SOLVABLE POINTS ON GENUS ONE CURVES

MIRELA CIPERIANI and ANDREW WILES

Abstract

A genus one curve defined over Q which has points over Q, for all primes p may not
have a rational point. It is natural to study the classes of Q-extensions over which all
such curves obtain a global point. In this article, we show that every such genus one
curve with semistable Jacobian has a point defined over a solvable extension of Q.
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0. Introduction
One of the great discoveries of the nineteenth century is that equations of degree 5 or
more need not be solvable. To put this another way, such an equation need not have
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roots in a solvable extension of the field of coefficients. One can ask the same question
about polynomials in two variables.

Let X denote a smooth geometrically irreducible projective curve of genus g
defined over a field F. Pal [P] has proved that every curve X of genus g has a point
defined over some solvable extension of the base field F for each g € {0, 2, 3, 4}.
This makes one wonder if there are any curves where this does not hold. This is also
addressed in Pal’s article [P], where he constructs curves that have no solvable points.
Pél is able to construct a curve with this property for every genus g either greater than
orequalto40or g € {6, 8, 10, 11, 15, 16, 20, 21, 22, 25, 26, 27, 28, 29, 30, 31, 32,
34, 35, 36, 37, 38}. These curves are defined over local fields F such that the absolute
Galois group of the residue field of F has quotients isomorphic to Ss, PSL3(FF,), and
PSL;(IF5). This condition does not hold for completions of number fields. Therefore,
the question of whether a curve X of genus g defined over a number field has solvable
points remains open for all g ¢ {0, 2, 3, 4}.

We are interested in studying the case of genus one curves defined over the rational
numbers. A curve C of genus one defined over (Q has a Jacobian, E = Jac C, also
defined over Q. The L-series of the Jacobian of C, which we also write L(E, s), has
analytic continuation to the whole complex plane by the theorems of [Wi] extended
by [BCDT]. This is a consequence of E being modular, that is, covered by the modular
curve by a finite map 7w : Xo(N) — E for some positive integer N. The minimal such
N is called the conductor of E. Here L(E, s) is defined as an Euler product

l_[(l _ appfs)fl . l_[(l _ appfx + p1725)71’

PIN pIN

where a, =1+ p — #E(F,) for p{Nand a, = —1, +1, or 0 for p|N. The precise
values of a, are given in [S1, §2.4], and L(E, s) is then equal to the L-series of a new
form of level N.

In §1, we prove the following theorem.

THEOREM 0.0.1

Suppose that

(a) L(E, s) has a zero of order O or 1 at s = 1; and
(b) C(Q,) # @ for all p.

Then C has a point over a solvable extension of Q.

We note that while our method allows us to put some local restrictions on the extension,
for example, that it is unramified at a given finite set of primes not dividing N, it does
not allow us to pick an extension that is totally real. Such a condition would perhaps
be useful in possible applications to base change (see [T]) if such results extended to
cover higher genus. The reason that we are unable to make points over totally real
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fields is that we use the system of Heegner points on Xy(N), and these are defined
over abelian extensions of imaginary quadratic fields, and thus not usually over totally
real fields. However, the method does suggest that such a result can be true since
conjectures of Darmon [D] lead one to suppose the existence of similar systems of
points on elliptic curves defined over abelian extensions of real quadratic fields.

We now give a brief idea of the proof of Theorem 0.0.1. The curves C of genus
one satisfying condition Theorem 0.0.1(a) and Jac C = E are classified by Il =
II(E/Q), the Tate-Shafarevich group of E. The principal homogeneous space C has
a point over a solvable extension if and only if the corresponding class in III splits
over a solvable extension. As III is a torsion group, it is therefore enough to prove
that all classes of p-power order have this property for each prime p. Moreover, under
condition (a) of Theorem 0.0.1, Kolyvagin has shown that this group is finite. Its
p"-torsion fits into the exact sequence

0 — E(Q)/p"E@Q) % HY,(@Q/Q,E) — T, — 0,

where the central term is the Selmer group, which is defined as a subgroup of classes
c of H'(Q/Q, E,») satisfying

Hs,(Q/Q.E,) = {c e H(Q/Q.E,) : ¢ € imy, V.

Here ¢, is the local connecting homomorphism E(Qy)/ p"E(Q,) — H! (@g /Qe. Epn).
In terms of Hg,, (@/ Q, E,»), we need only show that the restriction of this group is in
the image of ¢ after a solvable extension.

Kolyvagin [Ko1] has given a construction of ramified classes in Hl(@/ Q,E ).
These classes split (i.e., appear in the image of ¢) over some solvable extension. Our
main argument is the development of the principle described in [Wi, Introduction], that
if one can construct enough ramified classes, then the unramified classes are already
contained in the group generated by those ramified classes.

Neither condition (a) nor (b) of Theorem 0.0.1 seems to be essential. In §2, we
remove condition (a) of Theorem 0.0.1 to obtain the main result of this article, Theo-
rem 0.0.2.

THEOREM 0.0.2

Let C be a curve of genus one defined over Q so that
(a) E = Jac C is semistable; and

(b) C(Q,) # @ for all p.

Then C has a point over a solvable extension of Q.

The proof of Theorem 0.0.2 is also based on the principle that is described above,
but its statement as well as its application become more complicated if condition
(a) of Theorem 0.0.1 does not hold. It is for this reason that we have chosen to
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dedicate §1 to the proof of Theorem 0.0.1. There are two new issues that appear in the
case when L(E, s) has a zero of order greater than 1 at s = 1:

@) the Heegner point that we can construct in E(K) for some imaginary quadratic

field K is always a torsion point; and

(ii) the Tate-Shafarevich group is not known to be finite.

The firstissue is overcome by constructing points defined over a sequence of extensions
of K and using results that guarantee that we eventually construct a point that is not
torsion. More precisely, we consider the anticyclotomic Z ,-extension of K, and we
construct Heegner points «,, € E(K,,) (defined in §2.3), where Gal(K,, /K) ~ Z/ p"7Z.
Cornut [C] and Vatsal [V] have both shown that there exists an n such that «,, is of
infinite order. In order to use the points «,, we need to consider Hl(K_n/ K., Epm),
where m,, is an integer greater than n instead of the group H'(K/K, E,»), which is
what we use when we assume that condition (a) of Theorem 0.0.1 holds. This passage
solves one problem and creates another. We can now construct nontrivial cohomology
classes in H'(K,,/K,,, E = ), assuming that n is big enough, but we can certainly not
ensure that we have constructed the whole Selmer group Héel(K_n/ K, Epmi ).

In attempting to resolve this new issue, we treat HI(K_,,/ K., Epm ) as a module
over the ring (Z/p™ Z)[Gal(K, /K)]. At this stage, the situation appears even more
complicated because we do not really understand the structure of this new module that
we choose to consider. In addition, the issue that the Tate-Shafarevich group is not
known to be finite is still present. All these problems are fixed by an idea that is similar
to one described in [Wi] and [TW]. We consider some carefully chosen submodules of
H'(K,/K,, E ) containing H,, (K, /K,, E,») which vary depending on n, and we
allow n to grow. We now have an infinite sequence of modules out of which we choose
a subsequence of modules that are compatible with each other when treated as abstract
(Z) p"Z)[Gal(K, /K)]-modules. This allows us to formally put them together into a
module .# over the ring

Lim(Z/ p™ Z)[Gal(K,, /K)].

We can now hope to overcome the second issue (ii) because the module .# contains
Héel(K/ K, E~). Our construction ensures that ./ has a very nice structure, which
makes it possible for us to generalize the principle that is described above and used in
proving Theorem 0.0.1.

The last step of the proof involves making sure that we are able to construct
the ramified classes that are needed in order to apply our generalized principle. As
we have already mentioned, Kolyvagin’s construction of ramified classes in [Kol,
§1] uses rational primes. If the primes are chosen to construct ramified classes in
H'(K, /K,, E,m ), one cannot construct anything new in H' (K, /K, 1, Em.1 ) using
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the same primes. So, we are forced to choose new primes for every level n. This is the
reason why the submodules of H! (K_,,/ K, E,n ) which we consider cannot be chosen
in a naturally compatible way. In addition, the fact that the cohomology classes that
we construct ramify at primes that change depending on n makes it harder to see if
these classes become nontrivial as n grows. In order to bypass this difficulty, we keep
track of what we are constructing in a way that does not depend on the specific prime
where the class is ramified but only on the Frobenius of this prime. This cannot be
done for all the ramified classes that we construct, but the information that we manage
to extract allows us to complete our argument without actually constructing the whole
module ./ .

Because the proof in the general case is rather intricate, we have decided to present
the case of rank at most 1 separately in §1. Although this incurs some repetition, and
although many of the results in §1 are well known or can be proved more quickly by
citing results from the literature, we believe that a detailed exposition of our approach
in this much simpler case makes the reading of §2 much easier. In particular, both
Kolyvagin [Ko3] and McCallum [M] have shown that the subgroup of HI(K/K, E)
generated by Kolyvagin’s classes contains the Tate-Shafarevich group in the case when
the analytic rank of E/K is 1. This result is equivalent to the statement of Theorem
0.0.1. McCallum’s account, which is based on Kolyvagin’s original approach, cannot
be generalized to the higher-rank case because it uses the nondegeneracy of the
Cassels pairing which in turn depends on the finiteness of the Tate-Shafarevich group.
Kolyvagin [Ko2] has also considered the higher-rank case and has proved similar
partial results assuming that at least one of the classes that he constructs in H'(K/K, E)
is nontrivial. This assumption remains a conjecture in the case when the analytic rank
of E/Q is greater than one.

In a sequel to this article, we hope to remove the hypotheses of Theorem 0.0.2, at
least if E has nonintegral j-invariant.

Notation. In the article, we frequently write Lim (resp., Lim) for Lim (resp., Lim) as
L. — <« — «—
all our limits are taken over n. " "

1. Rank at most 1

1.1. Unramified under ramified principle

Let E be an elliptic curve over Q. Associated to E is its L-series L(E, s). We call
the order of its vanishing at s = 1 the analytic rank of E over Q. A similar def-
inition applies to a number field F other than Q for which the L-series L(E/F, s)
of the curve over F has analytic continuation. In particular, this applies to abelian
extensions of Q. We assume throughout §1 that E has analytic rank over Q equal to
zero or 1. By a theorem proved independently by [BFH, Introduction, Theorem] and
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[MM, Corollary to Theorem 2], the work of Waldspurger [W] in the case when the
analytic rank of E/Q is 1, we can find an imaginary quadratic field K with discrimi-
nant Dg # —3, —4 so that

@) the analytic rank of E over K is 1; and

(i1) every prime dividing N, the conductor of E, splits in K.

From the fundamental work of Gross and Zagier [GZ, §1.6], it follows that the Heegner
point, which we review in §1.2, yields a point of infinite order over K. Kolyvagin [Kol,
Corollary C] has shown that, in addition, E(K) has rank 1 and III = HI(E/K) is
finite.

It is enough to prove Theorem 0.0.1 for genus one curves C that correspond to
elements of p-power order in ITII(E/QQ), where p is a prime. Hence, fix a prime p
from now on. We also assume throughout the article that Gal(K(E,)/K) is not solvable
since the restriction of Héel(@/ Q, E,») splits over an abelian extension of Q(E ), and
Gal(Q(E,»)/Q) is solvable if and only if Gal(K(E,)/K) is solvable. In particular, we
assume for the rest of the article that p > 3 and E(K), = 0. It is then known that the
natural image of this Galois group in PGL,(IF,) is either the full group or isomorphic
to As (see [S2, Proposition 16]). In §1, we give conditions on a set Q of auxiliary
primes so that for k sufficiently large, Hg, (K, E ) is contained in the subgroup of
H'(K, E,) generated by
(a) the image of E(K); and
(b) the classes that are Selmer outside Q and are ramified at a nonempty subset

of primes in Q.

1.1.1

Let v be a prime of K, and denote by K,, k,, and O, the corresponding lo-
cal field, residue field, and local ring of integers, respectively. Consider the group
E(K,)/p™E(K,) for some m € N.

LEMMA 1.1.1
Let g be a prime of K which divides p and m € N. Then we have

#(E(K,)/p™) = #E(K,,),» - #(E'(Ky)/p™),

where El(Kp) is the group of points of E(K,,) which map to zero when E is reduced
modulo p.

Proof
Let G be an abelian group, and set

% (G) := #G  JH(G/p"G).
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It is known that x,» is multiplicative on short exact sequences and trivial on finite
groups.
Since E(K,,) is an extension of a finite group by E'(K,,), we have

Xpm (E(K@)) = Xpm (El Ky ))'

Then the fact that E'(K,,),,» = 0 implies that

#(E(Ky,)/p") = #E(K,),» - #(E'(K)/p™). O

In the next lemma, we prove a similar result for the other primes.

LEMMA 1.1.2
Let v be a prime of K relatively prime to p and m € N so that E(K,)) » = E(K,)n.
Then the inclusion of E(K,),» in E(K,) gives rise to the canonical isomorphism

E(K,)/p"E(K,) = E(K,) .

Proof

Since E(K,),» = E(K,),n, the inclusion of E(K,, ) ,» into E(K, )/ p"E(K, ) is injective.
So, in order to prove that these two groups are equal, we need only show that their
sizes are equal. As in Lemma 1.1.1, we have

Xpm (E(Kv)) = Xp (EI(K\J))

Since v does not divide p, we know that E!(K,)) is a p-divisible group. This implies
that x,(E'(K,)) = 1. Hence, x,»(E(K,)) = 1 and #(E(K,)/p™) = #E(K,),», as
required. g

1.1.2
Let y be a generator of the free part of E(K). Denote by X the set of primes of K
which divide p together with those where E has bad reduction. We choose k € N so
that
(1)  p*~! annihilates the p-primary part of IIT = III(E/K); and
2) E(K,)pe = E(Ky)px forall A € X.

Suppose that " = X U {A¢}, where A¢ ¢ X is a prime of K such that E(K;,)) ,» =
E(K_,\O) »» and y is not divisible by p in E(K;,).

Suppose that Q is a set of primes of Q with the following properties for g € Q:
(1) g remains inert in K/Q;
@ q¢x:
(iii)  E(K,),~ = E(K,),+; and
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@iv) Hi, (K, Ep) — ]_[q Q HI(K;nr /Kg, Epr), where K™ denotes the maximal
unramified extension of K,,.

Denote by K (resp., Kx) the maximal extension of K which is unramified outside

" UQ (resp., X'). Define

H' (K" /K, Ep%), veQ,
N H'(K,, E, ), vey.
Then we set
H'L(Ksuo/K, Epn) := {s € H'(Kzuo/K, Ep») | s, € L, forv e Z'UQ},
H'L,(Kzuo/K, Ep) = {s € H'(Kzuo/K, Ep») | s, € L, forv € £'}.

Thus L denotes that no local conditions are imposed at the primes of Q but that
the same conditions are imposed on primes in X" as were imposed for L. Similarly,
HéelQ (Ksug/K, E ) denotes classes with the Selmer condition at primes of X’ but
no condition at the primes of Q.

Denote by L} the exact annihilator of L, in the nondegenerate pairing

H'(K,,E,x) x H(K,,E,») = Q,/Z,. (1)
Then, as above, we have

H'l-(Kzug/K, Ep») = {s € H'(Ksuo/K, Epx) |5, € LY forv € £'UQ}.

LEMMA 1.1.3
The group HIL*(KZ/UQ/K, E ) is contained in the Selmer group Héel(K, E ).

Proof
By properties of local duality (see [Mi, Theorem 2.6]), we know that

L — H' (K" /K,,E,»), veQ,
v 0, vex.

This implies that H'(«(Ksug/K, Ep%) C Hiy(K, Ep%). Since I« = I, by
assumption (1) in §1.1.2, we have an exact sequence

0 — Hgy(K, Ep) — Hgy(K, Epp) — (Z/p*Z)(p*y) — 0. (2)

where (Z/p*7Z)(p*y) is the subgroup of Hi, (K, E,x) generated by p*y. We can
easily see that all we need to prove is that

(Z)p*Z)y NH'L-(Kzug/K, E,z) = 0.
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Lemma 1.1.2 tells us that E(K;, )/ p*E(K;,) = E(K;,) . This and the properties
of A¢ imply that in E(K,), we have

y = kay/ + epx, where y/ € E(KAU) and epu € E(Kko)p“ — E(K)Lo)pzk—l .

Then p'y € H'L.(Kzuo/K, E,x) only if p'y = p*y” forsome y” € E(Kj,). Finally,
the fact that e,» € E(K;,),» — E(K,),» allows us to conclude that i > 2k. This

implies that
(Z/p*Z)y NH'L.(Ks /K, Epu) =0
and concludes our proof. i

LEMMA 1.1.4
The group HILB (Ksug/K, E,x) is isomorphic to H!|. (Ksug/K, E, ) under the nat-
ural inclusion map.

Proof
The exactness of the sequence

0 — H' (Kyuo/K, Ejx) > H'L(Kpug/K, E) — [ L, 3)
q€Q

implies that HILE(KEUQ/K, E ) >~ H!|. (Ksug/K, E ) if and only if the map

H'L (Ksuo/K. Ep») = [ [ Ly 4)
q€Q
is zero.
Using Lemma 1.1.3, as well as the last property of the set Q, we get the commu-
tative diagram

H'y (Ksug/K, Ep2) » Hi, (K, Ex) — quQ HI(K;‘“/Kq, E )

L T

Hy, (K, Ex) < quQ H'(K;“r/Kq, E,©)

So, in order to prove that the map (4) is zero, it suffices to show that the right-hand-side
vertical map is zero.
We know that B (K,;) = E (K;"’), and therefore, the exactness of

k
0 — Ep(KY™) — Eu(K™) Lo E(K™) — 0
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implies the exactness of

0 —E(Kg) — Epu(Ky) - r(Ky) —H' (Kfznr/Kq JEp)— Hl(KS“r/Kq o Ep)

|

H! (K(l;m/Kq B E[)" )

The third property of the primes g € Q tells us that E,»(K,;) = E«(K,), and therefore,
this reduces to the sequence

0—= Epx(K,) — H'(K"/K,, E,») — H'(K¥" /K, E o) — H' (K2 /K, E ).

Since we also know that H! (K™ /Ky, Epr) = E(K,)/ P*E(K,), Lemma 1.1.2 allows
us to conclude that H' (Kg"/Kq, Epe) = E(Ky) ¢ and, therefore, that the map

H'(K}"/K,, Ep0) = H'(K" /K, Eu) s zero for all ¢ € Q. 6))

This concludes the proof of the lemma. O

PROPOSITION 1.1.5
The following sequence is exact:

O —VHlL(KEfUQ/K, EIJZk) —> H1 Lo (Kz/uQ/K, Ep2k) — 1_[ H1 (Kq N EIJZk)/Lq —> O

q€Q

Proof
The only part of this sequence which is not obviously exact is the last map. So, we
need only show that

HILQ(KNQ/K, E,») — ]_[qu H'(K,, E,»)/L, (6)

is surjective.
Consider the beginning of the exact sequence of Cassels, Poitou, and Tate (see
[Mi, §1, Theorem 4.20]):

0 — H't (Kyxuo/K, E;») — H'1 (Ksuo/K, Epx) — [],co H'(K,, Epz)/L,

q€Q
v

H2(Kzuo/K, Epu) ~— H'L.(Kzuo/K, Epx)
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where M = Hom(M, Q »/Zp). It follows that the map (6) is surjective if and only if
¥ = 0, which is equivalent to the following map being zero:

H'L(Kyug/K. Epx) — [ [ L
q€Q
This follows from Lemma 1.1.4 since H' L (Ksug/K, E ) is the kernel of the above
map. O

Using the definition of the local conditions L, we see that

H'L(Ksuo/K, Epx) = H'(Kx /K, Eju),
H'L,(Kyuo/K, Byx) = H' (Kxug/K, Epn).

Then Proposition 1.1.5 gives us the exact sequence

0——H'(Ky /K, E,») —H'(Kzuo/K, E,») — [1,.o H'(K,, E,»)/L, — 0.

(N
The second and third properties of the primes in Q together with Lemma 1.1.2 imply
that for g € Q,

q€Q

L; =L, =H'(K\"/K,, E,n) >~ B(K,)/ p™E(K,) ~ E(K,) ¢ ~ Z/p*Z & 7/ p" L.
Then using the nondegeneracy of the pairing (1), we conclude that
H'(K,,E,x)/L, ~Z/p"Z & 7/ p"Z. 8)

Moreover, one can understand the structure of the full group H'(K,, E2) by consid-
ering the sequence

0 — EX,) — EX,),x <> EK,), — 0,
which gives rise to
0 — E(K,)» — H'(K,,E) — H'(K,, E»)
as E(K,),+ = E(K,) . By the above identifications, we can then deduce that
H'(K,, E) >~ H'(K,, E,0)/H' (K" /K, E ) € H'(Ky, E ).

