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Abstract
A genus one curve defined over Q which has points over Qp for all primes p may not
have a rational point. It is natural to study the classes of Q-extensions over which all
such curves obtain a global point. In this article, we show that every such genus one
curve with semistable Jacobian has a point defined over a solvable extension of Q.
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0. Introduction
One of the great discoveries of the nineteenth century is that equations of degree 5 or
more need not be solvable. To put this another way, such an equation need not have
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roots in a solvable extension of the field of coefficients. One can ask the same question
about polynomials in two variables.

Let X denote a smooth geometrically irreducible projective curve of genus g

defined over a field F. Pál [P] has proved that every curve X of genus g has a point
defined over some solvable extension of the base field F for each g ∈ {0, 2, 3, 4}.
This makes one wonder if there are any curves where this does not hold. This is also
addressed in Pál’s article [P], where he constructs curves that have no solvable points.
Pál is able to construct a curve with this property for every genus g either greater than
or equal to 40 or g ∈ {6, 8, 10, 11, 15, 16, 20, 21, 22, 25, 26, 27, 28, 29, 30, 31, 32,

34, 35, 36, 37, 38}. These curves are defined over local fields F such that the absolute
Galois group of the residue field of F has quotients isomorphic to S5, PSL3(F2), and
PSL3(F3). This condition does not hold for completions of number fields. Therefore,
the question of whether a curve X of genus g defined over a number field has solvable
points remains open for all g /∈ {0, 2, 3, 4}.

We are interested in studying the case of genus one curves defined over the rational
numbers. A curve C of genus one defined over Q has a Jacobian, E = Jac C, also
defined over Q. The L-series of the Jacobian of C, which we also write L(E, s), has
analytic continuation to the whole complex plane by the theorems of [Wi] extended
by [BCDT]. This is a consequence of E being modular, that is, covered by the modular
curve by a finite map π : X0(N) → E for some positive integer N. The minimal such
N is called the conductor of E. Here L(E, s) is defined as an Euler product∏

p|N
(1 − app−s)−1 ·

∏
p�N

(1 − app−s + p1−2s)−1,

where ap = 1 + p − #E(Fp) for p � N and ap = −1, +1, or 0 for p|N. The precise
values of ap are given in [S1, §2.4], and L(E, s) is then equal to the L-series of a new
form of level N.

In §1, we prove the following theorem.

THEOREM 0.0.1
Suppose that
(a) L(E, s) has a zero of order 0 or 1 at s = 1; and
(b) C(Qp) �= ∅ for all p.
Then C has a point over a solvable extension of Q.

We note that while our method allows us to put some local restrictions on the extension,
for example, that it is unramified at a given finite set of primes not dividing N, it does
not allow us to pick an extension that is totally real. Such a condition would perhaps
be useful in possible applications to base change (see [T]) if such results extended to
cover higher genus. The reason that we are unable to make points over totally real



SOLVABLE POINTS ON GENUS ONE CURVES 383

fields is that we use the system of Heegner points on X0(N), and these are defined
over abelian extensions of imaginary quadratic fields, and thus not usually over totally
real fields. However, the method does suggest that such a result can be true since
conjectures of Darmon [D] lead one to suppose the existence of similar systems of
points on elliptic curves defined over abelian extensions of real quadratic fields.

We now give a brief idea of the proof of Theorem 0.0.1. The curves C of genus
one satisfying condition Theorem 0.0.1(a) and Jac C = E are classified by X =
X(E/Q), the Tate-Shafarevich group of E. The principal homogeneous space C has

a point over a solvable extension if and only if the corresponding class in X splits
over a solvable extension. As X is a torsion group, it is therefore enough to prove
that all classes of p-power order have this property for each prime p. Moreover, under
condition (a) of Theorem 0.0.1, Kolyvagin has shown that this group is finite. Its
pn-torsion fits into the exact sequence

0 � E(Q)/pnE(Q)
φ� H1

Sel(Q/Q, Epn) � Xpn � 0,

where the central term is the Selmer group, which is defined as a subgroup of classes
c of H1(Q/Q, Epn) satisfying

H1
Sel(Q/Q, Epn) = {

c ∈ H1(Q/Q, Epn) : c� ∈ im φ�, ∀ �
}
.

Here φ� is the local connecting homomorphism E(Q�)/pnE(Q�) → H1(Q�/Q�, Epn).
In terms of H1

Sel(Q/Q, Epn), we need only show that the restriction of this group is in
the image of φ after a solvable extension.

Kolyvagin [Ko1] has given a construction of ramified classes in H1(Q/Q, Epn).
These classes split (i.e., appear in the image of φ) over some solvable extension. Our
main argument is the development of the principle described in [Wi, Introduction], that
if one can construct enough ramified classes, then the unramified classes are already
contained in the group generated by those ramified classes.

Neither condition (a) nor (b) of Theorem 0.0.1 seems to be essential. In §2, we
remove condition (a) of Theorem 0.0.1 to obtain the main result of this article, Theo-
rem 0.0.2.

THEOREM 0.0.2
Let C be a curve of genus one defined over Q so that
(a) E = Jac C is semistable; and
(b) C(Qp) �= ∅ for all p.
Then C has a point over a solvable extension of Q.

The proof of Theorem 0.0.2 is also based on the principle that is described above,
but its statement as well as its application become more complicated if condition
(a) of Theorem 0.0.1 does not hold. It is for this reason that we have chosen to
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dedicate §1 to the proof of Theorem 0.0.1. There are two new issues that appear in the
case when L(E, s) has a zero of order greater than 1 at s = 1:
(i) the Heegner point that we can construct in E(K) for some imaginary quadratic

field K is always a torsion point; and
(ii) the Tate-Shafarevich group is not known to be finite.
The first issue is overcome by constructing points defined over a sequence of extensions
of K and using results that guarantee that we eventually construct a point that is not
torsion. More precisely, we consider the anticyclotomic Zp-extension of K, and we
construct Heegner points αn ∈ E(Kn) (defined in §2.3), where Gal(Kn/K) � Z/pnZ.
Cornut [C] and Vatsal [V] have both shown that there exists an n such that αn is of
infinite order. In order to use the points αn, we need to consider H1(Kn/Kn, Epmn ),
where mn is an integer greater than n instead of the group H1(K/K, Epn), which is
what we use when we assume that condition (a) of Theorem 0.0.1 holds. This passage
solves one problem and creates another. We can now construct nontrivial cohomology
classes in H1(Kn/Kn, Epmn ), assuming that n is big enough, but we can certainly not
ensure that we have constructed the whole Selmer group H1

Sel(Kn/Kn, Epmn ).
In attempting to resolve this new issue, we treat H1(Kn/Kn, Epmn ) as a module

over the ring (Z/pmnZ)[Gal(Kn/K)]. At this stage, the situation appears even more
complicated because we do not really understand the structure of this new module that
we choose to consider. In addition, the issue that the Tate-Shafarevich group is not
known to be finite is still present. All these problems are fixed by an idea that is similar
to one described in [Wi] and [TW]. We consider some carefully chosen submodules of
H1(Kn/Kn, Epmn ) containing H1

Sel(Kn/Kn, Epmn ) which vary depending on n, and we
allow n to grow. We now have an infinite sequence of modules out of which we choose
a subsequence of modules that are compatible with each other when treated as abstract
(Z/pmnZ)[Gal(Kn/K)]-modules. This allows us to formally put them together into a
module M over the ring

Lim
←−

n

(Z/pmnZ)[Gal(Kn/K)].

We can now hope to overcome the second issue (ii) because the module M contains
H1

Sel(K/K, Ep∞). Our construction ensures that M has a very nice structure, which
makes it possible for us to generalize the principle that is described above and used in
proving Theorem 0.0.1.

The last step of the proof involves making sure that we are able to construct
the ramified classes that are needed in order to apply our generalized principle. As
we have already mentioned, Kolyvagin’s construction of ramified classes in [Ko1,
§1] uses rational primes. If the primes are chosen to construct ramified classes in
H1(Kn/Kn, Epmn ), one cannot construct anything new in H1(Kn+1/Kn+1, Epmn+1 ) using
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the same primes. So, we are forced to choose new primes for every level n. This is the
reason why the submodules of H1(Kn/Kn, Epmn ) which we consider cannot be chosen
in a naturally compatible way. In addition, the fact that the cohomology classes that
we construct ramify at primes that change depending on n makes it harder to see if
these classes become nontrivial as n grows. In order to bypass this difficulty, we keep
track of what we are constructing in a way that does not depend on the specific prime
where the class is ramified but only on the Frobenius of this prime. This cannot be
done for all the ramified classes that we construct, but the information that we manage
to extract allows us to complete our argument without actually constructing the whole
module M.

Because the proof in the general case is rather intricate, we have decided to present
the case of rank at most 1 separately in §1. Although this incurs some repetition, and
although many of the results in §1 are well known or can be proved more quickly by
citing results from the literature, we believe that a detailed exposition of our approach
in this much simpler case makes the reading of §2 much easier. In particular, both
Kolyvagin [Ko3] and McCallum [M] have shown that the subgroup of H1(K/K, E)
generated by Kolyvagin’s classes contains the Tate-Shafarevich group in the case when
the analytic rank of E/K is 1. This result is equivalent to the statement of Theorem
0.0.1. McCallum’s account, which is based on Kolyvagin’s original approach, cannot
be generalized to the higher-rank case because it uses the nondegeneracy of the
Cassels pairing which in turn depends on the finiteness of the Tate-Shafarevich group.
Kolyvagin [Ko2] has also considered the higher-rank case and has proved similar
partial results assuming that at least one of the classes that he constructs in H1(K/K, E)
is nontrivial. This assumption remains a conjecture in the case when the analytic rank
of E/Q is greater than one.

In a sequel to this article, we hope to remove the hypotheses of Theorem 0.0.2, at
least if E has nonintegral j -invariant.

Notation. In the article, we frequently write Lim
−→

(resp., Lim
←−

) for Lim
−→

n

(resp., Lim
←−

n

) as
all our limits are taken over n.

1. Rank at most 1

1.1. Unramified under ramified principle
Let E be an elliptic curve over Q. Associated to E is its L-series L(E, s). We call
the order of its vanishing at s = 1 the analytic rank of E over Q. A similar def-
inition applies to a number field F other than Q for which the L-series L(E/F, s)
of the curve over F has analytic continuation. In particular, this applies to abelian
extensions of Q. We assume throughout §1 that E has analytic rank over Q equal to
zero or 1. By a theorem proved independently by [BFH, Introduction, Theorem] and
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[MM, Corollary to Theorem 2], the work of Waldspurger [W] in the case when the
analytic rank of E/Q is 1, we can find an imaginary quadratic field K with discrimi-
nant DK �= −3, −4 so that
(i) the analytic rank of E over K is 1; and
(ii) every prime dividing N, the conductor of E, splits in K.
From the fundamental work of Gross and Zagier [GZ, §1.6], it follows that the Heegner
point, which we review in §1.2, yields a point of infinite order over K. Kolyvagin [Ko1,
Corollary C] has shown that, in addition, E(K) has rank 1 and X = X(E/K) is
finite.

It is enough to prove Theorem 0.0.1 for genus one curves C that correspond to
elements of p-power order in X(E/Q), where p is a prime. Hence, fix a prime p

from now on. We also assume throughout the article that Gal(K(Ep)/K) is not solvable
since the restriction of H1

Sel(Q/Q, Epn) splits over an abelian extension of Q(Epn), and
Gal(Q(Epn)/Q) is solvable if and only if Gal(K(Ep)/K) is solvable. In particular, we
assume for the rest of the article that p > 3 and E(K)p = 0. It is then known that the
natural image of this Galois group in PGL2(Fp) is either the full group or isomorphic
to A5 (see [S2, Proposition 16]). In §1, we give conditions on a set Q of auxiliary
primes so that for k sufficiently large, H1

Sel(K, Epk ) is contained in the subgroup of
H1(K, Epk ) generated by
(a) the image of E(K); and
(b) the classes that are Selmer outside Q and are ramified at a nonempty subset

of primes in Q.

1.1.1
Let ν be a prime of K, and denote by Kν , kν , and Oν the corresponding lo-
cal field, residue field, and local ring of integers, respectively. Consider the group
E(Kν)/pmE(Kν) for some m ∈ N.

LEMMA 1.1.1
Let ℘ be a prime of K which divides p and m ∈ N. Then we have

#
(
E(K℘)/pm

) = #E(K℘)pm · #
(
E1(K℘)/pm

)
,

where E1(K℘) is the group of points of E(K℘) which map to zero when E is reduced
modulo p.

Proof
Let G be an abelian group, and set

χpm(G) := #Gpm/#(G/pmG).
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It is known that χpm is multiplicative on short exact sequences and trivial on finite
groups.

Since E(K℘) is an extension of a finite group by E1(K℘), we have

χpm

(
E(K℘)

) = χpm

(
E1(K℘)

)
.

Then the fact that E1(K℘)pm = 0 implies that

#
(
E(K℘)/pm

) = #E(K℘)pm · #
(
E1(K℘)/pm

)
. �

In the next lemma, we prove a similar result for the other primes.

LEMMA 1.1.2
Let ν be a prime of K relatively prime to p and m ∈ N so that E(Kν)p∞ = E(Kν)pm .
Then the inclusion of E(Kν)pm in E(Kν) gives rise to the canonical isomorphism

E(Kν)/pmE(Kν) � E(Kν)pm.

Proof
Since E(Kν)p∞ = E(Kν)pm , the inclusion of E(Kν)pm into E(Kν)/pmE(Kν) is injective.
So, in order to prove that these two groups are equal, we need only show that their
sizes are equal. As in Lemma 1.1.1, we have

χpm

(
E(Kν)

) = χpm

(
E1(Kν)

)
.

Since ν does not divide p, we know that E1(Kν) is a p-divisible group. This implies
that χpm(E1(Kν)) = 1. Hence, χpm(E(Kν)) = 1 and #(E(Kν)/pm) = #E(Kν)pm , as
required. �

1.1.2
Let y be a generator of the free part of E(K). Denote by � the set of primes of K
which divide p together with those where E has bad reduction. We choose k ∈ N so
that
(1) pk−1 annihilates the p-primary part of X = X(E/K); and
(2) E(Kλ)p∞ = E(Kλ)pk for all λ ∈ �.

Suppose that �′ = � ∪{λ0}, where λ0 /∈ � is a prime of K such that E(Kλ0 )p∞ =
E(Kλ0 )p2k and y is not divisible by p in E(Kλ0 ).

Suppose that Q is a set of primes of Q with the following properties for q ∈ Q:
(i) q remains inert in K/Q;
(ii) q /∈ �′;
(iii) E(Kq)p∞ = E(Kq)pk ; and
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(iv) H1
Sel(K, Epk ) ↪→ ∏

q∈Q H1(Kunr
q /Kq, Epk ), where Kunr

q denotes the maximal
unramified extension of Kq .

Denote by K�′∪Q (resp., K�′) the maximal extension of K which is unramified outside
�′ ∪ Q (resp., �′). Define

Lν =
{

H1(Kunr
ν /Kν, Ep2k ), ν ∈ Q,

H1(Kν, Ep2k ), ν ∈ �′.

Then we set

H1
L(K�′∪Q/K, Ep2k ) := {

s ∈ H1(K�′∪Q/K, Ep2k )
∣∣ sν ∈ Lν for ν ∈ �′ ∪ Q

}
,

H1
LQ (K�′∪Q/K, Ep2k ) := {

s ∈ H1(K�′∪Q/K, Ep2k )
∣∣ sν ∈ Lν for ν ∈ �′}.

Thus LQ denotes that no local conditions are imposed at the primes of Q but that
the same conditions are imposed on primes in �′ as were imposed for L. Similarly,
H1

SelQ (K�′∪Q/K, Ep2k ) denotes classes with the Selmer condition at primes of �′ but
no condition at the primes of Q.

Denote by L∗
ν the exact annihilator of Lν in the nondegenerate pairing

H1(Kν, Ep2k ) × H1(Kν, Ep2k ) → Qp/Zp. (1)

Then, as above, we have

H1
L∗(K�′∪Q/K, Ep2k ) = {

s ∈ H1(K�′∪Q/K, Ep2k )
∣∣ sν ∈ L∗

ν for ν ∈ �′ ∪ Q
}
.

LEMMA 1.1.3
The group H1

L∗(K�′∪Q/K, Ep2k ) is contained in the Selmer group H1
Sel(K, Epk ).

Proof
By properties of local duality (see [Mi, Theorem 2.6]), we know that

L∗
ν =

{
H1(Kunr

ν /Kν, Ep2k ), ν ∈ Q,

0, ν ∈ �′.

This implies that H1
L∗(K�′∪Q/K, Ep2k ) ⊂ H1

Sel(K, Ep2k ). Since Xp2k = Xpk by
assumption (1) in §1.1.2, we have an exact sequence

0 � H1
Sel(K, Epk ) � H1

Sel(K, Ep2k ) � (Z/p2kZ)(pky) � 0, (2)

where (Z/p2kZ)(pky) is the subgroup of H1
Sel(K, Ep2k ) generated by pky. We can

easily see that all we need to prove is that

(Z/p2kZ)y ∩ H1
L∗(K�′∪Q/K, Ep2k ) = 0.
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Lemma 1.1.2 tells us that E(Kλ0 )/p
2kE(Kλ0 ) = E(Kλ0 )p2k . This and the properties

of λ0 imply that in E(Kλ0 ), we have

y = p2ky ′ + ep2k , where y ′ ∈ E(Kλ0 ) and ep2k ∈ E(Kλ0 )p2k − E(Kλ0 )p2k−1 .

Then piy ∈ H1
L∗(K�′∪Q/K, Ep2k ) only if piy = p2ky ′′ for some y ′′ ∈ E(Kλ0 ). Finally,

the fact that ep2k ∈ E(Kλ0 )p2k − E(Kλ0 )p2k−1 allows us to conclude that i ≥ 2k. This
implies that

(Z/p2kZ)y ∩ H1
L∗(K�′∪Q/K, Ep2k ) = 0

and concludes our proof. �

LEMMA 1.1.4
The group H1

L∗
Q
(K�′∪Q/K, Ep2k ) is isomorphic to H1

L∗(K�′∪Q/K, Ep2k ) under the nat-
ural inclusion map.

Proof
The exactness of the sequence

0 → H1
L∗

Q
(K�′∪Q/K, Ep2k ) → H1

L∗(K�′∪Q/K, Ep2k ) →
∏
q∈Q

Lq (3)

implies that H1
L∗

Q
(K�′∪Q/K, Ep2k ) � H1

L∗(K�′∪Q/K, Ep2k ) if and only if the map

H1
L∗(K�′∪Q/K, Ep2k ) →

∏
q∈Q

Lq (4)

is zero.
Using Lemma 1.1.3, as well as the last property of the set Q, we get the commu-

tative diagram

So, in order to prove that the map (4) is zero, it suffices to show that the right-hand-side
vertical map is zero.

We know that Ep2k (Kq) = Ep2k (Kunr
q ), and therefore, the exactness of

0 � Epk (Kunr
q ) � Ep2k (Kunr

q )
pk

� Epk (Kunr
q ) � 0
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implies the exactness of

The third property of the primes q ∈ Q tells us that Ep2k (Kq) = Epk (Kq), and therefore,
this reduces to the sequence

0 � Epk (Kq) � H1(Kunr
q /Kq, Epk ) � H1(Kunr

q /Kq, Ep2k ) � H1(Kunr
q /Kq, Epk ).

Since we also know that H1(Kunr
q /Kq, Epk ) � E(Kq)/pkE(Kq), Lemma 1.1.2 allows

us to conclude that H1(Kunr
q /Kq, Epk ) � E(Kq)pk and, therefore, that the map

H1(Kunr
q /Kq, Epk ) → H1(Kunr

q /Kq, Ep2k ) is zero for all q ∈ Q. (5)

This concludes the proof of the lemma. �

PROPOSITION 1.1.5
The following sequence is exact:

Proof
The only part of this sequence which is not obviously exact is the last map. So, we
need only show that

H1
LQ (K�′∪Q/K, Ep2k ) � ∏

q∈Q H1(Kq, Ep2k )/Lq (6)

is surjective.
Consider the beginning of the exact sequence of Cassels, Poitou, and Tate (see

[Mi, §1, Theorem 4.20]):
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where M̂ = Hom(M, Qp/Zp). It follows that the map (6) is surjective if and only if
ψ = 0, which is equivalent to the following map being zero:

H1
L∗(K�′∪Q/K, Ep2k ) →

∏
q∈Q

Lq .

This follows from Lemma 1.1.4 since H1
L∗

Q
(K�′∪Q/K, Ep2k ) is the kernel of the above

map. �

Using the definition of the local conditions Lλ, we see that

H1
L(K�′∪Q/K, Ep2k ) = H1(K�′/K, Ep2k ),

H1
LQ (K�′∪Q/K, Ep2k ) = H1(K�′∪Q/K, Ep2k ).

Then Proposition 1.1.5 gives us the exact sequence

0 �H1(K�′/K, Ep2k ) �H1(K�′∪Q/K, Ep2k ) � ∏
q∈Q H1(Kq, Ep2k )/Lq

� 0.

(7)

The second and third properties of the primes in Q together with Lemma 1.1.2 imply
that for q ∈ Q,

L∗
q = Lq = H1(Kunr

q /Kq, Ep2k ) � E(Kq)/p2kE(Kq) � E(Kq)pk � Z/pkZ ⊕ Z/pkZ.

Then using the nondegeneracy of the pairing (1), we conclude that

H1(Kq, Ep2k )/Lq � Z/pkZ ⊕ Z/pkZ. (8)

Moreover, one can understand the structure of the full group H1(Kq, Ep2k ) by consid-
ering the sequence

0 � E(Kq)pk � E(Kq)p2k
×pk� E(Kq)pk � 0,

which gives rise to

0 � E(Kq)pk � H1(Kq, Epk ) � H1(Kq, Ep2k )

as E(Kq)pk = E(Kq)p2k . By the above identifications, we can then deduce that

H1(Kq, E)pk � H1(Kq, Epk )/H1(Kunr
q /Kq, Epk ) ⊆ H1(Kq, Ep2k ).

The groups H1(Kq, E)pk ⊆ H1(Kq, E)p2k have the same size since their duals are
isomorphic to E(Kq)pk and E(Kq)p2k , respectively, by pairing (1). So, we have

H1(Kq, Ep2k )/H1(Kunr
q /Kq, Ep2k ) ⊆ H1(Kq, Ep2k ).
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It is then clear that

H1(Kq, Ep2k ) � (
H1(Kq, Ep2k )/H1(Kunr

q /Kq, Ep2k )
) ⊕ H1(Kunr

q /Kq, Ep2k ).

We show that when we restrict the above cohomology groups to the Selmer con-
dition for λ ∈ �′, we end up missing exactly one generator of

∏
q∈Q H1(Kq, Ep2k )/Lq .

PROPOSITION 1.1.6
The cokernel of the last map in the exact sequence

0 � H1
Sel(K, Ep2k ) � H1

SelQ (K, Ep2k ) � ∏
q∈Q H1(Kq, Ep2k )/Lq

is cyclic of order pk .

