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HEEGNER POINTS ON Xo(ll)

by

Benedict H. GROSS

In this paper, I would like to illustrate a new method for studying Heegner
points on XO(N) by a consideration of the first non-trivial case. A central question
is the determination of the image of the group of divisors on these points in the
Jacobian J (N). Birch [1,2] and Mazur [3,4] have already established many
beautiful results on these divisor classes, using geometric arguments. Our ap-

proach is more arithmetic, and perhaps a bit more flexible.

It is a pleasure to thank the number-theorists at Bordeaux for their kind invi-
tation, Henri Cohen for his generous on-the-spot computations, and the entire

family Cassou-Nogueés for their wonderful hospitality.

§1.- Heegner points

Let Xo(ll) be the modular curve over @ which classifies elliptic curves
together with an 11-isogeny. The curve Xo(ll) has genus 1 ; its Jacobian is

3 2
an elliptic curve E = Jo(]l) with Weierstrass equation y2+y=x -x -10x-20.
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Let K be an imaginary quadratic field where the rational prime 11 is split,
let 6 be an order in K whose discriminant d(6)= chz is prime to 11, and

let p denote a prime ideal of & with residue field Z/11 .

Fix an embedding of K in € ; the modular data x = (C/6 , ker p) then de-
termines a comple;c point of Xo(ll) . In fact, the point x is rational over the
ring-class extension H = K(j(6)) of K with conductor c, and the theory of

complex multiplication gives an isomorphism G = C-al(H/K) =~ Pic(6).

Let » and 0 denote the cusps of Xo(ll) ; both of these points are defined
over @ and the class of the divisor (0)-(») generates the cyclic group
E(Q)~2Z/5. Let y denote the class of the divisor (x)-(») in E(H). For any
complex character ¥ of G of conductor equal to c, we define yx= }C:} )(-l(c)y‘:7
in (E(H) ®Z (E)X . A central question in the theory is to determine precisely when
y. # 0 . Secret computations of Birch and Stephens lead one to expect that this
w>§11 be the case precisely when the vector space (E(H)® C)X has dimension 1 .

This expectation is supported by the results below.

Assume now that the character X is quadratic, and satisfies ¥(p)=-1. Then
X corresponds to a pair of quadratic extensions of @) , say k and k', whose
discriminants satisfy dd'= d(6)= ch2 . Assume that d>0 , so the field k is
real and k' is imaginary. Let ¢ and €' be the Dirichlet characters associated
to these fields 'and let h and h' denote their class numbers. Since

X(p)= €(11)=¢'(11) = -1, the rational prime 11 is inertin k andin k'.

The biquadratic extension L=Kk=Kk' is the subfield of H fixed by the

kernel of ¥ in G . Here is a diagram of the fields in question :
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Note that the point YX defined above actually lies in the group E(L)x ; this is
just the minus eigenspace for the action of the group Gal(L/K) on E(L).

PROPOSITION 1.- If hh'#0 (mod5) then Y, #0 and E(L)X ~Z .

In fact, we will show that, under the hypotheses of proposition 1, the point yx
is not in the subgroup 5E(L)X , and the Yx-component of the group _ll.l.(E/L)5

is trivial.

As an immediate corollary of proposition 1, we shall obtain :

PROPOSITION 2. - Let k be a real quadratic field where the prime 11 is inert.

Assume that the class number h of k is prime to 5. Then Ek)~Z/50@ Z
and Ll (E/k)5= 0.

Mazur has obtained a similar result over imaginary quadratic fields where 11 is
split [4, pg 237] . Using similar methods as in the proof of proposition 1 (but

working with the character x=1), I can give a slight refinement of his result.

PROPOSITION 3. - Let K be an imaginary qugdratié field where the prime 11
A of the Dedekind domain A= GKEI/IIJ
is prime to 5. Then E(K)~ Z/5@® Z and .LLL(E/K)5= 0.

is split., Assume that the class number h

We note that when 11 splitsin K : 11=p.p , then h

A is simply the quotient

of hK by the order of p in the class group.

§ 2. - The descent

Let F be a number field and let SS(E/F) denote the 5-Selmer group of

E-= Jo(ll) over F . One has an exact sequence :
0 — E(F)/5E(F) — SS(E/F) —_— (E/F)5 —_ 0
a

Since the 5-torsion E_= u_@® Z/5 has a simple structure as a Galois module

5 5
over @) , the Selmer group SS(E/F) can be calculated in a fairly explicit manner,

We will simply state the result,
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Let A be the Dedekind domain GFCI/IIJ and let Pic A denote the class

group of A . There is an exact sequence :

0— Hom(Pic A, Z/5)— SS(E/F) -—a--o HI(A,uS)

1 1 * %5 L.
and thegroup H (A,us) CH (F,pS) ~F /F itself lies in an exact sequence :
00— A"/ — H (A,u5)~——-0 PicA, — 0

The cokernel of g8 can be tricky to determine ; of more interest to us here is

a concrete description of the composite homomorphism
#

6 =g.a : E(F)/5E(F)— F /F*5 . Let f(z)= {A(z)/A(]lz)}% ; this modular
unit lies in the rational function field of Xo(] 1) and has divisor (f)=5{(0) -(»)}. If
0 is any divisor of degree 0 on Xo(]]) which is prime to the cusps and rational

over F, and g is the image of a in E(F), we have the formula f(a)= (%) (mod F*5

Now assume that F = L, the field of concern to us in proposition 1. All of
the above sequences remain esca;:t when we pass to the ¥ -components, and the
torsion subgroup of E(L)X is easily seen to be trivial. Since the relevant class
numbers h and h' are prime to 5, we have Horn(Pic A, Z/S)X Pic A§ =0.
Hence the map a is an injection and the group H (A, “5 (A /A *5 X is iso-
morphic to U/U , where U denotes the unit group of the real quadratic field k.

We have a diagram :

E(L)/S B(L) & S(B/L)¢ e v/t~ z/s .
Q

Hence E(L)X has rank at most 1 ., To show o and B are both isomorphisms

we will show that é(y )=B o a(y )#0 in U/U5

Usmg the explicit description of & we find 6(y )= E X mod. u® , where

L= (o(a)/a(pap )y

L functmn of the character Y , then Kronecker's limit formula gives the relation

is an elliptic umt in U. If L(y,s) is the abelian

log ,EX[ = -12 L'(x,0). We now use the factorization of L-series
L(x,s)= L(e,s) L(¢',8) and the explicit formula for the Dirichlet L-series at
s=0 . Namely L'(e,0) =-hlog lul , where O<u<1 is a fundamental unit in k,

and L(¢', 0)= 2h'/w', where w' is the number of roots of unity in k'.
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Since the units u and EX are both real, the relation between the IL.-series
] 1
gives the identity EX =+ u24hh /w . Since hh'# 0 (mod 5), this shows that

EX is not a 5t power in U .

We now turn to the proof of proposition 2. Along with k , choose an auxiliary
imaginary quadratic field k' where 11 is inert and h' is primeto 5., Let K
be the third field contained in the biquadratic extension L = kk'; then K is
imaginary and 11 splits in K. Let 6 be the order of K of discriminant dd',
and construct the point y  in E(L)x as in proposition 1. Since
E(L)X = Ex)° @E(k")" ~Z and Ll (E/L){ =0, we will be finished once we
show E(k')= E(R)=>=2Z/5 . This follows the descent, as SS(E/k') ~2/5 .

The reader is invited to find a proof of proposition 3 for himself, using the

fact that { A(®)/A(p) }% is an integer in H which generates the ideal p6 of K.
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