The groups H'(K,, E)» € H!(K,, E),» have the same size since their duals are
isomorphic to E(K,),« and E(K,) ,2, respectively, by pairing (1). So, we have

Hl(an Ep”‘)/H](K;nr/Kq’ EpZI‘) < Hl(Kq’ Epz")'
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It is then clear that
H'(K,, E») ~ (H'(K,, E2)/H' (K" /K, E2)) @ H' (K™ /K, E ).

We show that when we restrict the above cohomology groups to the Selmer con-
dition for A € X', we end up missing exactly one generator of | | 7€Q H'(K,, E,»)/L,.

PROPOSITION 1.1.6
The cokernel of the last map in the exact sequence

0 — H§, (K, Epx) — HéelQ(K, E,») — |1 Hl(Kq, E,x)/L,

q€Q
is cyclic of order p*.

Proof

Recall our notation that Sel, imposes no local condition at primes in Q and the unram-
ified one at the prime Ao. Set W = [, 5, H'(K;, E%)/Sel,(p*), where Sel; (p*)

denotes the image of E(K;)/p*E(K;) in H'(K;, E,). Using the exact sequence (7),
we now apply the snake lemma to the following commutative diagram:

0 —— H'(Kz/K, E;x) — H'(Kzug/K, Ejp) — [0 H' Ky, Ejo)/L, —> 0

/| | |

0 \ w 0 0
We get
0 — H{,(K,Ex) — Hée,Q(K, E x) — ]_[qu H'(K,, E,»)/L,
| ©)
0 «<— coker ¢, 0 coker b1

Seeing the maps ¢; and ¢, as part of the corresponding exact sequences of Cassels,
Poitou, and Tate, we have

¢] 1 -
H'(Kz /K. Ej) = [T, o H'(K;. Ej2)/Seli(p%) Y+ HL (K. E,2)

1 | o

o —

[
H'(Kzuo/K. Epx) 5 [T,ep H'(K;, Ej2)/Sel(p%) 5 Higy (K, E o)

Now, we need to study the maps ; since coker ¢; >~ imy; fori = 1, 2.
We start by proving that Sel,(p*) = Seli(p*) for A € X. We know that
Sel; (p*) D Seli(p*) for all A (see [B, Proposition 9]). Since #E(K,),» = p*,
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a result of Tate about the local Euler-Poincaré characteristic (see [Mi, §1, Theorem
2.8]) implies that #H'(K;, E,») = [0, : p*0;] - #E(K;),»)*. We also know that
El(Kp) >~ (O, for p|p. Therefore, Lemmas 1.1.1 and 1.1.2 imply that #H' (K , Epx) =
(#Sel, (p*))*. Finally, the nondegeneracy of pairing (1) implies that #Sel, (p**) =
#Sel?(p*) for all A € X, which proves our claim.

Furthermore, since Sel,(p*) = H'(KY"/K;, E,») for all A ¢ % and, by [Mi,
Theorem 2.6], HI(KKnr /Ky, Ep2) is its own exact annihilator in pairing (1), we con-
clude that

Sel, (p*) = Sel;(p*) forall A
Therefore, we have

Hg. (K, Epx) = Hy (K, E,»)  and (K, Epx) = Hi o (K, E ),

(SelQ)*

where Hy (K, E,») is the subgroup of Hg, (K, E,x) consisting of classes that are
locally trivial at primes in Q.

We know that Hg, (K, E,+) maps to H' (K" /K, E ) under the localization map
for ¢ € Q. Then (5) implies that HSel(K, E,+) maps to zero in Hl(Kgnr /Ky, Epx) for
all g € Q, and therefore,

Héel(K’ Epk) C HéelQ(K, Epzk),

We show that these two groups are equal. The fourth property of the set Q implies
via Lemma 1.1.2 that there exists a prime ¢, € Q such that y # py’ in E(Ky, ). Then
y = p*y 4 ey, where y' € E(K, ) and er € E(Ky )px — E(K, ),e-1. We see that
p'y € Hg o(K, E;») if and only if i > k, and therefore,

(Z)p*Z)y NHy oK, E ) = (Z) p*Z) p*y,

which implies that Hg, (K, E ) = Hg o (K, E ), as in the proof of Lemma 1.1.3.

So, the right-hand-side square of (10) may be viewed as

[T,ex H'(Ky, E,2)/Sely (p2) 2> HL (K, E )

| BN

[Moes H'(K; Ey)/Sel, (p%) Lo HLL(K,E,)

and the map y : im v; — im 1, is simply the restriction of an element of HSel (K, E %)

to Hi, (K, E,+). We are now going to show that ker y >~ Z/p*Z.
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In order to improve our understanding of the maps y; and v,, we consider the
following compatible nondegenerate pairings for A € X'

HI(K)u EZJZk)/Selk(ka) X Sel}»(ka) - Qp/Zp

¥ l IR@SA

—

HlSel(Kﬂ Epzk) X Héel(K7 EPZk) —> QP/ZP

where Res; : H'(K, E,x) — H'(K;, Ex).

We know that p" Héel(K, E ) = 0, and consequently, the order of every element
of im v, divides p*. We aim to construct an element s € im v/, of order p** because
then p*s € ker y and has order p*.

Consider Res;,(y). We know that Res; (y) is of order p* because y is not
divisible by p in E(K;,)), and E(K},)~ = E . It follows that there exists an element
53, € H'(K;,, E,»)/Sel;,(p*) which pairs with Res;,(y) to give a generator of
Z/ p*Z. This implies that yr,(s;,) has order p*.

So, we have now shown that the kernel of the map y contains an element of order
p*, namely, p*¥,(sy,). Since, by (2),

0 — Z/p*Z — HL (K, E») — HL, (K, Epx) — 0, (11)

we conclude that ker y >~ Z/p*Z, which also shows that ker y, ~ Z/p*Z in (9), and
this completes the proof of Proposition 1.1.6. a

We are now ready to prove a theorem according to which the subgroup of H'(K, E )
generated by enough classes ramified in Q together with the cohomology classes
coming from E(K) contains the Selmer group Hg,,(K, E ). Since the elements of the
Selmer group are unramified at primes in Q, the following theorem can be viewed as
a materialization of the unramified-under-ramified principle.

THEOREM 1.1.7

(i) The group Hgy (K, E,x) is isomorphic to (Z/p*Z)*, where t denotes the
cardinality of Q.

(i) The Selmer group Hi, (K, E ) is contained in the subgroup of HéelQ (K, Ex)
generated by the image of y and any subset S C HéelQ(K, E <) with the
following property:

(%) the image of S in Héelq (K, E,0)/Hi, (K, Ex) generates a subgroup

(S) satisfying rankz,7(S)/p(S) = 2t — 1.



SOLVABLE POINTS ON GENUS ONE CURVES 395

Proof
Since I« = III -1, we can write

Hy (K. Ep) = Z/p* L x L/ p" L x - x L/ p" ' Z.,
where each m; < k. Let us consider the map
HéelQ(K’ Epzk) — l_[ Hl(Kq, Ep2k). (12)
q€Q

We know that the kernel of this map Hg (K, E,») = H{, (K, E»).
By our analysis of the groups H'(K,, E,x) in the paragraph preceding Proposi-
tion 1.1.6, we know that

[[H' K, . Ep) = [[H'KS/K,. Epo) @ [ [H' (K, E o) /H (K™ /K, B o).
q€Q q€Q q€Q
The fact that H'(K,, E,»)/L, =~ (Z/p*Z)* for each ¢ € Q by (8), together with
Proposition 1.1.6, implies that

0 — Hg, (K, E,n) — Hg, (K, Ejn) — (Z/p*Zy*~' — 0. (13)

Therefore, the image of Hg, (K, E, ) in

SelQ

[ [H' K, Ep)/H' (K™ /Ky, E )
q€Q

is isomorphic to (Z/ p*Z)*~'. Moreover, by the sequence (2), we know that the image
of Hy (K, E, ) in ]_[qu Hl(K;‘"/Kq, E,x) is isomorphic to Z/p*Z. This implies
that the image of the map (12) contains a subgroup isomorphic to (Z/p*Z)* . By size
considerations, we now see that the map (12) gives rise to the exact sequence

0 — H{,(K,E) — HL, (K,E,») — (Z/p*Z)* — 0. (14)

Selg
Let us now compute the size of the group HéelQ (K, E,+). We know that
H. (K, Epp) = Hgy (K, E) > [ [H'(K"/K,. E ),
q<Q

which implies that H(lselgy« (K,E ) = Hg o(K, E,x) = 0. Then, as in [Wi, Propo-
sition 1.6], it follows that

HE(K,)
[H'(K;, E) : Sel,(p9)]’

#Hy, (K B0 = p* [[#EK ) [ | (15)

q€Q AEX
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The third property of the elements of Q implies that #E(K,),« = p*. As we have
seen in the proof of Proposition 1.1.6, the group Sel, (p*) is its own exact annihilator
under the pairing (1). This implies that

#H'(K,, Ep) = (#Sel, (ph)”.
Moreover, since El(Kp) ~ (0, by Lemma 1.1.1 and 1.1.2 we have
#Sel,(p*) =[Oy : p*0,] - (HEK)) )
and
#Sel, (p*) = #EK,),» ford € T\ {p|p}.

It follows that

1—[ #E(K;) ¢ _
reS\iplp) [H'(K;, E¢) @ Sel, (p¥)]
and
#E(K;) pr 1 N
1_[ [H'(K;, E©) : Sel,(p*)] - m =p .

relplp) re{plp}

Hence, we conclude that #HéelQ (K, Ep) = p*.

Then the exact sequence (14) implies that as a group,
HéelQ(K’ Epzk) ~ Z/psz % Z/karle N Z/karmz"'Z

because otherwise, H'SelQ(K, E,+), viewed as the kernel of multiplication by p* in
Hg,,, (K, E,2), is of order greater than p**'. Hence, we have

Hg,, (K, Ep) = (Z/ PRy, (16)

We now prove the second part of this theorem. Let S C HéelQ(K, E,+) have
the property that its image in Héelo (K, E ) JHE, (K, E,+) generates a subgroup (S)
satisfying rankZ/pZ(g) /p(S) = 2t — 1. Using this assumption and (16), we can see
that

HY, (K. E)[p] € (v. )
and

(v, S) NHL,(K, Epx) = (v, pS) NHL (K, E ),
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where pS denotes the subset of nglQ (K, E ) consisting of p-multiples of elements
in S. Let s € Hi, (K, E ) so that ps € (y, S). It follows that ps € (y, pS), which
implies that

5 € (3.S) + Hiy (K. Elp] € (. S).

‘We can then conclude that Héel(K, Ep) € (y, S). O

Remark 1.1.8

The conclusion that HéelQ(K, Ex) ~ (Z/ p*Z)* can also be reached more simply
by computing the size of Hg, (K, E,) in addition to the size of Hg, (K, E) as
above. (We thank the referees for pointing out to us that such an argument is used
in [MR].) We have chosen this longer way of presenting the result because this was
our original proof through which we understood how this idea can be generalized and
what its limitations are. In particular, it motivated our arguments in the anomalous and
supersingular cases.

1.2. Kolyvagin cohomology classes

1.2.1

In this section, using Kolyvagin’s method, we make an explicit construction of coho-
mology classes. Most of this section is a slight adaptation of the work of Kolyvagin
described in [Gr] and in [R].

Let Ok denote the ring of integers of K. For r € N prime to N, the conductor
of the elliptic curve E, we can consider x, = (C/0,,C/.A",) € Xo(N), where
O, =7 +rOg, NOgk = N - A, and N, = N N0O,. We fix a parametrization
7 : Xo(N) — E which maps the cusp oo to the origin of E, and then we define the
Heegner point y, = m(x,) € E(K,), where K, is the ring class field of conductor r
over K. We have to consider the following field extensions and Galois groups:

Suppose now that r = [] £;, where £; # L fori # j, (r, pN) = 1, and the ¢; are all
inert in K/Q. Then G, = (o) is cyclic of order £ + 1 (recall that Dy, the discriminant
of K/Q, satisfies Dg < —5), and G, = Hllr Gy.
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We define an element D, of the group ring Z[G ] as the product of certain elements
Dy of Z[G,] for £ dividing r. Let D, = Zle io}. Notice that if Tr, = Zoecf o,

then D, satisfies the equality
(op—1)-Dy =€+ 1—Tr,. 17)

Let S be a set of representatives of %,/G,, and then define P, = ) _co(D,y,),
where D, = [ | o D,. We use this same set S in order to define P,, for all m|r.

Since E has analytic rank 1 over K, we know that y, = P, has infinite order and
that E(K) has rank 1. Fix a prime p # 2, 3, and let p* be the smallest power of p
which annihilates the p-part of H'(K""/K,, E(K"™)) for all primes v. This group is
trivial if E has good reduction at v and is finite for all v. Finally, we choose k, v € N
so that
1) p*~! annihilates the p-primary part of ITI(E/K);

2) E(K))p~e = E(K,)p« forall A € X;
3) Gal(K(E ++1)/K(E ), seen as a subgroup of GL(2, Z/ p+17Z), consists of all
matrices of the form

(1 + pta pkb

for a,b,c,d € 7/ pZ,
pke 1+ pkd> /p

and Serre has shown that the index of Gal(K(E,.)/K) in GL(2, Z/p"Z) is
bounded by a constant that depends only on E and K, implying that the above
condition is satisfied for almost all k; and

4) p*v divides ¥, exactly in E(K) and k, < v. (This last condition is needed in
order for the cohomology classes that we construct to remain ramified even
after multiplication by p*°.)

Notice that the first two conditions allow us to use the principle of §1.1, while the
third is useful in making sure that the set Q of primes that we choose in this section is
such that E(K,) ,~ = E(K,) .

We now assume that the primes ¢ dividing r, which were chosen to be in-
ert in K/Q, also split completely in K(E,)/K. We ensure this by choosing
primes £ so that Frob,(K(E,)/Q) = 1, where t denotes complex conjuga-
tion. Since Frob,(Q(E,«)/Q) = 7, by comparing the characteristic polynomial of
Frob,(Q(E,+)/Q) and that of 7 in E«, we see that

ar=0+1=0 (mod p"), (18)

where £ + 1 — a, is the number of points of E over the finite field F, = Z/¢7Z. Let
A be the prime of K above £. For the proof of the following proposition giving the
standard properties of Heegner points, we refer to [Gr, proof of Proposition 3.7].
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PROPOSITION 1.2.1

Suppose that r = m{. Then

(a) Trey, = a; - ym in E(K,,);

(b) A is unramified in K,,, /K and totally ramified in K, /K, and

(©) v, = Frob(A,,)(yin) (mod A,.), where A, is a prime of K,,, dividing £ and A, is
the unique prime of K, dividing X\,,.

PROPOSITION 1.2.2
The natural image [ P,] of P, in E(K,)/ p*E(K,) is fixed by %,.

Proof

We first prove that the image [D, y,] of D, y, in E(K,)/p*E(K,) is fixed by G,.. Since
G, = ]_[”r Gy, and G, = (0y), it suffices to prove that [D,y,] is fixed by o, for all
£|r. We have

(0[ - 1)Dryr = (GZ - l)DéDmyr = (E + 1— TrZ)Dmyr
= (E + I)Dmyr + Dm(TrZYr)
= (£ + D)Dyy, + Dy(acyn) € p'EK,),

by (18).
Therefore, (6, — 1)[D,y,] = 0.

By the definition of P, we now see that [ P,] = trg, x[D,y.]. Hence, [ P, ] is fixed
by 9,. O

Now, we consider the commutative diagram

H'(K, /K, E(K,)

p
Inf
¢

0 E(K)/p*E(K) H'(K, E¥) H'(K, E) 0
l Reslz Res
k Y & o 4, 1 4,
0 — (E(K,)/p'E(K,))” 2 H'(K,, E»)* H'(K,.E)’
(19)

Note that Res : H'(K, Ep) — H'(K,, Epk)g’ is an isomorphism since E(K, )
is assumed to be zero. (This is because we are assuming that Gal(K(E,)/K) is not
solvable.)
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Using the fact that [ P,] € (E(K,)/p*E(K,))*", Kolyvagin defines the cohomology
class c(r) to be the unique element of H' (K, E ) such that Res(c(r)) = ¢,([P.]). Let
d(r) be the image of c¢(r) in H'(K, E) p+. As observed by McCallum in [Gr, §4], ¢(r)
can be represented by the 1-cocycle
P. P (c—-1P _

c(r)(o) = 0(7) ————— o €Gal(K/K),

p p p

where P,/p* is a fixed p*th-root of P, in E(K), and ((c — 1)P,)/p* is a uniquely
defined element of E(K,) since (¢ — 1)P, € p*E(K,) and E(K,) p+ 1s trivial. We also
define d(r) € H'(K, /K, E(K,)» = H'(%,, E(K,)),« to be the preimage of d(r)
under the inflation map. Then it follows that

(0 —DP,

d(r)(o) = — P foro € 9,.

122

PROPOSITION 1.2.3

The classes c(r) and d(r) satisfy the following:

D the class c(r) € H'(K, E ) is trivial if and only if P, € P*E(K,); and

) the classes d(r) € H'(K, E)x and d(r) € H'(%,, E(K,))+ are trivial if and
only if P, € p*E(K,) + E(K).

Proof
This follows from the definitions of the above cohomology classes and the commuta-
tive diagram (19). O

The group Gal(K/Q) = {1, t} acts on H'(K, E). Since p is odd, H'(K, E ) splits
as the direct sum of the two eigenspaces for the action of 7. Let —e be the sign of
the functional equation of the L-function of E over Q. For the proofs of the next two
propositions, we refer to [Gr, proof of Propositions 5.3, 5.4].

PROPOSITION 1.2.4
There exists 0 € 9, such that y; = ey’ + (torsion) in E(K,), where o depends on the
choice of complex conjugation T.

PROPOSITION 1.2.5

(D) The class [P,] lies in the (¢, = e(—1)'")-eigenspace of (E(K,)/p*E(K,))*"
under the action of T, where f, denotes the number of primes dividing r.

2) The cohomology class c(r) lies in the €,-eigenspace for T in H' (K, E o).
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Recall that ¥ = m¥, and recall that X is the unique prime of K which divides ¢. Let IF;,
be the residue field of K at A. Since we assumed that A splits completely in K(E +)/K,
it follows that E(F; )« = (Z/ p*Z)*.

Now, 7 has eigenvalues =1 on E(IF;) o+ and since its determinant is —1, it follows
that

E(F,), =~ Z/p"L. (20)
For the primes ¢ that we have chosen, we also know that

H'(K;, B)« ~ E(K;)/p"E(K;) ~ E(F;)/p*E(F;)
~ E(F))+ ~ E(K))px = (Z/p*Z)y. (1)

PROPOSITION 1.2.6

The classes d(r) have the following local properties:

@))] the class p*d(r), € H'(K,, E)« is trivial at the archimedean place v = o0
and at the finite places v of K which do not divide r; and

(2)  foranyl <i <k, p*d(r), = 0inH (K, E)« ifand only if P,, € p'E(K;),
where r = m{ and M is the prime of K above £.

Proof

(1) If v = oo, then H'(K,, E),+ is trivial and, therefore, so is d(r),. If v is a finite
place that does not divide r, then in (19) we have the fact that d(r) is the inflation of
a class from K, /K and, hence, is unramified at v. By the definition of ko, p*d(r), is
then trivial.

(2) Let K;,, be the localization of K,, at A,, and let K, be the localization
of K, at A,. We know that d(r), € HI(KA,/K,\, E),+ is represented by the cocycle
o+ —((c —1)P)/p* foro € Gal(K;, /K,). Since K;, = K, and A, is totally
ramified in K;, /K;, , it follows that Gal(K;, /K;) >~ Gal(K;, /K;,) =~ G,. Let E' be
the subgroup of E which maps to the identity of the reduction of E modulo £. Since E!
is a pro-¢ group, and £ # p, H'(G,, E'(K;,)),+ = 0. It follows that H'(K;, /K;, E)
injects into

H' (G, E(F,,)) H'(G,, E(F,)) ., = Hom(G,, E(F,),¢)

Pk p

since F,, = TF,, G, acts trivially on E(F,) and Hom(G,, E(F,),x) =
Hom(G, E(IF';)) ,«. Then the fact that G, is cyclic and generated by o, implies that

p*7'd(r), = 0 if and only if p*“'d(r)(o,) =0 (mod A,). (22)
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Now, we evaluate d(r)(o;) (mod A,):

g (G - 1)Pr
Ao = 22
p
_ (UZ - 1) ZO’ES U(Dryr) _ ZO’ES GDm(Ul — I)Diy;
= — pk - _ pk
— _ZUESGDm((e + l)yr - Trgy,)
p* ’

by (17),

a £4+1
= ZGDm (_iym - _kyr)v
p p

oeS

by Proposition 1.2.1(1),

£ + 1)Frob(),,
= Zapm(a_i _ Lﬁo(»ym (mod 1,),
p p

ces

by Proposition 1.2.1(3).
Let o € 94,,. Then since Frob(c ~'A,,) = o ~! Frob(A,,)o and

ae ¢4+1  a;—(+ 1)Frob(o~'A,) .
= Ym Vr = Ym (mod o™ A,),

p Pk Pk

it follows that

ay L+1
(om =)

ag — (E + 1) FrOb()"m)
o
pk

Ym (mod A,).