Proof
Recall our notation that SelQ imposes no local condition at primes in Q and the unram-
ified one at the prime λ0. Set W = ∏

λ∈�′ H1(Kλ, Ep2k )/Selλ(p2k), where Selλ(p2k)
denotes the image of E(Kλ)/p2kE(Kλ) in H1(Kλ, Ep2k ). Using the exact sequence (7),
we now apply the snake lemma to the following commutative diagram:

We get

0 � H1
Sel(K, Ep2k ) � H1

SelQ (K, Ep2k ) � ∏
q∈Q H1(Kq, Ep2k )/Lq

0 � coker φ2
� γ0 coker φ1

�
(9)

Seeing the maps φ1 and φ2 as part of the corresponding exact sequences of Cassels,
Poitou, and Tate, we have

(10)

Now, we need to study the maps ψi since coker φi � imψi for i = 1, 2.
We start by proving that Selλ(p2k) = Sel∗λ(p2k) for λ ∈ �. We know that

Selλ(p2k) ⊃ Sel∗λ(p2k) for all λ (see [B, Proposition 9]). Since #E(Kλ)p2k = p4k ,
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a result of Tate about the local Euler-Poincaré characteristic (see [Mi, §1, Theorem
2.8]) implies that #H1(Kλ, Ep2k ) = [Oλ : p4kOλ] · (#E(Kλ)p2k )2. We also know that
E1(K℘) � O℘ for ℘|p. Therefore, Lemmas 1.1.1 and 1.1.2 imply that #H1(Kλ, Ep2k ) =
(#Selλ(p2k))2. Finally, the nondegeneracy of pairing (1) implies that #Selλ(p2k) =
#Sel∗λ(p2k) for all λ ∈ �, which proves our claim.

Furthermore, since Selλ(p2k) = H1(Kunr
λ /Kλ, Ep2k ) for all λ /∈ � and, by [Mi,

Theorem 2.6], H1(Kunr
λ /Kλ, Ep2k ) is its own exact annihilator in pairing (1), we con-

clude that

Selλ(p2k) = Sel∗λ(p2k) for all λ.

Therefore, we have

H1
Sel∗(K, Ep2k ) = H1

Sel(K, Ep2k ) and H1
(SelQ)∗(K, Ep2k ) = H1

SelQ (K, Ep2k ),

where H1
SelQ (K, Ep2k ) is the subgroup of H1

Sel(K, Ep2k ) consisting of classes that are
locally trivial at primes in Q.

We know that H1
Sel(K, Epk ) maps to H1(Kunr

q /Kq, Epk ) under the localization map
for q ∈ Q. Then (5) implies that H1

Sel(K, Epk ) maps to zero in H1(Kunr
q /Kq, Ep2k ) for

all q ∈ Q, and therefore,

H1
Sel(K, Epk ) ⊂ H1

SelQ (K, Ep2k ).

We show that these two groups are equal. The fourth property of the set Q implies
via Lemma 1.1.2 that there exists a prime q0 ∈ Q such that y �= py ′ in E(Kq0

). Then
y = p2ky ′ + epk , where y ′ ∈ E(Kq0

) and epk ∈ E(Kq0
)pk − E(Kq0

)pk−1 . We see that
piy ∈ H1

SelQ (K, Ep2k ) if and only if i ≥ k, and therefore,

(Z/p2kZ)y ∩ H1
SelQ (K, Ep2k ) = (Z/p2kZ)pky,

which implies that H1
Sel(K, Epk ) = H1

SelQ (K, Ep2k ), as in the proof of Lemma 1.1.3.
So, the right-hand-side square of (10) may be viewed as

and the map γ : im ψ1 → im ψ2 is simply the restriction of an element of ̂H1
Sel(K, Ep2k )

to ̂H1
Sel(K, Epk ). We are now going to show that ker γ � Z/pkZ.
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In order to improve our understanding of the maps ψ1 and ψ2, we consider the
following compatible nondegenerate pairings for λ ∈ �′:

where Resλ : H1(K, Ep2k ) → H1(Kλ, Ep2k ).
We know that pkH1

Sel(K, Epk ) = 0, and consequently, the order of every element
of im ψ2 divides pk . We aim to construct an element s ∈ im ψ1 of order p2k because
then pks ∈ ker γ and has order pk .

Consider Resλ0 (y). We know that Resλ0 (y) is of order p2k because y is not
divisible by p in E(Kλ0 ), and E(Kλ0 )p∞ = Ep2k . It follows that there exists an element
sλ0 ∈ H1(Kλ0, Ep2k )/Selλ0 (p

2k) which pairs with Resλ0 (y) to give a generator of
Z/p2kZ. This implies that ψ1(sλ0 ) has order p2k .

So, we have now shown that the kernel of the map γ contains an element of order
pk , namely, pkψ1(sλ0 ). Since, by (2),

0 � Z/pkZ � ̂H1
Sel(K, Ep2k ) � ̂H1

Sel(K, Epk ) � 0, (11)

we conclude that ker γ � Z/pkZ, which also shows that ker γ0 � Z/pkZ in (9), and
this completes the proof of Proposition 1.1.6. �

We are now ready to prove a theorem according to which the subgroup of H1(K, Epk )
generated by enough classes ramified in Q together with the cohomology classes
coming from E(K) contains the Selmer group H1

Sel(K, Epk ). Since the elements of the
Selmer group are unramified at primes in Q, the following theorem can be viewed as
a materialization of the unramified-under-ramified principle.

THEOREM 1.1.7
(i) The group H1

SelQ (K, Epk ) is isomorphic to (Z/pkZ)2t , where t denotes the
cardinality of Q.

(ii) The Selmer group H1
Sel(K, Epk ) is contained in the subgroup of H1

SelQ (K, Epk )
generated by the image of y and any subset S ⊆ H1

SelQ (K, Epk ) with the
following property:

(∗) the image of S in H1
SelQ (K, Epk )/H1

Sel(K, Epk ) generates a subgroup

〈S〉 satisfying rankZ/pZ〈S〉/p〈S〉 = 2t − 1.
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Proof
Since Xpk = Xpk−1 , we can write

H1
Sel(K, Epk ) � Z/pkZ × Z/pm1Z × · · · × Z/pm2t−1Z,

where each mi < k. Let us consider the map

H1
SelQ (K, Ep2k ) →

∏
q∈Q

H1(Kq, Ep2k ). (12)

We know that the kernel of this map H1
SelQ (K, Ep2k ) = H1

Sel(K, Epk ).
By our analysis of the groups H1(Kq, Ep2k ) in the paragraph preceding Proposi-

tion 1.1.6, we know that∏
q∈Q

H1(Kq, Ep2k ) =
∏
q∈Q

H1(Kunr
q /Kq, Ep2k ) ⊕

∏
q∈Q

H1(Kq, Ep2k )/H1(Kunr
q /Kq, Ep2k ).

The fact that H1(Kq, Ep2k )/Lq � (Z/pkZ)2 for each q ∈ Q by (8), together with
Proposition 1.1.6, implies that

0 � H1
Sel(K, Ep2k ) � H1

SelQ (K, Ep2k ) � (Z/pkZ)2t−1 � 0. (13)

Therefore, the image of H1
SelQ (K, Ep2k ) in∏

q∈Q

H1(Kq, Ep2k )/H1(Kunr
q /Kq, Ep2k )

is isomorphic to (Z/pkZ)2t−1. Moreover, by the sequence (2), we know that the image
of H1

Sel(K, Ep2k ) in
∏

q∈Q H1(Kunr
q /Kq, Ep2k ) is isomorphic to Z/pkZ. This implies

that the image of the map (12) contains a subgroup isomorphic to (Z/pkZ)2t . By size
considerations, we now see that the map (12) gives rise to the exact sequence

0 � H1
Sel(K, Epk ) � H1

SelQ (K, Ep2k ) � (Z/pkZ)2t � 0. (14)

Let us now compute the size of the group H1
SelQ (K, Epk ). We know that

H1
Sel∗(K, Epk ) = H1

Sel(K, Epk ) ↪→
∏
q∈Q

H1(Kunr
q /Kq, Epk ),

which implies that H1
(SelQ)∗(K, Epk ) = H1

SelQ (K, Epk ) = 0. Then, as in [Wi, Propo-
sition 1.6], it follows that

#H1
SelQ (K, Epk ) = p2k

∏
q∈Q

#E(Kq)pk

∏
λ∈�

#E(Kλ)pk

[H1(Kλ, Epk ) : Selλ(pk)]
. (15)
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The third property of the elements of Q implies that #E(Kq)pk = p2k . As we have
seen in the proof of Proposition 1.1.6, the group Selλ(pk) is its own exact annihilator
under the pairing (1). This implies that

#H1(Kλ, Epk ) = (
#Selλ(pk)

)2
.

Moreover, since E1(K℘) � O℘ , by Lemma 1.1.1 and 1.1.2 we have

#Sel℘(pk) = [O℘ : pkO℘] · (
#E(Kλ)pk

)
and

#Selλ(pk) = #E(Kλ)pk for λ ∈ � \ {℘|p}.

It follows that ∏
λ∈�\{℘|p}

#E(Kλ)pk

[H1(Kλ, Epk ) : Selλ(pk)]
= 1

and ∏
λ∈{℘|p}

#E(Kλ)pk

[H1(Kλ, Epk ) : Selλ(pk)]
=

∏
λ∈{℘|p}

1

[O℘ : pkO℘]
= p−2k.

Hence, we conclude that #H1
SelQ (K, Epk ) = p2kt .

Then the exact sequence (14) implies that as a group,

H1
SelQ (K, Ep2k ) � Z/p2kZ × Z/pk+m1Z × · · · × Z/pk+m2t−1Z

because otherwise, H1
SelQ (K, Epk ), viewed as the kernel of multiplication by pk in

H1
SelQ (K, Ep2k ), is of order greater than p2kt . Hence, we have

H1
SelQ (K, Epk ) � (Z/pkZ)2t . (16)

We now prove the second part of this theorem. Let S ⊆ H1
SelQ (K, Epk ) have

the property that its image in H1
SelQ (K, Epk )/H1

Sel(K, Epk ) generates a subgroup 〈S〉
satisfying rankZ/pZ〈S〉/p〈S〉 = 2t − 1. Using this assumption and (16), we can see
that

H1
SelQ (K, Epk )[p] ⊆ 〈y, S〉

and

〈y, S〉 ∩ H1
Sel(K, Epk ) = 〈y, pS〉 ∩ H1

Sel(K, Epk ),
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where pS denotes the subset of H1
SelQ (K, Epk ) consisting of p-multiples of elements

in S. Let s ∈ H1
Sel(K, Epk ) so that ps ∈ 〈y, S〉. It follows that ps ∈ 〈y, pS〉, which

implies that

s ∈ 〈y, S〉 + H1
SelQ (K, Epk )[p] ⊆ 〈y, S〉.

We can then conclude that H1
Sel(K, Epk ) ⊆ 〈y, S〉. �

Remark 1.1.8
The conclusion that H1

SelQ (K, Epk ) � (Z/pkZ)2t can also be reached more simply
by computing the size of H1

SelQ (K, Ep) in addition to the size of H1
SelQ (K, Epk ) as

above. (We thank the referees for pointing out to us that such an argument is used
in [MR].) We have chosen this longer way of presenting the result because this was
our original proof through which we understood how this idea can be generalized and
what its limitations are. In particular, it motivated our arguments in the anomalous and
supersingular cases.

1.2. Kolyvagin cohomology classes
1.2.1
In this section, using Kolyvagin’s method, we make an explicit construction of coho-
mology classes. Most of this section is a slight adaptation of the work of Kolyvagin
described in [Gr] and in [R].

Let OK denote the ring of integers of K. For r ∈ N prime to N, the conductor
of the elliptic curve E, we can consider xr = (C/Or , C/Nr ) ∈ X0(N), where
Or = Z + rOK, NOK = N · N, and Nr = N ∩ Or . We fix a parametrization
π : X0(N) → E which maps the cusp ∞ to the origin of E, and then we define the
Heegner point yr = π(xr ) ∈ E(Kr ), where Kr is the ring class field of conductor r

over K. We have to consider the following field extensions and Galois groups:

Kr

Gr

Gr K1

K

Suppose now that r = ∏
�i , where �i �= �j for i �= j , (r, pN) = 1, and the �i are all

inert in K/Q. Then G� = 〈σ�〉 is cyclic of order �+1 (recall that DK, the discriminant
of K/Q, satisfies DK ≤ −5), and Gr = ∏

�|r G�.
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We define an element Dr of the group ring Z[Gr ] as the product of certain elements
D� of Z[G�] for � dividing r . Let D� = ∑�

i=1 iσ i
� . Notice that if Tr� = ∑

σ∈G�
σ ,

then D� satisfies the equality

(σ� − 1) · D� = � + 1 − Tr�. (17)

Let S be a set of representatives of Gr/Gr , and then define Pr = ∑
σ∈S σ (Dryr ),

where Dr = ∏
�|r D�. We use this same set S in order to define Pm for all m|r .

Since E has analytic rank 1 over K, we know that yK = P1 has infinite order and
that E(K) has rank 1. Fix a prime p �= 2, 3, and let pko be the smallest power of p

which annihilates the p-part of H 1(Kunr
ν /Kν, E(Kunr

ν )) for all primes ν. This group is
trivial if E has good reduction at ν and is finite for all ν. Finally, we choose k, v ∈ N
so that
(1) pk−1 annihilates the p-primary part of X(E/K);
(2) E(Kλ)p∞ = E(Kλ)pk for all λ ∈ �;
(3) Gal(K(Epk+1 )/K(Epk )), seen as a subgroup of GL(2, Z/pk+1Z), consists of all

matrices of the form(
1 + pka pkb

pkc 1 + pkd

)
for a, b, c, d ∈ Z/pZ,

and Serre has shown that the index of Gal(K(Epn)/K) in GL(2, Z/pnZ) is
bounded by a constant that depends only on E and K, implying that the above
condition is satisfied for almost all k; and

(4) pk−v divides yK exactly in E(K) and ko < v. (This last condition is needed in
order for the cohomology classes that we construct to remain ramified even
after multiplication by pko .)

Notice that the first two conditions allow us to use the principle of §1.1, while the
third is useful in making sure that the set Q of primes that we choose in this section is
such that E(Kq)p∞ = E(Kq)pk .

We now assume that the primes � dividing r , which were chosen to be in-
ert in K/Q, also split completely in K(Epk )/K. We ensure this by choosing
primes � so that Frob�(K(Epk )/Q) = τ , where τ denotes complex conjuga-
tion. Since Frob�(Q(Epk )/Q) = τ , by comparing the characteristic polynomial of
Frob�(Q(Epk )/Q) and that of τ in Epk , we see that

a� ≡ � + 1 ≡ 0 (mod pk), (18)

where � + 1 − a� is the number of points of E over the finite field F� = Z/�Z. Let
λ be the prime of K above �. For the proof of the following proposition giving the
standard properties of Heegner points, we refer to [Gr, proof of Proposition 3.7].
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PROPOSITION 1.2.1
Suppose that r = m�. Then
(a) Tr�yr = al · ym in E(Km);
(b) λ is unramified in Km/K and totally ramified in K�/K; and
(c) yr ≡ Frob(λm)(ym) (mod λr ), where λm is a prime of Km dividing � and λr is

the unique prime of Kr dividing λm.

PROPOSITION 1.2.2
The natural image [Pr ] of Pr in E(Kr )/pkE(Kr ) is fixed by Gr .

Proof
We first prove that the image [Dryr ] of Dryr in E(Kr )/pkE(Kr ) is fixed by Gr . Since
Gr = ∏

l|r G�, and G� = 〈σ�〉, it suffices to prove that [Dryr ] is fixed by σ� for all
�|r . We have

(σ� − 1)Dryr = (σ� − 1)D�Dmyr = (� + 1 − Tr�)Dmyr

= (� + 1)Dmyr + Dm(Tr�yr )

= (� + 1)Dmyr + Dm(a�ym) ∈ pkE(Kr ),

by (18).
Therefore, (σ� − 1)[Dryr ] = 0.

By the definition of Pr , we now see that [Pr ] = trK1/K[Dryr ]. Hence, [Pr ] is fixed
by Gr . �

Now, we consider the commutative diagram

0

H1
(
Kr/K, E(Kr )

)
pk

�

0 � E(K)/pkE(K)
φ� H1(K, Epk ) � H1(K, E)pk

Inf
�

� 0

0 � (
E(Kr )/pkE(Kr )

)Gr

�
φr� H1(Kr , Epk )Gr

Res �
�

� H1(Kr , E)Gr

pk

Res
�

(19)

Note that Res : H1(K, Epk ) → H1(Kr , Epk )Gr is an isomorphism since E(Kr )pk

is assumed to be zero. (This is because we are assuming that Gal(K(Ep)/K) is not
solvable.)
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Using the fact that [Pr ] ∈ (E(Kr )/pkE(Kr ))Gr , Kolyvagin defines the cohomology
class c(r) to be the unique element of H1(K, Epk ) such that Res(c(r)) = φr ([Pr ]). Let
d(r) be the image of c(r) in H1(K, E)pk . As observed by McCallum in [Gr, §4], c(r)
can be represented by the 1-cocycle

c(r)(σ ) = σ
(Pr

pk

)
− Pr

pk
− (σ − 1)Pr

pk
, σ ∈ Gal(K/K),

where Pr/p
k is a fixed pkth-root of Pr in E(K), and ((σ − 1)Pr )/pk is a uniquely

defined element of E(Kr ) since (σ − 1)Pr ∈ pkE(Kr ) and E(Kr )pk is trivial. We also
define d̃(r) ∈ H1(Kr/K, E(Kr ))pk = H1(Gr , E(Kr ))pk to be the preimage of d(r)
under the inflation map. Then it follows that

d̃(r)(σ ) = − (σ − 1)Pr

pk
for σ ∈ Gr .

1.2.2
PROPOSITION 1.2.3
The classes c(r) and d(r) satisfy the following:
(1) the class c(r) ∈ H1(K, Epk ) is trivial if and only if Pr ∈ pkE(Kr ); and
(2) the classes d(r) ∈ H1(K, E)pk and d̃(r) ∈ H1(Gr , E(Kr ))pk are trivial if and

only if Pr ∈ pkE(Kr ) + E(K).

Proof
This follows from the definitions of the above cohomology classes and the commuta-
tive diagram (19). �

The group Gal(K/Q) = {1, τ } acts on H1(K, Epk ). Since p is odd, H1(K, Epk ) splits
as the direct sum of the two eigenspaces for the action of τ . Let −ε be the sign of
the functional equation of the L-function of E over Q. For the proofs of the next two
propositions, we refer to [Gr, proof of Propositions 5.3, 5.4].

PROPOSITION 1.2.4
There exists σ ∈ Gr such that yτ

r = εyσ
r + (torsion) in E(Kr ), where σ depends on the

choice of complex conjugation τ .

PROPOSITION 1.2.5
(1) The class [Pr ] lies in the (εr = ε(−1)fr )-eigenspace of (E(Kr )/pkE(Kr ))Gr

under the action of τ , where fr denotes the number of primes dividing r .
(2) The cohomology class c(r) lies in the εr -eigenspace for τ in H1(K, Epk ).
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Recall that r = m�, and recall that λ is the unique prime of K which divides �. Let Fλ

be the residue field of K at λ. Since we assumed that λ splits completely in K(Epk )/K,
it follows that E(Fλ)pk = (Z/pkZ)2.

Now, τ has eigenvalues ±1 on E(Fλ)pk , and since its determinant is −1, it follows
that

E(Fλ)±
pk � Z/pkZ. (20)

For the primes � that we have chosen, we also know that

H1(Kλ, E)pk � E(Kλ)/pkE(Kλ) � E(Fλ)/pkE(Fλ)

� E(Fλ)pk � E(Kλ)pk � (Z/pkZ)2. (21)

PROPOSITION 1.2.6
The classes d(r) have the following local properties:
(1) the class pkod(r)ν ∈ H1(Kν, E)pk is trivial at the archimedean place ν = ∞

and at the finite places ν of K which do not divide r; and
(2) for any 1 ≤ i ≤ k, pk−id(r)λ = 0 in H1(Kλ, E)pk if and only if Pm ∈ piE(Kλ),

where r = m� and λ is the prime of K above �.

Proof
(1) If ν = ∞, then H1(Kν, E)pk is trivial and, therefore, so is d(r)ν . If ν is a finite
place that does not divide r , then in (19) we have the fact that d(r) is the inflation of
a class from Kr/K and, hence, is unramified at ν. By the definition of k0, pkod(r)ν is
then trivial.

(2) Let Kλm
be the localization of Km at λm, and let Kλr

be the localization
of Kr at λr . We know that d̃(r)λ ∈ H1(Kλr

/Kλ, E)pk is represented by the cocycle
σ �→ −((σ − 1)Pr )/pk for σ ∈ Gal(Kλr

/Kλ). Since Kλm
= Kλ, and λm is totally

ramified in Kλr
/Kλm

, it follows that Gal(Kλr
/Kλ) � Gal(Kλr

/Kλm
) � G�. Let E1 be

the subgroup of E which maps to the identity of the reduction of E modulo �. Since E1

is a pro-� group, and � �= p, H1(G�, E1(Kλr
))pk = 0. It follows that H1(Kλr

/Kλ, E)pk

injects into

H1
(
G�, E(Fλr

)
)
pk = H1

(
G�, E(Fλ)

)
pk = Hom

(
G�, E(Fλ)pk

)
since Fλr

= Fλ, G� acts trivially on E(Fλ) and Hom(G�, E(Fλ)pk ) =
Hom(G�, E(Fλ))pk . Then the fact that G� is cyclic and generated by σ� implies that

pk−id(r)λ = 0 if and only if pk−i d̃(r)(σ�) ≡ 0 (mod λr ). (22)
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Now, we evaluate d̃(r)(σ�) (mod λr ):

d̃(r)(σ�) = − (σ� − 1)Pr

pk

= − (σ� − 1)
∑

σ∈S σ (Dryr )

pk
= −

∑
σ∈S σDm(σ� − 1)D�yr

pk

= −
∑

σ∈S σDm((� + 1)yr − Tr�yr )

pk
,

by (17),

=
∑
σ∈S

σDm

( a�

pk
ym − � + 1

pk
yr

)
,

by Proposition 1.2.1(1),

≡
∑
σ∈S

σDm

( a�

pk
− (� + 1)Frob(λm)

pk

)
ym (mod λr ),

by Proposition 1.2.1(3).

Let σ ∈ Gm. Then since Frob(σ−1λm) = σ−1 Frob(λm)σ and

a�

pk
ym − � + 1

pk
yr ≡ a� − (� + 1) Frob(σ−1λm)

pk
ym (mod σ−1λr ),

it follows that

σ
( a�

pk
ym − � + 1

pk
yr

)
≡ a� − (� + 1) Frob(λm)

pk
σym (mod λr ).

Then we have

d̃(r)(σ�) ≡
∑
σ∈S

σDm

(a� − (� + 1) Frob(λm)

pk

)
ym (mod λr )

≡ a� − (� + 1) Frob(λm)

pk
Pm (mod λr ).

Recall that Pm lies in the εm-eigenspace for Frob� = τ on E(Fλ)/pkE(Fλ). We
know the size of the +1-eigenspace for τ on E(Fλ),

#E(Fλ)+ = � + 1 − a�.

In addition, since #E(Fλ) = 1 + �2 − α2
� − α2

� = (1 + �)2 − a2
� , where α� + α� = a�

and α�α� = �, it follows that

#E(Fλ)− = 2ε(� + 1 + a�), where ε ∈ {0, ±1}.
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Then using the cyclicity of the p-part of E(Fλ)±, we see that the kernel of multiplication
of E(Fλ)± by 2ε

(
(a� − (� + 1) Frob(λm))/pi

)
is piE(Fλ)± for any 1 ≤ i ≤ k. This

implies that 2εp(k−i)d̃(r)(σ�) ≡ 0 modulo λr if and only if Pm ∈ piE(Fλ), which is
equivalent to Pm ∈ piE(Kλm

) because E1 is p-divisible. Moreover, since p is odd, it
follows that

pk−i d̃(r)(σ�) ≡ 0 (mod λr ) if and only if Pm ∈ piE(Kλm
).

This result, taken together with (22), allows us to conclude that

pk−id(r)λ = 0 if and only if Pm ∈ piE(Kλm
) for any 1 ≤ i ≤ k. �

1.3. Choosing the set of auxiliary primes Q
Recall that the auxiliary primes q ∈ Q are required to have the following properties:
(i) q remains inert in K/Q;
(ii) q /∈ �′;
(iii) E(Kq)p∞ = Epk ; and
(iv) H1

Sel(K, Epk ) ↪→ ∏
q∈Q H1(Kunr

q /Kq, Epk ), where Kunr
q denotes the maximal

unramified extension of Kq .
In this section, we prove the existence of a set of primes with these properties and

give a method for constructing such a set.

