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Refined class number formulas and Kolyvagin systems

Barry Mazur and Karl Rubin

ABSTRACT

We use the theory of Kolyvagin systems to prove (most of) a refined class number formula
conjectured by Darmon. We show that for every odd prime p, each side of Darmon’s
conjectured formula (indexed by positive integers n) is “almost” a p-adic Kolyvagin system
as n varies. Using the fact that the space of Kolyvagin systems is free of rank one over
Z,, we show that Darmon’s formula for arbitrary n follows from the case n = 1, which in
turn follows from classical formulas.

1. Introduction

In this paper we use the theory of Kolyvagin systems to prove (most of) a conjecture of Darmon
from [1].

In [2, Conjecture 4.1], inspired by work of the first author and Tate [7], and of Hayes [4], Gross
conjectured a “refined class number formula” for abelian extensions K/k of global fields. Attached
to this extension (and some chosen auxiliary data) there is a generalized Stickelberger element
Ok /i € Z[G], where G := Gal(K/k), with the property that for every complex-valued character x
of G, X(0x k) is essentially L(K/k,x,0) (modified by the chosen auxiliary data). Gross’ conjectural
formula is a congruence for 0y, modulo a certain specified power of the augmentation ideal of
Z|G], in terms of a regulator that Gross defined.

In a very special case, Darmon formulated an analogue of Gross’ conjecture involving first
derivatives of L-functions at s = 0. Suppose F is a real quadratic field, and K, := F(u,,) is the
extension of F' generated by n-th roots of unity, with n prime to the conductor of F'/Q. Darmon
defined a Stickelberger-type element 6], € K ® Z[Gal(K,,/F)], interpolating the first derivatives
L'(xwp,0), where wp is the quadratic character attached to F//Q and x runs through even Dirichlet
characters of conductor n. Darmon conjectured that ), is congruent, modulo a specified power of
the augmentation ideal, to a regulator that he defined. See §3]and Conjecture 3.8 below for a precise
statement.

Our main result is a proof of Darmon’s conjecture “away from the 2-part”. In other words,
we prove that the difference of the two sides of Darmon’s conjectured congruence is an element of
2-power order.

The idea of our proof is a simple application of the results proven in [5]. For every odd prime
p we show that although neither the left-hand side nor the right-hand of Darmon’s conjectured
congruence (as n varies) is a “Kolyvagin system” as defined in [5], each side is almost a Kolyvagin
system; moreover, both sides fail to be Kolyvagin systems in precisely the same way. That is, we show
that the left-hand side and right-hand side form what we call in this paper pre-Kolyvagin systems
in the sense that they each satisfy the specific set of local and global compatibility relations given in
Definition below. It seems that pre-Kolyvagin systems are what tend to occur “in nature”, while
Kolyvagin systems satisfy a cleaner set of axioms. We show that the two concepts are equivalent,
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by constructing (see Proposition [6.5]) a natural transformation 7 that turns pre-Kolyvagin systems
into Kolyvagin systems and has the properties that:

— 7 does not change the term associated to n = 1, and

— T is an isomorphism from the Z,-module of pre-Kolyvagin systems to the Z,-module of Koly-
vagin systems.

Since it was proved in [] that (in this situation) the space of Kolyvagin systems is a free Z,-module
of rank one, it follows that if two pre-Kolyvagin systems agree when n = 1, then they agree for
every n. In the case n = 1, Darmon’s congruence follows from classical formulas for L' (wg,0), so we
deduce that (the p-part, for every odd prime p of) Darmon’s conjectured congruence formula holds
for all n.

Darmon’s conjecture begs for a generalization. A naive generalization, even just to the case where
F'is a real abelian extension of Q, is unsuccessful because the definition of Darmon’s regulator does
not extend to the case where [F' : Q] > 2. In a forthcoming paper we will use the ideas and
conjectures of [§] to show how both Gross’ and Darmon’s conjectures are special cases of a much
more general conjecture. In the current paper we treat only Darmon’s conjecture because it can be
presented and proved in a very concrete and explicit manner.