Then we have

o) =Y o Dy(* (« +;£ Fmb(x"’)) Y (mod 2,)
oeS
_ a, — (£ 4+ 1) Frob(A,,) P (mod 1)

Pk
Recall that P, lies in the €,,-eigenspace for Frob, = t on E(FF;)/p*E(F;). We
know the size of the +1-eigenspace for 7 on E(IF};),

4EF,) =L+ 1—a,.

In addition, since #E(F;) = 1 + €> —a? —a; = (1 + £)> — a2, where a; + &, = a;

and a,a, = £, it follows that

#E(F,)” = 2°(C + 1 +a;), wheree € {0, £1}.
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Then using the cyclicity of the p-part of E(IF;, )*, we see that the kernel of multiplication
of E(F,)* by 2¢ ((ag -+ I)Frob(km))/pi) is p'E(IF;)* for any 1 < i < k. This
implies that 2¢ p*~d(r)(o,) = 0 modulo A, if and only if P, € p'E(F;), which is
equivalent to P, € p'E(K,, ) because E' is p-divisible. Moreover, since p is odd, it
follows that

p*d(r)(oy) =0 (mod A,)if and only if P,, € p'E(K}, ).

This result, taken together with (22), allows us to conclude that

p*d(r), =0 ifand only if P, € p'E(K,,)forany 1 <i < k. =

1.3. Choosing the set of auxiliary primes Q
Recall that the auxiliary primes ¢ € Q are required to have the following properties:
(1) g remains inert in K/Q;
() q¢¥;
(iii))  E(K,)p~ = Ep; and
(iv)  Hi (K, Ep) — [1,c0 H' (K4 /Ky, E,¢), where Ki™ denotes the maximal
unramified extension of K,,.
In this section, we prove the existence of a set of primes with these properties and
give a method for constructing such a set.

1.3.1
We start by showing how we can choose the primes of Q so that

Hiy (K, E,0) = [ [H'(K"/K,. E,0).
q€Q

Let Ly = K(E ), let 4, = Gal(L;/K), and consider the exact sequence

0 — H'(%.E,) — H'(K,E) <% H'(Li, Ej)% — HX%, Ep).  (23)

PROPOSITION 1.3.1
We have H' (%, Ex) = 0 for all k € N.

Proof

We have two cases. If 4, = Gal(K(E,)/K) has order divisible by p, then since it is
assumed not solvable, a result of Serre [S2, Proposition 15], shows that ng, the image
of 4, in GL,(Z/pZ), contains SL,(Z/pZ). Since the determinant is a cyclotomic
character, we deduce that % intersects nontrivially with the center Z of GL,(Z/ pZ).
Pick a lift § of an element of %, N Z to the center of GL,(Z »). Then there exists



404 CIPERIANI and WILES

m € N such that 87" € im(Gal(K/K) — GL;(Z,)) since this image is open by a
theorem of Serre [S2, §4.4, Theorem 3] and such that 7" projects to an element of %,
of order prime to p. Now, consider the inflation-restriction sequence with respect to
the subgroup (87"} of %, and observe that (E,«)®"") = 0. The proposition follows.

In the remaining case, where the image of ¢, in PGL,(Z/pZ) is isomorphic to
As, we can assume that p > 5 since the case p = 5 is taken care of by the preceding
argument. So, suppose now that p > 5. It follows that H'(%, E,) = 0 in this case.
Notice that it is sufficient to prove that H'(%;, E,,) = 0 since by using induction, we
can deduce that H' (%, E+) = 0 for all k € N. By examining the inflation-restriction
sequence with respect to the subgroup H; = ker : 4, — %, this time we see that
it is enough to show that H'(H;, E,)*' = 0. To verify this, it is enough to show that
H!'(H;, E,)® = 0 for § € ¢;, which maps to an element of order 5 in PGLy(Z/ pZ).

Let us first assume that p — 1 is prime to 5, which in particular allows us to
pick a lifting of § to an element of order 5 of %,. It then follows that (§) injects into
PGL,(Z/ pZ). The eigenvalues of § on E,, are given by ¢ and ¢! for some 5th-root
of unity ¢. (The determinant is 1 on § as As is not solvable.) Since H; acts trivially
on E,, the elements of H'(H,, E,)® are just §-invariant homomorphisms. Then we
claim that H; has a filtration by §-invariant abelian groups of exponent p, on which
the action of § has eigenvalues in the set {1, ¢2, ¢~2}. To check this, it is enough to
verify a similar statement for ker : GL,(Z/ p*7Z) — GL,(Z/ pZ) under the action of
an element § of order 5 of GL,(Z/ p*Z). Here the filtration is the usual one by normal
subgroups of level 1, ..., k, and the subquotients are abelian groups of exponent p.
In this case, the result is easily verified using the fact that the eigenvalues of § in
the adjoint representation of GL,(Z/pZ) are in the set {1, ¢2, ¢~2}. It follows that
H'(H;, E,)® = 0, and this completes the proof of the case when 5 does not divide
p— 1.

If p — 1 is divisible by 3, let x and y denote the eigenvalues of § on E,. We
can assume that x> = y> = a € (Z/p)* — {1} since the case when x°> = y> = 1 is
the same as the one treated in the previous paragraph. It follows that y = x¢, where
¢° = 1. Finally, the fact that {x, x¢} N {1, ¢, ¢~'} = & concludes the proof of this
lemma by the same argument as above. O

COROLLARY 1.3.2
The restriction map H'(K, E,x) —> Homyg, (Gal(Li®/Ly), E,+), where Li® denotes
the maximal abelian extension of Ly, is injective.

Proof
This follows immediately from diagram (23) and Proposition 1.3.1. a

Corollary 1.3.2 gives us the % -pairing

H'(K, E)xGal(L® /L) — E. 4)
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Let M be the fixed field of the subgroup of Gal(L/L;) which pairs to zero with the
finite subgroup Hg,, (K, E,+) of H'(K, E,+). Then we have a nondegenerate % -pairing

H! (K, E,) x Gal(M/L;) — E,. 25)

Let H = Gal(M/Ly). The element T of Gal(L;/Q) acts on H. We extend 7 to a
complex conjugation in Gal(M/Q). The nondegeneracy of the pairing (25) implies,
in particular, that H has p-power and, hence, odd order. So, H splits as a direct sum
of the eigenspaces for the action of T, H = H" @ H™. Furthermore,

H" =H"" :={tht™'h = (th)* : h € H}. (26)

PROPOSITION 1.3.3

Let s € Hg, (K, E ). Then the following are equivalent:

(1) s=0;

2) [s, o] =0 forall p € H, where [, ] denotes the pairing (25); and
3) [s, 01 =0 forall p € H.

Proof
It is obvious that (1) = (2) = (3). The nondegeneracy of pairing (25) implies that
(2) = (1). We show that (3) = (2).

Lets = st 45, where s* € Hg, (K, E+)*. We may view st and s, via (25), as
elements of Homg, (H, E ). Since s*(H") C E;ﬂ., s(H*) = 0 implies that s*(H*) =
0. Consequently, s*(H) = s*(H™) C ET,. We know that E, is an irreducible %;-
module because we have assumed that Gal(K(E,)/K) is not solvable. Since s*t(H) is
a %,-module, it follows that either s*(H) D E, or s*(H) = 0. Thenas E, ¢ E;[k, we
deduce that s*(H) = 0, and consequently, s(H) = 0. O

PROPOSITION 1.3.4

Ifs € Héel(K, E,«), p € Gal(M/Ly), and A is a prime of K not contained in X, then
the following are equivalent:

(1) [s, p] = O for some p in the conjugacy class of Frob;;

2) [s, Frob,] = O for all p in the conjugacy class of Frob,; and

3) s, = 0in H'(K;, Ep).

Proof

By hypothesis, s, is in the image of E(K,)/p*E(K,,) since it is in the Selmer group,
say, 5, = im(P,). Then [s, p] = (P,/p*)?~". It follows that [s, p] = 0 if and only
if P, € p*E(L;;) = p*E(K;), where A is the prime of L; above A to which p is
associated. O
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COROLLARY 1.3.5
Suppose that (h ... h,) =H"Y, and let Q = {{y, ..., {,} be a set of t rational primes
so that Th) € Frob,,(M/Q), where (th,)* = h; for each i. Then the natural map

o : Hyy(K, E,o) — [ [H'KI"/K, Ep)
q€Q

is injective.

Proof

Suppose that s is in the kernel of ¢,. Then by Proposition 1.3.4, [s, Frob,,] = 0,
where A; is the unique prime of K above ¢; for each i. Then [s, #;] = O for each i,
and so [s, H"] = 0. Thus s = 0, by Proposition 1.3.3. 0

132
We now show how to ensure that the auxiliary primes g € Q have the property that
E(K,) i+ = B(K,)

By Proposition 1.2.4, the point y, belongs to E(K)* + E(K)\ors, and therefore, by
diagram (19), the class ¢(y, ) lies in Hg, (K, E pk)i. We denote by I the subgroup of
H which pairs to zero with the subgroup of H, (K, E »+) generated by ¢(y, ), and we
denote by Li(y, /p*) the subfield of M fixed by I. Then we have

M @7

1

B Ly /P

Ly

Since ¢(y,) € Héel(K, E[,k)i, we see that I is fixed by 7. Let I be the +1-

eigenspace of I for the action of r. We observe, as we did in the case of H, that
I+ — ITJFI.

LEMMA 1.3.6
We have H/1 >~ E v, and consequently, (H/I)* ~ H*/I* >~ 7Z/p"Z.

Proof
We know that ¢(y, ) € Homg, (H, E«), and we know that ker(¢(y,)) = I. Recall that
y, is exactly divisible by p*~?, and therefore, (¢(y,)) = Z/p®Z. This implies that
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im(¢(y,)) € E,». We show that im(¢(y,)) = Epv. If im(¢(y,)) € E,.-1, then by
the nondegeneracy of pairing (25), it would follow that p'~! - ¢(y,) = 0, which is a
contradiction. If im(¢(yk)) # E,«, then im(p"~'$(yk)) & E,,. But this is impossible
since the image of p*~'¢(yk) is a ¥;-submodule of E,,, and the action is irreducible
since we have assumed that ¢, is not solvable. Since ker(¢(y,)) = I, it follows that
H/I >~ E», and consequently, (H/I)* >~ (E,.)* ~ Z/p"Z. O

Consider the following two extensions of L;:

M Lt

/ (28)

We know that Gal(L;;/L;) is a p-torsion group. By the nondegeneracy of pairing
(25), we have

Gal(M/L,)/p Gal(M/L;) ~ E, ® E,» @ - - ® E s,

asa%,-module, where §; € {0, 1}. On the other hand, the action of %; on Gal(L;/L;)
factors through %1, and as a %|-module

Gal(Liy1/Ly) € AdY @ 1, (29)

where Adg denotes the restriction to trace-zero matrices of the adjoint representation
of p : 9, — GLy(Z/pZ). This already shows that the two extensions in (28)
are disjoint. We claim that (29) is also an isomorphism, as follows from assump-
tion (3) on k in §1.2.1. We need this to know that there are elements of Gal(L /L)
with no fixed points on E jx+1 — E k.

Now, pick elements hy, ..., h, € H" — IT so that {hy, ..., &} is a minimal
set of generators of H* and so that each h; has maximal order in H*/I*. Then
each h; = (th))* for h; € H by (26). We can extend each Th) to an element of
Gal(ML;1/Q) in such a way that its restriction to Gal(L; 1 /L;) has no fixed points
in E x1 — E . Finally, we can choose primes ¢; € Qfori =1,...,tsothat

'L'h; € FI'Obg, (MLk-H /Q)

It then follows that

@ H,(K,E,») maps injectively to [] 4€0 H' Ky /Ky, Epr) for Q =
{El"-'aﬁl}; o

(i1) E(K,,) et = E(Kj,) ¢, where A; is the unique prime of K above ¢;; and

(iii)  each h; = (th))* has maximal order in H" /I".
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1.4. Construction of ramified classes
In this section, we construct the ramified cohomology classes that are needed to apply
the principle of §1.1. To do this, we need a slight refinement of the results of §1.3.

PROPOSITION 1.4.1
Let th € Frob,(M/Q), where h € H and X is the unique prime of K dividing £. Then
p'd), = 0inH'(K;, E) if and only if (h'"**)"" € IT.

Proof

Since th € Frob,(M/Q), we have h*"! € Frob, (M/K). By Proposition 1.2.6, we
know that p'd(£), = 0in H'(K;, E)» if and only if y, = P; € p*7E(K;), which is
equivalent to p'¢(y, ), = 0. It then follows from Proposition 1.3.4 that

pld), =0 inH' (K, E)p <= [p'¢(3). i1 = [¢(3). (") 1=0.

By the definition of T and the fact that Rt e HY, [¢(y,), (h""1)P'] = 0 is equivalent
to (h*HP" e It. a

We now refine the construction of §1.3 slightly. Suppose that we have chosen gen-
erators iy, ..., h, of H' as in the last paragraph of §1.3. Let us now fix £ = £; so
that th/, € Frob,(MLy,,/Q). Since (h;) = H"/I*, by Lemma 1.3.6 h = (th})* is
of order p* in H/IL. Therefore, Proposition 1.4.1 implies that p'c(¢) € H, (K, E ),
while p*~'c(€) ¢ Hi, (K, E ).

Consider Ly (p?c(£)) and Ly (p?*~'c(£)), the field extensions of L; which are fixed
by the subgroups pairing to zero in (24) with p’c(£) and p*~'c(£), respectively. The
extension

Le(p*~'e®) € M

Li(p'e(®) <M
is ramified at £ because pU~'c(¢) is ramified at this prime, and
Gal(Li(p"~'c(0))/Li(p'c(8))) ~ E,.

So, we have the following.

)] The Galois groups Gal(MLkH/Lk(p”c(Z))) and Gal(Lk(p”’lc(E))/
L ( p“c(Z))) are %;-modules. (In each case, the natural action of
Gal(Lk (p”c((f))/K) factors through 4;.)

(2 Gal(Ly(p''c(0))/Li(p¥c(€))) ~ E,, is an irreducible %;-module (since %
is assumed to be not solvable).



SOLVABLE POINTS ON GENUS ONE CURVES 409

3 The extension ML, ; /Ly (p'c(£)) is unramified outside pN since the elements
of the Selmer group as well as p-power torsion points are unramified at primes
of good reduction which do not divide p. Moreover, (pN, £) = 1.
The above imply that ML, and L;(p®~'c(£)) are disjoint over Li(pc(£)).
At this point, we need to consider the tower of field extensions:

MLy
‘ Li(p''c(0))
Li(o(y), pUc(£))
Li(p'e(e))

))/
\ /

L, = K(E,»)

Lk <¢(yK

Choose g € Gal(Li(p''c(£))/Li(p'c(£))) so that g*™' # 1. Let &5, ..., ¢, be

primes of QQ so that

D th; € Frob,,(ML;,/Q) if p'c(£)(h;) # 0; and

(2)  th] € Frob,(MLi;1/Q) and tg € Frob, (Ly(p"~'c(£))/Q) if p*c(€)(h;) =
0 (since we can choose /] so that p¥c(£)(h;) = 0 by applying the construction
of (26) while replacing H by Gal(MLy /Li(p*c(£))).

Consider the cohomology classes c(¢;) fori = 1,...,¢t and c(£¢;) for i =
2,...,t,where £; = £. Proposition 1.4.1 implies that since H" /It >~ Z/p°Z and h;
is maximal, d(¢;) has order p" in HI(K,\,., E)«. Then since v > ko, Proposition 1.2.6
allows us to conclude that
(1)  prd(;), = 0in H'(K,, E) for all primes v # A;;

2) pred(€;);, # 0in H'(K;,, E) ¢ fori > 1;

3) ped(£e;), = 0in H'(K,, E) + for all primes v # A, A;, Proposition 1.2.6(1);
and

4 pk”d(M,-)M # 0 in Hl(KM, E),x for i > 2. By Proposition 1.2.6(2),
pred(te;);,, # 0 in H'(K;,,E),« if and only if P, ¢ p*ME(K,,), which
is equivalent to p"”c(@)li # 0. We know that p”_lc(ﬁ),\i # 0 because of the
way we have chosen £5, ..., £,.Since kg < v—1, it follows that p"”c(Z)Ai # 0.
So, we can conclude that p*d(¢¢;),. # 0in H'(K;,, E) .

Furthermore, the classes p*c(¢;), p*c(¢f;) € HéelQ(K, E,¢) lie in different
eigenspaces of H'(K, E,) for the action of 7, and consequently, even if i = j,
their images in HI(KKZ“, E ) are not multiples of one another.
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1.5 Conclusion

In §1.4, we have chosen a set of auxiliary primes Q that satisfy all the properties
for auxiliary primes that are required in Theorem 1.1.7(ii). In addition, we have also
constructed a set of 2t — 1 (¢ = #Q) ramified classes ¢y, ..., ¢y, so that if

aer - +ay 1,1 =0 inHgy (Ksuo/Hs K, Ep) forg; € Z,

then @; = 0 (mod p) for i > 1 because all the ¢; are ramified classes, and the ones
that belong to the same eigenspace of H'(K, E,) for the action of t have relatively
prime ramification.

Consequently, Theorem 1.1.7 allows us to see that the cohomology classes that
we have constructed together with y € E(K) generate a subgroup of H'(K, E )
containing Hi,,(K, E ). Finally, since we have allowed any p > 5 and Kolyvagin’s
cohomology classes come from points of E defined over solvable extensions of QQ, we
have the following.

THEOREM 1.5.1
Every element of 111(E/K) becomes trivial after a base change by a solvable extension

of Q.

Theorem 0.0.1 of the introduction follows as ITI(E/Q) classifies curves of genus one
whose Jacobian is E and which have points in all the local fields.

2. General rank case

2.1. Local results
In this section, we let K be any number field. Let v be a prime of K, and denote by
K,, k,, and @, the corresponding local field, residue field, and local ring of integers,
respectively. Consider the group E(K,)/p™E(K,) for some m € N.

Let g be a prime of K which divides p, and let E'(K,,) be the group of points of
E(K,,) which map to zero when E is reduced modulo p.

LEMMA 2.1.1
If #E'(K,) p~ = 0, then we have

#(E(Ky,)/p™) = #E(K,) - #(E'(K)/p").

Proof
The proof of this lemma is exactly the same as the proof of Lemma 1.1.1. ad
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If v is a prime of K which does not divide p, we know that El(Kv)p = 0 and
E!(K,)/p"E!'(K,) = 0. Since the proof of Lemma 2.1.1 does not use the fact that g
divides p, we also have the following lemma.

LEMMA 2.1.2
Let v be a prime of K relatively prime to p and m € N, then

#E(K,)/p"E(K,) = #E(K,) .
We now prove an additional result for the primes of K which do not divide p.

LEMMA 2.1.3
Suppose that E(K,) ,~ = E(K,) n, where v is a prime of K relatively prime to p and
m € N. Then we have E(K,),» >~ E(K,)/p™E(K,) under the natural inclusion.

Proof

Since E(K,),» = E(K,),n, the inclusion of E(K, ) ,» into E(K,,)/ p"E(K, ) is injective.
Lemma 2.1.2 implies that these two groups have the same size and are, therefore,
isomorphic. o

2.2. The structure at the base level
Let p be a prime of good ordinary reduction, and let K be an imaginary quadratic
extension of Q. We want to understand the structure of the Selmer group Hg (K, E ).

221
In this section, we assume that p is a prime of good ordinary nonanomalous reduction;
that is, the reduction of E modulo p has trivial p-torsion over the residue field of Q
at p.

We now fix the number field K to be an imaginary quadratic extension of QQ of
discriminant Dg # —3, —4 so that the conductor N of E splits and p ramifies in K/Q.
Denote by X the set of primes of K, where E has bad reduction together with ¢, the
unique prime of K which divides p.

We continue to assume that Gal(K(E,)/K) is not solvable. Hence, we know that
the natural image of this Galois group in PGL,(IF,) is either the full group or is
isomorphic to As (see [S2, Proposition 16]).

