.2.8. For every height-one prime B # pA of A, the map T — Ty and the map (14)
induce maps

HY (K, T)/PH}, (K. T) — Hk, (K. Ty)

There is a finite set of primes Y5 of A such that for 3 € Y5 the kernels and cokernels of these maps
are finite and bounded by a constant depending only on [Sy : A/B].

Proof. This is deduced from the preceeding lemma exactly as in the proof of Proposition 5.3.14 of
[MRO4]. O

LEMMA 2.2.9. The A-module H (K, T) is torsion free.

Proof. Let Kg be the maximal extension of K unramified outside of all primes dividing p and the
conductor of E. Then H ]1_-A (K, T) is a submodule of H*(Kg/K, T) which has no A-torsion by [PR00]
§1.3.3 and the fact that E(K)[p] =0 (by the surjectivity of Gx — Aut(T)). O

THEOREM 2.2.10. Let X = Hom(H}A (K,A),Qp/Z,) and suppose that for some s the Selmer triple
(T, Fa, Ls) admits a Kolyvagin system k with k1 # 0. Then

(a) H }A (K, T) is a torsion free, rank one A-module,

(b) there is a torsion A-module M such that char(M) = char(M )" and a pseudo-isomorphism
X~AD Mo M,
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(c) char(M) divides char(H, (K,T)/A#y).
Proof. At every height-one prime B # pA, Remark 1.2.4 and Lemma 2.2.7 yield a map
KS(T,fA,ﬁs(T)) — KS(qu,f%,ﬁs(Tm)).

Let P be the image of x under this map. It follows from Proposition 2.2.8 and Lemma 2.2.9 that

mgm) generates an infinite Sp-submodule of H }m (K, Typ) for all but finitely many height-one primes.

We let 35 be a finite set of height-one primes of A containing those primes for which Rgm) has finite
order, all prime divisors of the characteristic ideal of the A-torsion submodule of X, the exceptional
set of primes of Proposition 2.2.8, and the prime pA.

Let P & X be a height-one prime. Since /193) # 0, Proposition 2.1.3 implies that H}m (K, Typ) is
a free rank-one Syp-module, and by Proposition 2.2.8 so is H }A (K, T)®p Sp. Part (a) follows imme-
diately from this. Similarly, the Sg-corank of H }m (K, Ag) is one, and it follows from Proposition
2.2.8 that the A-corank of H}A (K, A) is also one.

Now let fy = char(H}A(K, T)/A - k1) and take P # pA to be a prime divisor of fy. We want to
determine the order of the characteristic ideal of X at B, following ideas of [MRO04]. We consider
an auxilliary ideal Q € Y5, determine the structure of the Selmer group H }D (K, Aq) (or rather
the order of the quotient by the maximal divisible subgroup), and then consider what happens as
9 “approaches” B. Fix a generator g of B, and let Q = (g + p™)A for some integer m. By Hensel’s
lemma, for m > 0 there is an isomorphism of rings (but not A-modules) A/P = A/Q, and we take
m large enough that this is so. In particular £ is a height-one prime, and increasing m if needed,
we assume that £ is not contained in ¥ and does not divide fy.

Let d denote the Weierstrass degree of P (i.e. the Z,-rank of A/J). We now argue as in the
proof of [MR04] Proposition 5.3.10. Using the notation of Proposition 2.1.3, Proposition 2.2.8 and
the equality of ideals (2,") = (Q,p™") imply that one has the equalities

lengthy, Hk_ (K, Ta)/Sar{™ = lengthy A/(fr,Q)
= lengthy A/(P*UN Q)
=m -d-ordp(fa)
up to O(1) as m varies. Similarly, we have
2-lengthy, Mgq = lengthy, Hr_ (K, Ag) div
= lengthy (X/QX)z,—tors
=m -d-ordg (char(XA_tors))
up to O(1) as m varies. Here H}Q (K, Aq) aiv denotes the quotient of H}Q (K, Ag) by its maximal

Z,-divisible submodule. Applying Proposition 2.1.3 at the prime £ and letting m — oo we deduce
that

ordgs(char(Xa—tors)) < 2 - ords(fa)- (16)
The case P = pA is dealt with in an entirely similar fashion, taking Q = T™ + p € Z,[[T]]. This
shows that (c) follows from (b).