1.3.1
We start by showing how we can choose the primes of Q so that

H1
Sel(K, Epk ) ↪→

∏
q∈Q

H1(Kunr
q /Kq, Epk ).

Let Lk = K(Epk ), let Gk = Gal(Lk/K), and consider the exact sequence

0 � H1(Gk, Epk ) � H1(K, Epk )
Res� H1(Lk, Epk )Gk � H2(Gk, Epk ). (23)

PROPOSITION 1.3.1
We have H1(Gk, Epk ) = 0 for all k ∈ N.

Proof
We have two cases. If G1 = Gal(K(Ep)/K) has order divisible by p, then since it is
assumed not solvable, a result of Serre [S2, Proposition 15], shows that G1, the image
of G1 in GL2(Z/pZ), contains SL2(Z/pZ). Since the determinant is a cyclotomic
character, we deduce that G1 intersects nontrivially with the center Z of GL2(Z/pZ).
Pick a lift δ of an element of G1 ∩ Z to the center of GL2(Zp). Then there exists
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m ∈ N such that δpm ∈ im(Gal(K/K) → GL2(Zp)) since this image is open by a
theorem of Serre [S2, §4.4, Theorem 3] and such that δpm

projects to an element of Gk

of order prime to p. Now, consider the inflation-restriction sequence with respect to
the subgroup 〈δpm〉 of Gk , and observe that (Epk )〈δ

pm 〉 = 0. The proposition follows.
In the remaining case, where the image of G1 in PGL2(Z/pZ) is isomorphic to

A5, we can assume that p > 5 since the case p = 5 is taken care of by the preceding
argument. So, suppose now that p > 5. It follows that H1(G1, Ep) = 0 in this case.
Notice that it is sufficient to prove that H1(Gk, Ep) = 0 since by using induction, we
can deduce that H1(Gk, Epk ) = 0 for all k ∈ N. By examining the inflation-restriction
sequence with respect to the subgroup H1 = ker : Gk → G1, this time we see that
it is enough to show that H1(H1, Ep)G1 = 0. To verify this, it is enough to show that
H1(H1, Ep)〈δ〉 = 0 for δ ∈ G1, which maps to an element of order 5 in PGL2(Z/pZ).

Let us first assume that p − 1 is prime to 5, which in particular allows us to
pick a lifting of δ to an element of order 5 of Gk . It then follows that 〈δ〉 injects into
PGL2(Z/pZ). The eigenvalues of δ on Ep are given by ζ and ζ−1 for some 5th-root
of unity ζ . (The determinant is 1 on δ as A5 is not solvable.) Since H1 acts trivially
on Ep, the elements of H1(H1, Ep)〈δ〉 are just δ-invariant homomorphisms. Then we
claim that H1 has a filtration by δ-invariant abelian groups of exponent p, on which
the action of δ has eigenvalues in the set {1, ζ 2, ζ−2}. To check this, it is enough to
verify a similar statement for ker : GL2(Z/pkZ) → GL2(Z/pZ) under the action of
an element δ of order 5 of GL2(Z/pkZ). Here the filtration is the usual one by normal
subgroups of level 1, . . . , k, and the subquotients are abelian groups of exponent p.
In this case, the result is easily verified using the fact that the eigenvalues of δ in
the adjoint representation of GL2(Z/pZ) are in the set {1, ζ 2, ζ−2}. It follows that
H1(H1, Ep)〈δ〉 = 0, and this completes the proof of the case when 5 does not divide
p − 1.

If p − 1 is divisible by 5, let x and y denote the eigenvalues of δ on Ep. We
can assume that x5 = y5 = a ∈ (Z/p)∗ − {1} since the case when x5 = y5 = 1 is
the same as the one treated in the previous paragraph. It follows that y = xζ , where
ζ 5 = 1. Finally, the fact that {x, xζ } ∩ {1, ζ, ζ−1} = ∅ concludes the proof of this
lemma by the same argument as above. �

COROLLARY 1.3.2
The restriction map H1(K, Epk ) −→ HomGk

(Gal(Lab
k /Lk), Epk ), where Lab

k denotes
the maximal abelian extension of Lk , is injective.

Proof
This follows immediately from diagram (23) and Proposition 1.3.1. �

Corollary 1.3.2 gives us the Gk-pairing

H1(K, Epk )×Gal(Lab
k /Lk) � Epk . (24)
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Let M be the fixed field of the subgroup of Gal(Lab
k /Lk) which pairs to zero with the

finite subgroup H1
Sel(K, Epk ) of H1(K, Epk ). Then we have a nondegenerate Gk-pairing

H1
Sel(K, Epk ) × Gal(M/Lk) � Epk . (25)

Let H = Gal(M/Lk). The element τ of Gal(Lk/Q) acts on H. We extend τ to a
complex conjugation in Gal(M/Q). The nondegeneracy of the pairing (25) implies,
in particular, that H has p-power and, hence, odd order. So, H splits as a direct sum
of the eigenspaces for the action of τ , H = H+ ⊕ H−. Furthermore,

H+ = Hτ+1 := {
τhτ−1h = (τh)2 : h ∈ H

}
. (26)

PROPOSITION 1.3.3
Let s ∈ H1

Sel(K, Epk ). Then the following are equivalent:
(1) s = 0;
(2) [s, ρ] = 0 for all ρ ∈ H, where [ , ] denotes the pairing (25); and
(3) [s, ρ] = 0 for all ρ ∈ H+.

Proof
It is obvious that (1) ⇒ (2) ⇒ (3). The nondegeneracy of pairing (25) implies that
(2) ⇒ (1). We show that (3) ⇒ (2).

Let s = s+ + s−, where s± ∈ H1
Sel(K, Epk )±. We may view s+ and s−, via (25), as

elements of HomGk
(H, Epk ). Since s±(H+) ⊆ E±

pk , s(H+) = 0 implies that s±(H+) =
0. Consequently, s±(H) = s±(H−) ⊆ E∓

pk . We know that Ep is an irreducible Gk-
module because we have assumed that Gal(K(Ep)/K) is not solvable. Since s±(H) is
a Gk-module, it follows that either s±(H) ⊃ Ep or s±(H) = 0. Then as Ep � E±

pk , we
deduce that s±(H) = 0, and consequently, s(H) = 0. �

PROPOSITION 1.3.4
If s ∈ H1

Sel(K, Epk ), ρ ∈ Gal(M/Lk), and λ is a prime of K not contained in �, then
the following are equivalent:
(1) [s, ρ] = 0 for some ρ in the conjugacy class of Frobλ;
(2) [s, Frobλ] = 0 for all ρ in the conjugacy class of Frobλ; and
(3) sλ = 0 in H1(Kλ, Epk ).

Proof
By hypothesis, sλ is in the image of E(Kλ)/pkE(Kλ) since it is in the Selmer group,
say, sλ = im(Pλ). Then [s, ρ] = (Pλ/p

k)ρ−1. It follows that [s, ρ] = 0 if and only
if Pλ ∈ pkE(Lk,λ̃) = pkE(Kλ), where λ̃ is the prime of Lk above λ to which ρ is
associated. �
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COROLLARY 1.3.5
Suppose that 〈h1 . . . ht〉 = H+, and let Q = {�1, . . . , �t} be a set of t rational primes
so that τh′

i ∈ Frob�i
(M/Q), where (τh′

i)
2 = hi for each i. Then the natural map

φQ : H1
Sel(K, Epk ) −→

∏
q∈Q

H1(Kunr
q /Kq, Epk )

is injective.

Proof
Suppose that s is in the kernel of φQ . Then by Proposition 1.3.4, [s, Frobλi

] = 0,
where λi is the unique prime of K above �i for each i. Then [s, hi] = 0 for each i,
and so [s, H+] = 0. Thus s = 0, by Proposition 1.3.3. �

1.3.2
We now show how to ensure that the auxiliary primes q ∈ Q have the property that
E(Kq)pk+1 = E(Kq)pk .

By Proposition 1.2.4, the point yK belongs to E(K)± + E(K)tors, and therefore, by
diagram (19), the class φ(yK ) lies in H1

Sel(K, Epk )±. We denote by I the subgroup of
H which pairs to zero with the subgroup of H1

Sel(K, Epk ) generated by φ(yK ), and we
denote by Lk(yK/p

k) the subfield of M fixed by I. Then we have

M

I

H Lk(yK/p
k)

Lk

(27)

Since φ(yK ) ∈ H1
Sel(K, Epk )±, we see that I is fixed by τ . Let I+ be the +1-

eigenspace of I for the action of τ . We observe, as we did in the case of H, that
I+ = Iτ+1.

LEMMA 1.3.6
We have H/I � Epv , and consequently, (H/I)+ � H+/I+ � Z/pvZ.

Proof
We know that φ(yK ) ∈ HomGk

(H, Epk ), and we know that ker(φ(yK )) = I. Recall that
yK is exactly divisible by pk−v , and therefore, 〈φ(yK )〉 = Z/pvZ. This implies that
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im(φ(yK )) ⊆ Epv . We show that im(φ(yK )) = Epv . If im(φ(yK )) ⊆ Epv−1 , then by
the nondegeneracy of pairing (25), it would follow that pv−1 · φ(yK ) = 0, which is a
contradiction. If im(φ(yK)) �= Epk , then im(pv−1φ(yK)) � Ep. But this is impossible
since the image of pv−1φ(yK) is a Gk-submodule of Ep, and the action is irreducible
since we have assumed that G1 is not solvable. Since ker(φ(yK )) = I, it follows that
H/I � Epv , and consequently, (H/I)+ � (Epv )+ � Z/pvZ. �

Consider the following two extensions of Lk:

(28)

We know that Gal(Lk+1/Lk) is a p-torsion group. By the nondegeneracy of pairing
(25), we have

Gal(M/Lk)/p Gal(M/Lk) � Ep ⊕ Epδ2 ⊕ · · · ⊕ Epδ2t

as a G1-module, where δi ∈ {0, 1}. On the other hand, the action of Gk on Gal(Lk+1/Lk)
factors through G1, and as a G1-module

Gal(Lk+1/Lk) ⊆ Ad0
ρ ⊕ 1, (29)

where Ad0
ρ denotes the restriction to trace-zero matrices of the adjoint representation

of ρ : G1 → GL2(Z/pZ). This already shows that the two extensions in (28)
are disjoint. We claim that (29) is also an isomorphism, as follows from assump-
tion (3) on k in §1.2.1. We need this to know that there are elements of Gal(Lk+1/Lk)
with no fixed points on Epk+1 − Epk .

Now, pick elements h1, . . . , ht ∈ H+ − I+ so that {h1, . . . , ht} is a minimal
set of generators of H+ and so that each hi has maximal order in H+/I+. Then
each hi = (τh′

i)
2 for h′

i ∈ H by (26). We can extend each τh′
i to an element of

Gal(MLk+1/Q) in such a way that its restriction to Gal(Lk+1/Lk) has no fixed points
in Epk+1 − Epk . Finally, we can choose primes �i ∈ Q for i = 1, . . . , t so that

τh′
i ∈ Frob�i

(MLk+1/Q).

It then follows that
(i) H1

Sel(K, Epk ) maps injectively to
∏

q∈Q H1(Kunr
q /Kq, Epk ) for Q =

{�1, . . . , �t};
(ii) E(Kλi

)pk+1 = E(Kλi
)pk , where λi is the unique prime of K above �i ; and

(iii) each hi = (τh′
i)

2 has maximal order in H+/I+.
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1.4. Construction of ramified classes
In this section, we construct the ramified cohomology classes that are needed to apply
the principle of §1.1. To do this, we need a slight refinement of the results of §1.3.

PROPOSITION 1.4.1
Let τh ∈ Frob�(M/Q), where h ∈ H and λ is the unique prime of K dividing �. Then
pid(�)λ = 0 in H1(Kλ, E)pk if and only if (h1+τ )p

i ∈ I+.

Proof
Since τh ∈ Frob�(M/Q), we have hτ+1 ∈ Frobλ(M/K). By Proposition 1.2.6, we
know that pid(�)λ = 0 in H1(Kλ, E)pk if and only if yK = P1 ∈ pk−iE(Kλ), which is
equivalent to piφ(yK )λ = 0. It then follows from Proposition 1.3.4 that

pid(�)λ = 0 in H1(Kλ, E)pk ⇐⇒ [piφ(yK ), hτ+1] = [φ(yK ), (hτ+1)p
i

] = 0.

By the definition of I and the fact that hτ+1 ∈ H+, [φ(yK ), (hτ+1)p
i

] = 0 is equivalent
to (hτ+1)p

i ∈ I+. �

We now refine the construction of §1.3 slightly. Suppose that we have chosen gen-
erators h1, . . . , ht of H+ as in the last paragraph of §1.3. Let us now fix � = �1 so
that τh′

1 ∈ Frob�(MLk+1/Q). Since 〈h̄1〉 = H+/I+, by Lemma 1.3.6 h = (τh′
1)2 is

of order pv in H/I. Therefore, Proposition 1.4.1 implies that pvc(�) ∈ H1
Sel(K, Epk ),

while pv−1c(�) /∈ H1
Sel(K, Epk ).

Consider Lk(pvc(�)) and Lk(pv−1c(�)), the field extensions of Lk which are fixed
by the subgroups pairing to zero in (24) with pvc(�) and pv−1c(�), respectively. The
extension

Lk

(
pv−1c(�)

)
� M

Lk

(
pvc(�)

) ⊆ M

is ramified at � because pv−1c(�) is ramified at this prime, and

Gal
(
Lk(pv−1c(�))/Lk(pvc(�))

) � Ep.

So, we have the following.
(1) The Galois groups Gal

(
MLk+1/Lk(pvc(�))

)
and Gal

(
Lk(pv−1c(�))/

Lk(pvc(�))
)

are Gk-modules. (In each case, the natural action of
Gal

(
Lk(pvc(�))/K

)
factors through Gk .)

(2) Gal
(
Lk(pv−1c(�))/Lk(pvc(�))

) � Ep is an irreducible Gk-module (since G1

is assumed to be not solvable).
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(3) The extension MLk+1/Lk(pvc(�)) is unramified outside pN since the elements
of the Selmer group as well as p-power torsion points are unramified at primes
of good reduction which do not divide p. Moreover, (pN, �) = 1.

The above imply that MLk+1 and Lk(pv−1c(�)) are disjoint over Lk(pvc(�)).
At this point, we need to consider the tower of field extensions:

Choose g ∈ Gal
(
Lk(pv−1c(�))/Lk(pvc(�))

)
so that gτ+1 �= 1. Let �2, . . . , �t be

primes of Q so that
(1) τh′

i ∈ Frob�i
(MLk+1/Q) if pvc(�)(hi) �= 0; and

(2) τh′
i ∈ Frob�i

(MLk+1/Q) and τg ∈ Frob�i

(
Lk(pv−1c(�))/Q

)
if pvc(�)(hi) =

0 (since we can choose h′
i so that pvc(�)(h′

i) = 0 by applying the construction
of (26) while replacing H by Gal

(
MLk+1/Lk(pvc(�))

)
.

Consider the cohomology classes c(�i) for i = 1, . . . , t and c(��i) for i =
2, . . . , t , where �1 = �. Proposition 1.4.1 implies that since H+/I+ � Z/pvZ and hi

is maximal, d(�i) has order pv in H1(Kλi
, E)pk . Then since v > k0, Proposition 1.2.6

allows us to conclude that
(1) pkod(�i)ν = 0 in H1(Kν, E)pk for all primes ν �= λi ;
(2) pkod(�i)λi

�= 0 in H1(Kλi
, E)pk for i ≥ 1;

(3) pkod(��i)ν = 0 in H1(Kν, E)pk for all primes ν �= λ, λi , Proposition 1.2.6(1);
and

(4) pkod(��i)λi
�= 0 in H1(Kλi

, E)pk for i ≥ 2. By Proposition 1.2.6(2),
pkod(��i)λi

�= 0 in H1(Kλi
, E)pk if and only if P� /∈ pk−k0 E(Kλi

), which
is equivalent to pkoc(�)λi

�= 0. We know that pv−1c(�)λi
�= 0 because of the

way we have chosen �2, . . . , �t . Since k0 ≤ v−1, it follows that pkoc(�)λi
�= 0.

So, we can conclude that pkod(��i)λi
�= 0 in H1(Kλi

, E)pk .
Furthermore, the classes pkoc(�i), pkoc(��j ) ∈ H1

SelQ (K, Epk ) lie in different
eigenspaces of H1(K, Epk ) for the action of τ , and consequently, even if i = j ,
their images in H1(Kunr

λi
, Epk ) are not multiples of one another.
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1.5 Conclusion
In §1.4, we have chosen a set of auxiliary primes Q that satisfy all the properties
for auxiliary primes that are required in Theorem 1.1.7(ii). In addition, we have also
constructed a set of 2t − 1 (t = #Q) ramified classes c1, . . . , c2t−1 so that if

a1c1 + · · · + a2t−1c2t−1 = 0 in H1
SelQ (K�′∪Q/H1

SelK, Epk ) for ai ∈ Z,

then ai ≡ 0 (mod p) for i ≥ 1 because all the ci are ramified classes, and the ones
that belong to the same eigenspace of H1(K, Epk ) for the action of τ have relatively
prime ramification.

Consequently, Theorem 1.1.7 allows us to see that the cohomology classes that
we have constructed together with y ∈ E(K) generate a subgroup of H1(K, Epk )
containing H1

Sel(K, Epk ). Finally, since we have allowed any p ≥ 5 and Kolyvagin’s
cohomology classes come from points of E defined over solvable extensions of Q, we
have the following.

THEOREM 1.5.1
Every element of X(E/K) becomes trivial after a base change by a solvable extension
of Q.

Theorem 0.0.1 of the introduction follows as X(E/Q) classifies curves of genus one
whose Jacobian is E and which have points in all the local fields.

2. General rank case

2.1. Local results
In this section, we let K be any number field. Let ν be a prime of K, and denote by
Kν , kν , and Oν the corresponding local field, residue field, and local ring of integers,
respectively. Consider the group E(Kν)/pmE(Kν) for some m ∈ N.

Let ℘ be a prime of K which divides p, and let E1(K℘) be the group of points of
E(K℘) which map to zero when E is reduced modulo p.

LEMMA 2.1.1
If #E1(K℘)p∞ = 0, then we have

#
(
E(K℘)/pm

) = #E(K℘)pm · #
(
E1(K℘)/pm

)
.

Proof
The proof of this lemma is exactly the same as the proof of Lemma 1.1.1. �
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If ν is a prime of K which does not divide p, we know that E1(Kν)p = 0 and
E1(Kν)/pmE1(Kν) = 0. Since the proof of Lemma 2.1.1 does not use the fact that ℘

divides p, we also have the following lemma.

LEMMA 2.1.2
Let ν be a prime of K relatively prime to p and m ∈ N; then

#E(Kν)/pmE(Kν) = #E(Kν)pm.

We now prove an additional result for the primes of K which do not divide p.

LEMMA 2.1.3
Suppose that E(Kν)p∞ = E(Kν)pm , where ν is a prime of K relatively prime to p and
m ∈ N. Then we have E(Kν)pm � E(Kν)/pmE(Kν) under the natural inclusion.

Proof
Since E(Kν)p∞ = E(Kν)pm , the inclusion of E(Kν)pm into E(Kν)/pmE(Kν) is injective.
Lemma 2.1.2 implies that these two groups have the same size and are, therefore,
isomorphic. �

2.2. The structure at the base level
Let p be a prime of good ordinary reduction, and let K be an imaginary quadratic
extension of Q. We want to understand the structure of the Selmer group H1

Sel(K, Epk ).

2.2.1
In this section, we assume that p is a prime of good ordinary nonanomalous reduction;
that is, the reduction of E modulo p has trivial p-torsion over the residue field of Q
at p.

We now fix the number field K to be an imaginary quadratic extension of Q of
discriminant DK �= −3, −4 so that the conductor N of E splits and p ramifies in K/Q.
Denote by � the set of primes of K, where E has bad reduction together with ℘, the
unique prime of K which divides p.

We continue to assume that Gal(K(Ep)/K) is not solvable. Hence, we know that
the natural image of this Galois group in PGL2(Fp) is either the full group or is
isomorphic to A5 (see [S2, Proposition 16]).

Since H1
Sel(K, Ep∞) is finitely generated, we know that

H1
Sel(K, Ep∞) � (Qp/Zp)r ⊕ (finite abelian group)

for some r ∈ N. Choose k ∈ N so that pk−1H1
Sel(K, Ep∞) = H1

Sel(K, Ep∞)div, the
p-divisible subgroup of H1

Sel(K, Ep∞). Let s1, . . . , sr ∈ H1
Sel(K, Ep2k ) be generators of
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H1
Sel(K, Ep∞)div

p2k , the p2k-torsion of H1
Sel(K, Ep∞)div. It follows that each si has order

p2k .
Suppose that Q is a set of primes of Q with the following properties for q ∈ Q:

(i) q is inert in K/Q;
(ii) q /∈ �;
(iii) E(Kq)p∞ = E(Kq)pk ; and
(iv) H1

Sel(K, Epk ) ↪→ ∏
q∈Q H1(Kunr

q /Kq, Epk ), where Kunr
q denotes the maximal

unramified extension of Kq .
Then we suppose that �′ = � ∪ {λi | 1 ≤ i ≤ r}, where {λi | 1 ≤ i ≤ r} is a

set of primes of K not in � ∪ Q such that
(a) E(Kλ)p∞ = E(Kλ)p2k for all λ ∈ {λi | 1 ≤ i ≤ r}; and
(b) the local cohomology class (si)λj

has order p2k if i = j and is trivial if i �= j .

As in §1, K�′∪Q (resp., K�′) denotes the maximal extension of K which is unram-
ified outside �′ ∪ Q (resp., �′). Recall that

Lν =
{

H1(Kunr
ν /Kν, Ep2k ), ν ∈ Q,

H1(Kν, Ep2k ), ν ∈ �′.

As before, L∗
ν and Sel∗ν denote the exact annihilators, respectively, of Lν and Selν

in the pairing

H1(Kν, Ep2k ) × H1(Kν, Ep2k ) → Qp/Zp. (30)

We now have the following lemma, which is very similar to Lemma 1.1.3. The
key difference lies in the fact that r may not be 1 in this case.

LEMMA 2.2.1
The group H1

L∗(K�′∪Q/K, Ep2k ) is contained in H1
Sel(K, Epk ).

Proof
By properties of local duality, we know that

L∗
ν =

{
H1(Kunr

ν /Kν, Ep2k ), ν ∈ Q,

0, ν ∈ �′.

This implies that H1
L∗(K�′∪Q/K, Ep2k ) ⊂ H1

Sel(K, Ep2k ). By the choice of k so
that pk−1H1

Sel(K, Ep∞) = H1
Sel(K, Ep∞)div, we have an exact sequence

0 � H1
Sel(K, Epk ) � H1

Sel(K, Ep2k )
pk

� ∏r

i=1(Z/p2kZ)pksi
� 0. (31)



SOLVABLE POINTS ON GENUS ONE CURVES 413

We observe that

pkH1
L∗(K�′∪Q/K, Ep2k ) ⊆ 〈s1, . . . , sr〉

by our choice of classes s1, . . . , sr , and all we have to show is that the left-hand side
is actually zero. This follows from the assumption that there exists λ ∈ �′ \ � such
that p2k−1sλ �= 0 in H1(Kλ, Ep2k ), as this implies that

〈s1, . . . , sr〉 ∩ H1
L∗(K�′∪Q/K, Ep2k ) = 0

and concludes our proof. �

PROPOSITION 2.2.2
The following sequence is exact:

0 � H1
L(K�′∪Q/K, Ep2k ) � H1

LQ (K�′∪Q/K, Ep2k )

� ∏
q∈Q H1(Kq, Ep2k )/Lq

� 0.