Since Hi, (K, E,~) is finitely generated, we know that

Hg, (K, E,~) =~ (Q,/Z,)" @ (finite abelian group)

for some r € N. Choose k € N so that p* 'H{, (K, E,~) = Hi,(K, E,~)™, the
p-divisible subgroup of Hg (K, E ). Let sy, ..., s, € Hg, (K, E, ) be generators of
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Hzéfl(K, E,~) i, the p*-torsion of Hgy (K, E,~)™. It follows that each s; has order
p.

Suppose that Q is a set of primes of (Q with the following properties for g € Q:
1) q is inert in K/Q;
i qg¢x -
(i)  E(K,)p~ = E(K,),#; and
>iv) Héel(K, Ep) < ]_[q 0 HI(K;“‘/Kq, E,+), where K;“r denotes the maximal

unramified extension of K,,.

Then we suppose that X' = X U{A; | 1 <i <r},where{}; |1 <i <r}isa
set of primes of K not in ¥ U Q such that
(a) E(K))pe = E(K_A)pzk forall A € {A; |1 <i <r};and
(b) the local cohomology class (s;);,, has order p*ifi = jandis trivial if i # j.

Asin §1, Ky (resp., Ky/) denotes the maximal extension of K which is unram-
ified outside X’ U Q (resp., ¥’). Recall that

Lo [HEM/KLE, veQ
" T H'(K,, E»), vey.

As before, L* and Sel denote the exact annihilators, respectively, of L, and Sel,
in the pairing

H'(K,,E,x) x H(K,,E,») = Q,/Z,. (30)

We now have the following lemma, which is very similar to Lemma 1.1.3. The
key difference lies in the fact that » may not be 1 in this case.

LEMMA 2.2.1
The group H'y.(Ksiuo/K, E,x) is contained in Hgy (K, E 1).

Proof
By properties of local duality, we know that

L=

v

Hl(Kl‘fm/K,,, E,»), veQ,
0, vex.

This implies that H'L«(Kyuo/K, E,x) C Hi, (K, E,x). By the choice of k so
that p*~"H{ (K, E,~) = H, (K, E =)™, we have an exact sequence

0 — HL, (K, Epx) — HL, (K, Ex) 2 [T (Z)p*Z)p*s; — 0. (31)
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We observe that
P'H'L-(Kzug/K, Epx) € (s1, ..., 8,)

by our choice of classes sy, .. ., s,, and all we have to show is that the left-hand side
is actually zero. This follows from the assumption that there exists A € X'\ ¥ such
that p*~Ls; # 0in H'(K,, E, ), as this implies that

(s1, ... 8) NH'L:(Kpug/K, Epx) = 0
and concludes our proof. O

PROPOSITION 2.2.2
The following sequence is exact:

0 — H't(Kzuo/K, Epx) — H't,(Kzug/K, Epx)

0.

——— [T, H' (K. Ep)/L,

Proof

The proof of this proposition is the same as that of Lemma 1.1.5. The assumption
that E/K has analytic rank 1 enters the proof of Lemma 1.1.5 only through the use of
Lemma 1.1.3, which in the general rank case is substituted by the same result proved
in Lemma 2.2.1. O

Observe that
H'L(Ksuo/K, Ep») = H' (K5 /K, E )
and
H'L,(Kzuo/K, Ep) = H' (Kpug/K, Ep).
Consequently, Proposition 2.2.2 gives us the exact sequence

0

H'(Ks /K, E, )

HI(KE/UQ/K, E,x)
- l_[qu Hl(Kfl’ E,»)/Ly — 0.

The second and third properties of the primes in Q and Lemma 2.1.3 imply that for
q€Q,

L =L, = H'(K"/K,, E;») ~ E(K,)/p™B(K,) ~ E(K,)» ~ Z/p"Z & 7./ p' L.
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Then using the nondegeneracy of the pairing (30), we conclude that
H'(K,,E,»)/L, ~Z/p*"Z & 7/ p*Z. (32)

We now show that when we restrict the above cohomology groups to the
Selmer condition for A € X', we end up missing exactly r generators of

[1,co H'(Ky, E2)/L,.

PROPOSITION 2.2.3
The cokernel of the last map in the exact sequence

0 — HYy(Ks /K, Ej) — Hly (Kyuo/K, Eyn) — [T, H' Ky, Ep)/L,

SelQ

is isomorphic to (] p* 7).

Proof
The following proof is essentially the same as the proof of Proposition 1.1.6, except
that in this case, we may have r # 1.

Recall our notation that Selg imposes no local condition at primes in Q.
Set W = [, H'(K,, E,2)/Sel,(p*), where Sel,(p*) denotes the image of
E(K,)/p*E(K,) in H'(K,, E,x). By applying the snake lemma to the commutative
diagram

0 — H'(Ky /K, E,x) — H'(Ksuo/K, Epx) —> quQ H'(K,,E»)/L, — 0

g g l

0 W W 0 0

we get

H'(K,, E,»)/L,

|

coker ¢;

0 —_— Héel(KE’/K’ Ep2k) — HéelQ(KE'UQ/K’ Epzk) — anQ

%

0 coker ¢,

(33)

Seeing the maps ¢, and ¢, as part of the corresponding exact sequences of Cassels,
Poitou, and Tate, we have

[ 12 i
H'(Kx /K, Eja) —> [],e5 H'(K,, Ej2)/Sel, (p*) — Hy,. (K, E)

| 1 | e

H!'(Kyuo/K, Epx) 2 [1,ox HU(K,, Ep)/Sel, (p*) 5 Hl, (K, E,»)

vex (Selg)*

Now, we need to study the maps v; since coker ¢; >~ im y; fori = 1, 2.
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As we saw in the proof of Proposition 1.1.6, Sel,(p*) = Sel*(p*) for all v.
Therefore, we have

Hi (K Epp) = Hig(KEpn)  and Higg (K, Ep) = Higo(K, Ej),

where Hg o (K, E,x) is the subgroup of Hg, (K, E,x) consisting of classes that are
locally trivial at primes in Q.

We know that Hg, (K, E,+) maps to H'(K!" /K, E+) under the localization map
for g € Q. Then by property (iii) of the prime ¢ € Q, we have the map

H'(K™ /K, Ep) — H'(K!™ /K, E %) is zero for all ¢ € Q.

This implies that Hg,, (K, E ) maps to zero in H' (K™ /K, E,x) for all ¢ € Q, and
therefore,

Héel(K’ Ep’() C Hée]Q(K’ EPZk),

We show that these two groups are equal. Let s € H§ (K, E,x) be an element
of order p*. Property (iv) of the set Q implies that there exists a prime ¢ € Q
such that the localization of p*~'s € HL, (K, E) at the prime g, p*~'s, # 0 in
Hl(Kq, E,+). Since s € Héel(K, E ), there exists y' € E(K,) such that s5,(0) =
o(y'/p*) — y'/p*. It follows that y' # py” in E(K,), and Lemma 2.1.3 implies
that y' = p*y” + e, where y” € E(K,) and e,x € E(K,)px — E(K,) 1. We
then see that p’'s € Hg (K, E,») if and only if i > k, which is equivalent to
Héel(K’ Ep) D HéelQ (K, Epx).
So, the right-hand-side square of (34) may be viewed as

[Toex H'(K,. Ej2)/Sel, (p™) > HE (K, E,x)

| |

[T,ex H'(K,, E,2)/Sel,(p*) 2 HL (K, E,)

and the map y : imyr; — im); is simply the restriction of an element of Héel(K, E )

to Hi, (K, E,+). We now show that kery ~ (Z/p*Z)".
In order to better understand the maps ¥; and y,, we consider the following
compatible nondegenerate pairings for v € ¥’

H'(K,, E,»)/Sel,(p*) x Sel,(p*) — Q,/Z,

2 l I Res,

—

Hgo (K. Epn)  x Hgy(K, Ep2) — Q,/Z,
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We know that p*H§ (K, E,«) = 0, and consequently, the order of every element of
im v, divides p*. We aim to construct a subgroup of im v, isomorphic to (Z/ p*7Z)"
because then p*s € ker y for all s € im v/, of order p*.

We have ensured that for each s € {sy, ..., s,}, there is a corresponding prime
L € X' — X so that p*~s; # 0 in H'(K;, E ). Consider Res;(s). The co-
homology class Res,(s) is of order p*. It follows that there exists an element
s; € H'(K,, E,x)/Sel,(p*) which pairs with Res;(s) to give a generator of
Z/ p*7Z. Consequently, we see that v(s}) has order p*. Furthermore, property
(b) of A € ¥’ — X implies that ¥, (s{)(s") = O for all s" € {sy, ..., s} \ {s}. It then
follows that

(Wi s € {s1,..., ) = (Z/p* L)

Since, by (31),
0 — (Z/p*Zy" — HL, (K, E») — Hy, (K, E ) — 0, (335)

we conclude that kery =~ (Z/p*Z)", which also shows that kery, >~ (Z/p*Z)" in
(33). This completes the proof of the proposition. |

PROPOSITION 2.2.4
The group H,, (K, E ) is isomorphic to (Z] p*Z)* , where t = #Q.

SCIQ

Proof
This is a generalization of Theorem 1.1.7(i).
Since p*'Hy, (K, E =) = HL, (K, E,~)", we can write

Hi, (K, Ep) = (Z/p*ZY x L) p™Z x - -+ x L] p™~Z,
where each m; < k. Let us consider the map

Hg,, (K, Epn) — [TH'(K,, E ). (36)
q€Q

The fact that H'(K,,, E,»)/L, =~ (Z/p*7Z)* for each ¢ € Q by (32), together with
Proposition 2.2.3, implies that

0 — HL, (K, Ex) — ng,Q(K, E,») — (Z/p*Z)* " — 0.  (37)

Just as in the proof of Theorem 1.1.7(i), we use sequences (35) and (37) to see that

im(nglQ(K, E,) — [ [H' K™, E,,Zk)> ~ (L) p* T
q€Q
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and

im(ngl(K, E,») — [ [H'K™/K,, E,,Zk)) ~ (Z/p‘Ty".
q€Q

Consequently, the map (36) gives rise to the exact sequence

0 Hy, (K5 /K, Ex) — Hiy (Ksug/K, Epn) — (Z/p*Z)* — 0.

Selg

Since we also know that #Hg,, (K, E,+) = p*', it follows that
Hg.y, (Kuo/K, Bpu) = (Z/p™ LY x Z/p™ L x - - x T/ p**"~ L,
and hence,
Hg,,, (Ksuo/K, Bp) = (Z/p* ). O

222
In this section, we assume that p is a prime of good ordinary anomalous reduction
(i.e., the reduction of E modulo p has nontrivial p-torsion over the residue field of Q
at p) and that it is inert in K/Q. In this case, instead of H, (K, E p+), We must consider
a bigger subgroup of H'(K, E,+). The reason for this is that in the anomalous case,
the Selmer condition is not well behaved under taking invariants in a Z,-tower (see
§2.3.2). The only difference between H{, (K, E ) and this new group lies at the local
condition at g, the only prime of K lying above p.
Let Sel',(p*) be a subgroup of H'(K,,, E+) so that
(i) Sel,(p*) € Sel',(p*); and
(i) #(Sel’( 5/ Sel( p*)) is bounded by a constant that does not depend on .
The group Sel', (p¥) is defined in §2.3.2. Consider the exact sequence

0 —> E(K,), —> E(K,) 41 —> EK,), — H'(K,,E) = H'(K,, E ).
»)p p)p ©)p s Lop s Lpl

As we see in §2.3.2, Sel',(p¥) = ¢; 'Sel',(p**!), and the size of the group Sel’, (p*)/
Selp(pk) does not decrease as k — 0.

In addition to the condition that p*~'H{, (K, E =) = H§, (K, E,~), in the case
when p is a prime of good ordinary anomalous reduction, we also assume that

p* > #(Sel',(p*)/Sel,(ph)).

It follows in the same way that Héelg(K, E) ~ (Z/p*Z)*, where t = #Q. In

addition, we have HéelQ (K,Ex) € Hé% (K, E,+), and by computing the sizes of these



418 CIPERIANI and WILES

two groups, we see that
#Hgey, (K, Epe) /#Hgy, (K, Eje) = #Sel o (p") /#Sel, (p1).
We have then proved the following proposition.

PROPOSITION 2.2.5
The group Héelb (K, Ex) is isomorphic to (Z] p*)* @ Ngq, where Nq is a finite group
of order bounded independently of k.

2.3. Generalized unramified-under-ramified principle

Let us consider f(oo = Un>1 K[p"], where K[p"] denotes the ring class field of K
of conductor p”. Then the g;roup Gal(IZOo /K) is isomorphic to Z, x A, where A is
a finite abelian group. The unique Z ,-extension contained in IZOO is denoted by K,
and called the anticyclotomic Z p-extension. Let K,, be the subextension of K, of
degree p" over K, and denote by K[p*™] the minimal ring class field of p-power
conductor containing K,,. (Throughout this section, we use K,, in this sense. Note that
in §1, we write K, for the ring class field of conductor r, but this should not cause any
confusion.) The motivation for using the anticyclotomic Z ,-extension is that we can
construct cohomology classes, which are introduced in §2.5.1.

2.3.1
In this section, we consider the case where p is a prime of good ordinary nonanomalous
reduction. Recall that in this case, we choose the extension K/Q so that p ramifies
(see §2.2.1).

Choose ng so that
1) P "Hg (K, Ex) = Hg, (K, E=)"; and
2) Gal(K(E,»+1)/K(E,»)), viewed as a subgroup of GL(2, Z/ p"™'Z), consists of

all matrices of the form

(1 + p'a p"b

fora,b,c,d € Z/pZ
p'c 1+ p'd

for all n > n,. Serre [S2] has shown that the index of Gal(K(E,+)/K) in
GL(2,Z/p*7Z) is finite and depends only on E and K. This implies that
condition (2) is satisfied for some big-enough n,. (Recall that we are assuming
that E does not have complex multiplication.)
We fix any n > n, and consider the Selmer group Hg (K,, E,m ), where m,, > n,
the sequence {m, },en is strictly increasing, and E(K,, )~ C E(K,,),n for all primes
v, IN of K,;, where K,, denotes the completion of K,, at v,.
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Suppose that Q,, is a set of primes of (Q with the following properties for g € Q,:

(1) q is inert in K/Q;

(i) g ¢ o

(i)  E(K,,)p~ = E(K,,),m , where g, denotes any prime of K,, above g and K, is
the completion of K,, at ¢,;; and

(iv)  HiyXK,, Em) — [0, H'(K,.(9)" /K,(¢), Em ), where
H'(K,.(9)" /K, (q), Epm) := D, H' (K4 /Ky, , Epn) and K2 denotes the
maximal unramified extension of K, .

Denote by G,, the Galois group Gal(K,,/K), and denote by ¢ the number of
rational primes in Q,. (A similar notational remark applies to G,,, as was made earlier
forK,.In§l1, G,, was Gal(K,, /K), and K,, referred to the ring class field of conductor
m.) When choosing Q,,, we ensure that its size does not depend on 7.

PROPOSITION 2.3.1
The following holds for allm < n andk < m,:

#Hg, (K, Ept) = #(Z/ p*ZIG ).

Proof
‘We know that

Hypo (Ko Ep) = Hyy (K, ) € Hy(Ky, Epm) = [ | H' (Ku(@)™/Ko(q), ),
q€Q,

which implies that Hlgy 1K,y Bp0) = HL o, (K, Bp) € HL o, (K, Ep) = 0.

SelQn SelQn
Then, as in [Wi, Proposition 1.6], we have

#E(K,,, ) »*

#H! ,
[H'(K,,, E) : Sel,, (p¥)]

Seig, Ko Bp) = p™" [T #E(Kn(@) o 1]

q€Qy Vplvex

where E(K,,,(¢)) x = @qm‘q E(K,,) p+

Using the fact that k < m,, the properties of the elements of Q, imply that
E(K,, )yt = (Z/p*7Z)?*, and therefore, E(K,,(q)) ¢ >~ (Z/p*ZIG ,])*.

Using the fact that Sel, (p*) is its own exact annihilator under the pairing (30)
for all primes v,, of K,, (see the proof of Proposition 1.1.6), we deduce that

#H'(K,,, Ep) = (#Sel,, (pH))° forall v,,.
Lemma 2.1.2 implies that

#Selvm (Pk) = #E(Kvm )p" for lev €X \ {P},
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and consequently,

I HE(K,, ) ¢ .
1 . k -

v lveT\{p} [H'(K,,, Ep) : Sel,, (p9)]

Since E!(K,,,) = 0, , by Lemma 2.1.1 we know that #Sel,, (p*) =[Oy, : p*0y, ]

#E(K,,, )+ It then follows that

I1 HER )1 -1— ! _
LUK, Ep) < Sely, (pD] — 1110, ¢ pr0y,] '

We can now conclude that

#Hia, K, Bp) = [ [ #B(Kn(@) . = #(Z/p'ZIG, D,

q€Qy

where t = #Q,. O

PROPOSITION 2.3.2
The following is true for alln > n:

HéelQn (Ka Epmn ~ (Z/pmn Z)ZZ'

Proof

This statement follows from Proposition 2.2.4 if we can show that Q, satisfies the
properties of the set Q stated in §2.2.1. The elements of Q, are chosen to be rational
primes of good reduction and different from p which are inert in K/Q. Furthermore,
since elements of the set Q,, split completely in K,, /K, it follows that

E(K,)~ = EK, )~ = E®y)pm.

Therefore, the only property that remains to be verified is that the primes of Q,, control
Hg, (K, E ) or, equivalently, that Hi, (K, Em) — ]_[q cQ, H! (K" /Kg, Epm) is
injective. This last property follows from the fact that we are assuming that E(K,,) y~ =
0, which implies that

Héel(K7 Epm”) — Héel(Kn’ Ep'”" )7
and consequently,
Hg 0, (K, B ) <> Hg o, (K, Epn) = 0.

Since Hgyo, (K, Epm ) = ker(Hgy(K, Epm) = [, o, H'(KS"/Ky, E i), this con-

cludes the proof of the proposition. O
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We now relate the groups H., (K,,, E pm ) to each other as n grows.

SeIQ
PROPOSITION 2.3.3
The following holds for allm < n:

(Kna Ep”’" Gnl G (Km, E pmn )

SelQ SelQ

Proof
We know that E(K,,), = 0, and consequently,

(Knv Ep”’" )G”/Gm - H (Km7 E "'”)-

SC]Q

We need to compute the image of Hg, (K, E,m)%/% in H'(K,,, E,m) for all

primes v,, of K,,.

SelQ

Let v, be a prime of K,, of good reduction which does not divide any
of the elements of Q, U {p}, and let v, be a prime of K, dividing v,,. Since
Sel,, (p") = H'(KY"/K,, , E,m), it follows that the image of HéelQ,, (Kyyy By )G/ G
in H'(K,,, , E, ) is unramified, or equivalently, it lies in Sel,, (p™).

Let us now consider primes v,, of K,,, where E has bad reduction. Our choice of
m, (such that E(K,,),~ C E,n ) and Lemma 2.1.2 together imply that E(K,, )/ p™" =
E(K,,)pm . Since

(E(K,,)/p™) "% = (B(Ky, ) )" = E(K,,, ) pme = E(K,,)/p™,

we see that the image of Hgyy, (K, Epni )/ in H'(K,, , Epn) lies in Sel,,, (p™).
Finally, we must con51der ‘the primes g, | p. We start by studying le E(Kpm) /p~.
We show that

Gun/Gm

(Lgn E(K,,)/p") = LimE(K,, )/ Pk, Vn>m.
k k

We have the exact sequence
0 — E'(K,,),~ —> E(K,,)p~
— E(K ) pe —> H! (K, ,Eloo) H! (Kp,» Epe), (38)

where E(Kpn) denotes the points of E over the residue field of K,,. Greenberg [G,
Theorem 2.8] has shown that Lim E(K,, )/ p* = ime, if p is a prime of ordinary
nonanomalous reduction. w

Since Gal(K, /Q,) is a dihedral group and E'(K,,) ~ 0, it follows that
E'(K,,)p~ = E'(Ky),~ = 0. Recall that since we are assuming that E has good

ordinary reduction at p, the action of Gal(K,,/Ky,) has the form (**

* .
0 X,l),wherex s an
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unramified character and € is the cyclotomic character. This implies that
HI(KW E..) = H'(K,,, E,.)%/". Furthermore, E(Kp)p = 0, and hence,
E(K ) pe = 0. Consequently, we have

Gn/Gnm

ime,, = (ime¢,) and E(K,, )y~ = E(Ky)p~ =0.

We now show that E(K,, )/p* = (E(K,)/p*)/%". Since E(K,,)x = 0, we
may conclude that E(K,,,)/ p* maps injectively into (E(K,,)/p*)%/%, and we may

conclude that the maps ¥ , used to define the direct limit Lim E(K,,, )/ p* are injective:
k
0 = E(K,, )pr/pkE(Km Ypeer —> H' (K, Epr) e gt (K, Epetr).