To prove (b), keep P # pA and 9 as above. Fix a pseudo-isomorphism
XA—tors ¥~ N @ N‘»B

where char(/V) is prime to B, and Ny is isomorphic to @, A/B. The dual of the second map of
Proposition 2.2.8 induces the third arrow of the composition

N‘ﬁ QA SQ - XAftors KA SQ - (X XA SQ)Zp—tors - MQ S MQ
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and this composition has finite kernel and cokernel, bounded as m varies. Fixing a ring isomorphism
Syp = Sq (which will not be an isomorphism of A-modules), we may view Ny ®p Sq as an Sp-
module, isomorphic to @, Sg/p™¢ Sgp. Letting D,, denote Mg, viewed as an Sp-module, we now
have Sy-module maps

D Sa/v™ Sy — DD,
%

with kernels and cokernels bounded as m varies. An elementary argument shows that for a given e,
{i | e; = e} has an even number of elements. The case P = pA is dealt with similarly, again taking
Q=T+p" € Z,[[T]].

The functional equation char(M) = char(M)" follows from the functional equation of [NekOlal

char(Xx—tors) = char(Xa_tors)"

2.3 The anticyclotomic Euler system

We retain all notation and assumptions from the introduction to Section 2, and in addition assume
that p does not divide the class number of K. Denote by K} the subfield of the anticyclotomic
extension K, /K satisfying K} : K] = p*. By the assumption on the class number of K, K., /K is
linearly disjoint from the Hilbert class field K[1], and K} is the maximal p-power subextension of
K[pF*t1]/K. Let T and A be as in Definition 2.2.3 and let F, be the Selmer structure of Definition
2.2.6. Define £ = £1(T). The majority of this subsection is devoted to the proof of the following
theorem.

THEOREM 2.3.1. There exists a Kolyvagin system k& € KS(T, Fy, L) such that n?g € H}_A(K, T)
is nonzero.

For n € N let Ki[n| be the compositum of K and K|[n], and let K [n| be the union over all k
of Ki[n]. There is a canonical isomorphism

(Ox/pOK)* /(Z/pZ)* = Gal(K[np" "]/ Ky[n])

and we denote this group by A. Let § = |A|. If p is split in K we let 0 and ¢* denote the Frobenius
automorphisms in G(n) = Gal(K[n]/K) of the primes above p. Define v, ® € Z,[G(n)] by the
formulas

o (p+1)*—a inert case
| (p—apo +0?)(p — apo* +0*?) split case
| oa inert case

0= ap—o—o* split case

M = apYo — 0

Ve = ApVk—1 — PYk—2 for k>1
where split and inert refer to the behavior of the rational prime p in K.
Define points Py[n| € E(Kg[n]) by
Py[n] = Norm i), ) P 0" ]
for £ > 0, and denote by Hy[n| the Z,[Gal(K[n]/K)]-submodule of E(Ky[n]) ® Z, generated by
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Pln] and Pj[n] for all j < k. It follows from Section 3.1 of [PR87] that one has the relations

PByln] = y0P[n]
apPx[n] — Pi_1[n] for k>0
NOI‘kaH[n}/Kk[n}Pk—l-l[n] = { "}/II)P['n] for k = 0

Normp, (e i, ) Pr[1€] = a¢Py[n],
and an easy inductive argument using the first two of these relations shows that
NorkaM/K[n}Pk[n] = 'ykP[n] for k = 0.