Proof
The proof of this proposition is the same as that of Lemma 1.1.5. The assumption
that E/K has analytic rank 1 enters the proof of Lemma 1.1.5 only through the use of
Lemma 1.1.3, which in the general rank case is substituted by the same result proved
in Lemma 2.2.1. �

Observe that

H1
L(K�′∪Q/K, Ep2k ) = H1(K�′/K, Ep2k )

and

H1
LQ (K�′∪Q/K, Ep2k ) = H1(K�′∪Q/K, Ep2k ).

Consequently, Proposition 2.2.2 gives us the exact sequence

0 � H1(K�′/K, Ep2k ) � H1(K�′∪Q/K, Ep2k )

� ∏
q∈Q H1(Kq, Ep2k )/Lq

� 0.

The second and third properties of the primes in Q and Lemma 2.1.3 imply that for
q ∈ Q,

L∗
q = Lq = H1(Kunr

q /Kq, Ep2k ) � E(Kq)/p2kE(Kq) � E(Kq)pk � Z/pkZ ⊕ Z/pkZ.
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Then using the nondegeneracy of the pairing (30), we conclude that

H1(Kq, Ep2k )/Lq � Z/pkZ ⊕ Z/pkZ. (32)

We now show that when we restrict the above cohomology groups to the
Selmer condition for λ ∈ �′, we end up missing exactly r generators of∏

q∈Q H1(Kq, Ep2k )/Lq .

PROPOSITION 2.2.3
The cokernel of the last map in the exact sequence

0 � H1
Sel(K�′/K, Ep2k ) � H1

SelQ (K�′∪Q/K, Ep2k ) � ∏
q∈Q H1(Kq, Ep2k )/Lq

is isomorphic to (Z/pkZ)r .

Proof
The following proof is essentially the same as the proof of Proposition 1.1.6, except
that in this case, we may have r �= 1.

Recall our notation that SelQ imposes no local condition at primes in Q.
Set W = ∏

ν∈�′ H1(Kν, Ep2k )/Selν(p2k), where Selν(p2k) denotes the image of
E(Kν)/p2kE(Kν) in H1(Kν, Ep2k ). By applying the snake lemma to the commutative
diagram

we get

0 � H1
Sel(K�′/K, Ep2k ) � H1

SelQ (K�′∪Q/K, Ep2k ) � ∏
q∈Q H1(Kq, Ep2k )/Lq

0 � coker φ2
� γ0 coker φ1

�

(33)

Seeing the maps φ1 and φ2 as part of the corresponding exact sequences of Cassels,
Poitou, and Tate, we have

(34)

Now, we need to study the maps ψi since coker φi � im ψi for i = 1, 2.
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As we saw in the proof of Proposition 1.1.6, Selν(p2k) = Sel∗ν(p2k) for all ν.
Therefore, we have

H1
Sel∗(K, Ep2k ) = H1

Sel(K, Ep2k ) and H1
(SelQ)∗(K, Ep2k ) = H1

SelQ (K, Ep2k ),

where H1
SelQ (K, Ep2k ) is the subgroup of H1

Sel(K, Ep2k ) consisting of classes that are
locally trivial at primes in Q.

We know that H1
Sel(K, Epk ) maps to H1(Kunr

q /Kq, Epk ) under the localization map
for q ∈ Q. Then by property (iii) of the prime q ∈ Q, we have the map

H1(Kunr
q /Kq, Epk ) → H1(Kunr

q /Kq, Ep2k ) is zero for all q ∈ Q.

This implies that H1
Sel(K, Epk ) maps to zero in H1(Kunr

q /Kq, Ep2k ) for all q ∈ Q, and
therefore,

H1
Sel(K, Epk ) ⊂ H1

SelQ (K, Ep2k ).

We show that these two groups are equal. Let s ∈ H1
Sel(K, Ep2k ) be an element

of order p2k . Property (iv) of the set Q implies that there exists a prime q ∈ Q
such that the localization of p2k−1s ∈ H1

Sel(K, Epk ) at the prime q, p2k−1sq �= 0 in
H1(Kq, Epk ). Since s ∈ H1

Sel(K, Ep2k ), there exists y ′ ∈ E(Kq) such that sq(σ ) =
σ (y ′/p2k) − y ′/p2k . It follows that y ′ �= py ′′ in E(Kq), and Lemma 2.1.3 implies
that y ′ = p2ky ′′ + epk , where y ′′ ∈ E(Kq) and epk ∈ E(Kq)pk − E(Kq)pk−1 . We
then see that pis ∈ H1

SelQ (K, Ep2k ) if and only if i ≥ k, which is equivalent to
H1

Sel(K, Epk ) ⊃ H1
SelQ (K, Ep2k ).

So, the right-hand-side square of (34) may be viewed as

and the map γ : imψ1 → imψ2 is simply the restriction of an element of ̂H1
Sel(K, Ep2k )

to ̂H1
Sel(K, Epk ). We now show that ker γ � (Z/pkZ)r .
In order to better understand the maps ψ1 and ψ2, we consider the following

compatible nondegenerate pairings for ν ∈ �′:
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We know that pkH1
Sel(K, Epk ) = 0, and consequently, the order of every element of

im ψ2 divides pk . We aim to construct a subgroup of im ψ1 isomorphic to (Z/p2kZ)r

because then pks ∈ ker γ for all s ∈ im ψ1 of order p2k .
We have ensured that for each s ∈ {s1, . . . , sr}, there is a corresponding prime

λ ∈ �′ − � so that p2k−1sλ �= 0 in H1(Kλ, Ep2k ). Consider Resλ(s). The co-
homology class Resλ(s) is of order p2k . It follows that there exists an element
s∗
λ ∈ H1(Kλ, Ep2k )/Selλ(p2k) which pairs with Resλ(s) to give a generator of

Z/p2kZ. Consequently, we see that ψ1(s∗
λ) has order p2k . Furthermore, property

(b) of λ ∈ �′ − � implies that ψ1(s∗
λ)(s ′) = 0 for all s ′ ∈ {s1, . . . , sr} \ {s}. It then

follows that

〈ψ1(s∗
λ) | s ∈ {s1, . . . , sr}〉 � (Z/p2kZ)r .

Since, by (31),

0 � (Z/pkZ)r � ̂H1
Sel(K, Ep2k ) � ̂H1

Sel(K, Epk ) � 0, (35)

we conclude that ker γ � (Z/pkZ)r , which also shows that ker γ0 � (Z/pkZ)r in
(33). This completes the proof of the proposition. �

PROPOSITION 2.2.4
The group H1

SelQ (K, Epk ) is isomorphic to (Z/pkZ)2t , where t = #Q.

Proof
This is a generalization of Theorem 1.1.7(i).

Since pk−1H1
Sel(K, Ep∞) = H1

Sel(K, Ep∞)div, we can write

H1
Sel(K, Epk ) � (Z/pkZ)r × Z/pm1Z × · · · × Z/pm2t−r Z,

where each mi < k. Let us consider the map

H1
SelQ (K, Ep2k ) →

∏
q∈Q

H1(Kq, Ep2k ). (36)

The fact that H1(Kq, Ep2k )/Lq � (Z/pkZ)2 for each q ∈ Q by (32), together with
Proposition 2.2.3, implies that

0 � H1
Sel(K, Ep2k ) � H1

SelQ (K, Ep2k ) � (Z/pkZ)2t−r � 0. (37)

Just as in the proof of Theorem 1.1.7(i), we use sequences (35) and (37) to see that

im
(

H1
SelQ (K, Ep2k ) →

∏
q∈Q

H1(Kunr
q , Ep2k )

)
� (Z/pkZ)2t−r
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and

im
(

H1
Sel(K, Ep2k ) →

∏
q∈Q

H1(Kunr
q /Kq, Ep2k )

)
� (Z/pkZ)r .

Consequently, the map (36) gives rise to the exact sequence

0 � H1
Sel(K�′/K, Epk ) � H1

SelQ (K�′∪Q/K, Ep2k ) � (Z/pkZ)2t � 0.

Since we also know that #H1
SelQ (K, Epk ) = p2kt , it follows that

H1
SelQ (K�′∪Q/K, Ep2k ) � (Z/p2kZ)r × Z/pk+m1Z × · · · × Z/pk+m2t−r Z,

and hence,

H1
SelQ (K�′∪Q/K, Epk ) � (Z/pkZ)2t . �

2.2.2
In this section, we assume that p is a prime of good ordinary anomalous reduction
(i.e., the reduction of E modulo p has nontrivial p-torsion over the residue field of Q
at p) and that it is inert in K/Q. In this case, instead of H1

Sel(K, Epk ), we must consider
a bigger subgroup of H1(K, Epk ). The reason for this is that in the anomalous case,
the Selmer condition is not well behaved under taking invariants in a Zp-tower (see
§2.3.2). The only difference between H1

Sel(K, Epk ) and this new group lies at the local
condition at ℘, the only prime of K lying above p.

Let Sel′℘(pk) be a subgroup of H1(K℘, Epk ) so that
(i) Sel℘(pk) ⊆ Sel′℘(pk); and
(ii) #(Sel′℘(pk)/Sel℘(pk)) is bounded by a constant that does not depend on k.

The group Sel′℘(pk) is defined in §2.3.2. Consider the exact sequence

0 −→ E(K℘)pk −→ E(K℘)pk+1 −→ E(K℘)p −→ H1(K℘, Epk )
ϕk−→ H1(K℘, Epk+1 ).

As we see in §2.3.2, Sel′℘(pk) = ϕ−1
k Sel′℘(pk+1), and the size of the group Sel′℘(pk)/

Sel℘(pk) does not decrease as k → ∞.
In addition to the condition that pk−1H1

Sel(K, Ep∞) = H1
Sel(K, Ep∞)div, in the case

when p is a prime of good ordinary anomalous reduction, we also assume that

pk > #
(
Sel′℘(pk)/Sel℘(pk)

)
.

It follows in the same way that H1
SelQ (K, Epk ) � (Z/pkZ)2t , where t = #Q. In

addition, we have H1
SelQ (K, Epk ) ⊆ H1

Sel′Q
(K, Epk ), and by computing the sizes of these
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two groups, we see that

#H1
Sel′Q

(K, Epk )/#H1
SelQ (K, Epk ) = #Sel′℘(pk)/#Sel℘(pk).

We have then proved the following proposition.

PROPOSITION 2.2.5
The group H1

Sel′Q
(K, Epk ) is isomorphic to (Z/pk)2t ⊕ NQ, where NQ is a finite group

of order bounded independently of k.

2.3. Generalized unramified-under-ramified principle
Let us consider K̃∞ = ⋃

n≥1 K[pn], where K[pn] denotes the ring class field of K
of conductor pn. Then the group Gal(K̃∞/K) is isomorphic to Zp × �, where � is
a finite abelian group. The unique Zp-extension contained in K̃∞ is denoted by K∞
and called the anticyclotomic Zp-extension. Let Kn be the subextension of K∞ of
degree pn over K, and denote by K[pk(n)] the minimal ring class field of p-power
conductor containing Kn. (Throughout this section, we use Kn in this sense. Note that
in §1, we write Kr for the ring class field of conductor r , but this should not cause any
confusion.) The motivation for using the anticyclotomic Zp-extension is that we can
construct cohomology classes, which are introduced in §2.5.1.

2.3.1
In this section, we consider the case where p is a prime of good ordinary nonanomalous
reduction. Recall that in this case, we choose the extension K/Q so that p ramifies
(see §2.2.1).

Choose n0 so that
(1) pn0 −1H1

Sel(K, Ep∞) = H1
Sel(K, Ep∞)div; and

(2) Gal(K(Epn+1 )/K(Epn)), viewed as a subgroup of GL(2, Z/pn+1Z), consists of
all matrices of the form(

1 + pna pnb

pnc 1 + pnd

)
for a, b, c, d ∈ Z/pZ

for all n ≥ n0 . Serre [S2] has shown that the index of Gal(K(Epk )/K) in
GL(2, Z/pkZ) is finite and depends only on E and K. This implies that
condition (2) is satisfied for some big-enough n0 . (Recall that we are assuming
that E does not have complex multiplication.)

We fix any n ≥ n0 and consider the Selmer group H1
Sel(Kn, Epmn ), where mn ≥ n,

the sequence {mn}n∈N is strictly increasing, and E(Kνn
)p∞ ⊂ E(Kνn

)pmn for all primes
νn|N of Kn, where Kνn

denotes the completion of Kn at νn.
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Suppose that Qn is a set of primes of Q with the following properties for q ∈ Qn:
(i) q is inert in K/Q;
(ii) q /∈ �;
(iii) E(Kqn

)p∞ = E(Kqn
)pmn , where qn denotes any prime of Kn above q and Kqn

is
the completion of Kn at qn; and

(iv) H1
Sel(Kn, Epmn ) ↪→ ∏

q∈Qn
H1(Kn(q)unr/Kn(q), Epmn ), where

H1(Kn(q)unr/Kn(q), Epmn ) := ⊕
qn|q H1(Kunr

qn
/Kqn

, Epmn ) and Kunr
qn

denotes the
maximal unramified extension of Kqn

.
Denote by Gm the Galois group Gal(Km/K), and denote by t the number of

rational primes in Qn. (A similar notational remark applies to Gm, as was made earlier
for Kn. In §1, Gm was Gal(Km/K1), and Km referred to the ring class field of conductor
m.) When choosing Qn, we ensure that its size does not depend on n.

PROPOSITION 2.3.1
The following holds for all m ≤ n and k ≤ mn:

#H1
SelQn

(Km, Epk ) = #(Z/pkZ[Gm])2t .

Proof
We know that

H1
Sel∗(Km,Epk ) = H1

Sel(Km,Epk ) ⊂ H1
Sel(Kn,Epmn ) ↪→

∏
q∈Qn

H1
(
Kn(q)unr/Kn(q),Epmn

)
,

which implies that H1
(SelQn )∗(Km, Epk ) = H1

SelQn (Km, Epk ) ⊂ H1
SelQn (Kn, Epmn ) = 0.

Then, as in [Wi, Proposition 1.6], we have

#H1
SelQn

(Km, Epk ) = p2kpm
∏
q∈Qn

#E
(
Km(q)

)
pk

∏
νm|ν∈�

#E(Kνm
)pk

[H1(Kνm
, Epk ) : Selνm

(pk)]
,

where E(Km(q))pk = ⊕
qm|q E(Kqm

)pk .
Using the fact that k ≤ mn, the properties of the elements of Qn imply that

E(Kqm
)pk = (Z/pkZ)2, and therefore, E(Km(q))pk � (Z/pkZ[Gm])2.

Using the fact that Selνm
(pk) is its own exact annihilator under the pairing (30)

for all primes νm of Km (see the proof of Proposition 1.1.6), we deduce that

#H1(Kνm
, Epk ) = (

#Selνm
(pk)

)2
for all νm.

Lemma 2.1.2 implies that

#Selνm
(pk) = #E(Kνm

)pk for νm|ν ∈ � \ {p},
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and consequently, ∏
νm|ν∈�\{p}

#E(Kνm
)pk

[H1(Kνm
, Epk ) : Selνm

(pk)]
= 1.

Since E1(K℘m
) � O℘m

, by Lemma 2.1.1 we know that #Sel℘m
(pk) = [O℘m

: pkO℘m
] ·

#E(K℘m
)pk . It then follows that∏

℘m|p

#E(K℘m
)pk

[H1(K℘m
, Epk ) : Sel℘m

(pk)]
=

∏
℘m|p

1

[O℘m
: pkO℘m

]
= p−2kpm

.

We can now conclude that

#H1
SelQn

(Km, Epk ) =
∏
q∈Qn

#E
(
Km(q)

)
pk = #(Z/pkZ[Gm])2t ,

where t = #Qn. �

PROPOSITION 2.3.2
The following is true for all n ≥ n0 :

H1
SelQn

(K, Epmn ) � (Z/pmnZ)2t .

Proof
This statement follows from Proposition 2.2.4 if we can show that Qn satisfies the
properties of the set Q stated in §2.2.1. The elements of Qn are chosen to be rational
primes of good reduction and different from p which are inert in K/Q. Furthermore,
since elements of the set Qn split completely in Kn/K, it follows that

E(Kq)p∞ = E(Kqn
)p∞ = E(Kq)pmn .

Therefore, the only property that remains to be verified is that the primes of Qn control
H1

Sel(K, Epmn ) or, equivalently, that H1
Sel(K, Epmn ) → ∏

q∈Qn
H1(Kunr

q /Kq, Epmn ) is
injective. This last property follows from the fact that we are assuming that E(Kn)p∞ =
0, which implies that

H1
Sel(K, Epmn ) ↪→ H1

Sel(Kn, Epmn ),

and consequently,

H1
SelQn (K, Epmn ) ↪→ H1

SelQn (Kn, Epmn ) = 0.

Since H1
SelQn (K, Epmn ) = ker

(
H1

Sel(K, Epmn ) → ∏
q∈Qn

H1(Kunr
q /Kq, Epmn )

)
, this con-

cludes the proof of the proposition. �
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We now relate the groups H1
SelQn

(Kn, Epmn ) to each other as n grows.

PROPOSITION 2.3.3
The following holds for all m ≤ n:

H1
SelQn

(Kn, Epmn )Gn/Gm = H1
SelQn

(Km, Epmn ).

Proof
We know that E(Kn)p = 0, and consequently,

H1
SelQn

(Kn, Epmn )Gn/Gm ⊂ H1(Km, Epmn ).

We need to compute the image of H1
SelQn

(Kn, Epmn )Gn/Gm in H1(Kνm
, Epmn ) for all

primes νm of Km.
Let νm be a prime of Km of good reduction which does not divide any

of the elements of Qn ∪ {p}, and let νn be a prime of Kn dividing νm. Since
Selνn

(pmn) = H1(Kunr
νn

/Kνn
, Epmn ), it follows that the image of H1

SelQn
(Kn, Epmn )Gn/Gm

in H1(Kνm
, Epmn ) is unramified, or equivalently, it lies in Selνm

(pmn).
Let us now consider primes νm of Km, where E has bad reduction. Our choice of

mn (such that E(Kνn
)p∞ ⊂ Epmn ) and Lemma 2.1.2 together imply that E(Kνn

)/pmn =
E(Kνn

)pmn . Since(
E(Kνn

)/pmn
)Gn/Gm = (

E(Kνn
)pmn

)Gn/Gm = E(Kνm
)pmn = E(Kνm

)/pmn,

we see that the image of H1
SelQn

(Kn, Epmn )Gn/Gm in H1(Kνm
, Epmn ) lies in Selνm

(pmn).
Finally, we must consider the primes ℘m|p. We start by studying Lim

−→
k

E(K℘m
)/pk .

We show that (
Lim
−→

k

E(K℘n
)/pk

)Gn/Gm = Lim
−→

k

E(K℘m
)/pk, ∀n ≥ m.

We have the exact sequence

0 −→ E1(K℘n
)p∞ −→ E(K℘n

)p∞

−→ Ẽ(K℘n
)p∞ −→ H1(K℘n

, E1
p∞)

εn−→ H1(K℘n
, Ep∞), (38)

where Ẽ(K℘n
) denotes the points of Ẽ over the residue field of K℘n

. Greenberg [G,
Theorem 2.8] has shown that Lim

−→
k

E(K℘n
)/pk = im εn if p is a prime of ordinary

nonanomalous reduction.
Since Gal(K℘n

/Qp) is a dihedral group and E1(K℘) � O℘ , it follows that
E1(K℘n

)p∞ = E1(K℘)p∞ = 0. Recall that since we are assuming that E has good
ordinary reduction at p, the action of Gal(K℘/K℘) has the form

(
χε ∗
0 χ−1

)
, where χ is an
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unramified character and ε is the cyclotomic character. This implies that
H1(K℘m

, E1
p∞) = H1(K℘n

, E1
p∞)Gn/Gm . Furthermore, Ẽ(K℘)p∞ = 0, and hence,

Ẽ(K℘n
)p∞ = 0. Consequently, we have

im εm = (im εn)Gn/Gm and E(K℘n
)p∞ = E(K℘)p∞ = 0.

We now show that E(K℘m
)/pk = (E(K℘n

)/pk)Gn/Gm . Since E(K℘n
)pk = 0, we

may conclude that E(K℘m
)/pk maps injectively into (E(K℘n

)/pk)Gn/Gm , and we may
conclude that the maps ψk,r used to define the direct limit Lim

−→
k

E(K℘n
)/pk are injective:

0 = E(K℘n
)pr /pkE(K℘n

)pk+r −→ H1(K℘n
, Epk )

ψk,r−→ H1(K℘n
, Epk+r ).

Let s ∈ (E(K℘n
)/pk)Gn/Gm − (E(K℘m

)/pk). Since(
Lim
−→

k

E(K℘n
)/pk

)Gn/Gm = Lim
−→

k

E(K℘m
)/pk,

it follows that ψk,r (s) = 0 or s ∈ E(K℘m
)/pk+r for some r ≥ 1. In the first case,

s = 0 since ψk,r (s) is injective. In the second case, we know that pks = 0, which
implies that s ∈ E(K℘m

)/pk .
We can now conclude that H1

SelQn
(Kn, Epmn )Gn/Gm = H1

SelQn
(Km, Epmn ). �

Let Rn := Z/pmnZ[Gn], and let Rτ
n := Z/pmnZ[Gn � 〈τ 〉], where τ is an element of

Gal(K∞/Q) such that Gal(K/Q) = 〈τ 〉. We now consider the Rτ
n-modules

X(k, n) = H1
SelQk

(Kn, Epmn ) for all n ≤ k.

We inductively choose an infinite subsequence of Xn ∈ {X(k, n) | k ≥ n} by requir-
ing its elements to be compatible in the following way. (This is motivated by the
construction in [TW].)

The elements of the set Sn0
= {X(k, n0) | k ≥ n0} are finite Rτ

n0
-modules. It then

follows that infinitely many X(k, n0) have the same Rτ
n0

-module structure. We choose
one element of this infinite compatible subset and denote it by

Xn0
= H1

SelQkn0

(Kn0
, Ep

mn0 ).

We now consider the set

Sn0 +1 = {
X(k, n0 + 1)

∣∣ k ≥ n0 + 1 and X(k, n0) � Xn0
as Rτ

n0
-modules

}
.

The elements of Sn0 +1 are finite Rτ
n0 +1-modules, and therefore, infinitely many

of them have the same Rτ
n0 +1-module structure. We choose one element of this infinite

compatible subset and denote it by Xn0 +1.
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We continue this process to obtain an infinite compatible sequence of modules
Xn. Set � = Gal(K∞/K), and then define the Zp[[�]]-module

M := Lim
−→
n≥n0

Xn,

where the maps are chosen inductively as above. (The maps are not defined in any
natural way on cohomology groups.)

Let M̂ denote the Pontryagin dual of the module M. We view M̂ as a �-module,
where � = Zp[[T]] and T acts on M through γ − 1, where � = 〈γ 〉.

THEOREM 2.3.4
The �-module M̂ is isomorphic to �2t .

Proof
By Proposition 2.3.3, we know that H1

SelQkn

(Kn, Epmn )Gn = H1
SelQkn

(K, Epmn ). One can
then see that

H1
SelQkn

(K, Ep) = H1
SelQkn

(K, Epmn )[p] = H1
SelQkn

(Kn, Epmn )Gn[p],

and consequently,

H1
SelQkn

(K, Ep) � M[T, p] for all n ≥ n0.

This implies that

M̂/(p, T) � ̂H1
SelQkn

(K, Ep) for any n ≥ n0.

Since, as a �-module, M̂ has the same number of generators as M̂/(p, T), Proposi-
tion 2.3.2 implies that M̂ has 2t generators. It then follows that there is a surjective
map

ψ : �2t → M̂.

In order to show that ψ is an injection, we consider M̂/(pk, (1 + T)p
m − 1). On the

one hand, we know that

�2t /
(
pk, (1 + T)p

m − 1
) � (Z/pkZ[Gm])2t .