The paper is organized as follows. In §2] we describe our setting and notation, and in §3] we
state Darmon’s conjecture and our main result (Theorem [B.9). In §l we recall some work of Hales
[3] on quotients of powers of augmentation ideals, that will enable us to translate the definition
of Kolyvagin system given in [5] into a form that will be more useful for our purposes here. In §5
we give the definition of a Kolyvagin system (for the Galois representation Z,(1) ® wr). In §6l we
define pre-Kolyvagin system, and give an isomorphism between the space of pre-Kolyvagin systems
and the space of Kolyvagin systems. In §7] (resp., §8) we show that the “Stickelberger” side (resp.,
regulator side) of Darmon’s formula is a pre-Kolyvagin system as n varies. Finally, in §9 we combine
the results of the previous sections to prove Theorem [3.91

2. Setting and notation

Fix once and for all a real quadratic field F', and let f be the conductor of F//Q. Let w = wp be
the quadratic Dirichlet character associated to F'/Q, and 7 the nontrivial element of Gal(F/Q). If
M is a Gal(F/Q)-module, we let M~ be the subgroup of elements of M on which 7 acts as —1.

Throughout this paper ¢ will always denote a prime number. Let N denote the set of squarefree
positive integers prime to f. If n € A let ny be the product of all primes dividing n that split in
F/Q, and r(n) € Z>( the number of prime divisors of n4:

ny = H l,
Lnw(f)=1
r(n):=#{:€|ny} =#{L:¢|n and ¢ splits in F}.

For every n € N let u,, be the Galois module of n-th roots of unity in Q, define
Ly, i= Gal(F(p,)/F) = Gal(Q(p,,)/Q) = (Z/nZ)",

and let I, denote the augmentation ideal of Z[I',|, which is generated over Z by {y —1:~v € ', }.
There is a natural isomorphism

Tn & I/1 (1)

defined by sending v € T, to v — 1 (mod I2). If m | n then we can view I, either as the quotient
Gal(F'(py,)/F) of Ty, or as the subgroup Gal(F'(u,,)/F(ty, /). With the latter identification we
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have
U,=[[Te L/I=EpL/1;
Ln Ln
the product and the sum taken over primes ¢ dividing n.

We will usually write the group operation in multiplicative groups such as F'* with standard
multiplicative notation (for example, with identity element 1). However, when dealing with “mixed”
groups such as F*®1I" /I"*+1 we will write the operation additively and use 0 for the identity element.

Fix an embedding Q — C.

3. Statement of the conjecture

In this section we state our modified version of Darmon’s conjecture (mostly following [1]) and our
main result (Theorem [3.0)).

If n € NV, let ¢, € p, be the inverse image of e
define the cyclotomic unit

Q= 11 VG = DFD € F(p,)*
v€Gal(Q(pr )/ Q1))

2mi/n ynder the chosen embedding Q < C, and

and the “first derivative 0-element”

0, = Z Ym)®y € F(p,)” @ Z[Iy].
vel'y

REMARK 3.1. The element 6/, is an “L-function derivative evaluator” in the sense that for every
even character y : I';, — C*, classical formulas give

(log |- | ®x)(0,) = > x(v)log [y(an)| = —2L},(0,wpx)
vETR

where L, (s,wrx) is the Dirichlet L-function with Euler factors at primes dividing n removed, and
| - | is the absolute value corresponding to our chosen embedding Q — C.

Suppose n € N. Let X,, be the group of divisors of F' supported above noo, and let &, :=
Or[1/n]*, the group of n-units of F. We will write the action of Z[I',,] on &, additively, so in
particular (1 —7)&, = {¢/€” 1 e € E,}.

Let A\g € X,, be the archimedean place of F' corresponding to our chosen embedding Q — C.

LEMMA 3.2. Suppose n € N, and let r = r(n).
(i) We have X, =X , &, =&, ,and (1 —7)&, = (1 —1)¢&

nyr “n n4 ng -
(ii) The group (1 — 7)&, is a free abelian group of rank r + 1, and is a subgroup of finite index in
&
(iii) The group X,, is a free abelian group of rank r + 1. If ny = [[;_, £;, and ¢; = N7, then
Do = A, M —A],..., A\ — AT, } is a basis of X, .

Proof. The only part that is not clear is that (1 — 7)&, is torsion-free, i.e., —1 ¢ (1 — 7)&,. Let
d > 1 be a squarefree integer such that F = Q(\/E) If ™ = —z, then x/\/a € Q, so x is not a unit
at the primes dividing d. Since n is prime to d, we cannot have = € &,. O

DEFINITION 3.3. A standard Z-basis of X is a basis of the form described in LemmaB.2((iii). Given
a standard basis of X, , a Z-basis {¢, ..., e} of (1 —7)&, will be called oriented if the (regulator)
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determinant of the logarithmic embedding
1-7)& — X, @R, e Z log |€[x - A
Alnyoo

with respect to the two bases is positive. Concretely, this regulator is the determinant of the matrix
whose entry in row ¢ and column j is log |€;y,-

REMARK 3.4. Choosing a standard basis of X, is equivalent to ordering the prime divisors ¢; of
ny and choosing one prime of F' above each /;.