We observe also that the norm from Kjiq[n] to Ki[n] takes Hyi1[n| into Hg[n], and so we may
define for every n € N a A[G(n)]-module

Hin| = lim Hg[n].
LEMMA 2.3.2. If M is any finitely generated Z,[G(n)]-module, the intersection of v, M for k > 1 is
equal to ®M.
Proof. This is Corollaire 5 of section 3.3 of [PR87]. O

LEMMA 2.3.3. There exists a family
(@) = lim Qufn] € HinJhnen
such that Qo[n] = ®P[n|, and for any nl € N'
Normg__ jne)/K o [n]Q[nﬂ] = aQIn].
Proof. Fix an n € N and let Hj, be the free Z,[Gal(K}y[n]/K)]-module on generators {z,z; | 0 <
j < k}, modulo relations of the form
(a) x is fixed by Gal(Kj[n|/K[n]), and z; is fixed by Gal(K[n]/K;[n]) for every j <k,
(b) For j > 1, Norm, [n)/K,_,[n]Tj = QpTj—1 — Tj—2,
(c) Normg, )/ Ko T1 = 717, and zg = Yo.
Then for each j < k,
Normy, (n)/ Ko Tj = V- (17)
There is a natural inclusNion ﬁk — ]SIkH and a nNatural norm ﬁkH — ﬁIk. By Lemma 2.3.2 and
the relation (17), &= € Hy is a norm from every Hj.
Let ye H= l%in Hj, be a lift of ®x, and define, for any m | n, @Q[m] to be the image of y under

the map ¢(m) : H — H[m)] which sends x;, — P;[m] and 2 — P[m]. For any m/ | n, the diagram

1 - e

]

M m)
H—— H[m]

commutes, where the right vertical arrow is the norm from K [m/f] to K« [m], and so we obtain a
family {Q[m]},,),, with the desired properties.

An easy argument shows that the A-module of such “partial” families (i.e. where m runs through
divisors of a fixed n) is compact, and so the inverse limit over all n € A/ is nonempty. O

Fix a family Q[n] as in the lemma. Exactly as in Section 1.7, we fix a generator oy of G(¢) for
every £ € L and define derivative operators

D,, € Z,|G(n)] C A[G(n)].
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Fix a set of coset representatives S of G(n) C G(n). Let
Rn = Z sD,Q[n] € H[n|.
sesS

For ¢ € L, the ideal I, C Z,, is generated by ¢ + 1 and ay, and the image of &, in H[n]/I,H[n] is
fixed by G(n) (see Lemma 1.7.1).

The Kummer map §x(n) : BE(Ky[n]) ® Z, — H(Kg[n],T,(E)) induces a map
5(n) = lim §y(n) : Hn] — lim H' (K, [n], T,(E))
~ HY(K[n], T)
and we define k,, to be the unique preimage of 6(n)(%ky,) under the isomorphism
HY(K,T/I,T) — H'(K[n],T/I,T)%™
(the bijectivity being a consequence of
H°(K[n], T/1,T) 2 lim H°(Kj[n], E[I,]) = 0,
since F has no p-torsion defined over any abelian extension of K).

LEMMA 2.3.4. For every n € N, k,, € H}A( (K, T/I,T).

n)

Proof. The proof that the localization of k,, at primes of K dividing n lies in the transverse subspace
is exactly as in the proof of Lemma 1.7.3.

It remains to show that at every prime v of K not dividing n, the localization of k, at v is
contained in Hjl_-A (Ky, T/I,T), the image of the map
Hg, (Ky, T) — H'(K,, T/IT).
Fix a prime v of K not dividing n and let w be a prime of K[n] above v.

Case (i), v [/ pN. We first observe that
H, (K, T/I,T) = Hy,. (K, T/I,7T).

unr

Indeed, since Gal(K;™/K,) has cohomological dimension one, the map

H! (K,,T) — H! (K,,T/I,T)

unr unr

is surjective. Using the injectivity of torsion points in the reduction of E at w, the image of the
Kummer map

Sp(N) : Hyln] — @B H' (Ki[nlw,T) = H'(K[n]w, Indg, /5 T)
w'|w
is unramified, and passing to the limit shows that the image of
§(n) :H[n] — H'(K[n],T) — H'(K[n]y, T)
is unramified at w. Therefor §(n)(Ry,) is unramified, and so also is ky,.