On the other hand,

M̂/
(
pk, (1 + T)p

m − 1
) � ̂H1

SelQkn

(Km, Epk ) for any n ≥ m and n0 ≤ k ≤ mn.
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Proposition 2.3.1 implies that #H1
SelQkn

(Km, Epk ) = #(Z/pkZ[Gm])2t , and conse-
quently,

#�2t /
(
pk, (1 + T)p

m − 1
) = #M̂/

(
pk, (1 + T)p

m − 1
)
.

It follows that ker ψ ⊂ (pk, (1 + T)p
m − 1). Since k and m are not bounded, we have

shown that ker ψ = 0, which concludes the proof of the theorem. �

2.3.2
In this section, we define the group Sel′℘n

(pk) ⊆ H1(K℘n
, Epk ) and understand the

structure of H1
Sel′(Kn, Epmn ) as n varies in the case where p is a prime of good ordinary

anomalous reduction. Notice that since p is inert in K/Q, Gal(K℘n
/Qp) is a dihedral

group, and consequently, E1(K℘n
)p = E1(K℘)p = 0. Since Ẽ(K℘n

)p∞ = Ẽ(K℘k0
)p∞

for some k0 ∈ N, it follows that E(K℘n
)p∞ = E(K℘k0

)p∞ .
We start by defining Sel′℘n

(p∞) ⊆ H1(K℘n
, Ep∞). Let us consider the exact

sequence

0 −→ H1
(
K℘n

/K℘m
, E(K℘n

)p∞
) −→ H1(K℘m

, Ep∞)
ψn,m−→ H1(K℘n

, Ep∞).

The group Sel′℘n
(p∞) should have the following properties:

(i) Sel℘m
(p∞) ⊆ Sel′℘m

(p∞);
(ii) ψ−1

n,m

(
(Sel′℘n

(p∞))Gn/Gm

) = Sel′℘m
(p∞); and

(iii) the size of the group Sel′℘m
(p∞)/Sel℘m

(p∞) is bounded independently of m.
Greenberg [G, Theorem 2.6] has shown that Sel℘n (p

∞) = (im εn)div, where εn

is the natural map in the exact sequence

0 −→ E(K℘n
)p∞ −→ Ẽ(K℘n

)p∞ −→ H1(K℘n
, E1

p∞)
εn−→ H1(K℘n

, Ep∞). (39)

We set

Sel′℘m
(p∞) :=

⋃
n≥m

ψ−1
n,m(im εn)Gn/Gm,

and we prove that this subgroup of H1(K℘m
, Ep∞) satisfies the required properties.

The result of Greenberg that we mentioned above implies that Sel℘m
(p∞) ⊆

Sel′℘m
(p∞). Property (ii) translates to saying that

ψ−1
n,m

(⋃
k≥n

ψ−1
k,n(im εk)Gk/Gn

)Gn/Gm =
⋃
k≥m

ψ−1
k,m(im εk)Gk/Gm for all n ≥ m.

Since ker ψn,m ⊆ ker ψk,m for any k ≥ n ≥ m, all we need to show is that
ψk,n(im εn) ⊆ im εk for any triple k ≥ n ≥ m. This is clear because one can see
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easily that the diagram

0 � E(K℘k
)p∞ � Ẽ(K℘k

)p∞ � H1(K℘k
, E1

p∞)
εk� H1(K℘k

, Ep∞)

0 � E(K℘n
)p∞

�

� Ẽ(K℘n
)p∞

�

� H1(K℘n
, E1

p∞)

�

εn� H1(K℘n
, Ep∞)

ψk,n
�

is commutative.
We now need to prove that property (iii) holds. Since Greenberg [G, Theorem 2.8]

has shown that #(im εm/Sel℘m
(p∞)) ≤ #Ẽ(K℘)p∞ , we can concentrate on bounding

#(Sel′℘m
(p∞)/im εm). Applying the snake lemma to sequence (39), we get

H1(K℘n
, E1

p∞)Gn/Gm
εn� (im εn)Gn/Gm � (̃

E(K℘n
)p∞/E(K℘n

)p∞
)
/im(gpm − 1)

H1(K℘m
, E1

p∞)

�

εm � im εm

ψn,m

�

� 0

where 〈gpm〉 = Gn/Gm.
Since H1(K℘n

, E1
p∞)Gn/Gm = H1(K℘m

, E1
p∞), it follows that

(im εn)Gn/Gm/ψn,m(im εm) ↪→ (̃
E(K℘n

)p∞/E(K℘n
)p∞

)
/im(gpm − 1),

which implies that

#
(
ψ−1

n,m(im εn)Gn/Gm/im εm

) ≤ # ker ψn,m · #
(̃
E(K℘k0

)p∞
)
.

Fixing m0 > k0 so that E(K℘k0
)p∞ = E(K℘k0

)pm0 , we deduce that

ker ψn,m ⊆ H1
(
K℘m+m0

/K℘m
, E(K℘k0

)p∞
)
,

and therefore,

#
(
Sel′℘m

(p∞)/im εm

) ≤ #H1
(
K℘m+m0

/K℘m
, E(K℘k0

)p∞
) · #

(̃
E(K℘)p∞/E(K℘)p∞

)
.

Finally, we see that the size of Sel′℘m
(p∞)/Sel℘m

(p∞) is bounded from above by

#
(̃
E(K℘)p∞

)2 · #H1
(
K℘m+m0

/K℘m
, E(K℘k0

)p∞
)
.

This concludes the proof of property (iii).
Let us consider the sequence

0 −→ E(K℘m
)pk −→ E(K℘m

)p∞ −→ E(K℘m
)p∞

−→ H1(K℘m
, Epk )

φm,k−→ H1(K℘m
, Ep∞),
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and define Sel′℘m
(pk) := φ−1

m,k(Sel′℘m
(p∞)). The exact sequence

0 −→ H1
(
K℘n

/K℘m
, E(K℘n

)pk

) −→ H1(K℘m
, Epk )

ψk
n,m−→ H1(K℘n

, Epk )

allows us to compare (Sel′℘n
(pk))Gn/Gm and Sel′℘m

(pk).
We show that

(i) Sel℘m
(pk) ⊆ Sel′℘m

(pk);
(ii) (ψk

n,m)−1(Sel′℘n
(pk))Gn/Gm = Sel′℘m

(pk); and
(iii) the size of the group Sel′℘m

(pk)/Sel℘m
(pk) is bounded independently of m

and k.
We know that Sel℘m

(p∞) ⊆ Sel′℘m
(p∞). Since Sel℘m

(pk) = φ−1
m,k(Sel℘m

(p∞)), it
follows that Sel℘m

(pk) ⊆ Sel′℘m
(pk).

Our next aim is to show that (ψk
n,m)−1(Sel′℘n

(pk))Gn/Gm ⊂ Sel′℘m
(pk) since the

opposite inclusion is obvious. We can see that(
Sel′℘n

(pk)
)Gn/Gm = [

φ−1
n,k

(
Sel′℘n

(p∞)
)]Gn/Gm ⊂ φ−1

n,k

[(
Sel′℘n

(p∞)
)Gn/Gm

]
.

Notice that the following diagram is commutative:

H1(K℘m
, Epk )

φm,k � H1(K℘m
, Ep∞)

H1(K℘n
, Epk )Gn/Gm

ψk
n,m�

φn,k� H1(K℘n
, Ep∞)Gn/Gm

ψn,m

�

Furthermore, we know that ψ−1
n,m(Sel′℘n

(p∞))Gn/Gm = Sel′℘m
(p∞). We can then de-

duce that

(ψk
n,m)−1

(
Sel′℘n

(pk)
)Gn/Gm ⊆ (ψk

n,m)−1φ−1
n,k

[(
Sel′℘n

(p∞)
)Gn/Gm

]
= φ−1

m,kψ
−1
n,m

[(
Sel′℘n

(p∞)
)Gn/Gm

]
= φ−1

m,kSel′℘m
(p∞) = Sel′℘m

(pk).

We now show that the size of the group Sel′℘m
(pk)/Sel℘m

(pk) is bounded inde-
pendently of m and k. Let s ∈ Sel′℘m

(pk) be such that

s̄ ∈ (
Sel′℘m

(pk)/Sel℘m
(pk)

) − {0}.

Consider φm,k(s). If φm,k(s) ∈ Sel℘m
(p∞), then s ∈ Sel℘m

(pk) = φ−1
m,kSel℘m

(p∞),
contradicting our assumption. It follows that φm,k(s) /∈ Sel℘m

(p∞), and therefore,
φm,k(s) ∈ Sel′℘m

(p∞)/Sel℘m
(p∞), which implies that

#
(
Sel′℘m

(pk)/Sel℘m
(pk)

) ≤ #
(
Sel′℘m

(p∞)/Sel℘m
(p∞)

)
.

This concludes the proof of the properties on Sel′℘n
(pk).
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Let us choose Qn so that it satisfies the first set of properties (i) – (iii) that we
required in the beginning of §2.3.1 and so that

H1
Sel′(Kn, Epmn ) ↪→

∏
q∈Qn

H1
(
Kn(q)unr/Kn(q), Epmn

)
.

In addition to the conditions that we have already put on n0, in the case when p

is a prime of good ordinary anomalous reduction, we also require that

#
(
Sel′℘m

(p∞)/Sel℘m
(p∞)

) ≤ pn0 for all m ∈ N.

We then know that for all n ≥ 0 and k > n0,

#H1
Sel′Qn

(Kn, Epk )/#H1
SelQn

(Kn, Epk ) = #
(
Sel′℘n

(pk)/Sel℘n
(pk)

) ≤ pn0 .

Since, in the proofs of Propositions 2.3.1 and 2.3.2, we have not assumed that p

is nonanomalous or even ordinary, we have

#H1
Sel′Qn

(Km, Epk ) = #(Z/pkZ[Gm])2t · #
(
Sel′℘n

(pk)/Sel℘n
(pk)

)
(40)

for all m ≤ n and n0 ≤ k ≤ mn, and

#H1
Sel′Qn

(K, Epmn ) = #(Z/pmnZ)2t · #
(
Sel′℘(pmn)/Sel℘(pmn)

)
for all n ≥ n0. (41)

We now come to the reason for which we need to consider H1
Sel′(Kn, Epmn ) instead

of H1
Sel(Kn, Epmn ). As in the proof of Proposition 2.3.3, we can see easily that

H1
Sel′Qn∪{p}

(Kn, Epmn )Gn/Gm = H1
Sel′Qn∪{p}

(Km, Epmn ).

Since we have ensured that (ψmn

n,m)−1(Sel′℘n
(pmn))Gn/Gm = Sel′℘m

(pmn), the following
result holds true.

PROPOSITION 2.3.5
We have H1

Sel′Qn

(Kn, Epmn )Gn/Gm = H1
Sel′Qn

(Km, Epmn ) for all m ≤ n.

Let us consider the module Ma that is constructed in the same way as in the ordinary
nonanomalous case by using H1

Sel′Qk

(Km, Epmn ) for k ≥ n instead of H1
SelQk

(Km, Epmn ).

In this case, the structure theorem is the following.

THEOREM 2.3.6
The �-module M̂a is pseudoisomorphic to �2t .



428 ÇIPERIANI and WILES

Proof
Let s0 denote the number of generators of NQ defined in Proposition 2.2.5. Conse-
quently, the number of generators of M̂a is 2t + s0. By the structure theorem for
finitely generated �-modules, we have an exact sequence of the form

0 −→ F1 −→ M̂a −→ �d ⊕ �/f1 ⊕ · · · ⊕ �/fr −→ F2 −→ 0,

where fi ∈ �, Fi is a finite group and r, d ∈ N.
Proposition 2.3.5 implies that

M̂a/
(
pk, (1 + T )p

m − 1
) � ̂H1

Sel′Qkn

(Km, Epk ) for any n ≥ m and n0 ≤ k ≤ mn,

and by (40), we know that

#(Z/pkZ[Gm])2t ≤ #H1
Sel′Qn

(Km, Epk ) ≤ #(Z/pkZ[Gm])2t · pn0 .

It follows that d = 2t , and �/fi = 0 for all i. This concludes the proof. �

2.4. Choosing the auxiliary Qn

2.4.1
In this section, we assume that E has good ordinary reduction at p. Recall that the
auxiliary primes q ∈ Qn are required to have the following properties:
(i) q is inert in K/Q;
(ii) q /∈ �;
(iii) E(Kqn

)p∞ = E(Kqn
)pmn , where qn denotes any prime of Kn above q; and

(iv) H1
Sel(Kn, Epmn ) ↪→ ∏

q∈Qn
H1(Kn(q)unr/Kn(q), Epmn ), where

H1(Kn(q)unr/Kn(q), Epmn ) = ⊕
qn|q H1(Kunr

qn
/Kqn

, Epmn ) and Kunr
qn

denotes the
maximal unramified extension of Kqn

.
We prove the existence of a set of primes with these properties and give a method

for constructing such a set. Let us start by showing how we can choose the primes of
Qn so that

H1
Sel(Kn, Epmn ) ↪→

∏
q∈Qn

H1
(
Kn(q)unr/Kn(q), Epmn

)
.

The kernel of the above map is H1
SelQn (Kn, Epmn ). This group is trivial if and only

if its invariants under Gn are trivial. Since H1
SelQn (Kn, Epmn )Gn = H1

SelQn (K, Epmn ) by
Proposition 2.3.3, we aim to find Qn so that H1

SelQn (K, Epmn ) = 0.
Let Ln = K(Epmn ), Gn = Gal(Ln/K), and consider the exact sequence

0 � H1(Gn, Epmn ) � H1(K, Epmn )
Res� H1(Ln, Epmn )Gn . (42)
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Since H1(Gn, Epmn ) = 0 for all n (see Proposition 1.3.1), the above diagram
implies that

H1(K, Epmn ) ↪→ H1(Ln, Epmn )Gn = HomGn

(
Gal(Ln/Ln), Epmn

)
.

We then have the Gn-pairing

H1(K, Epmn ) × Gal(Ln/Ln) � Epmn . (43)

Let Mn be the fixed field of the subgroup of Gal(Ln/Ln) which pairs to zero with the
finite subgroup H1

Sel(K, Epmn ) of H1(K, Epmn ). Consequently, the Gn-pairing,

H1
Sel(K, Epmn ) × Gal(Mn/Ln) � Epmn , (44)

is nondegenerate.
Let Hn = Gal(Mn/Ln). The element τ ∈ Gal(Ln/Q) denotes a complex conjuga-

tion; it acts on Hn. We extend τ to a complex conjugation in Gal(Mn/Q), and we may
assume that these choices are compatible as n varies. The nondegeneracy of pairing
(44) implies, in particular, that Hn has odd order. So, Hn splits as a direct sum of the
eigenspaces for the action of τ , Hn = H+

n ⊕ H−
n . Furthermore,

H+
n = Hτ+1

n = {
τ−1hτh = (τh)2 : h ∈ Hn

}
. (45)

PROPOSITION 2.4.1
Let s ∈ H1

Sel(K, Epmn ). Then the following are equivalent:
(1) s = 0;
(2) [s, ρ] = 0 for all ρ ∈ Hn, where [, ] denotes pairing (44); and
(3) [s, ρ] = 0 for all ρ ∈ H+

n .

Proof
See Proposition 1.3.3. �

Since the minimal number of generators of H+
n does not depend on n, Proposition

2.4.1 implies that we can choose h1, . . . , ht ∈ H+
n so that H+

n = 〈h1, . . . , ht〉 and

[s, hi] = s(hi) = 0, ∀i ∈ {1, . . . , t} ⇒ s = 0, (46)

for any s ∈ H1
Sel(K, Epmn ) = H1

Sel(Kn, Epmn )Gn .

PROPOSITION 2.4.2
If s ∈ H1

Sel(K, Epmn ), ρ ∈ Gal(Mn/Ln), and λ is a prime of K not contained in � such
that Frobλ(Ln/K) = {gρg−1 : g ∈ Gn}, then the following are equivalent:
(1) [s, σ ] = 0 for some σ ∈ Frobλ(Mn/K);
(2) [s, σ ] = 0 for all σ ∈ Frobλ(Mn/K); and
(3) sλ = 0 in H1(Kλ, Epmn ).
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Proof
See [Gr, Proposition 9.6] or Proposition 1.3.4. �

PROPOSITION 2.4.3
Suppose that H+

n = 〈h1, . . . , ht〉, and let Qn = {�1, . . . , �t} be a set of t primes in Q
so that Frob�i

(Mn/Q) = τh′
i , where (τh′

i)
2 = hi ∈ H+

n for each i. Then the natural
map

φQn
: H1

Sel(Kn, Epmn ) −→
∏
q∈Qn

H1
(
Kn(q)unr/Kn(q), Epmn

)
is injective.

Proof
Suppose that s ∈ H1

Sel(Kn, Epmn )Gn = H1
Sel(K, Epmn ) is in the kernel of φQn

. Then by
Proposition 2.4.2, [s, Frobλ] = 0 for each λ a prime of K above � ∈ {�1, . . . , �t}.
So, we have [s, hi] = 0 for each i, and consequently, [s, H+

n ] = 0. Thus s = 0
by Proposition 2.4.1. It follows that H1

SelQn (Kn, Epmn )Gn = 0, which is equivalent to
H1

SelQn (Kn, Epmn ) = 0 and concludes the proof. �

By choosing the set Qn in this way, we make sure that its size does not depend on n.

2.4.2
We now show how to ensure that the auxiliary primes q ∈ Qn have the property that
E(Kqn

)p∞ = E(Kqn
)pmn . Since any rational prime different from p which is inert in

K/Q splits completely in K[pm] for any m, it follows that E(Kqn
)p∞ = E(K(q))p∞ .

(Here we have written K(q) for the completion of K at q to avoid confusion with Kn,
the nth-layer of the anticyclotomic Zp-extension, defined at the beginning of §2.3. In
§1, K(q) was written in the more standard way as Kq .)

Consider the following two extensions of Ln:

These extensions of Ln are disjoint (see §1.3.2). Assumption (2) on n0 (in
§2.3.1) implies that there are elements of Gal(K(Epmn+1 )/Ln) with no fixed points
on Epmn+1/Epmn .
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Now, pick elements h1, . . . , ht ∈ H+
n so that H+

n = 〈h1, . . . , ht〉. Then each
hi = (τh′

i)
2 for some h′

i ∈ Hn by (45). We can extend each τh′
i to an element of

Gal(MnK(Epmn+1 )/Q) in such a way that the restriction of (τh′
i)

2 to Gal(K(Epmn+1 )/Ln)
has no fixed points in Epmn+1/Epmn . Finally, we can choose primes �i ∈ Q for i =
1, . . . , t so that

Frob�i

(
MnK(Epmn+1 )/Q

) = τh′
i .

It then follows that:
(i) H1

Sel(Kn, Epmn ) ↪→ ∏
q∈Qn

H1(Kn(q)unr/Kn(q), Epmn ) for Qn = {�1, . . . , �t};
and

(ii) E(Kλn
)p∞ = E(Kλn

)pmn , where λn is any prime of Kn above � ∈ Qn.

Remark 2.4.4
In the case when p is a prime of good ordinary anomalous reduction, the process of
choosing the set Qn is exactly the same, except that the Selmer condition must be
replaced by the less-restrictive Sel′.

2.5. Construction of cohomology classes
2.5.1
We have chosen K so that N, the conductor of E, splits in K/Q, N = NN̄. For any
positive integer f prime to N, we can consider xf = (C/Of, C/Nf) ∈ X0(N), where
Of denotes the order of K of conductor f and Nf = N∩Of. Fixing a parametrization
π : X0(N) −→ E which maps the cusp at ∞ to the origin of E, we define the Heegner
point yf = π(xf). The Heegner point yf is defined over the ring class field of K of
conductor f, K[f]. Then we define αn to be the trace of ypk(n) from K[pk(n)] to Kn.

We now describe a natural generalization of Kolyvagin’s cohomology classes
to ring class fields (following [BD]). Let r be a squarefree product of primes �|r
satisfying the following conditions:
(i) � is relatively prime to pNDK; and
(ii) Frob�(K(Epm′

n′)/Q) = τ .
Let k0 ≤ n ≤ n′, where Kk0 = K∞ ∩K[1]. Then we denote by Kn[r] the maximal

subextension of KnK[r] which is a p-primary extension of Kn. We now define αn(r)
to be the trace of yrpk(n) over K[rpk(n)]/Kn[r]. (Recall that k(n) was defined at the
beginning of §2.3).

Let Gn,r = Gal(Kn[r]/Kn[r] ∩ KnK[1]), and let Gn,� = Gal(Kn[�]/Kn[�] ∩
KnK[1]). By class field theory, Gn,r = ∏

�|r Gn,�, and Gn,� � Z/pn�Z for
n� = pordp(�+1). Consider D� := ∑n�

i=1 iσ i
� ∈ Z/pmnZ[Gn,�], and consider Dr :=∏

�|r D� ∈ Z/pmnZ[Gn,r ] (with D1 := 1). One can then show that Drαn(r) belongs
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to (E(Kn[r])/pmn)Gn,r (see [BD, Lemma 3.3]). It follows that

tr(Kn[r]∩KnK[1])/Kn
Drαn(r) ∈ (

E(Kn[r])/pmn
)Gn,r

,

where Gn,r = Gal(Kn[r]/Kn). We now consider the commutative diagram

0

H1(Kn[r]/Kn, E)pmn

�

0 � E(Kn)/pmnE(Kn)
φ � H1(Kn,Epmn ) � H1(Kn,E)pmn

Inf
�

� 0

0 � (
E(Kn[r])/pmn

)Gn,r

�
φr� H1(Kn[r], Epmn )Gn,r

Res �
�

� H1(Kn[r], E)Gn,r

pmn

Res �

(47)

Let cn(r) ∈ H1(Kn, Epmn ) be so that

φr

(
tr(Kn[r]∩KnK[1])/Kn

Drαn(r)
) = Res

(
cn(r)

)
,

and let dn(r) be the image of cn(r) in H1(Kn, E)pmn . In particular, Res(cn(1)) = φ1(αn).
These generalized Kolyvagin cohomology classes have the following properties.
(1) Let −ε denote the sign of the functional equation of the L-function of E/Q,

and let fr be the number of prime divisors of r . After extending τ to a complex
conjugation in Gal(K∞/Q), we see that τ acts on αn and ταn = εgin,1αn + βn

with βn ∈ E(Kn)tors, g a generator of Gal(K∞/K), and in,1 ∈ {0, . . . , pn − 1}.
Moreover, the complex conjugation τ acts on H1(Kn, Epmn ), and we can deduce
that τcn(r) = εrg

in,r cn(r), where εr = (−1)fr ε and in,r ∈ {0, . . . , pn − 1}.
(2) If v is a rational prime that does not divide r , then dn(r)vn

= 0 in H1(Kvn
, E)pmn

for all primes of Kn vn|v.
(3) Let H1(Kn(�), Epmn ) := ∏

λn|� H1(Kλn
, Epmn ), and define res� to be the local-

ization map

res� : H1(Kn, Epmn ) → H1
(
Kn(�), Epmn

)
.

Recall that E(Kn(�))/pmn = ∏
λn|� E(Kλn

)/pmn . Then if �|r , there exists a
Gn-equivariant and τ -antiequivariant isomorphism

ψ� : H1
(
Kn(�), E

)
pmn

→ E
(
Kn(�)

)
/pmn

such that ψ�(res� dn(r)) = res�(cn(r/�)).
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(4) We have Rnαn ⊂ Rn+1αn+1. In addition, Rncn(r) ⊂ Rn+1cn+1(r), and conse-
quently, Rndn(r) ⊂ Rn+1dn+1(r).