Let s € (E(K,,)/p")¢/% — (E(K,,)/p"). Since

k)Gn/Gm

(LimE(K,,)/p = LimE(K,, )/ p*,
k k

it follows that ¥ ,(s) = 0 or s € E(K,,, )/ p**" for some r > 1. In the first case,
s = 0 since ¥ - (s) is injective. In the second case, we know that p*s = 0, which
implies that s € E(K,,,)/p*.

We can now conclude that Hg,,

(Knv E pn )G n/Gn = H (Km, Epm,, . O

Selg,
LetR, :=Z/p™Z[G,], and let R’ = Z/pm“Z[G X ()], where t is an element of
Gal(K/Q) such that Gal(K/Q) = (r). We now consider the RY -modules

Xk, n) = (K, Epm) foralln <k.

SelQ

We inductively choose an infinite subsequence of X,, € {X(k, n) |k > n} by requir-
ing its elements to be compatible in the following way. (This is motivated by the
construction in [TW].)

The elements of the set y = {X(k, ng) | k > ny} are finite R’(J -modules. It then
follows that infinitely many X(k no) have the same RT -module structure. We choose
one element of this infinite compatible subset and denote it by

X,, = Hy

SelQ

(Kno s Ep”’“o )
We now consider the set
F g1 = { Xk, ng+ 1) |k = ng + 1 and X(k, ng) ~ X, as R} -modules}.

The elements of V,, 41 are finite RY | ,-modules, and therefore, infinitely many

ny+1
of them have the same R; 4+1-module structure. We choose one element of this infinite
0

compatible subset and denote it by Xy +1-
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We continue this process to obtain an infinite compatible sequence of modules
X,. Set I' = Gal(K/K), and then define the Z,[[I"]]-module

M = LimX,,
nzn0
where the maps are chosen inductively as above. (The maps are not defined in any
natural way on cohomology groups.)
Let .7 denote the Pontryagin dual of the module .#. We view A asa A-module,
where A = Z,[[T]] and T acts on .# through y — 1, where I' = (y).

THEOREM 2.3.4
The A-module . is isomorphic to A*.

Proof
By Proposition 2.3.3, we know that Hgyy, (Ky, Epm )" = Hgy, (K, Epm). One can
then see that ' '

Héel% K,Ep) = Héel% K, Epm)lpl = Héelen (K., Epm)"[pl,
and consequently,
Hg,, (K E,) = #[T, p] foralln = no.

This implies that

—

A /(p,T)y~H., (K,E,) foranyn > n.

elen
Since, as a A-module, A has the same number of generators as %/ (p, T), Proposi-
tion 2.3.2 implies that .# has 2¢ generators. It then follows that there is a surjective
map

v AY = .

In order to show that v is an injection, we consider %/ (p*, (1 +T)?" —1). On the
one hand, we know that

A"/(p*, A+ T — 1) ~ (Z/p"ZIG ).

On the other hand,

—

%/(pk, (14+1)" — 1) ~ Hg,, (K., E,) foranyn > mandng <k <m,.

Selgy,
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Proposition 2.3.1 implies that #Héele (K, Ept) = #(Z/ p*Z[ G, ])*, and conse-
quently, ’

#AY/(ph, L+ = 1) =/ (P, (1 + T — 1),

It follows that ker ¢ C (p*, (1 + T)?" — 1). Since k and m are not bounded, we have
shown that ker ¢y = 0, which concludes the proof of the theorem. O

232
In this section, we define the group Sel’, ( k) C HI(KM, E,«) and understand the
structure of Héel, (K., E,»n ) as n varies in the case where p is a prime of good ordinary
anomalous reduction. Notice that since p is inert in K/Q, Gal(K,, /Q,) is a dihedral
group, and consequently, E'(K, ), = E'(K,,), = 0. Since E(Km) o = E(kao)pm
for some ky € N, it follows that E(K,, )~ = E(Kg, ) p-

We start by defining Sel’, (p™°) C Hl(Kpn, E,~). Let us consider the exact
sequence

0 —> H' (K, /Ky, . EK,)p~) — H' (K, Epe) 25 H'(K,,, Epe).
The group Sel’, (p™) should have the following properties:
® Sel,, (p™) € Sel'y,, (p™);
(i) Yy ((Sel'y, (p=)9/n) = Sel'y, (p*); and
(iii)  the size of the group Sel’,, (p*°)/Sel,, (p) is bounded independently of m.
Greenberg [G, Theorem 2.6] has shown that Sel,, (p*°) = (ime€,)4;y, Where ¢,
is the natural map in the exact sequence

0 — B(Ky,)p~ — E(Kp,)px — H'(K,,, Ebe) —> H' (K, Epx). (39)
We set

Sel/pm (pDO) = U w,:,z(lm Gn)Gn/Gm s

n=m

and we prove that this subgroup of H! (K,,,» Ep~) satisfies the required properties.
The result of Greenberg that we mentioned above implies that Sel,,, (p*>) C
Sel’y,, (p™). Property (ii) translates to saying that

Gu/Gm
v (Upikame®@) ™™ = | Juih(me)®/on foralln > m.

k>n k>m

Since kery,,, € keriyy,, for any k > n > m, all we need to show is that

Yin(ime,) € ime; for any triple k > n > m. This is clear because one can see
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easily that the diagram

0 — E(Kp)pe — B(Kp)pe — H'(K, EL) % H'(K,,, E,~)

| ! ! [

0 — E(Ky,)pe — E(Ky,)pe — H'(K,,, ELL) = H'(K,, . Ep~)
is commutative.
We now need to prove that property (iii) holds. Since Greenberg [G, Theorem 2.8]
has shown that #(im ¢, /Sel,, (p*)) < #E(K,,),~, we can concentrate on bounding
#(Sell/pm (p*>)/ime,,). Applying the snake lemma to sequence (39), we get

H! (K, B} /0 o (im )P0 — (B, ) /By, )pe) fim(g?” = 1)

H'(K,,.E}.) —"— ime, 0

where (g”") = G,/G.
Since H'(Ky, , E}~)%/9" = H'(K,,,, E ), it follows that

(im €,)/ % [, (im €,) = (E(K, ) p /E(K,, )~ ) im(g?" = 1),
which implies that
#(¥, 0, (im €)% fim€,,) < #ker Y - #(EKy, ) p).
Fixing mo > ko so that E(K,, )p~ = E(K, ),m, we deduce that
ker um € H'(K,,., /Ko, BKg, )p~).
and therefore,
#(Sell, (p™)/ime,) < #H' (K, /Ky, , E(Kg, )pe) - #(EK ) e /EK) ).

Finally, we see that the size of Sel'y,, (p™)/Sel,,, (p*°) is bounded from above by

#(EK,)~)" - #H' (K, /Ky, EKpy ) )-

This concludes the proof of property (iii).
Let us consider the sequence

0 — E(K, ) —> E(K,, )pe —> E(K,)p

(Pm,-
— H'(K,,,, E) =5 H'(K,,,, E)~),
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and define Sel’,, ( ph = qﬁnj’l,{(Sel;M (p*)). The exact sequence

vE,
0 — H'(K,,/K,,.E(K,,)x) — H'K,,,E») —> H'(K,,, E,)

allows us to compare (Sel', (p*))%/“» and Sel’y,, (p*).

We show that
) Sely, (ph)  Sely, (p):
() W, (Sely, ()% = Sely, (p); and
(iii) the size of the group Sel’, ( pk)/Selp,,,( p*) is bounded independently of m

and k.

We know that Sel,,, (p™°) C Sel’y,, (p*). Since Sel,,, (p" = ¢n:’1,{(Selp,,x(p°°)), it
follows that Sely,, (p*) € Sel'y,, (p").

Our next aim is to show that (¥} )~ (Sel', (p*)/“" C Sel'y, (p*) since the
opposite inclusion is obvious. We can see that

Gn/Gm

(el (1) = [, 4(Sel, ™)]™"" € g [(Sel, (™) "]

Notice that the following diagram is commutative:

H!(K,, ,Ep) —2 + HI(K,, , E,~)

l Yk om l Yim

¢n.k
H' (Kp” ’ Epk)G”/Gm - H! (Kpn > Ep”)G"/G’”

Furthermore, we know that W,Zyln(sel/p,,( p>))n/Gn = Sel',, (p™). We can then de-
duce that

G,/Gp Gn/Gm]

(wr]:,m)_l (Sel/gon (pk)) - (wrllcm)_l(ﬁ;]l( [(Sel;;” (poo))
= d)’;,lk 1//;:;1 [(Seli,)n (poo)) Gy /Gm]
= d),;,lkSCl;)/” (poo) — Sel/m”(pk)'

We now show that the size of the group Sel’y, ( Y Sel,, ( pb) is bounded inde-
pendently of m and k. Let s € Sel’y, ( ") be such that

5 € (Sel'y, (p")/Sel, (p")) — {0}.

Consider @y, (s). If ¢, k(s) € Sel, (p™), then s € Selpm(pk) = d),;,lkSelpm(p""),
contradicting our assumption. It follows that ¢,, x(s) ¢ Sel, (p>), and therefore,
Omi(s) € Sel'y, (p>)/Sely,, (p>), which implies that

#(Sel'y,, (p")/Sely,, (p")) < #(Sel'y,, (p™)/Sely,, (p™)).

This concludes the proof of the properties on Sel’, (p*).
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Let us choose Q,, so that it satisfies the first set of properties (i)—(iii) that we
required in the beginning of §2.3.1 and so that

Hiy Ky, Epr) = [ | H' (Ku(@)™ /K (q), Ep).
q€Qy

In addition to the conditions that we have already put on ny, in the case when p
is a prime of good ordinary anomalous reduction, we also require that

#(Sel'y, (p™)/Sely, (p™)) < p™ forallm € N.
‘We then know that for all » > 0 and k > n,,

Hyey, (Koo Ep)/#Hsgg, (K, Ep) = #(Sel'y, (p)/Sel,,, (p1) < p™

Since, in the proofs of Propositions 2.3.1 and 2.3.2, we have not assumed that p
is nonanomalous or even ordinary, we have

Sey (K, Ep) = #(Z/ p*ZIG,, )* - #(Sel y,, (p*)/Sel,,, (p1)) (40)
forallm <mandny <k <m,, and
#Hg% (K, Epm) = #(Z/ p"™ Ly - #(Sel o(p™)/Sel,(p™)) foralln > ng. (41)

We now come to the reason for which we need to consider H§,, (K, E ) instead
of H, (K, E,m ). As in the proof of Proposition 2.3.3, we can see easily that

HSel’

QnU{p}

(K, Ep”’" )G”/Gm = Héel’ (Km’ Ep'”" )-

Since we have ensured that (¥ )~ (Sel’ (p"m)) oG = Sel;, (p™), the following

n,m
result holds true.

PROPOSITION 2.3.5

We have H. , (K,,, Ep,,,,l)Gn/Gm —H!

Sely, (K, Epn) forallm < n.

Selg,

Let us consider the module .#, that is constructed in the same way as in the ordinary

Sel, (K, Epn) for k > n instead of Hgyy, (K, Epm).
k

In this case, the structure theorem is the following.

nonanomalous case by using H!

THEOREM 2.3.6
The A-module M , is pseudoisomorphic to A*.
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Proof

Let 5o denote the number of generators of N defined in Proposition 2.2.5. Conse-
quently, the number of generators of .#, is 2t + sy. By the structure theorem for
finitely generated A-modules, we have an exact sequence of the form

0—F — M, — NOAFi D DA/f, — F, —> 0,

where f; € A, F; is a finite group and r, d € N.
Proposition 2.3.5 implies that

o —

%a/(pk, (14+7T)" — 1) ~H,, (K, Ex) foranyn >mandng <k <m,,

Selbkl
and by (40), we know that
#Z/P'LIG ) < #Hgy (K, Ep) < #(Z/p"LIG, D - p™.

It follows that d = 2¢, and A/f; = O for all i. This concludes the proof. O

2.4. Choosing the auxiliary Q,
24.1
In this section, we assume that E has good ordinary reduction at p. Recall that the
auxiliary primes g € Q,, are required to have the following properties:
1) q is inert in K/Q;
i) g¢% B
(i)  E(Kg,)p~ = E(Ky, ), , where g, denotes any prime of K,, above g; and
(v)  HigK Epn) <> [0, H'(Ka(@)"™ /Kn(q), Epme), where
H'(K,.(9)"/K.(q), Epm) = B ol HI(K;fl1r /Kg,, Epm) and KP™ denotes the
maximal unramified extension of K, .
We prove the existence of a set of primes with these properties and give a method
for constructing such a set. Let us start by showing how we can choose the primes of
Q,, so that

Hg, (K, Epmn) <> ]_[ H' (K, (@)™ /K.u(q), E ).
q€Qn

The kernel of the above map is Hg o, (K, E,m ). This group is trivial if and only
if its invariants under G, are trivial. Since Hg_q, (K,, Epn )" = Hg o, (K, Epm ) by
Proposition 2.3.3, we aim to find Q,, so that H;elQn (K,E,m)=0.

LetL, = K(E,m), 9, = Gal(L, /K), and consider the exact sequence

Res

0 — H'(%,,Epn) — H'(K, Epn) ~= H'(L,, Em)?". (42)
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Since H'(%4,,, E,mn) = 0 for all n (see Proposition 1.3.1), the above diagram
implies that

H'(K, E,m) < H'(L,, Epm)? = Homg, (Gal(L, /L,), E,m).
We then have the %, -pairing
H'(K, E,m) x Gal(L, /L,) — E .. (43)

Let M,, be the fixed field of the subgroup of Gal(L, /L,) which pairs to zero with the
finite subgroup Hg,,(K, E ) of H'(K, E ). Consequently, the %,-pairing,

HL, (K, E,n) x Gal(M, /L,) — Em., (44)

is nondegenerate.

LetH, = Gal(M,,/L,,). The element t € Gal(L,/Q) denotes a complex conjuga-
tion; it acts on H,,. We extend t to a complex conjugation in Gal(M,,/Q), and we may
assume that these choices are compatible as n varies. The nondegeneracy of pairing
(44) implies, in particular, that H,, has odd order. So, H,, splits as a direct sum of the
eigenspaces for the action of 7, H, = H” @ H, . Furthermore,

HY =H"' = {t'hth = (th)*: h e H,}. (45)

PROPOSITION 2.4.1

Let s € Hi (K, E,m ). Then the following are equivalent:

€)) s =0;

2) [s, p] = 0 for all p € H,,, where [, ] denotes pairing (44); and
3) [s, p]1 =0 forall p € H.

Proof
See Proposition 1.3.3. O

Since the minimal number of generators of H;" does not depend on n, Proposition
2.4.1 implies that we can choose hy, ..., h, € Hf sothat H' = (hy, ..., h;) and

[s,h;]=sCh;))=0, Viell,...,t}=s5=0, (46)

for any s € Héel(K, E,m) = Héel(K,,, E )On.

PROPOSITION 2.4.2

If s € Hg,(K, E,m), p € GalM,,/L,), and X is a prime of K not contained in % such
that Frob, (L, /K) = {gog~' : g € 4,}, then the following are equivalent:

(D) [s, 0] = 0 for some o € Frob, (M, /K),

2) [s,0] =0 for all o € Frob,(M,,/K), and

3) s, =0inH(K;,Epm).
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Proof
See [Gr, Proposition 9.6] or Proposition 1.3.4. O

PROPOSITION 2.4.3

Suppose that H = (hy, ..., h,), and let Q, = {1, ..., £} be a set of t primes in Q
so that Froby,(M,,/Q) = th), where (th})* = h; € H}' for each i. Then the natural
map

¢, - Hyg Ky, Epn) — [ H' (Ku(@)™ /K(q), Epm )

q€Qn
is injective.
Proof
Suppose that s € Hi,(K,, Epm )% = Hi, (K, E,n) is in the kernel of ¢, . Then by
Proposition 2.4.2, [s, Frob,] = 0 for each A a prime of K above £ € {{;,...,¢,}.

So, we have [s, h;] = 0 for each i, and consequently, [s, H'] = 0. Thus s = 0
by Proposition 2.4.1. It follows that Hg o, (K,,, E,m )" = 0, which is equivalent to

Hg 0, (K, Em ) = 0 and concludes the proof. O
By choosing the set Q, in this way, we make sure that its size does not depend on #.

242

We now show how to ensure that the auxiliary primes g € Q, have the property that
E(Ky,)p~ = E(K_qn) pm . Since any rational prime different from p which is inert in
K/Q splits completely in K[p™] for any m, it follows that E(K,,),~ = E(K(g)),~.
(Here we have written K(g) for the completion of K at ¢ to avoid confusion with K,,,
the nth-layer of the anticyclotomic Z ,-extension, defined at the beginning of §2.3. In
§1, K(g) was written in the more standard way as K,.)

Consider the following two extensions of L,,:

Mn K(El;m/,ﬂ )

L,

These extensions of L, are disjoint (see §1.3.2). Assumption (2) on n, (in
§2.3.1) implies that there are elements of Gal(K(E,+)/L,) with no fixed points
on Epmnﬂ /E[,m,, .
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Now, pick elements Ay, ..., h, € H' so that H = (hy, ..., h,). Then each
h; = (th})* for some h, € H, by (45). We can extend each th/ to an element of
Gal(M, K(E n+1)/Q) in such a way that the restriction of (t/})* to Gal(K(E ym+1)/L,)
has no fixed points in Em.+1/E,m . Finally, we can choose primes £; € Q for i =
1,..., 1t so that

Froby, (M, K(Em+)/Q) = th.

It then follows that:

(1) Héel(Km Ep”’”) — quQ” HI(Kn(q)um/Kn(CI)» Ep"’") for Qn = {Zla AR Et};
and

(i) E(K;,)y~ = E(K},),m, where A, is any prime of K,, above £ € Q,.

Remark 2.4.4

In the case when p is a prime of good ordinary anomalous reduction, the process of
choosing the set Q, is exactly the same, except that the Selmer condition must be
replaced by the less-restrictive Sel’.

2.5. Construction of cohomology classes

25.1

We have chosen K so that N, the conductor of E, splits in K/Q, N = .4"./". For any
positive integer f prime to N, we can consider x; = (C/05, C/.A75) € X,(N), where
(s denotes the order of K of conductor f and .4y = 4N (;. Fixing a parametrization
7 : Xo(N) — E which maps the cusp at oo to the origin of E, we define the Heegner
point y; = m(x;). The Heegner point y; is defined over the ring class field of K of
conductor f, K[f]. Then we define , to be the trace of y i from K[p*™] to K,,.

We now describe a natural generalization of Kolyvagin’s cohomology classes
to ring class fields (following [BD]). Let r be a squarefree product of primes £|r
satisfying the following conditions:

@) £ is relatively prime to pNDg; and
(ii) Froby(K(E,v,)/Q) = .

Letky < n < n’, where K, = Ko, NK[1]. Then we denote by K, [r] the maximal
subextension of K, K[r] which is a p-primary extension of K,. We now define «,(r)
to be the trace of y, xm over K[rp*™]/K,[r]. (Recall that k(n) was defined at the
beginning of §2.3).

Let G,, = Gal(K,[r]/K,[r] N K,K[1]), and let G,, = Gal(K,[€¢]/K,[¢] N
K,K[1]). By class field theory, G,, = He\r G, and G, ~ Z/p™Z for
ng = p®% Y. Consider D, := Y ' io; € Z/p™Z[G,.,], and consider D, :=
]_[w D, € Z)p™ZIG, ] (with D; := 1). One can then show that D,«,(r) belongs
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to (E(K,[r])/ p")C (see [BD, Lemma 3.3]). It follows that

m gn,r
K, (10K, K(1)/K, Dr ot (r) € (E(Kn[r])/l’ ) ;
where ¥, , = Gal(K,,[r]/K,). We now consider the commutative diagram

0

H'(K,,[r1/Ky, E)

Inf
¢

00— E(Kn)/Pm” E(Kn) Hl (Kn 5 Ep'”“ ) Hl (Kn s E)p’”'t 0
l Res l N Res
A T |
0— (E(Kn [r])/P ”) — H (Kn [l"], Ep”"l o —— H (Kn [l"], E)[)mn
(47)

Let ¢,(r) € H'(K,, E,m) be so that

& (tr, 1r1nK, K111k, Drota(r)) = Res(cu(r)),

and let d,,(r) be the image of ¢, (r) in H'(K,,, E) . Inparticular, Res(c,(1)) = ¢ (o).

These generalized Kolyvagin cohomology classes have the following properties.

) Let —e denote the sign of the functional equation of the L-function of E/Q,
and let f, be the number of prime divisors of r. After extending 7 to a complex
conjugation in Gal(K,,/Q), we see that T acts on o, and Ta,, = €g"'at,, + B,
with B, € E(K,))iors, g @ generator of Gal(K,/K),and i, ; € {0, ..., p" — 1}
Moreover, the complex conjugation t acts on H'(K,,, E ,m ), and we can deduce
that Tc,(r) = €.8" ¢, (r), where €, = (—1)"e and i, € {0, ..., p" — 1}.