Case (ii), v|N. In this case the Heegner hypothesis implies that the prime w is finitely decomposed
in K [n]. Proposition B.3.4 of [Rub00] gives the equality
H'(Ky, T) = Hyp (K0, T),
and we must therefore show that loc,(k,,) is in the image of
HY(K,,T) —» H'(K,, T/I,T).
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On the other hand, the restriction of , to H'(K[n],, T/I,T) comes from H'(K|n],, T) (namely
from the localization of §(n)(%,)) and so it suffices to check that the right vertical arrow in the
exact and commutative diagram

HY(K,,T) HY(K,,T/I,T) H?*(K,,T)

| | l

HY(K[n)y, T) — HY(K[n]y, T/I,T) — H?(K[n]y, T)

is an injection. Applying local duality and Shapiro’s lemma, this is equivalent to the surjectivity of
the norm map

D EKwln]u)p™] — B E(Koou) ™),
w'|lw v'|v

which is a consequence of the observation that the degree of K [n],s over K, is prime to p.
Indeed, any intermediary extension

Koo CF C Kynly

of p-power order over K, ,» would be contained in the union of all unramified p-power extensions
of K,, and this union is K, s, the unique Z,-extension of K.

Case(iii), v|p. For each prime w of K[n], fix an extension of w to K and denote by Fil,,(T") the
kernel of the reduction map ' — T,(E) at that place. Set gr,,(T') = T/Fil(T'). Let

Fil,(T) =Fil,(T)® ACT gr,,(T) = T/Fil,(T)
and define
H} o(K[n]w, T) = image(H"' (K [n]y, Fil,(T)) — H'(K[n]y, T)).

ord

We first claim that the image of the composition

Hfn) “ H'(K[n]. T) — H'(K[nl,, T)
lies in H! ;(K[n]y, T). To see this, let Ly = Ki[n],, and consider the composition

Hy[n] — H'(Ly,,T) — H'(Ly,gr,(T)) — H'(LE™, gr,(T)).

It is clear from the definition of the Kummer map that this composition is trivial, and so any
Q. € Hy[n] yields a class in the kernel of the final arrow,

H' (L™ /Ly, gry,(T)) = g1, (T)/(Fr — 1)gr,,(T) = E(F[n]) [p>]

where F[n] is the residue field of K[n],, and using the fact that Ly /K [n], is totally ramified. If the
point @ can be lifted to a universal norm in H[n|, then this class can be lifted to an element of
the p-adic Tate module of the finite group E(F[n])[p>], which is trivial. The composition

H[n] — H'(Ly,T) — H'(Lg,gr,(T))

is therefore trivial, and the claim follows.

The above shows that the restriction of &, to H'(Lg, T/I,,T) lies in the image of H!(Lg, Fil,,(T))
under the natural map. For brevity, we write

T* = Fil,(T) T = gr,(T).
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Consider the exact and commutative diagram

H\(K,,T*/I,T")— HY(K,,T/I,T) — HY(K,,T~/I,T")

l | |

HY(Ly, T /1, T+) —— H'(Ly, T/I,T) — H'(Lo, T~ /I,T7).

The image loc, (ky,) in the lower right corner is trivial, and the kernel of the right hand vertical map
is

tim 5 (K o]/ Ko, B(FD])1,])

where the inverse limit is respect to multiplication by p. This is clearly zero, and so we may choose
an a € HY(K,, Tt /I,T*) which lifts k,. It is easily seen that the bottom left horizontal arrow is
injective, and so the image of a under the left vertical arrow is the unique lift to H'(Lo, T*/I,T")
of the restriction of «,, to H'(Lg, T/I,T), which is already known to be in the image of H*(Lg, T™).
In other words, in the diagram

HY (K, Tt)— HY(K,,T*/I,TT) — H?*(K,,T™)

| | l

HY (Lo, T") —— H'(Lo, T /I, TT) —— H?(Lo, TT)

the image of « in the lower right corner is trivial.