Any basis of (1 — 7)&, can be oriented either by reordering the basis, or inverting one of the
basis elements.

DEFINITION 3.5. Suppose n € N and \ is a prime of F' dividing n. Define a homomorphism
R n/Ig
by
2]} = [, Fa(py)/Fa] =1 (mod I7)
where [z, FA(p,,)/F\] € T'y, is the local Artin symbol. Note that if 01;3?(3:) =0, then [z, Fx(u,,)/F)]
A

belongs to the inertia group I'y C Ty, so [#]} = [2]§ € Io/I} and [2]}’" = 0. In general, if d | n then

13 = [l + B € T/ 13 © Luya/ Ty = Tn/ T
DEFINITION 3.6. (See [I, p. 308].) Suppose n € N, and let r = r(n). Choose a standard basis
{Ao—=A%s .-, A — AL} of X, and an oriented basis {eo, ..., e} of (1—7)&,, and define the regulator
Ry €& @I /IT+! by

60 61 .« .. ET
€0 n €1 n e € n
R, = [ .]*1 [ .]*1 [ ,]Al e(l-7)& @I /I
o], led]¥ -+ le]}

This determinant, and the ones that follow below, are meant to be evaluated by expanding by

minors along the top row, i.e.,
T

Ry = (—1)¢; @ det(Ay;) (2)
j=0

where Aj; is the 7 x r matrix (with entries in I,,/I2) obtained by removing the first row and j-th
column of the matrix above.

Note that this definition of R,, does not depend on the choice of Z-bases. The possible ambiguity
of £1 is removed by requiring that the basis of (1 — 7)&, be oriented.

Let h,, denote the “n-class number” of F, i.e., the order of the ideal class group Pic(Op[1/n]).
For the rest of this section we write simply r instead of r(n).

THEOREM 3.7 (Darmon [I, Theorem 4.2]). For every n € N, we have
0, € F(p,) 1.
For n € N, let 8/, denote the image of 6/, in F(,)* @ I /I"t!. Let s be the number of prime

divisors of n/ny; we continue to denote by r the number of prime factors of n.

The following is a slightly modified version of Darmon’s “leading term” conjecture [I, Conjecture
4.3].
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CONJECTURE 3.8. For every n € N, we have
0, = —2°hn Ry in (F(p,) /[{£1}) @ I /1,
The main theorem of this paper is the following.

THEOREM 3.9. For every n € N, we have
0!, = —2°h,R, in F(p,)* @I /1" @ Z[1/2].
_ In other words, the p-part of Conjecture [3.8 holds for every odd prime p; in still other words,
¢! + 25h, R,, has 2-power order in F(u,)* @ I" /1",
A key step in the proof of Theorem [3.9]is the following observation.

PRrROPOSITION 3.10 (Darmon [I, Theorem 4.5(1)]). Conjecture[3.8 holds if n = 1.

Proof. When n = 1 we have r = 0, Il,/I;*! = Z, 0] = 0} = ay € O, and Ry = ¢/¢", where ¢ is a
generator of O /{£1} and |e/€”| = |¢|* > 1 at our specified archimedean place. Dirichlet’s analytic
class number formula shows that

1 1
—§log\a1] = L'(0,wr) = hrlog|e| = §hp log |e/€" |
where hp = hy is the class number of F. Hence ay = (/€)% in OF. O

REMARKS 3.11. (i) In Darmon’s formulation [I, Conjecture 4.3], the regulator R,, was defined with
respect to a basis of &, /{£1} instead of (1 — 7)&,, and there was an extra factor of 2 on the
right-hand side. This agrees with Conjecture B8 if and only if [£; : £(1 — 7)&,] = 2, i.e., if and

(ii) The ambiguity of £1 in Conjecture 3.8 is necessary. Namely, even when n = 1, we may only
have 0] = hiRy in OF/{#£1}. Since a; is always positive (it is a norm from a CM field to F), the
proof of Proposition B.10l shows that éi # —h1 Ry in F* when hp is odd and O has a unit of norm
—1. Note that in this case 6] and —hyR; differ (multiplicatively) by an element of order 2 in F*,
so the discrepancy disappears when we tensor with Z[1/2].

4. Augmentation quotients

DEFINITION 4.1. Suppose n € N, and let r = r(n). Let Z2*V C I"/I"*! be the (cyclic) subgroup
generated by monomials [],,,, (ve —1) with 7¢ € T'. Let 7o C I /I be the subgroup generated

T

by monomials [[;_, (7; —1) where each v; € Ty, for some ¢; dividing n, and {¢1,..., 4.} # {{: £ | n4}
(i.e., either one of the ¢; divides n/ny, or ¢; = {; for some i # j). If n = dydy then there is a natural
identification Z)*V = T*VIIV C I, /11, and if n = £ is prime then Z}*™ = I,/I} and 94 = 0.