Let us start by showing that Rnαn ⊂ Rn+1αn+1. Since we have assumed
that p > 3 ramifies in Gal(K/Q), K[pn]/K[1] is cyclic of order pn. Therefore,
k(n) = n − k0 for n ≥ k0, and k(n) = 0 for n ≤ k0, where pk0 is the order of
the Galois group of the intersection of the maximal Zp-extension of K with the
Hilbert class field of K, over K. Perrin-Riou [Pe, §3.3, Lemma 2] has shown
that for any r ∈ N prime to p, we have

apyrpn+1 = yrpn + trK[rpn+2]/K[rpn+1]yrpn+2 for n ≥ 0,

(ap − g)yr = trK[rp]/K[r]yrp for some g ∈ Gal(K[r]/K),

where ap = p + 1 − #E(Fp).
Setting r = 1, this implies that

apαn+1 = αn + trKn+2/Kn+1αn+1 for n ≥ k0,

(ap − g)αk0 = trKk0+1/Kk0
αk0+1 for some g ∈ Gal(Kk0/K0).

Since ap(ap − 1) �= 0 (mod p), ap − g is invertible in Zp[Gk0 ] for any
g ∈ Gk0 = Gal(Kk0/K0). This proves that Rnαn ⊂ Rn+1αn+1 for n = k0. This
result is trivial for n < k0 since αn = trKk0 /Kn

αk0 for all n < k0. Let us now
assume that αn = u trKn+1/Kn

αn+1 for some u ∈ Zp[Gn]. We can then see that

trKn+2/Kn+1αn+2 = apαn+1 − αn = (ap − u trKn+1/Kn
αn+1)αn+1.

This implies that Rn+1αn+1 ⊂ Rn+2αn+2 and concludes our argument.
The proof that Rncn(r) ⊂ Rn+1cn+1(r) is very similar. It suffices to notice

that Gal(K[rpk(n)]/Kn[r]), Gal(Kn[r]/Kn), and consequently, Dr := ∏
�|r D�

do not depend on n for n ≥ k0.

2.5.2
We now choose the first element of the set Qn satisfying the required properties and
such that the module of ramified cohomology classes which we can construct using
this prime is big enough at every level in a sense that becomes clear later.

Let us consider the module Rnαn, which we view as a submodule of
H1

Sel(Kn, Epmn ). We know that Rnαn is an Rn+1-submodule of Rn+1αn+1. This allows
us to construct the direct limit of the modules Rnαn.

THEOREM 2.5.1
The Heegner module ̂Lim

−→
n

Rnαn is not a torsion �-module.
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Proof
Let an be the ideal of � so that Rnαn � �/an. Denote by m the maximal ideal of �.
Since �/an[m] is a subgroup of H1

Sel(K, Ep), we can see that �/an[m] is bounded

independently of n, and, consequently, so is �̂/an/m. This implies that Lim
←−

�̂/an

is a finitely generated module. If Lim
←−

�̂/an is torsion, then there exists f ∈ � such

that f (�̂/an) = 0 for all n. Let ι : � −→ � be the automorphism induced by
(1 + T ) �→ (1 + T )−1. It follows that f ι ∈ an for all n.

Let us consider ⋃
m≥n0

Rmαn ∈ H1(Kn, Ep∞).

We can see that f ι annihilates
⋃

m≥n0
Rmαn for every n. Since Cornut [C] and Vatsal

[V] have both shown that for n big enough, αn is nontorsion, we know that
⋃

m≥n0
Rmαn

is a nontrivial submodule of H1(Kn, Ep∞) for almost all n.
Let us assume that for infinitely many k ≥ n, there exists rk ∈ N prime to p such

that rkαk and rkαk+1 are defined over Kk . This implies that

prkαk+1 = trKk+1/Kk
rkαk+1 = fkrkαk

for some invertible element fk ∈ �, and consequently, αk is divisible by p. The
assumption that this happens for infinitely many k ≥ n implies that αn is p-divisible
in E(K∞). Since E(K∞)p = 0, it follows easily that αn is p-divisible in E(Kn) and,
hence, torsion for all n. (If αn = piγn with γn ∈ E(Kn+r ), say, then pi(γn −g0γn) = 0
for all g0 ∈ Gal(Kn+r/Kn), whence γn ∈ E(Kn).) This contradicts the results of
Cornut and Vatsal.

Since we are assuming that E(K∞)p = 0, we have shown that

gpn−1
αn − αn ∈ E(Kn) − E(Kn)tors

for almost all n. It follows that there exists r◦ such that

gpn−1
αn − αn /∈ pr◦E(Kn).

This implies that the image of gpn−1
αn−αn in H1(Kn, Ep∞) is infinite, and consequently,

so is the image of Zαn ⊗ Qp/Zp in H1(Kn, Ep∞)/H1(Kn−1, Ep∞).
Let

ξn = (T + 1)p
n − 1

(T + 1)pn−1 − 1
∈ �.
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Then if ξn is coprime to f ι, there exists a k such that pk ∈ (f ι, ξn). This implies
that pk annihilates the image of

⋃
m≥n0

Rmαn in H1(Kn, Ep∞)/H1(Kn−1, Ep∞), which
is false. It follows that ξn and f ι have a common factor for almost all n, and hence,
f = 0. �

In order to control the size of the module of ramified cohomology classes which we
construct, we need to use our knowledge of Lim

−→
Rnαn.

For each hn ∈ Gal(Ln/KnLn) ⊆ Gal(Ln/Ln), we define a new Rn-module
[Rnαn](hn) as

[Rnαn](hn) :=
{ i=pn∑

i=1

[(g−ic)(hn)] · gi such that c ∈ Rnαn

}
⊆ Homsets(Gn, Epmn ),

where Gn = 〈g〉 and [(g−ic)(hn)] ∈ Epmn is simply the evaluation of the class
g−ic at hn ∈ Gal(Kn(Epmn )/Kn(Epmn )). The action of Gn on this module is the one
induced from the standard action on Homsets(Gn, Epmn ), namely, by multiplication on
Gn, (gf )(g1) = f (gg1). The map Rnαn → [Rnαn](hn) is seen to be an Rn-module
homomorphism. By picking a basis for Epmn , we may view the right-hand side as Rn

2

and, hence, [Rnαn](hn) as a submodule of Rn
2.

Let (hn)n∈N ∈ Gal(L∞/L∞), where hn ∈ Gal(Ln/KnLn). Noticing that the dia-
gram

Rnαn
� [Rnαn](hn)

Rn+1αn+1

�
� [Rn+1αn+1](hn+1)

�

is commutative, we deduce that we have the map

ψ : Lim
−→

n

Rnαn → Lim
−→

n

[Rnαn](hn).

By choosing the basis of Epmn compatibly as n grows, we view Lim
−→

[Rnαn](hn) as a
�-submodule of �̂2.

We now analyze the image of ψ . Theorem 2.5.1 implies the existence of a nonzero
map

φ : �̂ → Lim
−→

n

Rnαn.

Now, τ acts on Rnαn and Lim
−→

Rnαn. Since φτ − φ and φτ + φ cannot be zero

simultaneously, we can assume that φ lies in one of the eigenspaces for the action of
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complex conjugation τ . Let s0 ∈ (im(φ)�)div[p] − {0}. Observe that since φτ = ±φ,
s0 ∈ H1

Sel(K, Ep) is an eigenvector for the action of τ on H1
Sel(K, Ep).

PROPOSITION 2.5.2
If s0(hn) �= 0 for all n, then the image of the map ψ has nontrivial corank.

Proof
Since we have chosen hn ∈ Gal(Mn/Ln) so that s0(hn) �= 0 for all n, we know that
im(ψ ◦ φ) �= 0. We have the chain of �-modules

̂im(ψ ◦ φ) ⊆ îm(φ) ⊆ �.

Since all nonzero submodules of � have rank 1, it follows that im(ψ ◦ φ) and,
consequently, im(ψ) have nontrivial corank. �

We now choose compatible hn ∈ Gal(Mn/Ln)+ (where + denotes the +1-eigenspace
for the action of complex conjugation τ ) so that (hn)n∈N ∈ Gal(M∞/L∞) and s0(hn) �=
0. Then we fix a sequence of primes �n ∈ Q so that τh′

n ∈ Frob�n
(Mn/Q), where

(τh′
n)2 = hn.
We now establish the connection between the modules res�n

(Rnαn) and
[Rnαn](hn). Let Ln,k = Kn(Epk ), let Gn,k = Gal(Ln,k/Kn), and consider the exact
sequence

0 � H1(Gn,k, Epk ) � H1(Kn, Epk )
Res� H1(Ln,k, Epk )Gn,k . (48)

In order to show that the restriction map in the above diagram is injective, we start by
proving the following lemma.

LEMMA 2.5.3
The extensions K∞/K and K(Epk )/K are disjoint for all k ∈ N.

Proof
We first prove that K∞/K and K(Ep)/K are disjoint. If they were not, then
Gal(K(Ep)/K) would have a normal subgroup of order p, and this would also be
a normal subgroup of Gal(K(Ep)/K(µp)), which is either of order prime to p or
isomorphic to SL2(Z/pZ). Since PSL2(Z/pZ) is simple, we conclude that K∞/K
and K(Ep)/K have a trivial intersection.

We now use induction. Assuming that K∞/K and K(Epk )/K are disjoint,
we show that K∞/K and K(Epk+1 )/K are disjoint. Since K∞/K and K(Ep)/K
are disjoint, Gal(K(Ep)/K) acts trivially on Gal(K∞/K). On the other hand,
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K(Epk+1 )/K(Epk , µpk+1 ) ⊆ Adρ , where Adρ denotes the adjoint representation of ρ :
Gal(K(Ep)/K) → GL2(Z/pZ). In addition, we know that K∞/K and K(Epk , µp∞)/K
are disjoint. It then follows that K∞/K and K(Epk+1 )/K are also disjoint. �

PROPOSITION 2.5.4
We have H1(Gn,k, Epk ) = 0 for all n, k ∈ N.

Proof
Since, by Proposition 1.3.1, we have H1(G0,k, Epk ) = 0 for all k ∈ N, Lemma 2.5.3
implies that H1(Gn,k, Epk ) = 0. �

COROLLARY 2.5.5
The restriction map

H1(Kn, Epk ) −→ HomGn,k

(
Gal(Ln,k/Ln,k), Epk

)
is injective.

Proof
This follows immediately from diagram (48) and Proposition 2.5.4. �

We set L′
n = Ln,mn

= Kn(Epmn ), and Lemma 2.5.3 implies that

Gn = Gal
(
K(Epmn )/K

) � Gal(L′
n/Kn) = Gn,mn

.

Corollary 2.5.5 gives us the Gn-pairing

H1(Kn, Epmn ) × Gal(L′
n/L′

n) � Epmn . (49)

Let M′
n be the fixed field of the subgroup of Gal(L′

n/L′
n) which pairs to zero with

the finite subgroup H1
Sel(Kn, Epmn ) of H1(Kn, Epmn ). We then have the nondegenerate

Gn-pairing

H1
Sel(Kn, Epmn ) × Gal(M′

n/L′
n) � Epmn . (50)

PROPOSITION 2.5.6
If s ∈ H1

Sel(Kn, Epmn ), ρ ∈ Gal(M′
n/L′

n), and λn is a prime of Kn such that
Frobλn

(M′
n/Kn) = {gρg−1 : g ∈ Gn}, then the following are equivalent:

(1) [s, σ ] = 0 for some σ ∈ Frobλn
(M′

n/Kn);
(2) [s, Frobλn

] = 0; and
(3) sλn

= 0 in H1(Kλn
, Epmn ).
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Proof
We have (1) ⇔ (2) because the pairing (50) is Gn-invariant and s is fixed by Gn.

Now, we show that (2) ⇔ (3). Since s is in the Selmer group, sλn
lies in the

image of E(Kn(λn))/pmnE(Kλn
), say, sλn

= im(Pλn
). Then [s, σ ] = (Pλn

/pmn)σ−1. It
follows that [s, σ ] = 0 if and only if Pλn

∈ pmnE(L′
n(λ̃n)), where λ̃n is the prime of L′

n

above λn associated to σ . Therefore, (2) is equivalent to Pλn
∈ pmnE(L′

n(λ̃n)) for all λ̃n

above λn. �

We can now prove the following result, with �n and hn as chosen after Proposi-
tion 2.5.2.

PROPOSITION 2.5.7
The Rn-modules res�n

(Rnαn) and [Rnαn](hn) are isomorphic for every n ≥ n0.

Proof
We have defined the map ψn = ψ |Rnαn

, ψn : Rnαn → [Rnαn](hn). Let s ∈ ker ψn,
which is equivalent to saying that s(ghng

−1) = 0 for all g ∈ Gn. Since s ∈ Rnαn ⊂
H1

Sel(Kn, Epmn ), Proposition 2.5.6 implies that s(ghng
−1) = 0 is equivalent to sλn

= 0,
where λn is the prime of Kn above �n associated to ghng

−1. It then follows that
s ∈ ker ψn if and only if s ∈ ker res�n

. This allows us to see that

res�n
(Rnαn) � Rnαn/ ker res�n

� Rnαn/ ker ψn � [Rnαn](hn)

and concludes the proof of the proposition. �

Let us consider cn(�m) ∈ H1(Kn, Epmn ) for all m ≥ n. Starting with n = n0, we
perform the following steps:
(1) since the sizes of the modules Rncn(�m) are bounded by the size of Rn, we can

find an infinite set Nn ⊆ N so that

Rncn(�m) are isomorphic Rτ
n-modules for all m ∈ Nn;

(2) consider Rn+1cn+1(�m) for all n+1 ≤ m ∈ Nn. Since the sizes of these modules
are bounded by the size of Rn+1, we can find an infinite set Nn+1 ⊆ Nn so that

Rn+1cn+1(�m) are isomorphic Rτ
n+1-modules for all m ∈ Nn+1.

We then pick a sequence {k′′
n | n ∈ N} so that k′′

n ∈ Nn. Property (4) in §2.5.1 of these
cohomology classes implies that

Rncn(�k′′
n
) � Rncn(�k′′

n+1
) ⊆ Rn+1cn+1(�k′′

n+1
)

and gives rise to an injective map Rncn(�k′′
n
) ↪→ Rn+1cn+1(�k′′

n+1
).
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In the same way as above, we now choose a subsequence {kn | n ∈ N} of
{k′′

n | n ∈ N} so that {Rndn(�kn
) | n ≥ n0} as well as {Rncn(�kn

) | n ≥ n0} are
compatible as Rτ

n-modules as n → ∞ in the following sense:

Rndn(�kn
) � Rndn(�kn+1 ) ⊆ Rn+1dn+1(�kn+1 ),

and

Rncn(�kn
) � Rncn(�kn+1 ) ⊆ Rn+1cn+1(�kn+1 ).

We can now construct the �-modules Lim
−→

Rncn(�kn
) and Lim

−→
Rndn(�kn

). We stress

that these are created using noncanonical injections whose existence is guaranteed by
the pigeon-hole principle above.

Using §2.5.1(3) and Proposition 2.5.7, we see that

res�kn

(
Rndn(�kn

)
) � res�kn

(Rnαn) � [Rnαn](hkn
).

Since [Rnαn](hkn
) � [Rnαn](hn) and Lim

−→
[Rnαn](hn) has nontrivial corank, it fol-

lows that Lim
−→

Rndn(�kn
) and, consequently, also Lim

−→
Rncn(�kn

) are not cotorsion �-

modules.

2.5.3
We now choose other primes for which we need to construct two distinct modules of
ramified classes. In order to accomplish this, we need to use im φ ⊆ Lim

−→
Rnαn and

Lim
−→

Rncn(�kn
). Since ̂Lim

−→
Rncn(�kn

) is not a torsion �-module, there exists a nonzero
map

φ′ : �̂ → Lim
−→

n

Rncn(�kn
),

and just as in the case of φ, we can assume that (φ′)τ = ±φ′.
Observe that [im φ]� ⊂ [Lim

−→
Rnαn]� and [im φ′]� ⊂ [Lim

−→
Rncn(�kn

)]� each

contain a unique copy of Qp/Zp. This implies that ([im φ]�)div ∩ Rnαn contains an
element sn, and ([im φ′]�)div ∩ Rncn(�kn

) contains an element s ′
n such that the orders

of sn and s ′
n go to infinity as n grows. Furthermore, since φτ = ±φ and (φ′)τ = ±φ′,

we know that [im φ]� and [im φ′]� are fixed by τ . Consequently, the elements sn and
s ′
n are eigenvectors of τ .

We are now ready to start the process of choosing the set Qkn
. There are two cases

that we need to consider, depending on how complex conjugation acts on sn and s ′
n.

Case 1. Assume that sn and s ′
n lie in different eigenspaces of the complex conjuga-

tion τ .
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Consider the field extensions

where for any s ∈ H1
Sel(K, Ep

mkn ), the extension Lkn
(s) denotes the splitting field of s

over Lkn
.

Since the groups generated by sn and s ′
n intersect trivially, the extensions Lkn

(sn) and
Lkn

(s ′
n) are disjoint over Lkn

. Let us start by fixing h′
kn

∈ Gal(Lkn
(s ′

n)/Lkn
)+ so that

s ′
n(h′

kn
) has the same order as s ′

n, where Gal(Lkn
(s ′

n)/Lkn
)+ denotes the +1-eigenspace

of Gal(Lkn
(s ′

n)/Lkn
) for the action of the complex conjugation τ . The next step is to

pick hkn,i ∈ Gal(Mkn
/Lkn

)+ so that the order of sn(hkn,i) is equal to the order of sn and
〈hkn

, hkn,i | 2 ≤ i ≤ t〉 = Gal(Mkn
/Lkn

)+.
Let us extend τ to a complex conjugation in Gal(Mkn

(s ′
n)/Q). We are now able to

choose the elements of Qkn
for this case. Let �kn

(i) ∈ Q be so that

τh′
kn,i

∈ Frob�kn (i)(Mkn
/Q) and τh′′

kn
∈ Frob�kn (i)

(
Lkn

(s ′
n)/Q

)
,

where (τh′
kn,i

)2 = hkn,i and (τh′′
kn

)2 = h′
kn

. (As in the choices made at the end of §1.4,
we choose h′

kn,i
and h′′

kn
to fix Lkn

, thus ensuring their compatibility.) Finally, we define

Qkn
= {

�kn
(1) = �kn

, �kn
(i)

∣∣ i = 2, . . . , t
}
.

Case 2. Assume that sn and s ′
n lie in the same eigenspace of the complex conjuga-

tion τ .

In this case, we need to consider the invariants of the module im φ/〈sn | n ∈ N〉.
Choose en ∈ (im φ∩Rnαn)−[Rnαn]Gn so that the image of Lim

−→
〈en, sn〉 in (im φ)/〈sn |

n ∈ N〉 is isomorphic to Qp/Zp as a �̂-module. This is possible because îm φ � �.
Since (im φ)/〈sn | n ∈ N〉 is fixed by complex conjugation τ , it follows that the

invariants are eigenvectors of τ . In particular, the image of en in (im φ)/〈sn | n ∈ N〉
is an eigenvector for the action of τ . We now see that the eigenvalues corresponding
to en and sn are different. Let τen = εen + xsn and τsn = ε ′sn, where ε, ε ′ ∈ {±1}
and x ∈ Z/pmnZ. Then we have

en = ετen + xτsn = en + εxsn + ε ′xsn = en + (ε + ε ′)xsn,

and it follows that ε = −ε ′ if xsn �= 0. So, we still need to consider the case where
τen = εen. We now use the fact that (g − 1)en = ysn �= 0, where y ∈ Z/pmnZ and
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Gn = 〈g〉. Observe that

τ (g − 1)en = (g−1 − 1)εen = −εg−1[(g − 1)en] = −εg−1ysn = −εysn.

Since, on the other hand, τ (g − 1)en = yτsn = ε ′ysn, we have ε ′ = −ε.
Let us now consider the extensions

Kn(Ep
mkn , sn, en)

Mkn
Kn(Ep

mkn , sn)

Lkn
(s ′

n) Lkn
(sn)

Lkn

We now analyze the extensions Lkn
(s ′

n)/Lkn
and Lkn

(sn)/Lkn
. We know that cn(�)

becomes trivial when restricted to Kn[�], and Kn[�]/Kn is totally ramified at the primes
of Kn dividing �. It follows that the elements of res�(Rncn(�)) are also totally ramified
at primes dividing �.

If, for infinitely many n, there exists s ′′
n , a nontrivial p-power multiple of s ′

n

which is unramified at �kn
, then we simply restrict to this subsequence of �kn

. In this
subcase, res�kn

s ′′
n = 0, which implies that Lkn

(s ′′
n ) and Lkn

(sn) are disjoint over Lkn
. By

choosing s ′′
n to be the minimal p-power multiple of s ′

n with this property, we ensure
that Lkn

(s ′
n)/Lkn

(s ′′
n ) is disjoint from Mkn

/Lkn
(s ′′

n ). It then follows that Lkn
(s ′

n)/Lkn
and

Lkn
(sn)/Lkn

are disjoint, independently of whether s ′
n is ramified or not.

Since H1
Sel(K, Ep) is finite, there exists an s ∈ H1

Sel(K, Ep) such that s ∈ 〈s ′′
n〉

for infinitely many n. By restricting to this subsequence of �kn
, we can assume that

s ∈ ⋂
n∈N〈s ′′

n〉. If the cohomology classes s ′
n are totally ramified at �kn

for almost all
n, we set s = 0.

The next step in understanding the above tower of extensions is to show that
Mkn

/Lkn
(sn) and Kn(Ep

mkn , sn)/Lkn
(sn) are disjoint. This follows by considering the

action of Gal(Lkn
/K) on Gal(Mkn

/Lkn
(sn)) and on Gal(Kn(Ep

mkn , sn)/Lkn
(sn)). (The

action of Gal(Lkn
(sn)/K) on Gal(Mkn

/Lkn
(sn)) and Gal(Kn(Ep

mkn , sn)/Lkn
(sn)) factors

through Gal(Lkn
/K).) On the one hand, since Lkn

/K and Kn/K are disjoint, Gal(Lkn
/K)

acts trivially on Gal(Kn(Ep
mkn , sn)/Lkn

(sn)). On the other hand,

Gal
(
Mkn

/Lkn
(sn)

)
/p Gal

(
Mkn

/Lkn
(sn)

) � Epδ1 ⊕ · · · ⊕ Epδ2t−1 , where δi ∈ {0, 1},

as a Gal(Lkn
/K)-module.
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We have the tower

Let us fix h◦
kn

∈ Gal(Kn(Ep
mkn , sn, en)/Kn(Ep

mkn , sn))+.
We can now pick hkn,i ∈ Gal(Mkn

/Lkn
(sn))+ (i ≥ 2) so that

Gal(Mkn
/Lkn

)+ = 〈hkn,i | 1 ≤ i ≤ t〉, where hkn,1 = hkn
,

and if s �= 0, we require that s(hkn,i) �= 0 for all i ≥ 2. (Recall that hkn
was chosen

after Proposition 2.5.2.) If s = 0, then Lkn
(s ′

n) and Mkn
are disjoint over Lkn

. In this
case, we fix h∗

kn
∈ Gal(Lkn

(s ′
n)/Lkn

)+ so that s ′
n(h∗

kn
) has the same order as s ′

n for all
i ≥ 2.

Let us extend τ to a complex conjugation in Gal(Mkn
Kn(Ep

mkn , sn)/Q). We now
choose �kn

(i) ∈ Q so that

τh′
kn,i

∈ Frob�kn (i)(Mkn
/Q), where (τh′

kn,i
)2 = hkn,i ,

and

τh′′
kn

∈ Frob�kn (i)

(
Kn(Ep

mkn , sn, en)/Q
)
, where (τh′′

kn
)2 = h◦

kn
.

(As in the choices made at the end of §1.4, we choose h′
kn,i

and h′′
kn

to fix the fields
Lkn

(sn) and Kn(Ep
mkn , sn), resp., thus ensuring their compatibility.)

If s = 0, we must also require that

τh′′′
kn

∈ Frob�kn (i)

(
Lkn

(s ′
n)/Q

)
, where (τh′′′

kn
)2 = h∗

kn
.

Finally, we set Qkn
= {�kn

(1) = �kn
, �kn

(i) | i = 2, . . . , t}.