To complete the proof, we need only show that the right vertical arrow is injective. By local
duality, the injectivity of this map is equivalent to surjectivity of the norm map

E(F[n)[p™] — EF)[p™)
(where F is the residue field of K,), and this follows from
H'(F[n]/F, E(F[n])[p™)) — H'(F, E[p™]) = E[p™]/(Fr - )E[p™] =0

and the fact that the Herbrand quotient of a finite cyclic group acting on a finite module is equal
to 1. ]

Fix nf € N and let A be the prime of K above ¢ and )\ a fixed place of K above A. Such a
choice gives a canonical extension of each prime w of K} above A to a prime w’ of Kj[nf]. Namely
the unique place which restricts to w in Kj and to A" in K[n/f] (recall that A splits completely in
Koo[nf]). This determines a map of A-modules

U :Hn] — hin@E(Fw) (18)

where the limit is over k, the sum is over primes of K} above A, and F,, is the residue field of w.
Each summand is canonically identified with the points of F rational over the residue field of K at
A (which we denote by F), and A acts by permuting summands. The module on the right hand side
of (18) comes equipped with a natural involution Fr; which acts as the nontrivial automorphism of
F,/F; on each summand. The action of Fr, commutes with the action of A.

LEMMA 2.3.5. For any t € A[G(nl)], U(t- Q[nl]) = Fr,¥(t- Q[n]).

Proof. Exactly as in (13), for any prime w’ of Ki[nf] above ¢ and any j < k, we have

’LU,

Pj[nt] = (W) Pjln] (mod w')
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which implies that for any t € Z,[Gal(Kj[n¢]/K)]
W(t - Pjnt]) = FroW(t - Pj[n])

where Uy : Hi[nl] — @, E(Fy) (the sum is over prime of K}, above \) is the map ¥ at finite
levels. By construction of Q[nf] there are elements

{t; € Zp|Gal(K[nl]/K)] | 0 < j <k}
such that Qg[m] = Z?:o tjPjlm] for every m | nf (in particular the t;’s do not depend on m), and

the claim follows easily. O

Our choice of X\ also fixes an isomorphism

Ell,) ® A= T/I,,T = lim P EF.) L] (19)

which sends elements of the form P ® o to the reduction of P at X\ living in the summand attached
to the prime o)\ of K. Exactly as in the proof of Proposition 1.7.4 we have an explicit description
of the image of k,¢ ® oy under the isomorphism

HY(K), T/IyT)® Gy — T/IyT = E[loA — hm@E ) Lne)
namely

op— 1)Epy
KTLZ®UZ'_>\II(_(])#>

where pMne Z,, = I, and the right hand side is interpreted as the image of the unique pMne_divisor
of —(o¢p—1)Rpe in H[nl] under the map (18) (uniqueness follows from the fact that our assumptions
on E imply that E has no p-torsion defined over any abelian extension of K).

LEMMA 2.3.6.

(00— Dfne\  ag— £+ 1)Fry -
v <_ p ) a V(Fn)

Mg pMnZ

Proof. In H[nf] we have the equalities
(o= DR Yges(l 41— Normy)sDp@Q[nf]

pMnZ pMnZ
41
~ Y sp, ( Qln) - Mnﬂ[ﬂﬂ)
seS p
_ E + 1 Qlnd].
p sES
Now apply the preceeding lemma. Il