2) If v is a rational prime that does not divide r, then d, (r),, = 0in H'(K,,, E) pn
for all primes of K, v, |v.

(3)  LetH'(K,(¢),Em) = [T, H'(K;,, E,m), and define res; to be the local-
1zation map

res; : H' (K, Epn) = H' (K (€), Epmn ).

Recall that E(K,,(£))/p™ = Hknli E(K,,)/p™. Then if £|r, there exists a
G ,-equivariant and t-antiequivariant isomorphism

Yo H'(K,(0), E) ,,, — E(K.(0)/p™

such that ¥, (res, d,(r)) = res,(c,(r/L)).



SOLVABLE POINTS ON GENUS ONE CURVES 433

4@ We have R, o, C R, 1,41. In addition, R,c,(r) C R,11¢,41(r), and conse-
quently, R, d,(r) C R, 41d,41(r).
Let us start by showing that R, C R, j,41. Since we have assumed
that p > 3 ramifies in Gal(K/Q), K[p"1/K[1]is cyclic of order p". Therefore,
k(n) =n — ko forn > ko, and k(n) = 0 for n < kjy, where pk(’ is the order of
the Galois group of the intersection of the maximal Z ,-extension of K with the
Hilbert class field of K, over K. Perrin-Riou [Pe, §3.3, Lemma 2] has shown
that for any » € N prime to p, we have

Ap Yrpntt = Yppn + UK prt2) /K rpr+1) Yrpr2 forn > 0,
(ap — 8)yr = trkppykiryrp for some g € Gal(K[r]/K),

where a, = p + 1 — #E(IF ).
Setting r = 1, this implies that

ApQlyy1 = Oy + g, /K, 1 TOrn > ko,

(ap — 8oy, = 0Ky 1 /Ky Oo+1 for some g € Gal(Ky,/Ko).

Since ay(a, — 1) # 0 (mod p), a, — g is invertible in Z,[Gy,] for any
g € Gy, = Gal(Ky,/Ko). This proves that R, «t, C R,41,,41 for n = k. This
result is trivial for n < ko since o, = trg, sk, o, for all n < ko. Let us now

assume that o, = u trg,,, /k,®n+1 for some u € Z,[G,]. We can then see that

trKn+2/Kn+|an+2 =aply41 — 0y = (ap —u trKn+1/Knan+1)an+l-

This implies that R,y 0,41 C R, 420,14 and concludes our argument.

The proof that R,,c,(r) C R, 11¢,+1(r) is very similar. It suffices to notice
that Gal(K[rp*™]/K,[r]), Gal(K, [r]/K,), and consequently, D, := [Ty De
do not depend on n for n > k.

252
We now choose the first element of the set Q, satisfying the required properties and
such that the module of ramified cohomology classes which we can construct using
this prime is big enough at every level in a sense that becomes clear later.

Let us consider the module R,«,, which we view as a submodule of
Héel(K,,, E ). We know that R, is an R, ;-submodule of R, ;1. This allows
us to construct the direct limit of the modules R, «,,.

THEOREM 2.5.1
The Heegner module Lim R, «,, is not a torsion A-module.

n
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Proof

Let a, be the ideal of A so that R, >~ A/a,. Denote by m the maximal ideal of A.
Since A/a,[m] is a subgroup of Héel(K, E,), we can see that A/a,[m] is bounded
independently of n, and, consequently, so is A/a,/m. This implies that Lim A /a,

is a finitely generated module. If Lim A /a, is torsion, then there exists f € A such

that f (m) = 0 for all n. Let ¢t : A —> A be the automorphism induced by
(1+T)r~ (14 T)~'. It follows that f* € a, for all n.
Let us consider

| Ruers € H'(K,,, E ).

m=>ng

We can see that f* annihilates | J R, for every n. Since Cornut [C] and Vatsal
[V] have both shown that for  big enough, v, is nontorsion, we know that |_J R, o,
is a nontrivial submodule of H'(K,,, E p~) for almost all 7.

Let us assume that for infinitely many k > n, there exists r;, € N prime to p such
that o, and rpo 1 are defined over K. This implies that

m=>n

m=>ng

P = g, /K 01 = fireo

for some invertible element f; € A, and consequently, o is divisible by p. The
assumption that this happens for infinitely many k > n implies that «,, is p-divisible
in E(K). Since E(K), = 0, it follows easily that «, is p-divisible in E(K,,) and,
hence, torsion for all n. (If o, = p'y, with y, € E(K,.,), say, then p'(y, — go¥,) = 0
for all gy € Gal(K,,,/K,), whence y, € E(K,).) This contradicts the results of
Cornut and Vatsal.

Since we are assuming that E(K,), = 0, we have shown that

n

gp 7lan —Q, S E(Kn) - E(Kn)tors

for almost all . It follows that there exists 7, such that

n

" a, —a, & pEK,).
This implies that the image of g”"~ &, —a,, in H'(K,,, E ,~ ) is infinite, and consequently,
so is the image of Za, ® Q,/Z, in H'(K,, E,~)/H'(K,_1, E ).

Let

T+ -1

U T A
T+ —1°¢

&
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Then if &, is coprime to f*, there exists a k such that p* € (f*, &,). This implies
that p* annihilates the image of | J,,,., Rn@, in H'(K,,, Ep~)/H'(K,_1, E,~), which
is false. It follows that &, and f* have a common factor for almost all #, and hence,
f=0. O

m=>n

In order to control the size of the module of ramified cohomology classes which we
construct, we need to use our knowledge of Lim R, «,,.
—

For each h, € Gal(L_,,/KnLn) - Gal(L_n/Ln), we define a new R,-module
[Rpo,1(h,) as

i=p"
Ry, ) 1= | D 18 )(ha)] - ¢' such that ¢ € Ryary| & Homia (G, By,
i=1

where G, = (g) and [(g~'¢)(h,)] € E m is simply the evaluation of the class
gicath, € Gal(m/Kn(E,,mn )). The action of G, on this module is the one
induced from the standard action on Hom (G, E,» ), namely, by multiplication on
G,, (gf)(g1) = f(gg1)- The map R, — [R,,](h,) is seen to be an R,-module
homomorphism. By picking a basis for E ., we may view the right-hand side as R,’
and, hence, [R,a,](h,) as a submodule of R,>.

Let (hy)nen € Gal(Lo/Loo), where h, € Gal(L,/K,L,). Noticing that the dia-
gram

R,a,

[Ryo, ](Ry)

Roiictpp1 — [Rupicti1(hug)

is commutative, we deduce that we have the map

¥ : LimR, 0, — Lim[R, 0, ](h,).

n n

By choosing the basis of E,» compatibly as n grows, we view Lim[R, e, ](h,) as a
A-submodule of A2. -

We now analyze the image of . Theorem 2.5.1 implies the existence of a nonzero
map

¢ : A - LimR,a,.
Now, 7 acts on R,«, and LimR,,«,. Since ¢* — ¢ and ¢* + ¢ cannot be zero

simultaneously, we can assume that ¢ lies in one of the eigenspaces for the action of
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complex conjugation 7. Let 5o € (im(¢)")¥[p] — {0}. Observe that since ¢* = £¢,
so € Hi, (K, E,) is an eigenvector for the action of  on Hg, (K, E,,).

PROPOSITION 2.5.2
If so(hy,) #£ O for all n, then the image of the map W has nontrivial corank.

Proof
Since we have chosen &, € Gal(M,,/L,) so that sq(h,) % O for all n, we know that
im(y o @) # 0. We have the chain of A-modules

im(y o ¢) C im(¢) < A.

Since all nonzero submodules of A have rank 1, it follows that im(ys o ¢) and,
consequently, im(y) have nontrivial corank. |

We now choose compatible /2, € Gal(M,,/L,)* (where + denotes the +1-eigenspace
for the action of complex conjugation t) so that (%,,),en € Gal(My, /L) and so(h,,) #
0. Then we fix a sequence of primes £, € Q so that th), € Frob,,(M,/Q), where
(th))* = h,.

We now establish the connection between the modules res,(R,a,) and
[Rya,1(hy). Let L, = K, (E), let 9, , = Gal(L, +/K,), and consider the exact
sequence

0 — H' (%4, Epx) — H'(K,,, Ej¢) k¢ H' (L, &, Ept). (48)
In order to show that the restriction map in the above diagram is injective, we start by
proving the following lemma.

LEMMA 2.5.3
The extensions Ko, /K and K(E+)/K are disjoint for all k € N.

Proof
We first prove that K,,/K and K(E,)/K are disjoint. If they were not, then
Gal(K(E,)/K) would have a normal subgroup of order p, and this would also be
a normal subgroup of Gal(K(E,)/K(u,)), which is either of order prime to p or
isomorphic to SLy(Z/ pZ.). Since PSLy(Z/ pZ) is simple, we conclude that K,/K
and K(E,)/K have a trivial intersection.

We now use induction. Assuming that K.,/K and K(E,)/K are disjoint,
we show that K,,/K and K(E,+)/K are disjoint. Since K,/K and K(E,)/K
are disjoint, Gal(K(E,)/K) acts trivially on Gal(K,,/K). On the other hand,
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K(E pe+1)/K(E p, ptpe+1) € Ad,, where Ad, denotes the adjoint representation of o :
Gal(K(E,)/K) — GL»(Z/ pZ).In addition, we know that K, /K and K(E ¢, p1,~)/K
are disjoint. It then follows that K, /K and K(E ,«1)/K are also disjoint. O

PROPOSITION 2.5.4
We have H'(%,, 1, E,#) = 0 foralln, k € N.

Proof
Since, by Proposition 1.3.1, we have Hl(go,k, E,)=0forall k € N, Lemma 2.5.3
implies that H'(%,, 4, E,#) = 0. O

COROLLARY 2.5.5
The restriction map

H'(K,, E,«) — Homyg, , (Gal(L, x /L, 1), Ex)
is injective.

Proof
This follows immediately from diagram (48) and Proposition 2.5.4. i

WesetL, =L, ,, =K,(E,), and Lemma 2.5.3 implies that
4, = Gal(K(E,m)/K) >~ Gal(L,/K,)) = G .
Corollary 2.5.5 gives us the %, -pairing
H'(K,, E,m) x Gal(L_;,/L;l) — Epmi. (49)

Let M/, be the fixed field of the subgroup of Gal(L, /L) which pairs to zero with
the finite subgroup Héel(K,,, E,m) of H'(K,,E »m ). We then have the nondegenerate
9, -pairing

HL, (K, Epm) x Gal(M., /L) — E .. (50)

PROPOSITION 2.5.6

If s € Hy, (K, Epm), p € GalM, /L)), and X, is a prime of K, such that
Frob,, (M, /K,,) = {gpg™" : g € 9,)}, then the following are equivalent:

(1) [s, o] = 0 for some o € Frob,, (M, /K,,);

2) [s, Frob,,] = 0; and

3) sy, = 0in H'(K;,, Epm).
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Proof

We have (1) < (2) because the pairing (50) is %, -invariant and s is fixed by %,,.
Now, we show that (2) < (3). Since s is in the Selmer group, s;, lies in the

image of E(K,(%,))/ p™E(K,, ), say, s,, = im(P; ). Then [s, 0] = (P, /p™)° ' It

follows that [s, 0] = Oifand only if P;, € p™E(L] (%)), where 4, is the prime of L]

above A, associated to . Therefore, (2) is equivalent to P;, € p"E(L], (An)) for all 4,

above A,,. O

We can now prove the following result, with ¢, and 4, as chosen after Proposi-
tion 2.5.2.

PROPOSITION 2.5.7
The R,,-modules res, (R, a,) and [R,a,1(h,) are isomorphic for every n > ny.

Proof

We have defined the map ¥, = ¥|r,q,, ¥n : Ry, = [Ry0,](h,). Let s € ker v,
which is equivalent to saying that s(gh,g~!) = 0 for all g € G,. Since s € R,a,, C
H., (K., E,m ), Proposition 2.5.6 implies that s(gh,g~") = 0 is equivalent to 5;, = 0,
where A, is the prime of K, above £, associated to gh,g~'. It then follows that
s € ker ¢, if and only if s € kerres,,. This allows us to see that

resg, (R,o0,) = Ry, / kerres,, >~ R, a0,/ ker ¢, >~ [Ry0,1(hy,)

and concludes the proof of the proposition. a

Let us consider c,(¢,,) € H'(K,, E,m) for all m > n. Starting with n = ng, we

perform the following steps:

(1) since the sizes of the modules R, ¢, (¢,,) are bounded by the size of R,,, we can
find an infinite set N,, C N so that

R,c,(£,,) are isomorphic R}-modules for all m € N,;

2) considerR,,, ¢, 1(¢,,) foralln+1 < m € N,,. Since the sizes of these modules
are bounded by the size of R, |, we can find an infinite set N,,,; € N,, so that

T

Rpy1€a41(£,) are isomorphic R} |

-modules for all m € N,,4;.

We then pick a sequence {k/ | n € N} so that k] € N,,. Property (4) in §2.5.1 of these
cohomology classes implies that

Rncn (Ek,;’) jad Rncn(zk;’H) - Rn+lcn+l(€k,’l’+l)
and gives rise to an injective map R, ¢, (€xr) — R, 11¢,11(€

/).

n+1
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In the same way as above, we now choose a subsequence {k, | n € N} of
{k/ | n € N} so that {R,d,({,) | n > ng} as well as {R,c,(¢,) | n > ng} are
compatible as R} -modules as n — oo in the following sense:

Rndn(ekn) = Rndn(ZkH]) g Rn+ldn+l(£k,,+1)a
and

Rncn(gk,,) =~ Rncn(ek,,H) g Rn+1cn+1(£kn+1)-

We can now construct the A-modules LimR,c,(£;,) and LimR,d, (¢, ). We stress
that these are created using noncanonicalﬁljections whose eatence is guaranteed by
the pigeon-hole principle above.

Using §2.5.1(3) and Proposition 2.5.7, we see that

resekn (Rndn (Ek,7 )) jad reSEkW(Rnan) x [Rnan](hkn)-

Since [R,,1(hy,) =~ [R,a,](h,) and Lim[R, e, ](h,) has nontrivial corank, it fol-
lows that Lim R, d,(¢;,) and, consequently, also LimR,,c,(¢;,) are not cotorsion A-

modules.

253

‘We now choose other primes for which we need to construct two distinct modules of

ramified classes. In order to accomplish this, we need to use im¢ < LimR,«, and
—

—_—
LimR,c,(¢;,). Since Lim R, ¢, (¢, ) is not a torsion A-module, there exists a nonzero
— —
map

¢ A — LimR,c,(£,),

n

and just as in the case of ¢, we can assume that (¢')" = +¢'.
Observe that [im¢]" C [LimR,o,]" and [im¢']" C [LimR,c,(¢ )]" each

contain a unique copy of Q,/Z,. This implies that ([im 61" N R, a, contains an
element s,,, and ([im ¢']")%" N R, c,(€,) contains an element s/, such that the orders
of s, and s, go to infinity as n grows. Furthermore, since ¢* = £¢ and (¢')" = £¢/,
we know that [im ¢]" and [im ¢']" are fixed by . Consequently, the elements s, and
s/, are eigenvectors of T.

We are now ready to start the process of choosing the set Qy, . There are two cases
that we need to consider, depending on how complex conjugation acts on s, and s,.

Case 1. Assume that s, and s/, lie in different eigenspaces of the complex conjuga-
tion 7.
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Consider the field extensions

/ -

Ly, (sn) Ly, (s,)

N

L,
where for any s € Héel(K, E,m. ), the extension Ly, (s) denotes the splitting field of s
over L .

Since the groups generated by s, and s, intersect trivially, the extensions Ly, (s,) and
Ly, (s,) are disjoint over Ly, . Let us start by fixing h; € Gal(Ly,(s,)/Ly, )t so that
s;l(h}w) has the same order as s/, where Gal(Ly, (s))/Ly, )" denotes the +1-eigenspace
of Gal(Ly, (s,)/Ly,) for the action of the complex conjugation t. The next step is to
pick hy, ; € Gal(My, /Ly, )" so that the order of s,,(hy, ;) is equal to the order of s, and
(hiys iy i 12 < i < 1) = Gal(My, /Ly, )"

Let us extend 7 to a complex conjugation in Gal(M, (s, )/Q). We are now able to
choose the elements of Qy, for this case. Let £, (i) € QQ be so that

th) ; € Froby, (Mg, /Q) and thy € Froby, (L, (s,)/Q),

where (th} ;)* = hy,; and (th{ )* = hj . (As in the choices made at the end of §1.4,
we choose /) ; and k) to fix Ly, , thus ensuring their compatibility.) Finally, we define

Qi = {t, (D) =, b, () |i =2,...,t}.

Case 2. Assume that s, and s, lie in the same eigenspace of the complex conjuga-
tion t.

In this case, we need to consider the invariants of the module im¢/(s, | n € N).
Choose e, € (im¢NR,a,)—[R,a,]% sothat the image of Lim(e,,, s,) in (im ¢)/ (s, |

n € N) is isomorphic to Q,/Z, as a A-module. This is possible because im¢ ~ A.

Since (im ¢)/ (s, | n € N) is fixed by complex conjugation 7, it follows that the
invariants are eigenvectors of 7. In particular, the image of ¢, in (im¢)/(s, | n € N)
is an eigenvector for the action of . We now see that the eigenvalues corresponding
to e, and s, are different. Let te, = €e, + x5, and ts,, = €'s,, where €, €' € {£1}
and x € Z/p™ 7. Then we have

e, =€te, +x15, = e, + €xs, + €'xs, = e, + (€ + €)xs,,

and it follows that ¢ = —¢’ if x5, # 0. So, we still need to consider the case where
Te, = €e,. We now use the fact that (g — 1)e, = ys, # 0, where y € Z/p™7Z and
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G, = (g). Observe that

-1

t(g — De, = (g7 — Dee, = —eg ' [(g — Den] = —€g ' ys, = —€ys,.

Since, on the other hand, (g — 1)e, = yts, = €'ys,, we have ¢ = —e¢.
Let us now consider the extensions

Kn(Ep'"kn > Sy en)

/

K, (Epri s $4)

N

Ly, (s,) Ly, (sn)
Ly

We now analyze the extensions Ly, (s})/Ly, and Ly, (s,)/Ly,. We know that ¢, (£)
becomes trivial when restricted to K, [£], and K,,[£]/K,, is totally ramified at the primes
of K,, dividing £. It follows that the elements of res; (R, c,(£)) are also totally ramified
at primes dividing £.

If, for infinitely many n, there exists s/, a nontrivial p-power multiple of s,
which is unramified at £, , then we simply restrict to this subsequence of £ . In this
subcase, res,gk s;, = 0, which implies that L, (s,) and L, (s,) are disjoint over L;,. By
choosing s, to be the minimal p-power multiple of s, with this property, we ensure
that Ly (s;,)/Ly, (s))) is disjoint from My, /Ly, (s;). It then follows that Ly, (s, )/Ly, and
Ly, (s,)/Ly, are disjoint, independently of whether s;, is ramified or not.

Since H§, (K, E,) is finite, there exists an s € Hi,(K, E,) such that s € (s/)
for infinitely many n. By restricting to this subsequence of ¢; , we can assume that
§ € [Npen(82). If the cohomology classes s, are totally ramified at £, for almost all
n,wesets = 0.

The next step in understanding the above tower of extensions is to show that
My, /Lx, (sn) and K, (Ep»a , 5,)/Ly, (s,) are disjoint. This follows by considering the
action of Gal(Ly, /K) on Gal(My, /Ly, (s,)) and on Gal(K,,(E," , s,)/Lx,(s,)). (The
action of Gal(Ly, (s,)/K) on Gal(My, /Ly, (s,)) and Gal(K,,(E . , 5,)/Lx, (s4)) factors
through Gal(L;, /K).) On the one hand, since L, /K and K,, /K are disjoint, Gal(L;, /K)
acts trivially on Gal(K,,(E,m. , s,)/Ly,(s,)). On the other hand,

Gal(Mk"/Lkn(s,,))/p Gal(Mk“ /L, (s,l)) ~En @ - ®E, ., whered; € {0, 1},

as a Gal(L;, /K)-module.
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We have the tower

Kn(Ep”'ku > Sns en)

Ly, (s,) K, (B s 50)

NN

Ly, (s) Ly, (sn)
Ly

Letus fix by € Gal(K,(Eym , $n, €) /Ky (Epmia st
We can now pick hy, ; € Gal(My, /Ly, (s,))* (i > 2) so that

GalM,, /L))" = (h, ;|1 <i <t), whereh | =h,

and if s # 0, we require that s(hy, ;) # 0 for all i > 2. (Recall that /;, was chosen
after Proposition 2.5.2.) If s = 0, then L, (s;,) and My, are disjoint over Ly, . In this
case, we fix hy € Gal(Ly,(s)) /Lg,)T so that s) (h} ) has the same order as s, for all
i>2.