2.5.4
In this section, we analyze the cohomology classes that we can construct using the
primes in Qkn

. For each n, we consider

res�k
n′ (i)

[
Rndn

(
�kn′ (i)

) + Rndn

(
�kn′ (1)�kn′ (i)

)]
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for all n′ such that n′ ≥ n ≥ n0. Since

#
(
res�k

n′ (i)

[
Rndn(�kn′ (i)) + Rndn(�kn′ (1)�kn′ (i))

]) ≤ #(Rn ⊕ Rn) = p2mnp
n

.

It follows that for each n, we have an infinite set of modules of order bounded by
p2mnp

n

. By the pigeon-hole principle, we can find a subsequence k′
n such that there

exist Rn-module isomorphisms

res�k′
n

(i)

[
Rndn

(
�k′

n
(i)

) + Rndn

(
�k′

n
(1)�k′

n
(i)

)]
� res�k′

m
(i)

[
Rndn

(
�k′

m
(i)

) + Rndn

(
�k′

m
(1)�k′

m
(i)

)]
for all m > n.

We can then consider the formal direct limit

Lim
−→

n

res�k′
n

(i)

[
Rndn

(
�k′

n
(i)

) + Rndn

(
�k′

n
(1)�k′

n
(i)

)]
for each i ≥ 2. Notice that the transitional maps are injective by construction.

PROPOSITION 2.5.8
The �-module

Lim
−→

n

res�k′
n

(i)

[
Rndn

(
�k′

n
(i)

) + Rndn

(
�k′

n
(1)�k′

n
(i)

)]
has corank 2 for each i ≥ 2.

Proof
The fact that

res�k′
n

(i)

[
Rndn

(
�k′

n
(i)

) + Rndn

(
�k′

n
(1)�k′

n
(i)

)] ⊆ H1
(
Kn(�k′

n
(i)), E

)
pmn

� Rn
2

implies that

res�k′
n

(i)

[
Rndn

(
�k′

n
(i)

) + Rndn

(
�k′

n
(1)�k′

n
(i)

)]
[T , p] ⊆ (Z/pZ)2,

and consequently, the corank of the above direct limit is at most 2. If the corank were
1, then there would exist f ∈ � such that the invariants of

f
(
res�k′

n
(i)

[
Rndn(�k′

n
(i)) + Rndn(�k′

n
(1)�k′

n
(i))

])
are cyclic up to a finite group of order bounded independently of n.
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We know that there exist τ -antiequivariant Rn-module isomorphisms

res�k′
n

(i) Rndn

(
�k′

n
(i)

) � res�k′
n

(i)Rnαn

and

res�k′
n

(i) Rndn

(
�k′

n
(1)�k′

n
(i)

) � res�k′
n

(i) Rncn

(
�k′

n
(1)

)
.

Under the above isomorphisms, let s ′
�k′

n
(i) ∈ Rndn(�k′

n
(1)�k′

n
(i)) correspond to

res�k′
n

(i) s
′
n, and let s�k′

n
(i) ∈ Rndn(�k′

n
(i)) correspond to res�k′

n
(i) sn if s ′

n and sn lie in
distinct eigenspaces of τ and to res�k′

n
(i) en otherwise. It follows that

res�k′
n

(i)〈s�k′
n

(i), s
′
�k′

n
(i)〉 ⊆ (

res�k′
n

(i) Rndn(�k′
n
(1)�k′

n
(i))

)Gn + (
res�k′

n
(i) Rndn(�k′

n
(i))

)Gn

is not cyclic, and the orders of its generators are not bounded as n goes to ∞.
Since im φ ⊆ Lim

−→
Rnαn and im φ′ ⊆ Lim

−→
Rncn(�k′

n
(1)) have corank 1, f im φ

and f im φ′ have the same property. This implies that(
(f im φ)�

)div � (
(im φ)�

)div � Qp/Zp,(
(f im φ′)�

)div � (
(im φ′)�

)div � Qp/Zp.

It then follows that there exist sequences kf,n, k
′
f,n ∈ N such that

res�k′
n

(i)〈pkf,ns�k′
n

(i), p
k′
f,n s ′

�k′
n

(i)〉 ⊆ f
(
res�k′

n
(i)

[
Rndn(�k′

n
(i)) + Rndn(�k′

n
(1)�k′

n
(i))

])
,

and the order of pkf,ns�k′
n

(i), as well as that of pk′
f,n s ′

�k′
n

(i), is not bounded as n

grows. Hence, the corank of Lim
−→

res�k′
n

(i)[Rndn(�k′
n
(i)) + Rndn(�k′

n
(1)�k′

n
(i))] is at

least 2. �

We now consider

Rncn

(
�k′

n
(i)

) + Rncn

(
�m(1)�m(i)

) ⊆ H1
SelQm

(Kn, Epmn ),

where i ≥ 2 and m ∈ {k′
i | i ≥ n}. Since #H1

SelQm
(Kn, Epmn ) = p2mntp

n

with t = #Qm,
for each n ∈ N we have an infinite set of modules of bounded order. So, by restricting
to a subsequence of {k′

n}n∈N, we can assume that there exist Rn-module isomorphisms

Rncn

(
�k′

n
(i)

) + Rncn

(
�k′

n
(1)�k′

n
(i)

) � Rncn

(
�k′

m
(i)

) + Rncn

(
�k′

m
(1)�k′

m
(i)

)
for all m > n, and we can consider the formal direct limit

Lim
−→

n

Rncn

(
�k′

n
(i)

) + Rncn

(
�k′

n
(1)�k′

n
(i)

)
.
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Our next aim is to understand the unramified submodule of Rncn(�k′
n
(i)) +

Rncn(�k′
n
(1)�k′

n
(i)).

PROPOSITION 2.5.9
There exists an f ∈ � which annihilates the kernel of the map

Rncn

(
�k′

n
(i)

) + Rncn

(
�k′

n
(1)�k′

n
(i)

) → res�k′
n

(i)

[
Rndn

(
�k′

n
(i)

) + Rndn

(
�k′

n
(1)�k′

n
(i)

)]
(51)

for all n ∈ N and i ≥ 2.

Proof
Let Jn(i) ⊆ In(i) be two �-submodules of �2 so that

Rncn

(
�k′

n
(i)

) + Rncn

(
�k′

n
(1)�k′

n
(i)

) � �2/Jn(i)

and

res�k′
n

(i)

[
Rndn

(
�k′

n
(i)

) + Rndn

(
�k′

n
(1)�k′

n
(i)

)] � �2/In(i).

It follows that the kernel of the map (51) is isomorphic to In(i)/Jn(i). Observe that

pmn+1−mn trKn+1/Kn
cn+1 = hcn

cn and pmn+1−mn trKn+1/Kn
dn+1 = hcn

dn

for almost all n ∈ N and some invertible element hcn
∈ �, where

cn ∈ {
cn

(
�k′

n
(i)

)
, cn

(
�k′

n
(1)�k′

n
(i)

)}
, dn ∈ {

dn

(
�k′

n
(i)

)
, dn

(
�k′

n
(1)�k′

n
(i)

)}
,

and dn is the image of cn in H1(Kn, E)pmn . It follows that 1 �→ pmn+1−mn
∑i=p−1

i=0 gpni

induces the injections

�2/Jn(i) ↪→ �2/Jn+1(i) and �2/In(i) ↪→ �2/In+1(i).

We can now consider Lim
−→

�2/Jn(i) and Lim
−→

�2/In(i). The identity map on � induces

the surjective map

Lim
−→

n

�2/Jn(i) → Lim
−→

n

�2/In(i).

By Proposition 2.5.8, we know that ̂Lim
−→

�2/In(i) has rank 2 over �, which implies

that ̂Lim
−→

�2/Jn(i) has rank at least 2. Since the �-corank of Lim
−→

�2/Jn(i) cannot

be higher than 2, we deduce that Lim
−→

In(i)/Jn(i) is a cotorsion �-module. It then

follows that there exists fi ∈ �, which annihilates In(i)/Jn(i) for all n, and we set
f = ∏

i≥2 fi . �
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We now denote by Hn the module generated by all the classes that we have constructed
in H1

SelQ
k′
n

(Kn, Epmn ),

Hn = Rnαn + Rncn

(
�k′

n
(1)

) + Rncn

(
�k′

n
(2)

) + Rncn

(
�k′

n
(1)�k′

n
(2)

)
+ · · · + Rncn

(
�k′

n
(t)

) + Rncn

(
�k′

n
(1)�k′

n
(t)

)
.

We can assume that the modules Hn are compatible by restricting to a subsequence,
and we consider their direct limit

H = Lim
−→

n

Hn.

PROPOSITION 2.5.10
The �-module H has corank 2t .

Proof
Let us consider the map

φn : Hn → H1
(
Kn(�k′

n
(2)), Epmn

) ⊕
∏
i≥3

H1
(
Kn(�k′

n
(i)), E

)
pmn

.

We know that

H1
(
Kn(�k′

n
(i)), Epmn

) = H1
(
Kn(�k′

n
(i)), Epmn

)unr ⊕ H1
(
Kn(�k′

n
(i)), E

)
pmn

and

H1
(
Kn(�k′

n
(i)), E

)
pmn

� H1
(
Kn(�k′

n
(i)), Epmn

)unr � (
�/(pmn, (T + 1)p

n − 1)
)2

,

where H1
(
Kn(�k′

n
(i)), Epmn

)unr
denotes the unramified submodule of H1

(
Kn(�k′

n
(i)),

Epmn

)
. Observe that

φn(Hn) ∩ H1
(
Kn(�k′

n
(i)), E

)
pmn

= res�k′
n

(i)

[
Rndn

(
�k′

n
(i)

) + Rndn

(
�k′

n
(1)�k′

n
(i)

)]
for each i ≥ 2. Furthermore, by Proposition 2.5.9, we know that there exists an f ∈ �

such that

f
(
φn(Hn) ∩ H1(Kn(�k′

n
(2)), Epmn )unr

) = f res�k′
n

(2)

[
Rnαn + Rncn

(
�k′

n
(1)

)]
.

Notice that the image of Rnαn + Rncn(�k′
n
(1)) in

∏
i≥2 H1

(
Kn(�k′

n
(i)), E

)
pmn

is zero.

We can now look at the image of Rnαn + Rncn(�k′
n
(1)) in H1

(
Kn(�k′

n
(2)), Epmn

)unr
.

By restricting to a subsequence of {k′
n | n ∈ N}, we can assume that the modules

res�k′
n

(2)[Rnαn + Rncn(�k′
n
(1))] are formally compatible as n grows and can see that

their direct limit has corank 2, just as we did in Proposition 2.5.8.
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As in Proposition 2.5.9, for each i ≥ 2, we have In(i) ⊆ �2 such that

�2/In(i) � res�k′
n

(i)

[
Rndn

(
�k′

n
(i)

) + Rndn

(
�k′

n
(1)�k′

n
(i)

)] ⊆ H1
(
Kn(�k′

n
(i)), E

)
pmn

.

We also let In(1) ⊆ �2 be such that

�2/In(1) � res�k′
n

(2)

[
Rnαn + Rncn

(
�k′

n
(1)

)] ⊆ H1
(
Kn(�k′

n
(2)), Epmn

)unr
.

We know that Lim
−→

�2/In(i) has �-corank 2 for each i ≥ 1 (by Proposi-

tion 2.5.8 for i ≥ 2 and the above remarks for i = 1) and

Lim
−→

n

f φn(Hn) � f
( ⊕

1≤i≤t

Lim
−→

n

�2/In(i)
)
,

where t = #Qk′
n
. We can then conclude that Lim

−→
f φn(Hn) has �-corank 2t . Hence,

the corank of H is at least 2t .
By Proposition 2.5.9, we know that

ker
(
Rncn(�k′

n
(i))+Rncn(�k′

n
(1)�k′

n
(i)) → res�k′

n
(i)

[
Rndn(�k′

n
(i))+Rndn(�k′

n
(1)�k′

n
(i))

])
is annihilated by f for every i ≥ 2. Similarly, we can show that there exists an f0 ∈ �

which annihilates

ker
(
Rnαn + Rncn(�k′

n
(1)) → H1(Kn(�k′

n
(2)), Epmn )unr

)
.

It follows that ff0 annihilates the kernel of φn for all n, which implies that the corank
of H cannot be greater than 2t . This concludes the proof of the proposition. �

Since H = Lim
−→

Hn has corank 2t , we know that H� contains a subgroup isomorphic

to (Qp/Zp)2t . This implies that for each r ∈ N, there exists nr such that

(Z/prZ)2t ⊆ H[g − 1, pr ] ⊆ Hnr
[g − 1, pr ]

⊆ H1
SelQ

k′
nr

(Knr
, Epmnr )[g − 1, pr ] � H1

SelQ
k′
nr

(K, Epr ),

where � = Gal(K∞/K) = 〈g〉.
By Proposition 2.2.4, we have

H1
SelQ

k′
nr

(K, Epr ) � (Z/prZ)2t .

Hence, for each r ∈ N, there exists nr such that

H1
SelQ

k′
nr

(K, Epr ) � Hnr
[g − 1, pr ]

under the restriction map.
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Since Kolyvagin’s cohomology classes come from points defined over abelian
extensions of K, the same is true for H1

Sel(K, Epr ) for every r ∈ N, and this allows us
to conclude as follows.

THEOREM 2.5.11
All elements of X(E/K)p∞ split over solvable extensions of Q if p is a prime of good
ordinary reduction.

Remark 2.5.12
The above theorem has only been proven when E has good ordinary nonanomalous
reduction at p, but in §2.5.5, we show that it also holds when Ẽ(K℘)p �= 0.

2.5.5
The only new element in the case when p has good ordinary anomalous reduction lies
in the behavior of the Heegner points. More precisely, 2.5.1(4) may not hold.

We have assumed that p is inert in K/Q in this case. Perrin-Riou [Pe, §3.3, Lemma
2] has shown that

apyrpn+1 = yrpn + trK[rpn+2]/K[rpn+1] yrpn+2,

apyr = trK[rp]/K[r] yrp

for any n, r ∈ N such that r is prime to p.
We know that since p is inert in K/Q, the Galois group of K[rp∞]/K[rp]

is isomorphic to Zp, and Gal(K[rp]/K[r]) has order p + 1. It then follows that
k(n) = n + 1 − k0 for n ≥ k0 and k(n) = 0 for n < k0, where αn = trK[rpk(n)]/Kn

ypk(n)

and pk0 is the order of the Galois group of the intersection of the maximal Zp-extension
of K with the Hilbert class field of K, over K. For r = 1, we have

trKk0+1/Kk0
αk0+1 = (

ap − a−1
p (p + 1)

)
αk0,

trKn+2/Kn+1 αn+2 = apαn+1 − αn for n ≥ k0,

and consequently,

trKk0+1/Kk0
(αk0+1 − αk0 ) = (

ap − a−1
p (p + 1) − p

)
αk0,

trKn+2/Kn+1 (αn+2 − αk0 ) = ap(αn+1 − αk0 ) − (αn − αk0 )

+ (ap − 1 − p)αk0 for n ≥ k0.
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Since ap ∈ {1, 1 − p}, it follows that

trKn+1/Kn
(αn+1 − αk0 ) = fn(T )(αn − αk0 ),

where fn(T ) ∈ � is invertible for all n ≥ k0 + 1. This implies that Rn(αn −
αk0 ) ⊆ Rn+1(αn+1 − αk0 ). In the same way, one can see that Rn(cn(r) − ck0 (r)) ⊆
Rn+1(cn+1(r) − ck0 (r)).

By replacing αn and cn(r) by αn − αk0 and cn(r) − ck0 (r), respectively, in the
arguments of §2.5.2 – 2.5.4, we construct 2t independent copies of Qp/Zp in M�

a .
Observe that

(1) M�
a [pk] = H1

Sel′Qkn

(K, Epk ) for any k ≤ n,

(2) pn0 H1
Sel′Qkn

(K, Epk ) = H1
SelQkn

(K, Epk−n0 )

(see Proposition 2.3.5 and §2.2.2).
For every k ∈ N, we can find n such that the classes that we have constructed

generate pn0 H1
Sel′Qkn

(K, Epk ). It follows that we have constructed the whole group

H1
Sel(K, Ep∞). It is then clear that Theorem 2.5.11 holds for primes p of good ordinary

anomalous reduction.

2.6. The supersingular case
We now consider the case when E has good supersingular reduction at p. In this case,
we need to choose the field K so that
(a) all primes dividing N split in K/Q; and
(b) p splits completely in the intersection of K∞ with the Hilbert class field

of K.
These two conditions are needed to ensure that K℘n

is a totally ramified extension of
Qp which is assumed when we use a result of Iovita and Pollack [IP, §2.6.3]. We now
see that it is possible to find an imaginary quadratic field K that satisfies the above
conditions.

For every prime � that divides N and not p − 1, we choose, if possible, m� ∈ N
prime to Np(p − 1) so that � divides pm� − 1. If such a positive integer does not exist,
we set m� = 1. Then, set m′ = ∏

�|N,��p−1 m�. Notice that if � is a rational prime
dividing gcd(N, p − 1) and m ∈ Z is prime to p(p − 1), then �r divides pm − 1 if
and only if �r divides p − 1 because � divides

∑m−1
k=0 pk if and only if � | m.

Now, for every prime � dividing N, we set r� to be the highest power of � which
divides pm′ + 1 or pm′ − 1 and r = max{r� : � | N}. If pm′

> N2(2r+3), then we let
m = m′. Otherwise, we choose m0 prime to Np(p − 1) so that pm′m0 > N2(2r+3) and
set m = m′m0. It follows that �r+1 does not divide pm + 1 or pm − 1 for any � | N.

Let a = (pm − 1)/2, x = (pm + 1)/2 and z ≡ x (mod N2r+3), where 0 < z <

N2r+3. Since pm > N2(2r+3) > z2, there exists a squarefree positive integer d such
that pm − z2 = dy2 for some y ∈ Z.
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Consider K = Q(
√−d). Since pm = z2 + dy2, where m is odd and prime to

p, it follows that p splits completely in the intersection of K∞ with the Hilbert class
field of K. We now show that N splits in K/Q. Since pm = x2 − a2, it follows that
dy2 ≡ −a2 (mod N2r+3). Our choice of r implies that gcd(Nr , a) = gcd(N2r+3, a),
and we set a = a1a2, where a1 = gcd(Nr , a) and gcd(a2, N) = 1. Consequently,
y = a1y2 for some y2 ∈ Z such that gcd(y2, N) = 1. It follows that −dy2

2 ≡ a2
2 (mod

(Nr/a1)2N3), and hence, −d is a square modulo N3, which implies that every prime
dividing N splits in K/Q.

2.6.1
In this case, we study the group H1

Selp (K, Epk ) for any k ∈ N such that
pk−1H1

Selp (K, Ep∞) is divisible. We assume this restriction on k for the rest of §2.6.
Recall that Selp imposes no local condition at primes of K dividing p, while Selp

requires that the cohomology classes be trivial at ℘ | p.
As in §2.2.1, we fix s1, . . . , sr ∈ H1

Selp (K, Ep2k ) such that

〈s1, . . . , sr〉 = H1
Selp (K, Ep∞)div

p2k .

It follows that each si has order p2k .
Let Q be a set of rational primes such that:

(i) q ∈ Q is inert in K/Q;
(ii) q /∈ �;
(iii) E(Kq)p∞ = E(Kq)pk ; and
(iv) H1

Selp (K, Epk ) ↪→ ∏
q∈Q H1(Kunr

q /Kq, Epk ).
We set �′ = � ∪ {λi | 1 ≤ i ≤ r}, where {λi | 1 ≤ i ≤ r} is a set of primes of

K not in � ∪ Q such that:
(a) E(Kλ)p∞ = E(Kλ)p2k for all λ ∈ {λi | 1 ≤ i ≤ r}; and
(b) the local cohomology class (si)λj

has order p2k if i = j and is trivial if i �= j .
We can then consider the group H1

L(K�′∪Q/K, Ep2k ). Observe that

H1
L∗(K�′∪Q/K, Ep2k ) ⊂ H1

Selp (K, Ep2k ).

This implies that Proposition 2.2.2 applies, and we have

0 � H1(K�′/K, Ep2k ) � H1(K�′∪Q/K, Ep2k ) � (Z/pkZ)2t � 0,

where t denotes the cardinality of the set Q.

PROPOSITION 2.6.1
The following sequence is exact:

0 � H1
Selp (K, Ep2k ) � H1

SelQ∪p
(K, Ep2k ) � (Z/pkZ)2t−r � 0.
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Proof
Set W = ∏

λ∈�′\{p} H1(Kλ, Ep2k )/Selλ(p2k). We apply the snake lemma to the follow-
ing commutative diagram:

and we get

0 � H1
Selp (K�′/K, Ep2k ) � H1

SelQ∪p
(K�′∪Q/K, Ep2k ) � (Z/pkZ)2t

0 � coker φ2
� γ0 coker φ1

�

Seeing the maps φ1 and φ2 as part of the corresponding exact sequences of Cassels,
Poitou, and Tate, we have

Since Sel = Sel∗, it follows that

H1
(Selp)∗(K, Ep2k ) = H1

Selp (K, Ep2k ) and H1
(SelQ∪p)∗(K, Ep2k ) = H1

SelQ∪p (K, Ep2k ).

We show that H1
SelQ∪p (K, Ep2k ) = H1

Selp (K, Epk ). As we saw in the proof of Proposition
2.2.3, properties (iii) and (iv) of the elements of Q imply that

H1
Selp (K, Epk ) ⊆ H1

SelQ∪p (K, Ep2k ) ⊆ H1
Sel(K, Epk ).

Since Epk (K℘) = 0, we have H1(K℘, Epk ) ↪→ H1(K℘, Ep2k ), and consequently,
H1

SelQ∪p (K, Ep2k ) ⊆ H1
Selp (K, Epk ). It then follows that

H1
SelQ∪p (K, Ep2k ) = H1

Selp (K, Epk ),

and the right-hand square of the above diagram may be viewed as
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We have now reduced the problem to an exact copy of the one in Proposition 2.2.3,
except that the Selmer condition has been replaced by Selp. Therefore, we deduce that
ker γ0 � (Z/pkZ)r , which implies that

0 � H1
Selp (K, Ep2k ) � H1

SelQ∪p
(K, Ep2k ) � (Z/pkZ)2t−r � 0. �

PROPOSITION 2.6.2
The group H1

SelQ∪p
(K, Epk ) is isomorphic to (Z/pkZ)2(t+1), where t denotes the cardi-

nality of the set Q.

Proof
Let us consider the map

H1
SelQ∪p

(K, Ep2k ) → H1(K℘, Ep2k ) ⊕
∏
q∈Q

H1(Kq, Ep2k ). (52)

We know that

H1(Kq, Ep2k ) � H1(Kunr
q /Kq, Ep2k ) ⊕ H1(Kq, Ep2k )/H1(Kunr

q /Kq, Ep2k )

for all q ∈ Q.
We have seen in the proof of Proposition 2.6.1 that the kernel of the map in (52)

is H1
SelQ∪p (K, Ep2k ) = H1

Selp (K, Epk ). In order to understand its image, we analyze the
images of the maps

H1
SelQ∪p

(K, Ep2k ) →
∏
q∈Q

H1(Kq, Ep2k )/H1(Kunr
q /Kq, Ep2k ), (53)

H1
Selp (K, Ep2k ) →

∏
q∈Q

H1(Kunr
q /Kq, Ep2k ), (54)

H1
Selp (K, Ep2k ) →

∏
℘|p

H1(K℘, Ep2k ). (55)

By Proposition 2.6.1, the image of the map (53) is isomorphic to (Z/pkZ)2t−r .
We have assumed that pkH1

Selp (K, Ep2k ) � (Z/pkZ)r , and we know that the kernel of
the map (54) is H1

Selp (K, Epk ). It follows that the image of the map (54) is isomorphic
to (Z/pkZ)r . Let us now consider the image of the map (55). By using the fact that
(Selp)∗ = (Selp) and (15) as in the proof of Theorem 1.1.7, we have

#H1
Selp (K, Ep2m)/#H1

Selp (K, Ep2m) = p4m for all m ∈ N.
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We know that

H1
Selp (K, Ep2k ) � (Z/p2kZ)r × Z/pm1Z × · · · × Z/pm2t−r Z, (56)

where mi ≤ k − 1, and the mi’s are independent of k as k → ∞. It follows that

H1
Selp (K, Ep2k ) � (Z/p2kZ)r+2 × Z/pm1Z × · · · × Z/pm2t−r Z. (57)

This implies that the image of the map (55) is isomorphic to (Z/p2kZ)2. Finally, using

H1
Selp (K, Ep2k ) = ker(55) ⊆ H1

Selp (K, Ep2k ) = ker(53) ⊆ H1
SelQ∪p

(K, Ep2k ),

we see that the image of (52) contains a subgroup isomorphic to (Z/p2kZ)2 ⊕
(Z/pkZ)2t . By comparing the sizes of the groups appearing below, we claim that
there is an exact sequence

0 → H1
Selp (K, Epk ) → H1

SelQ∪p
(K, Ep2k ) → (Z/p2kZ)2 ⊕ (Z/pkZ)2t → 0.