As in the proof of Lemma 1.7.4, we define a map x, as the composition
hm@E (Kkw) — hm@E )p™] — hm@E =T/I,T

where the second arrow is given by the action of W. This map factors through
pe

(lim @D E(Kp.w)) @4 AL = H{ (K), T/ T) = T/IT,
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where the first map is the Kummer map and the second is evaluation of cocycles at Frobenius. The
resulting automorphism of T /I, T is again called y;, and satisfies

ag — (¢ + 1)Fry

Xelra () = =S

\I’(f{'n) = ’{'nﬂ(o-ﬂ)'
The classes k, may now be modified exactly as in Theorem 1.7.5 to produce a Kolyvagin system
k18 € KS(T, Fp, L) with £} = k.
Now we turn our attention to the proof that /{Il{g is nontrivial. Let
Hy, C E(Ky)®Zy

be the A-submodule generated by Norm gy x P[1] and Normg, 11/k, P5[1] for 0 < j < k, and let
H = lim H;. Since n?g is the image of #; under the injective Kummer map H — H(K,T), to

complete the proof of Theorem 2.3.1 it suffices to prove the following
THEOREM 2.3.7. The A-module H is free of rank one, generated by &1.

Proof. By the main result of [Cor02], one of the points Normg, 1), Px[1] has infinite order, and
so Proposition 10 of section 3 of [PR87] implies that H is free of rank one. We show that &; is a
generator.

Recall the construction of k1. There is a canonical decomposition
Gal(Kk[l]/K) = Fk X g

where I'y = Gal(Ky/K) and G = G(1) is the ideal class group of K (which has no p-torsion by
assumption). We let Normg be the norm element in Z,[G] C A[G]. Let Hy be the Z,[I'; x G]-module
defined in the proof of Lemma 2.3.3 (with n = 1), and let H = lim Hy, the limit with respect to the

norm maps. We may choose an element y € H which lifts ®x € Hy. Let
acjg = Normg1)x; € I:Ikg yg = Normg1)y € HY

(including the case where j is the empty subscript).

We have the commutative diagram in which all arrows are surjective and the vertical arrows are
Normgy)

A H[|
L]
HY —H.

The top arrow takes z; to Pj[1], and the bottom arrow takes a:Jg to Normg(1)P;[1] and 9 to 1.
Fix a topological generator v € I'. By Nakayama’s lemma we will be done once we show that

A9 = Ay 4 (v 1A,
This is immediate from the following two lemmas.

LEMMA 2.3.8. Let aug : Z,[G(1)] — Z, be the augmentation map. The image of the natural map
HY — Hog is a free rank-one Z,-module generated by aug(®)zY, the image of y9.

Proof. The Z,-module JZIOQ is free of rank one, generated by z9, and one has the relations

Norka/K(acg) = aug(’yk)xg.

Lemma 2.3.2 implies that Ngsoaug(vx)Z, = aug(P)Z,, and an elementary argument using the
recursion relation defining -y, shows that aug(vyx)Z, = aug(®)Z, for k > 0. The claim follows. [
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LEMMA 2.3.9. The map of the preceeding lemma induces an isomorphism
HY/(y - 1)HY — aug(®)H].
Proof. We have seen that it is a surjection, so suppose h = lim hy is in the kernel of HY — ﬁog .

The A-module H kg is generated by xg and x%ﬁl, and so hg may be written in the form
hi = akﬂfg + ﬁkibgfl +(v—1)zk
for a and B in Z,,. Taking the norm to ﬁog and using the fact that 9 has infinite order yields

0 = agaug(yx) + pBraug(vk-1)
and so
aug(ve) i € Brsy + (v — 1) HY
where s = —p - aug(’yk_l)xg + aug(yk)xg_l. The recursion relation for the 7;’s and the norm

relations for the x;’s imply that the norm from ]flkg+1 to ﬁg to takes sgy1 to p - sk. If we take k
large enough that aug(+y,) = aug(®) for all £ > k, and take £ > k

aug(yx)hy = aug(y,)Normy,,hy € Bep" i, + (v — 1)ﬁkg
Letting ¢ — oo shows that hy € (v — l)I:I,g for every k and the claim follows.

This completes the proof of Theorems 2.3.1 and 2.3.7. O
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