Let us extend 7 to a complex conjugation in Gal(My, K,,(E . , 5,)/Q). We now
choose €, (i) € Q so that

th) ; € Froby, »(My,/Q), where (th), ;)" = hy, .,
and
th; € Froby, (,‘)(Kn(Epmk” s Sus e,l)/@), where (Th) ) = hy .

(As in the choices made at the end of §1.4, we choose &) ; and hj to fix the fields
Ly, (s,) and K,,(E . , 5,,), Tesp., thus ensuring their compatibility.)
If s = 0, we must also require that

thg)’l € Frob,, (i)(Lkn (s,’l)/(@), where (th}(’n’)2 = hzn.
Finally, we set Qg, = {€y, (1) =4y, &, () |1 =2, ..., 1}.

254
In this section, we analyze the cohomology classes that we can construct using the
primes in Qy, . For each n, we consider

resy, | o [Rudn (Le, (1)) + Rudy (€, (DL, ()]
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for all n’ such that n’ > n > ng. Since
#(rese, o [Ruda(C, (D) + Radn (b, (DL, ()]) < #R, ®R,) = p*™7".

It follows that for each n, we have an infinite set of modules of order bounded by

p>"P". By the pigeon-hole principle, we can find a subsequence k/, such that there

exist R,,-module isomorphisms
resg, o [Ruda (L, () + Roudyy (1 (1D (1)) ]
x resy, (i) [Rd, (€, (D)) + Rydy (€ (Di () ]

forallm > n.
We can then consider the formal direct limit

Lir}n 1eSy,, (i) [Rudy (€, () + Rudyy (1 (D4 () ]
for each i > 2. Notice that the transitional maps are injective by construction.

PROPOSITION 2.5.8
The A-module

I—E)n reslk;l (i) [Rn dn (Ek; (l )) + Rndn (Zk,’x ( 1 )Zk,’, (l))]

n

has corank 2 for eachi > 2.

Proof
The fact that

resy,, o [Ruda (L (D) + Rud, (L (DL ()] € H' (K, (€ (0)), E)p,,,,, ~R,’
implies that
TCSQ;ZU)[Rndn (Lx (D) + Rud, (6 (DL, (D)]IT, p] S (Z/pZY,

and consequently, the corank of the above direct limit is at most 2. If the corank were
1, then there would exist f € A such that the invariants of

£ (rese,, o [Radn (€ (1)) + Rodhy (€4, (1), 0))])

are cyclic up to a finite group of order bounded independently of 7.
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We know that there exist T-antiequivariant R,,-module isomorphisms
res, ) Rud, (€ (D)) =~ rese, i Ract,
and
resy,, i) Rudy (€, (1), (i) == tese, i) Ruca (L, (1)

Under the above isomorphisms, let sék; @ € Rudy(€y(1)€y (i) correspond to
resy,, (i) S,, and let s¢, ;) € R,d, (€ (i) correspond to resy, (s, if s, and s, lie in
distinct eigenspaces of 7 and to res;,, (i) e, otherwise. It follows that

, . \Go -\ G
1esy,, i) (Se, (i) Sgk’,l(i)) - (reszk;(i) R,d, (£, ()€, (1)) ™" + (feSzk;l(i)Rndn(ﬁk,;(l)))

is not cyclic, and the orders of its generators are not bounded as n goes to co.
Since im¢ C LimR,a, and im¢’ € LimR,c,({;, (1)) have corank 1, fim¢
and f im ¢’ have the same property. This implies that

~Q,/Z,,
div ~ QP/ZP.

div

. div .
(fime)")™ =~ ((ime)")
. , div . ,
((fim¢)H")™ ~ ((im¢")")
It then follows that there exist sequences k,,,, k/f,n € N such that

TCSzk;,(i)(Pk/‘"Sek;x(i), Pk}‘”sék;x(,')) c f(resek;x(i)[Rndn(zk,’,(i)) + Ryd, (£, (1) (0))]),

and the order of p*s,, ), as well as that of pk/fv"sék, @)» 18 not bounded as n
grows. Hence, the corank of Limres,, [R,d, (£ (i) + R, d, (€ (1)€y (i))] is at
least 2. 0

We now consider
R, ¢ (L, (D)) + Ry (€n(1)€n (D)) S Hiyy, (K, Ep),

where i > 2andm € {k/ | i > n}. Since #Hgy (K,, Epm) = p*™"" with 1 = #Q,,,
for each n € N we have an infinite set of modules of bounded order. So, by restricting
to a subsequence of {k] },cn, we can assume that there exist R,-module isomorphisms

Rn Cp (Zk,’x (Z)) + Rn Cn (Ek,’x (l)gk; (l )) x~ Rn Cn (ek;n (l )) + Rn Cn (Ek;n (I)Ek;n (l ))
for all m > n, and we can consider the formal direct limit
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Our next aim is to understand the unramified submodule of R,c,(¢ (i) +
Ry, ¢, (Li (1)L, (D))

PROPOSITION 2.5.9
There exists an f € A which annihilates the kernel of the map

R,i¢y (8, () 4 Rycy (€ (D () — feSzk;l(w[Rndn (€, (D)) + Rudy (L (D (D) ]
(51)

foralln € Nandi > 2.

Proof
Let J,(i) € I,(i) be two A-submodules of A? so that

R, (Cr, () + Ry (€x, (1), (1) 2= A?/3, ()
and
resﬁk;(i)[Rndn (Lx, (D)) + Rudy (€1, (D (1)) ] == A% /L, ().
It follows that the kernel of the map (51) is isomorphic to I,,(i)/J,(i). Observe that
prHTMIK K, Captl = He, Ch and prm IR K, A1l = B, dy
for almost all n € N and some invertible element s, € A, where
cn € {en (i, (1)), en(Er, (1 ()}, dy € {d (L, (D)), dn (Lr, (DEk, (D))}

and d,, is the image of ¢, in H'(K,,, E) ym . It follows that 1 > p™w+ =" Zzg “lgrti
induces the injections

A?/1u(@) = A*/1q () and  AP/LG) > AP/L0).

We can now consider Lim A2/J,,(i) and Lim A?/1,(i). The identity map on A induces
the surjective map

Lim A%/J, (i) — Lim A%/1,(i).

n

By Proposition 2.5.8, we know that Lim A?/1,(i) has rank 2 over A, which implies

that leﬁn(l) has rank at least 2. Since the A-corank of L1m A?/J,(i) cannot
be hlgher than 2, we deduce that leI (i)/J,(i) is a cotorsion A module. It then
follows that there exists f; € A, Wthh annihilates 1,,(i)/J,(i) for all n, and we set

f:nizzfi- U
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We now denote by H,, the module generated by all the classes that we have constructed
in HéelQ (Kn, Epm,x ,
X,
Hn = Rnan + Rn Cn (Ek,’l (1)) + Rn Cn (Ek,’l (2)) + Rn Cn (Ek,’l(l)ek,’l (2))
4o+ Ry (€ (1) + Ry (L (D (1))

We can assume that the modules H,, are compatible by restricting to a subsequence,
and we consider their direct limit

H = LimH,.

n

PROPOSITION 2.5.10
The A-module H has corank 2t.

Proof
Let us consider the map

¢+ Hy, = H' (K, (£ (2)). Epn ) @ [ H' (Ko (8 (). E)

i>3

pmn .

We know that
H' (K, (€, (1)), Epne ) = H' (K (€k, (1)), Epm )™ @ H' (Ko (6, (), E)
and
H' (Ku (€, (1)), E) ,,, > H' (K, (€4, (D), Epun )™ 2 (A/(p™ (T + 1" = 1)),

where H'(K,,(€ (i), E,n )" denotes the unramified submodule of H' (K, (¢ (1)),
E,m ). Observe that

d)n(Hn) N Hl (Kn(gk,’l (l))’ E)pm” = resﬁk; @) [Rndn (Zk; (l )) + Rndn (gk,’,(l)zk,’, (l))]

foreachi > 2. Furthermore, by Proposition 2.5.9, we know that there exists an f € A
such that

f(¢n(Hrz) N Hl(Kn(Ek,’l (2))7 Epm'l )unr) = f I'eSgk; 2) [Rnan + R, (Zk;(l))]

Notice that the image of R, a, + Ry, (€, (1)) in [, H' (K, (€4, (1)), E)pm” is zero.
We can now look at the image of R,a, + R,c, (€ (1)) in H' (K, (€4 (2)), Epm )"
By restricting to a subsequence of {k, | n € N}, we can assume that the modules
1eSy,, (2) [Rya, + R,c,(€r: (1))] are formally compatible as n grows and can see that
their direct limit has corank 2, just as we did in Proposition 2.5.8.
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As in Proposition 2.5.9, for each i > 2, we have [,,(i) € A? such that
A*/1,(0) ~ reSek/nm[Rndn (€, (D) + Rody (€, (D ()] € H' (K, (8, (0)), E)p
We also let 1,,(1) € A? be such that
AZ/In(l) = reslk’/l 2) [Rnan + Rncn (Ek,/,(l))] - Hl (Kn(zk; (2))a Ep’"")um-
We know that Lim A?/I,(i) has A-corank 2 for each i > 1 (by Proposi-

tion 2.5.8 for i > 2 and the above remarks for i = 1) and

Lim f,(H,) = £ ( €D Lim A%/1,)),

I<i<t n

where 1 = #Qy,. We can then conclude that Lim f'¢,(H,) has A-corank 2¢. Hence,

the corank of H is at least 2¢.
By Proposition 2.5.9, we know that

ker(R,, ¢, (€x; () +Ryc (i (D (i) — 1eSy,, (i) [Roud, (€r, (i) + Rudy (i, (14 (1)) ])

is annihilated by f foreveryi > 2. Similarly, we can show that there exists an f, € A
which annihilates

ker(Rnan + Rn Cn (Ek,/,(l)) g Hl (Kn (Ek,’x (2))7 Ep”’“ )unr) .

It follows that ff; annihilates the kernel of ¢, for all n, which implies that the corank
of H cannot be greater than 2¢. This concludes the proof of the proposition. O

Since H = Lim H,, has corank 2¢, we know that H" contains a subgroup isomorphic

to (Q,/Z,)*. This implies that for each r € N, there exists n, such that

(Z)p"Zy" CH[g—1,p'1CH,lg—1,p]
C H! (K,,, Epm g — 1, p'1~H

Sele/
n

K, Ep),

1
Sele’/l

where I' = Gal(K,/K) = (g).
By Proposition 2.2.4, we have

Hi, (K, E,)=~(Z/p"Z)".

Sele,
Hence, for each r € N, there exists n, such that

Hg,, (K, E,)~H,[g—1,p']

Sele’,l
-

under the restriction map.
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Since Kolyvagin’s cohomology classes come from points defined over abelian
extensions of K, the same is true for Hi, (K, E,) for every r € N, and this allows us
to conclude as follows.

THEOREM 2.5.11
All elements of III(E/K) ,~ split over solvable extensions of Q if p is a prime of good
ordinary reduction.

Remark 2.5.12
The above theorem has only been proven when E has good ordinary nonanomalous
reduction at p, but in §2.5.5, we show that it also holds when E(K,,), # 0.

255
The only new element in the case when p has good ordinary anomalous reduction lies
in the behavior of the Heegner points. More precisely, 2.5.1(4) may not hold.

We have assumed that p is inert in K/QQ in this case. Perrin-Riou [Pe, §3.3, Lemma
2] has shown that

apyrpn+l = yrp” + trK[rp/x+2]/K[rpn+]] yrer»Z,
apyr = Ukrp)/Kir) Yrp

for any n, r € N such that r is prime to p.

We know that since p is inert in K/Q, the Galois group of K[rp®]/K[rp]
is isomorphic to Z,, and Gal(K[rp]/K[r]) has order p + 1. It then follows that
k(ny =n+1—koforn > kg and k(n) = 0 for n < ko, where o, = trgppro K, Y prov
and p is the order of the Galois group of the intersection of the maximal Z p-extension
of K with the Hilbert class field of K, over K. For r = 1, we have

-1
trKkUJrl/KkO ak0+l = (Clp — Clp (p =+ 1))ak0,

K, /Koy Ong2 = ApQlny1 — &y forn > ko,
and consequently,
tr (x — o )—(a —al(p+1)— )oz
Kig+1/Kig \Eko+1 ko) = \Up p P P )%k

K, /Ky (Qng2 — Q) = ap(Qpg1 — Q) — (01, — 0tg)

+ (ap —-1- p)ako forn > k().
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Since a, € {1, 1 — p}, it follows that

trg, /K, (@1 — o) = [u(T) (0t — ),

where f,(T) € A is invertible for all n > ko + 1. This implies that R, («t, —
Qi) € Ruyi(anq1 — o). In the same way, one can see that R, (c,(r) — ¢, (r)) €
Ruqi(chmi(r) — Cko(”))-

By replacing «, and c,(r) by a, — oy, and c¢,(r) — ¢, (r), respectively, in the

arguments of §2.5.2—2.5.4, we construct 2¢ independent copies of Q,/Z,, in /"

Observe that
) APt = Hée]/Q (K, E¢) forany k < n,
kn
(2) pl’l(] Hée]’Qk (Kv Epk) = Héelen (K’ Epk”‘o)

(see Proposition 2.3.5 and §2.2.2).
For every k € N, we can find n such that the classes that we have constructed

generate p”“Hée]/Q (K, Ex). It follows that we have constructed the whole group
kn

Hg, (K, E ). It is then clear that Theorem 2.5.11 holds for primes p of good ordinary
anomalous reduction.

2.6. The supersingular case

We now consider the case when E has good supersingular reduction at p. In this case,

we need to choose the field K so that

(a) all primes dividing N split in K/Q; and

b) p splits completely in the intersection of K., with the Hilbert class field
of K.

These two conditions are needed to ensure that K, is a totally ramified extension of

Q » which is assumed when we use a result of Iovita and Pollack [IP, §2.6.3]. We now

see that it is possible to find an imaginary quadratic field K that satisfies the above

conditions.

For every prime ¢ that divides N and not p — 1, we choose, if possible, m, € N
prime to Np(p — 1) so that ¢ divides p™¢ — 1. If such a positive integer does not exist,
we set my, = 1. Then, set m' = nelN,Hp—l my. Notice that if £ is a rational prime
dividing gcd(N, p — 1) and m € Z is prime to p(p — 1), then £" divides p™ — 1 if
and only if £” divides p — 1 because £ divides ka:—01 p* if and only if £ | m.

Now, for every prime £ dividing N, we set r; to be the highest power of £ which
divides p™ + 1 or p" — 1 and r = max{r, : £ | N}. If p” > N?@+3_ then we let
m = m’'. Otherwise, we choose m prime to Np(p — 1) so that p”"™0 > N?@+3 and
set m = m'my. It follows that £"*! does not divide p™ + 1 or p™ — 1 for any £ | N.

Leta = (p™ — 1)/2,x = (p" + 1)/2 and z = x (mod N**3), where 0 < z <
NZ+3_ Since p” > N2&+3 > 22 there exists a squarefree positive integer d such
that p™ — z? = dy” for some y € Z.
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Consider K = Q(+/—d). Since p" = z> + dy?, where m is odd and prime to
D, it follows that p splits completely in the intersection of K, with the Hilbert class
field of K. We now show that N splits in K/Q. Since p™ = x? — a?, it follows that
dy* = —a* (mod N**+?). Our choice of r implies that gcd(N", a) = gcd(N* 3, a),
and we set a = a,a,, where a; = gcd(N", a) and gcd(a,, N) = 1. Consequently,
y = a,y, for some y, € Z such that gcd(y,, N) = 1. It follows that —dy3 = a3 (mod
(N" /a;)*N?), and hence, —d is a square modulo N*, which implies that every prime
dividing N splits in K/Q.

2.6.1
In this case, we study the group Héel,, (K,E,x) for any £k € N such that
pk’lHéelp (K, E,~) is divisible. We assume this restriction on k for the rest of §2.6.
Recall that Sel, imposes no local condition at primes of K dividing p, while Sel”
requires that the cohomology classes be trivial at g | p.
Asin §2.2.1, we fix sy, ..., s, € Hi,,(K, E,x) such that
(S15 000y 8) = Hi o (K, B o)

pe

It follows that each s; has order p*.
Let Q be a set of rational primes such that:
@) g € Qisinert in K/Q;
(i) ¢ B
(iii)  E(K,),~ = E(K,),; and
@iv) Hg,, (K, E¢) < quQ HI(KZ'“/K(,, E, 0.
Weset X' =X U{A; | 1 <i <r},where{); | 1 <i <r}isasetof primes of
Knot in ¥ U Q such that:
(a) E(K))p~ = E(K_A)pzk forall A € {A; |1 <i <r};and
b) the local cohomology class (s;);, has order p*ifi = j andis trivial if i # j.
We can then consider the group HlL(KErUQ /K, E,2). Observe that

H'L-(Kzuo/K. Epo) C Hi, (K, Ejoo).
This implies that Proposition 2.2.2 applies, and we have
0 — H'(Ky /K, Ejx) — H'(Kguo/K, Epn) — (Z/p*Z)* — 0,
where ¢ denotes the cardinality of the set Q.

PROPOSITION 2.6.1
The following sequence is exact:

0 — Hiy (K, Ejn) — Hiy, (K Ejn) — (Z/pZP~" — 0.

SelQu,,
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Proof
Set W = [, cxn(p H'(Ks, Ej2)/Sel, (p**). We apply the snake lemma to the follow-
ing commutative diagram:

0 — H'(Ky /K, E,») — H'(Kzuo/K, Ex) —> (Z/p*Zy* — 0

S

00— WwW w 0 0

and we get

0 — Hly (Kp/K, Epn) — Hi,  (Kyuo/K, Ep) — (Z/pFLy*

|

coker ¢,

SCIQU

0 coker ¢,

Seeing the maps ¢; and ¢, as part of the corresponding exact sequences of Cassels,
Poitou, and Tate, we have

¢ /1
HI(KZ'/K7 Epz") — nxez’\{p] HI(K,\, Eplk)/selx(PZk) L’ H(ISel )*(K E;ﬂ)

] 1 Bs

¢ b
HI(KZ’UQ/Kv Epz") — HAGZ’\{I)] HI(K}»» E[)Zk)/sell(ka) lz’ (SelQU )*(K Epz")

Since Sel = Sel*, it follows that
Higop (K, Ep2) = Hgop (K, Ep2)  and Higy (K, Ep2) = Hggpoup (K, Ej).

We show that H o, (K, E2) = Hg,, (K, E ). As we saw in the proof of Proposition
2.2.3, properties (iii) and (iv) of the elements of Q imply that

Hg,,» (K, Epr) € Hy o0, (K, Epx) € Hgy(K, E o).

Since E,«(K,) = 0, we have H'(K,,, E,x) < H'(K,, E,x), and consequently,
HL ., (K, E,») € Hi,, (K, E,0). It then follows that
SelQUP(K E ]‘) = HéelP(K’ EI’k)’

and the right-hand square of the above diagram may be viewed as

[Tresnp H (K, Ej)/Seli(p?) > HY,, (K, E ;)

1 N

HAGE \(p} H' Ky, E p* )/Selx(sz) . HSell (K E/)")



452 CIPERIANI and WILES

We have now reduced the problem to an exact copy of the one in Proposition 2.2.3,
except that the Selmer condition has been replaced by Sel”. Therefore, we deduce that
ker yy =~ (Z/ p*7Z)", which implies that

0 — Hiy (K. Ep) — Hig, (K Ej) — (Z/p TP — 0. ©

Selqup

PROPOSITION 2.6.2
The group Hyy, (K, E,x) is isomorphic to (Z/ PrFZY D where t denotes the cardi-
nality of the set Q.

Proof
Let us consider the map
SelQUp(K E Zk) - H (Kp’ E Zk) (&) HH (Kq, E Zk) (52)
q€Q
We know that

H'(K,. E») ~ H' (KU /K, Epo) @ H'(K,, B ) /H' (KS /K, E )

for all g € Q.