Here, we use Proposition 2.6.1 to compute the quotient of the orders of H1
SelQ∪p

(K, Ep2k )
and H1

Selp (K, Ep2k ), and then (56) and (57) to relate H1
Selp (K, Ep2k ) with H1

Selp (K, Epk ).
Using the properties of the elements of Q and the fact that H1

SelQ∪p (K, Epk ) = 0,
we deduce that #H1

SelQ∪p
(K, Epk ) = p2k(t+1). It then follows that

H1
SelQ∪p

(K, Ep2k ) � (Z/p2kZ)r+2 × Z/pm1+kZ × · · · × Z/pm2t−r+kZ.

Hence, we conclude that

H1
SelQ∪p

(K, Epk ) � (Z/pkZ)2(t+1). �

2.6.2
Let us choose n0 ∈ N so that it satisfies §2.3.1(2), and pn0−1H1

Selp (K, Ep∞) is p-
divisible.

Consider H1
SelQn∪p

(Kn, Epmn ) for all n ≥ n0, where Qn and mn are defined in §2.3.1,
except that instead of property (4), we only require

H1
Selp (Kn, Epmn ) ↪→

∏
q∈Qn

H1
(
Kn(q)unr/Kn(q), Epmn

)
.

PROPOSITION 2.6.3
We have #H1

SelQn∪p
(Km, Epk ) = #(Z/pkZ[Gm])2(t+1) for all m ≤ n and k ≤ mn.

Proof
The proof of this proposition is the same as that of Proposition 2.3.1, except for a few
minor differences that we describe. We know that

H1
(SelQn∪p)∗(Km, Epk ) = H1

SelQn∪p (Km, Epk ) = 0.
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Consequently, the properties of the elements of Qn allow us to deduce that

#H1
SelQn∪p

(Km, Epk ) = p2kpm
∏
q∈Qn

#E
(
Km(q)

)
pk = #(Z/pkZ[Gm])2t+2. �

As in Proposition 2.3.2, one can verify that the set Qn satisfies the properties that we
required for Proposition 2.6.2, and therefore, we have

H1
SelQn∪p

(K, Epmn ) � (Z/pmnZ)2t+2 for all n ≥ n0.

In addition, one can easily prove, as we have done in Proposition 2.3.3, that

H1
SelQn∪p

(Kn, Epmn )Gn/Gm = H1
SelQn∪p

(Km, Epmn ) for all m ≤ n.

We now consider the Rτ
n-modules X(k, n) = H1

SelQk∪p
(Kn, Epmn ) for all n ≤ k and

inductively choose a sequence Xn = H1
SelQkn∪p

(Kn, Epmn ) of compatible Rτ
n-module

structures. Let us define the Zp[[�]]-module

Ms := Lim
−→

n

Xn.

THEOREM 2.6.4
The �-module M̂s is isomorphic to �2t+2.

Proof
The proof of this theorem is identical to that of Theorem 2.3.4, if one replaces 2t by
2t + 2. �

2.6.3
Since the issue of choosing the sets Qn with the required properties is the same as in
the ordinary case, which was studied in §2.4.1, we now prove that the Heegner points
αn ∈ E(Kn) give rise to two independent copies of �̂ in the module Ms .

Since we are assuming that p ≥ 5, we know that ap = 0. Perrin-Riou [Pe, §3.3,
Lemma 2] has shown that

apyrpn+1 = yrpn + trK[rpn+2]/K[rpn+1]yrpn+2

for n ≥ 0 and any r ∈ N prime to p. It then follows that

yrpn = −trK[rpn+2]/K[rpn+1]yrpn+2,

which in turn implies that

αn = −trKn+2/Kn+1αn+2 and cn(r) = −trKn+2/Kn+1cn+2(r)
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for n ≥ k0 + 1 (where K[1] ∩ K∞ = Kk0 ) and r a squarefree product of primes � such
that Frob�(K(Epmn+2 )/Q) = τ .

We can then define Lim
−→

R2nα2n and Lim
−→

R2n+1α2n+1. As in Theorem 2.5.1, one

can see that these �-modules are not cotorsion. We now need to distinguish the above
two modules from one another.

LEMMA 2.6.5
The submodule of H1

Sel(K∞, Ep∞) generated by Lim
−→

R2nα2n and Lim
−→

R2n+1α2n+1 has

corank at least 2.

Proof
Let us consider the exact sequence

0 −→ E1(K℘n
) −→ E(K℘n

) −→ Ẽ(k℘n
) −→ 0.

Following Kobayashi [K], we now define the following submodules of E1(K℘n
):

E1+(K℘n
) := {

x ∈ E1(K℘n
)
∣∣ trK℘n /K℘m

(x) ∈ E1(K℘m−1 ) for all 1 ≤ m ≤ n, m odd
}
,

E1−(K℘n
) := {

x ∈ E1(K℘n
)
∣∣ trK℘n /K℘m

(x) ∈ E1(K℘m−1 ) for all 1 ≤ m ≤ n, m even
}
.

Since K℘n
/Qp is totally ramified at p and Ẽ(k℘n

)p = 0, it follows that Ẽ(k℘n
) =

Ẽ(Qp) and that there exists m◦ ∈ N prime to p and independent of n such that
m◦E(K℘n

) ⊆ E1(K℘n
). Hence, the fact that αn = −trKn+2/Kn+1αn+2 for all n ≥ k0 + 1

implies that

m◦ Res℘2n+1 (Z[G2n]α2n) ∈ E1+(K℘2n+1 ), m◦ Res℘2n+1 (Z[G2n+1]α2n+1) ∈ E1−(K℘2n+1 )

and

Res℘2n+1 (R2nα2n) ⊆ E1+(K℘2n+1 )/p
m2n , Res℘2n+1 (R2n+1α2n+1) ⊆ E1−(K℘2n+1 )/p

m2n+1 .

We analyze the intersection of Res℘2n+1 (R2nα2n) and Res℘2n+1 (R2n+1α2n+1). Let

P + ∈ Res℘2n+1 (Z[G2n]α2n) and P − ∈ Res℘2n+1 (Z[G2n+1]α2n+1)

so that P + ≡ P − (mod pm2n+1 ). This is equivalent to saying that there exists Q ∈
E(K℘2n+1 ) such that P + − P − = pm2n+1Q. Iovita and Pollack [IP] have shown that

0 → E1(K℘) → E1+(K℘n
) ⊕ E1−(K℘n

) → E1(K℘n
) → 0
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for all n ∈ N, which implies that m◦Q = Q+ + Q−, where Q+ ∈ E1+(K℘2n+1 ) and
Q− ∈ E1−(K℘2n+1 ). Consequently, we have

m◦P + − pm2n+1Q+ = m◦P − + pm2n+1Q− ∈ E1(K℘).

Since m◦ is prime to p, it follows that

Res℘2n+1 (R2nα2n) ∩ Res℘2n+1 (R2n+1α2n+1) ⊆ H1(K℘, Epm2n+1 ). (58)

We now consider the submodules

Lim
−→

n

Res℘2n+1 (R2nα2n), Lim
−→

n

Res℘2n+1 (R2n+1α2n+1) ⊆ Lim
−→

n

H1(K℘2n+1, Epm2n+1 ).

By (58), we know that

Lim
−→

n

Res℘2n+1 (R2nα2n) ∩ Lim
−→

n

Res℘2n+1 (R2n+1α2n+1) ⊆ H1(K℘, Ep∞).

When p is a prime of supersingular reduction, the representation of Gal(Qp/Qp) on
E(Qp)p is known to be absolutely irreducible with image of order 2(p2 − 1). Since
Gal(K℘n

/Qp) � Z/pnZ, we have

E(K℘n
)p∞ = E(Qp)p∞ = 0.

In view of the above result, the argument used in Theorem 2.5.1 can easily be adapted
to prove that the coranks of Lim

−→
Res℘2n+1 (R2nα2n) and Lim

−→
Res℘2n+1 (R2n+1α2n+1) are

not zero. Moreover, we know that the intersection of Lim
−→

Res℘2n+1 (R2nα2n) and

Lim
−→

Res℘2n+1 (R2n+1α2n+1) lies in H1(K℘, Ep∞), and therefore, it is cotorsion. Thus

the submodule of H1
Sel(K∞, Ep∞) generated by Lim

−→
R2nα2n and Lim

−→
R2n+1α2n+1 has

corank at least 2. �

2.6.4
We now choose the primes that we need in order to construct the ramified cohomology
classes. Since Lim

−→
R2nα2n and Lim

−→
R2n+1α2n+1 have nontrivial coranks, we have the

nonzero maps

φ+ : �̂ → Lim
−→

n

R2nα2n,

φ− : �̂ → Lim
−→

n

R2n+1α2n+1.

The fact that φ + φτ and φ − φτ cannot be simultaneouly zero for φ = φ+ or
φ = φ− allows us to assume that (φ)τ = ±φ for φ = φ±. We fix s+

n ∈ R2nα2n and
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s−
n ∈ R2n+1α2n+1 so that

〈s+
n 〉 = (

(im φ+)�
)div ∩ (R2nα2n)G2n , 〈s−

n 〉 = (
(im φ−)�

)div ∩ (R2n+1α2n+1)G2n+1

and

Lim
−→

n

(Z/pm2nZ)s+
n ∈ [Lim

−→
n

R2nα2n]�, Lim
−→

n

(Z/pm2n+1Z)s−
n ∈ [Lim

−→
n

R2n+1α2n+1]�.

It follows that s±
n ∈ H1

Selp (K, Ep∞) are eigenvectors of τ and

Lim
−→

n

(Z/pm2nZ)s+
n � Lim

−→
n

(Z/pm2n+1Z)s−
n � Qp/Zp.

Let s± ∈ H1
Selp (K, Ep) be such that

Lim
−→

n

(Z/pm2nZ)s+
n ∩ H1

Selp (K, Ep) = 〈s+〉,

Lim
−→

n

(Z/pm2n+1Z)s−
n ∩ H1

Selp (K, Ep) = 〈s−〉.

We then have three cases to consider.

Case 1: s+ and s− lie in different eigenspaces of the complex conjugation τ . Consider
the field extensions

where M2n+1 denotes the fixed field of Gal(L2n+1/L2n+1) which pairs to zero with the
finite subgroup H1

Selp (K, Epm2n+1 ) of H1(K, Epm2n+1 ).
We choose h2n+1,i ∈ Gal(M2n+1/L2n+1)+ so that

s+(h2n+1,i) �= 0, s−(h2n+1,i) �= 0,

and

〈h2n+1,i | i = 1, . . . , t〉 = Gal(M2n+1/L2n+1)+.

We now fix primes �2n+1(i) ∈ Q so that τh′
2n+1,i ∈ Frob�2n+1(i)(M2n+1/Q), where

h2n+1,i = (τh′
2n+1,i)

2. Then we set Q2n+1 = {�2n+1(i) | i = 1, . . . , t}.
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Case 2: 〈s+〉 ∩ 〈s−〉 = 0. We can assume that s± are eigenvectors of τ lying in the
same eigenspace because if s±

n were in different eigenspaces, then we would go back
to the case 1. We now show that the field extensions

are disjoint. If these two extensions are not disjoint, we must have

Gal
(
L2n+1(s+)/L2n+1

) = Gal
(
L2n+1(s−)/L2n+1

)
.

In this case, we let h ∈ Gal(L2n+1(s±)/L2n+1) generate Gal(L2n+1(s±)/L2n+1)+, the
1-eigenspace for the action of τ . Since s+ and s− lie in the same eigenspace of τ , we
can see that s+(h) = xs−(h) for some (x ∈ Z/pZ)∗. It then follows that

(s+ − xs−)
(
Gal(L2n+1(s±)/L2n+1)+

) = 0.

This implies that s+ − xs− = 0 and contradicts our assumption that 〈s+〉 ∩ 〈s−〉 = 0.
The fact that L2n+1(s+) and L2n+1(s−) are disjoint over L2n+1 implies that the

extensions L2n+1(s+
n )/L2n+1 and L2n+1(s−

n )/L2n+1 are also disjoint. As in case 2 of
§2.5.3, we choose
(a) e+

n ∈ (im φ+ ∩ R2nα2n) − [R2nα2n]G2n so that the image of Lim
−→

〈e+
n , s+

n 〉 in

(im φ+)/〈s+
n | n ∈ N〉 is isomorphic to Qp/Zp as a �-module; and

(b) e−
n ∈ (im φ− ∩ R2n+1α2n+1) − [R2n+1α2n+1]G2n+1 so that the image of

Lim
−→

〈e−
n , s−

n 〉 in (im φ−)/〈s−
n | n ∈ N〉 is isomorphic to Qp/Zp as a �-

module.
We then consider the tower of field extensions
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We know that K2n(Epm2n+1 , s+
n , e+

n ) (resp., K2n+1(Epm2n+1 , s−
n , e−

n )) and M2n+1 are
disjoint over L2n+1(s+

n ) (resp., L2n+1(s−
n )). Let us fix nonzero elements

h◦+
n ∈ Gal

(
K2n(Epm2n+1 , s

+
n , e+

n )/K2n(Epm2n+1 , s
+
n )

)+

and

h◦−
n ∈ Gal

(
K2n+1(Epm2n+1 , s

−
n , e−

n )/K2n+1(Epm2n+1 , s
−
n )

)+
.

We can now pick hn,i ∈ Gal(M2n+1/L2n+1(s+
n ))+ (1 ≤ i ≤ t − 1) so that

Gal
(
M2n+1/L2n+1(s+

n )
)+ = 〈hn,i | 1 ≤ i ≤ t − 1〉

and

s−(hn,i) �= 0 for all i ≤ t − 1,

and hn,t ∈ Gal(M2n+1/L2n+1(s−
n ))+ so that s+(hn,t ) �= 0.

We choose primes �2n+1(i) ∈ Q so that

τh′
n,i ∈ Frob�2n+1(i)(M2n+1/Q), where (τh′

n,i)
2 = hn,i,

τh∗+
n ∈ Frob�2n+1(i)

(
K2n(Epm2n+1 , s

+
n , e+

n )/Q
)
, where (τh∗+

n )2 = h◦+
n for all i ≤ t − 1,

τh∗−
n ∈ Frob�2n+1(t)

(
K2n+1(Epm2n+1 , s

−
n , e−

n )/Q
)
, where (τh∗−

n )2 = h◦−
n .

This ensures that the invariants of the restriction at �2n+1(i) of im φ+ ∩ R2nα2n and of
im φ−∩R2n+1α2n+1 lie in distinct eigenspaces of τ . Finally, we set Q2n+1 = {�2n+1(i) |
i = 1, . . . , t}.

Case 3: 〈s+〉 ∩ 〈s−〉 �= 0. In this case, we have 〈s+〉 = 〈s−〉. Since the module

R2nα2n + R2n+1α2n+1 ⊆ H1
Sel(K2n+1, Epm2n+1 )

is fixed by the complex conjugation τ and the �-corank of

Lim
−→

n

(R2nα2n + R2n+1α2n+1)

is at least 2 by Lemma 2.6.5, one can check that there exists a map

ψ : �̂2 −→ Lim
−→

n

(R2nα2n + R2n+1α2n+1)

such that im ψ has �-corank 2 and τ (im ψ) = im ψ . It follows that (im ψ)� ⊆
H1

Selp (K, Ep∞) contains a finite-index subgroup generated by two disjoint copies of
Qp/Zp which we denote by Lim

−→
(Z/pm2n+1Z)s ′

n and Lim
−→

(Z/pm2n+1Z)s ′′
n . Moreover,

as τ (im ψ) = im ψ , we can assume that s ′
n and s ′′

n are eigenvectors of τ .
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Let s ′ (resp., s ′′) be a generator of the intersection of Lim
−→

(Z/pm2n+1Z)s ′
n (resp.,

Lim
−→

(Z/pm2n+1Z)s ′′
n ) with H1

Selp (K, Ep). We can assume that 〈s+〉 �= 〈s ′〉. There exists
a map

φ′ : �̂ −→ Lim
−→

n

(R2nα2n + R2n+1α2n+1)

such that (φ′)τ = ±φ′ and Lim
−→

〈s ′
n〉 ⊆ (im φ′)� . If s+ and s ′ lie in distinct eigenspaces

of τ , we choose Qkn
using the method of case 1 with s ′ instead of s−. Otherwise, we

pick

e′
n ∈ (

(im φ′) ∩ (R2nα2n + R2n+1α2n+1)
) − (R2nα2n + R2n+1α2n+1)�

so that the image of Lim
−→

〈e′
n, s

′
n〉 in (im φ′)/〈s ′

n | n ∈ N〉 is isomorphic to Qp/Zp as

a �-module. We can then replace s−
n and e−

n with s ′
n and e′

n, respectively, and proceed
just as we did in case 2.

Finally, for every i ∈ {1, . . . , t}, we consider the modules

R2nc2n

(
�2m+1(i)

)
, R2n+1c2n+1

(
�2m+1(i)

) ⊆ H1(K2n+1, Epm2n+1 ) for all m ≥ n.

Just as we did in §2.5.4, we choose a sequence of kn so that

Res�k2n+1 (i)

[
R2nc2n

(
�k2n+1 (i)

) + R2n+1c2n+1

(
�k2n+1 (i)

)]
� Res�k2m+1 (i)

[
R2nc2n

(
�k2m+1 (i)

) + R2n+1c2n+1

(
�k2m+1 (i)

)]
for all m > n, and we consider the direct limits

Lim
−→

n

Res�k2n+1 (i)

[
R2nc2n

(
�k2n+1 (i)

) + R2n+1c2n+1

(
�k2n+1 (i)

)]
for each i ∈ {1, . . . , t}. By our choice of the primes Qkn

, as in Proposition 2.5.8, we
can show that each of the above �-modules has corank 2.

Let us now consider Hn ⊆ H1
SelQ

k′
n

∪{p}(Kn, Epmn ), defined as

Hn = R2nα2n + R2n+1α2n+1 + R2nc2n

(
�k2n+1 (1)

) + R2n+1c2n+1

(
�k2n+1 (1)

)
+ · · · + R2nc2n

(
�k2n+1 (i)

) + R2n+1c2n+1

(
�k2n+1 (i)

)
.

By restricting to a subsequence of {kn | n ∈ N}, we can assume that the Hn are
compatible as n grows. We consider their direct limit

H = Lim
−→

n

Hn.
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In the same manner as in the ordinary case (Proposition 2.5.10), H can be shown to
have �-corank 2t + 2 by analyzing the image of the map

φn : Hn → H1
(
K2n+1(�k2n+1 (1)), Epm2n+1

) ⊕
∏
i≥2

H1
(
K2n+1(�k2n+1 (i)), E

)
pm2n+1

.

This implies that the invariants of H contain 2t+2 copies of Qp/Zp, and consequently,
we have the following.

THEOREM 2.6.6
The elements of X(E/K)p∞ split over solvable extensions of Q for all primes p of
good reduction.

2.7. The multiplicative case
The situation in the case when E has multiplicative reduction at p is nearly identical
to the one in which p is a prime of good ordinary reduction. One of the important
differences is the definition of the Heegner points. Let Np denote the conductor of E.
We assume that the primes dividing N split and that N = NN. Let 〈1, ω〉 = OK,
where OK denotes the ring of integers of K. The Heegner point of conductor rpn for
r ∈ N such that gcd(p, r) = 1, xrpn = (C/(rpnω, 1), ker N, 〈rpn−1ω〉) ∈ X0(Np)
is defined over the ring class field Krpn . Let yrpn denote the image of xrpn under
π : X0(Np) → E.

LEMMA 2.7.1
We have Upyrpn = trK

rpn+1 /Krpn yrpn+1 .

Proof
One can check that this formula holds on J0(Np) = Jac X0(Np) by using the standard
definition of the correspondence Up

Up(E, GN, Gp) =
∑

(E/G′
p, GN, Gp),

where G′
p runs through the p-subgroups of E distinct from Gp, and GN (resp., Gp)

denote the images of GN (resp., Gp) in E = E/G′
p. �

Let Kp∞ = ⋃
n∈N Kpn , K∞ = K

Gal(Kp∞ /K)tors

p∞ , and let

αn = trKp∞ /K∞ ypn ∈ E(K∞).

Cornut [C] has shown that infinitely many of the points {αn | n ∈ N} are non-
torsion. Denote by Kn the subextension of K∞ so that Gal(Kn/K) � Z/pnZ. By
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Lemma 2.7.1, we know that

trKn+1/Kn
αn+1 = Upαn.

Since E has multiplicative reduction at p, we know that Upαn = ±αn, and hence,
trKn+1/Kn

αn+1 = ±αn. Consequently, the fact that αn0 is nontorsion for some n0 ∈ N
implies that αn is nontorsion for all n ≥ n0, and there exists some k ∈ N such that if
n ≥ k, then αn and αn+1 are not defined over the same layer of K∞. This is enough to
prove that ̂Lim

−→
Rnαn is of nontrivial �-corank, as we did in Theorem 2.5.1.

The only other step of the proof when the reduction of E at p plays a role is in
comparing H1

SelQn
(Kn, Epmn )Gn/Gm with H1

SelQn
(Km, Epmn ) for m ≤ n. In order to do

this, we need to relax the Selmer condition at primes above p as we did in the case
when p is a prime of good ordinary anomalous reduction (see §2.3.2). We can then
consider H1

Sel′Qn

(Kn, Epmn ). The only conditions needed for the proof of

H1
Sel′Qn

(Kn, Epmn )Gal(Kn/Kk ) = H1
Sel′Qn

(Kk, Epmn )

for all k ≤ n are
(i) E1(K℘m

)p∞ = 0 for all m ∈ N; and
(ii) E(K℘m

)p∞ = E(K℘k0
)p∞ for some k0 ∈ N.

When E has split multiplicative reduction at p, we choose K/Q so that p does
not split. This implies that our Zp-extension K∞ is disjoint from the cyclotomic one.
Hence, E1(K℘m

)p∞ = 0, and this in turn implies that E(K℘m
)p∞ = E(K℘)p∞ .

In the case when E has nonsplit multiplicative reduction at p, we choose an
imaginary quadratic extension K so that E has split multiplicative reduction at the
prime above p. Then, by the argument for the split case, we see that conditions (i) and
(ii) hold.

2.8. Conclusion
We have proved that for every rational prime p, where E does not have additive reduc-
tion, the elements of X(E/Q)p∞ come from points defined over solvable extensions
of Q. Hence, we can conclude the following.

THEOREM 2.8.1
If E is semistable, then each element of X(E/Q) splits over some solvable extension
of Q.

Remark 2.8.2
When E has additive reduction at some rational prime p, the group X(E/Q)p may
be nontrivial. In this case, we have not been able to prove directly the same result as
in the semistable case. We believe that a more natural approach is to base change to
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a solvable totally real field, where the curve has semistable reduction, and to apply
our approach with the totally real field as base field. We hope to discuss this in a
subsequent paper.
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