We have seen in the proof of Proposition 2.6.1 that the kernel of the map in (52)
is Hy o, (K, Ej%) = Hg,, (K, E ). In order to understand its image, we analyze the
images of the maps

H,,, (K Ep) — [ [H' (K, Epu)/H (KU /K, E ), (53)
q€Q
Hg, (K, Eju) — [ [H'K/K,, Ep), (54)
q€Q
Hy, (K, Epn) > [ [H' (K, Epn). (55)
elp

By Proposition 2.6.1, the image of the map (53) is isomorphic to (Z/p*Z)* .
We have assumed that p*H} (K, Ex) >~ (Z/p*Z)", and we know that the kernel of
the map (54) is HSel,,(K, E ). It follows that the image of the map (54) is isomorphic
to (Z/ p*Z)". Let us now consider the image of the map (55). By using the fact that
(Sel,)* = (Sel”) and (15) as in the proof of Theorem 1.1.7, we have

#Héel K, E Zf")/#Hsew(K, E o) = p4m for allm € N.
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We know that
Hg,, (K, Byu) >~ (Z/p™ L) x Z|p™Z x --- x L] p"™ L, (56)
where m; < k — 1, and the m;’s are independent of k as k — oo. It follows that
nglp(K, Ex) = (Z/p™Z)Y > x L) p™Z x --- x L] p"* L. (57)
This implies that the image of the map (55) is isomorphic to (Z/p*7Z)*. Finally, using

Hg.,, (K, E, ) = ker(55) € Héel” (K, E,x) = ker(53) € Hg,, (K, E,»),

SelQU,,

we see that the image of (52) contains a subgroup isomorphic to (Z/p*7Z)* ®
(Z/p*Z)*. By comparing the sizes of the groups appearing below, we claim that
there is an exact sequence

0 — Hi,,(K,Ex) — Hy, (K, Ex) — (Z/p*Z) & (Z/p*7)* — 0.

SCIQUI,

Here, we use Proposition 2.6.1 to compute the quotient of the orders of Héel()u,; (K, E )
and HéelP(K, E,x), and then (56) and (57) to relate Héel,, (K, E,») with H,,, (K, E ).
Using the properties of the elements of Q and the fact that HéelQu,, (K,Ex) =0,

we deduce that #Hg,,, (K, E,x) = p*“*V. 1t then follows that
Hl

SCIQUP

(K, EPZk) ~ (Z/kaZ)r+2 % Z/pm1+kZ X o X Z/pmz”"+kZ.
Hence, we conclude that

HéelQup(K, E ) ~ (Z/ka)2(f+l). -

262
Let us choose ny € N so that it satisfies §2.3.1(2), and p""’lHédP(K, E,~) is p-
divisible.

Consider HéelQM (K., Epm) foralln > ng, where Q, and m,, are defined in §2.3.1,
except that instead of property (4), we only require

Hiy (Ko, Epn) = [ H' (Ku(@)™ /Ko (q), Epn ).

qG€Qu

PROPOSITION 2.6.3
We have #HéelQ uﬁ(Km’ E) = #(Z) p*Z1 G 1)* Y for allm < n and k < m,,.

Proof
The proof of this proposition is the same as that of Proposition 2.3.1, except for a few
minor differences that we describe. We know that

Hl

(SelQ,XUp)*

(Kmv Epk) = HéelQnUP(Km? Epk) =0.
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Consequently, the properties of the elements of Q, allow us to deduce that

#H.

SelQ Up

(Kmv Ep") = kaPm l—[ #E(KM(q))pk = #(Z/PkZ[Gm])ZI+2- O

q€Qu
As in Proposition 2.3.2, one can verify that the set Q, satisfies the properties that we
required for Proposition 2.6.2, and therefore, we have

(K, Epm) = (Z/p™Z)"** foralln > ny.

SelQn up

In addition, one can easily prove, as we have done in Proposition 2.3.3, that

(K, Bpm )9/ = Hy

Selg, o, Kms Epm)  forallm < n.

SC]Q Up

We now consider the R} -modules X(k, n) = HéeleUP (K, Epm ) foralln < k and

inductively choose a sequence X, = H. (K., E,m) of compatible R} -module

SelQ 0P
structures. Let us define the Z,[[I" ]]-module

M, = LimX,,.

n

THEOREM 2.6.4
The A-module M  is isomorphic to A**2.

Proof

The proof of this theorem is identical to that of Theorem 2.3.4, if one replaces 2¢ by
2t + 2. O
2.6.3

Since the issue of choosing the sets Q,, with the required properties is the same as in
the ordinary case, which was studied in §2.4.1, we now prove that the Heegner points
a, € E(K,) give rise to two independent copies of A in the module ..

Since we are assuming that p > 5, we know that a, = 0. Perrin-Riou [Pe, §3.3,
Lemma 2] has shown that

apyrer»l = yrp" + trKlrp»erZ]/K[rp/HH ]yrp"”
forn > 0 and any r € N prime to p. It then follows that
Vrpn = —UK[rpn+21/K[rpn+1) Yrp+2,
which in turn implies that

a, = _trKn+2/K:x+1an+2 and C,,(V) = _trK»t+2/Kr:+1cil+2(r)



SOLVABLE POINTS ON GENUS ONE CURVES 455

forn > ko + 1 (where K[1] NK, = K,) and r a squarefree product of primes £ such
that Frob,(K(E ,m.+2)/Q) = 7.
We can then define Lim R,, a5, and Lim Ry, 05,1 1. As in Theorem 2.5.1, one

can see that these A-modules are not cotorsion. We now need to distinguish the above
two modules from one another.

LEMMA 2.6.5
The submodule of Héel(Koo, E,~) generated by Lim Ry, a0, and Lim Ry, 100041 has

corank at least 2.

Proof
Let us consider the exact sequence

0 — E'(K,,) — E(K,,) — E(k,,) — 0.
Following Kobayashi [K], we now define the following submodules of EI(KAO”):

E"(K,,) == {x € E'(K,,) | trg,, /K, (X) € E'(K, )foralll <m <n, m odd},

om

EI*(K@,) = {x € El(Km) | trg,, /k,, (X) € El(Kmfl)for alll <m <n, m even}.

om

Since K,,, /Q, is totally ramified at p and E(k,,), = 0, it follows that E(k,, ) =
E(@p) and that there exists m, € N prime to p and independent of n such that
m.E(K,) C EI(K@”). Hence, the fact that o, = —trg,,/k,, @nt2 foralln > ko + 1
implies that

m, Res,, . (Z[Glon,) € BT (Ky,,,.,),  moResy, . (Z[Gayiilonnit) €E'™ (Kp,.,)
and

Res@znﬂ (R2na2ﬂ) < E1+(K@2n+1 )/men ’ ReSmnH (R2n+]a2ﬂ+1) < Eli(KﬁJznﬂ )/pm2n+] .

We analyze the intersection of Res,,,, ., (Ry,00,) and Res,,,,, (Ro,41002,41). Let
P* €Res,, (Z[Gyla)  and P~ €Resy,  (Z[Gouri]ozi)

so that P = P~ (mod p™»+). This is equivalent to saying that there exists Q €
E(K,,, .,) such that P™ — P~ = p™=+ Q. Tovita and Pollack [IP] have shown that

2n+1

0 — E'(K,) — E""(K,) ® E'"" (K,,) — E'(K,,,) —> 0
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for all n € N, which implies that m,Q = Q" + Q~, where O € E'*(K,,,,,) and
0~ € E'"(K,,,,,). Consequently, we have
moPT — p" 1 Qt =m, P~ 4+ p"1 0~ € ENK,).
Since m, is prime to p, it follows that
Res,,,, (Ray@,) NRes,, Ry 102511) € H' (K, Epravia). (58)
We now consider the submodules
LimResy,, ., (R2,02), LimResy,, ., (Ro4102,41) S Lim H'(Ky,,.,» Eprais).

n n n

By (58), we know that

LE)H Respz,,H (RZnQZn) N I—ﬂn Res[p?_n+1 (R2n+1a2n+l) - Hl(pr Ep°°)-

n n

WI'EI p is a prime of supersingular reduction, the representation of Gal(@/ Q,) on
E(Q,), is known to be absolutely irreducible with image of order 2( p? — 1). Since
Gal(K,,, /Q,) ~ Z/ p"7Z, we have

E(K,,),~ = E@Q,),~ = 0.

In view of the above result, the argument used in Theorem 2.5.1 can easily be adapted
to prove that the coranks of Lim Res,,, , (Ry,a2,) and LimRes,,, ., (Roy+102,41) are
— —

not zero. Moreover, we know that the intersection of LimRes,, . (R;,0,) and
—
IgnResmH(Rz,,HozZnH) lies in Hl(K,p, E,~), and therefore, it is cotorsion. Thus
the submodule of Héel(Koo, E,~) generated by Lim Ry, 05, and Lim Ry, 05,41 has
— —

corank at least 2. a

264

We now choose the primes that we need in order to construct the ramified cohomology

classes. Since Lim R;, a5, and Lim R, 5,11 have nontrivial coranks, we have the
— —

nonzero maps

¢+ A — LimRznazn,
—

n

¢~ 1 A — LimRy, 100,41
—

n

The fact that ¢ + ¢* and ¢ — ¢ cannot be simultaneouly zero for ¢ = ¢* or
¢ = ¢~ allows us to assume that (¢)° = +¢ for ¢ = ¢p*. We fix s;7 € Ry,00, and
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s, € Ry, q1000,41 so that

(1) = (Mm@ N Rapaz)?,  (s7) = ((m @)™ N Rapy 1tz 1)
and

Lim(Z/ p"Z)s; € [Lim Ry, 02,17, Lim(Z/p"*+'Z)s, € [Lim Ry, 1a2n41]".

n

It follows that s, € Hg, (K, E,~) are eigenvectors of 7 and

Lim(Z/ p™> Z)s;" ~ Lim(Z/ p™>+Z)s; ~ Q,/Z,.

n n

Let s* € Hg, (K, E,) be such that

Lim(Z/ p"*Z)s,” N Hg, (K, E,) = (s7),

n

Lim(Z/ p"+' Z)s; N nglp (K,E,) = (s7).

n

‘We then have three cases to consider.

Case 1: st and s~ lie in different eigenspaces of the complex conjugation t. Consider
the field extensions

M2n+l

/\
\/

L2n+l = K(E/J’”ZHI)

Loyy1(s™) Lowyi(s™)

where Mj,, | denotes the fixed field of Gal(fzn+1 /Lon+1) which pairs to zero with the
finite subgroup Hg (K, Epmt) of H'(K, Eyran).
We choose hy,41.; € Gal(Ma,41/La,11)7 so that

s (hans11) # 0, s (hong1,i) #0,
and
(hopsr; i =1,...,1) = Gal(Mpy41/Lows1) ™.

We now fix primes £5,41(/) € Q so that th), ,; € Froby,  i(Ma,41/Q), where
honsri = (Th, )7 Then we set Qpuiy = {€ou1 (i) | i =1,...,1}.
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Case 2: (s*) N (s7) = 0. We can assume that s* are eigenvectors of 7 lying in the
same eigenspace because if s* were in different eigenspaces, then we would go back
to the case 1. We now show that the field extensions

Lyys1(st) Lopii(s7)

Lony1 = K(E pm2ii1)
are disjoint. If these two extensions are not disjoint, we must have

Gal(Lay+1(s)/Laus1) = Gal(Lays1(57)/Loui1).

In this case, we let & € Gal(Ly,1(s%)/La,.1) generate Gal(La,.(s¥)/Lays1)*, the
1-eigenspace for the action of t. Since s* and s~ lie in the same eigenspace of T, we
can see that sT(h) = xs~ (h) for some (x € Z/pZ)*. It then follows that

(S+ - xs—)(Gal(L2n+l(Si)/L2n+l)+) =0.

This implies that s — xs~ = 0 and contradicts our assumption that (s*) N (s~) = 0.

The fact that L,,,;(s*) and L,,,(s~) are disjoint over L,,,; implies that the
extensions Ly,41(s;")/Loy41 and Lo, 11(s,)/La,4; are also disjoint. As in case 2 of
§2.5.3, we choose

(a) el € (im¢* N Ry0,) — [Ra,a2,]9% so that the image of Lim ()", 5,7) in
(im¢™)/(s;} | n € N) is isomorphic to Q,/Z, as a A-module; and

(b) e, € (im¢~ N Ryp100,41) — [R2n+1oz2n+1]c2"+‘ so that the image of
Lim (e, ,s,) in (im¢~)/(s, | n € N) is isomorphic to Q,/Z, as a A-
module.

We then consider the tower of field extensions

KZ)I(E[7"12”+1 ) S;Tv e:) KZ}’H—I(E[J'"’W ) Sn_7 e;)
K2n (Ep”’2"+1 B S:) M2n+1 I<2n+l(]:74p"'2"+1 B S,,_)
L2n+1(5:) L2n+1(sn_)

Loyt
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We know that Ky, (E .1, 577, e) (resp., Koy 1 (Epmasi, s, ;) and My, are
disjoint over Ly, 41(s;") (resp., La,11(s; ). Let us fix nonzero elements

he* € Gal(Kon (v, 577, ) /Ko (B praver, 57))

n’-n >"n

and

h™ e Gal(K2n+1(Ep"12n+1 . S;, e;)/K2n+1(Ep"’2»x+l s S;))Jr.

n

We can now pick &, ; € Gal(My,+1/Lay41(s)" (1 <i <t — 1) so that
Gal(Mao1/Lans1(5,)) = (hay | LS i <1 1)
and
s (h,;)#0 foralli <t—1,

and hn,t € C’al(l\/[2n+1/I—‘Zrz-k—l(s‘y?))Jr so that S+(hn,z) 7é 0.
We choose primes £,,,1(i) € Q so that
Th;;.i € Frobg2n+l(,~)(M2,,+] /@), where ('L'h:“-)z = hnﬁia
thi" € Froby,,, i) (Kon(Epmnsr, 7, €)/Q), where (thi)* = h* foralli <t — 1,

th)” € Fr0b52n+l(,)(K2,1+l(E,,mz,,+1 , S, s e;)/@), where (Th:7)2 =h.

This ensures that the invariants of the restriction at £,,, (i) of im ¢ N Ry, a,, and of
im ¢~ NRy, 110,41 lie in distinct eigenspaces of 7. Finally, we set Q2,11 = {€2,41() |
i=1,...,t}

Case 3: {sT) N {s~) # 0. In this case, we have (s*) = (s7). Since the module
Ro, 2, + Rau 100,11 € Hey Koy 1, Eprane)
is fixed by the complex conjugation t and the A-corank of

Lgn(Rz,,az,, + Rop10041)

n

is at least 2 by Lemma 2.6.5, one can check that there exists a map

w : AZ — LE)n(RZna2n + R2n+1a2n+l)

n

such that im v has A-corank 2 and T(imv) = im . It follows that (im )" C
Héelp(K, E,~) contains a finite-index subgroup generated by two disjoint copies of
Q,/Z, which we denote by Lim (Z/p™>+Z)s, and Lim (Z/p">+Z)s,'. Moreover,

: 1 / " I
as T(im ) = im ¥, we can assume that s, and s, are eigenvectors of .
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Let s’ (resp., s”) be a generator of the intersection of Lim (Z/p™>+'Z)s, (resp.,

Lim (Z/ p™>+Z)s))) with Héelp (K, E,). We can assume that (s*) # (s'). There exists
a map

¢ A — Lgn(Rz,,aZn + Rony102,11)

n

such that (¢')* = %¢’ and Lim (s') C (im¢")". If s and s’ lie in distinct eigenspaces
of T, we choose Qy, using the method of case 1 with s” instead of s~. Otherwise, we
pick

e, € ((im ¢ N (Ryy000, + R2n+10!2n+1)) — (R a2, + Ropi102,11)"

so that the image of Lim (e/,, s,) in (im¢")/(s, | n € N) is isomorphic to Q,/Z, as
a A-module. We can then replace s, and e, with s, and e/, respectively, and proceed
just as we did in case 2.

Finally, for every i € {1, ..., t}, we consider the modules

Roncan (K2m+l(i))a Ront1€an+1 (€2m+l(i)) < HI(KZn-H s Epmani)  forallm > n.

Just as we did in §2.5.4, we choose a sequence of k,, so that

Res,, @) [R2nc2n (£k2n+1 (i)) + Routi1Con1 (Kkzn+l (i))]
~Resy,,  o)[RanCan (Chy s (1)) + Rangrcani1 (i, (D) ]

for all m > n, and we consider the direct limits

Lﬂn Resy,, o) [Rchzn (Ekz,,ﬂ (i)) + Routi1Con41 (Elm+l (i))]

n

foreachi € {1, ..., t}. By our choice of the primes Q,, as in Proposition 2.5.8, we
can show that each of the above A-modules has corank 2.

. 1
Let us now consider H,, C HSele/ " (K., Emi ), defined as

H, = Ra,002, + Rous102041 + Ronc2n (8ry, 1, (1) 4 Rongr1 2041 (€ (1))
4+ Roucan (Uhyyy () 4 Rapg1€20s1 (L, (1))

By restricting to a subsequence of {k, | n € N}, we can assume that the H, are
compatible as n grows. We consider their direct limit

H=LimH,.

n
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In the same manner as in the ordinary case (Proposition 2.5.10), H can be shown to
have A-corank 2¢ + 2 by analyzing the image of the map

¢n : Hy = H' (Koug1 (b, (1)), Epov ) @ [ [H' (Kang1 (b, (), E) i

i>2

This implies that the invariants of H contain 2¢+-2 copies of Q,/Z,,, and consequently,
we have the following.

THEOREM 2.6.6
The elements of I(E/K),~ split over solvable extensions of Q for all primes p of
good reduction.

2.7. The multiplicative case

The situation in the case when E has multiplicative reduction at p is nearly identical
to the one in which p is a prime of good ordinary reduction. One of the important
differences is the definition of the Heegner points. Let N p denote the conductor of E.
We assume that the primes dividing N split and that N = 4“4, Let (1, w) = Ok,
where (x denotes the ring of integers of K. The Heegner point of conductor rp” for
r € Nsuch that ged(p, r) = 1, x,,p = (C/(rp"w, 1), ker A", (rp"'w)) € Xo(Np)
is defined over the ring class field K,,.. Let y,,» denote the image of x,,» under
7w : Xo(Np) — E.

LEMMA 2.7.1
We have Upyypn =g ., /K, Yrpr+1-

Proof
One can check that this formula holds on Jo(Np) = Jac Xo(Np) by using the standard
definition of the correspondence U,

U,(E, Gy, G,) = ) (E/G),. G, G)),

where G, runs through the p-subgroups of E distinct from G, and Gy (resp., G_,,)
denote the images of Gy (resp., G,) in E=E/ G, O

Gal(K o0 /KO

Let K o =,y Kprs Koo = K~ , and let

Oy = UK 0 /Ky, Ypr € E(Kw).

Cornut [C] has shown that infinitely many of the points {&, | n € N} are non-
torsion. Denote by K, the subextension of K, so that Gal(K, /K) >~ Z/p"Z. By
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Lemma 2.7.1, we know that

trg, . /K, Ont1 = Updty.

Since E has multiplicative reduction at p, we know that U,a, = =a,, and hence,
trg,,, /K, On4+1 = Ta,. Consequently, the fact that w,, is nontorsion for some ny € N
implies that e, is nontorsion for all n > ng, and there exists some k € N such that if
n > k, then «,, and «,,; are not defined over the same layer of K. This is enough to
prove that Ii)man is of nontrivial A-corank, as we did in Theorem 2.5.1.

The only other step of the proof when the reduction of E at p plays a role is in
comparing Hgy (K, Epm)%/%" with Hgy (K, Epm) for m < n. In order to do
this, we need to relax the Selmer condition at primes above p as we did in the case
when p is a prime of good ordinary anomalous reduction (see §2.3.2). We can then
consider Héelbn (K, E,m). The only conditions needed for the proof of

1 Gal(K, /Ky) __ 1
H, (Ky, Epn) ¥ =Hy,, (Ki,Epn

forall k < n are
6 E!'(K,, )y~ = 0 forall m € N; and
(i1) E(K,, ) p> = E(K@ko)poc for some ko € N.

When E has split multiplicative reduction at p, we choose K/Q so that p does
not split. This implies that our Z ,-extension K, is disjoint from the cyclotomic one.
Hence, E'(Kpm) p~ = 0, and this in turn implies that E(K, ),~ = E(K) .

In the case when E has nonsplit multiplicative reduction at p, we choose an
imaginary quadratic extension K so that E has split multiplicative reduction at the
prime above p. Then, by the argument for the split case, we see that conditions (i) and
(ii) hold.

2.8. Conclusion

We have proved that for every rational prime p, where E does not have additive reduc-
tion, the elements of III(E/Q),~ come from points defined over solvable extensions
of Q. Hence, we can conclude the following.

THEOREM 2.8.1
If Eis semistable, then each element of I(E/Q) splits over some solvable extension

of Q.

Remark 2.8.2

When E has additive reduction at some rational prime p, the group III(E/Q), may
be nontrivial. In this case, we have not been able to prove directly the same result as
in the semistable case. We believe that a more natural approach is to base change to
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a solvable totally real field, where the curve has semistable reduction, and to apply
our approach with the totally real field as base field. We hope to discuss this in a
subsequent paper.
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