If d | n,let

7q : L[y — Z[Ty] — Z[T,,]

denote the composition of the natural maps. We also write 74 for the induced map on I*/I*+1 for
k> 0.

The following proposition is based on work of Hales [3].

PROPOSITION 4.2. Suppose n € N, and r = r(n). Then:

() I5/1 = oo o oM,

(ii) Ifd|ny and d > 1, then m, q(Z2°) = 0 and m,q(I,/I; ) € I
(it)) Zpe™ ={v e I}, /I; : m, 0(v) = 0 for every £ dividing ny}.
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(iv) The map ®,, 'y — I,V defined by g, Ve — Hf|n+ (v¢ — 1) is an isomorphism.

Proof. Let A, be the polynomial ring Z[Yy : ¢ | n] with one variable Y} for each prime ¢ dividing
n. Fix a generator oy of T'y for every ¢ dividing n, and define a map A,, — Z[I',] by sending
Yy — oy — 1. By Corollary 2 of [3], this map induces an isomorphism from the homogeneous degree-
r part of A,/(J, + J!) to I /I"+1 where J,, is the ideal of A,, generated by {(¢ —1)Y; : £ | n}, and
J] is the ideal generated by certain other explicit homogeneous relations (see [3, Lemma 2]). The
only fact we need about these “extra” relations is:

if f € J),, then every monomial that occurs in f is divisible by the square of some Yy.  (3)

Note that Z2®V is the image in I’ /I"*! of the subgroup of A,/(J, + J!,) generated by Y,,, where
Y, = HZ‘M Y;. Similarly, Z94 is the image of the subgroup generated by all other monomials of
degree r. By @), Y, does not occur in any of the relations in J, and assertion (i) follows.

Assertion (ii) is clear, since m, 4 kills those monomials that include (y — 1) with vy € T'y for ¢
dividing d, and leaves the other monomials unchanged.

Fix v € I/I;7. If v € Z2° and £ | ny, then m,,(v) = 0 by (ii). Conversely, suppose that
Tp/e(v) = 0 for every ¢ dividing n,. Choose f € A, homogeneous of degree r representing v, and
suppose f has the minimum number of monomials among all representatives of v. We will show
that Y, | f, and hence v € Z)°V.

Fix a prime £ dividing ny. The map ,/, : Z[['y] - Z[T,, ;] — Z[I'y] corresponds to the map
Ay — Ay, defined by setting Y, = 0. Since 7, ,(v) = 0, substituting ¥, = 0 in f gives a relation
in J, +J), e, f =Y, g+ h where g is homogeneous of degree r — 1, h € J,, + J},, and Y, does
not occur in h. But then Y, - g represents v, so the minimality assumption on f implies that h = 0.
Therefore Yy | f for every ¢ dividing n, so Y, | f and v € Z*V. This proves (iii).

Let g :=ged({¢ —1: ¢ | ny}). Then gY, € J,. It follows from (B that the monomial Y,, only
occurs in elements of J,,+.J/, with coefficients divisible by g. Therefore Z2V is cyclic of order g, and so
is ®yjp, '¢. Clearly the map ®g,, I'r — Zp°" of (iv) is surjective, so it must be an isomorphism. [

If v € IT/I'FL, let (v)2°Y denote the projection of v to Z2°V under the splitting of Proposition
[4.2](1). We will use the following lemma without explicit reference in some of our computations in
g6l and §8l Its proof is left as an exercise.

LEMMA 4.3. Supposed | n, v € I;L‘?‘C’lv, and w € Iﬁ(d)/I;;(d)H. Then

new new new

(vw)p™ = (vra(w))p™ = v(ma(w))g

5. Kolyvagin systems

Fix an odd prime p. To prove Theorem B9 we need to introduce Kolyvagin systems, as defined in
[5]. (See in particular [5, §6.1], and also [6], for the case of Kolyvagin systems associated to even
Dirichlet characters that we use here.)

Let £% denote the p-adic completion of F*. Similarly, for every rational prime £ let Fy := FRQy,
O := Op®Zy, and define F;* and O} to be their p-adic completions. We define the “finite subgroup”
F/; to be the “unit part” of F,*

Fp= O C By
If £ = A\7 splits in F', define the “transverse subgroup” F v C F ,* to be the (closed) subgroup
generated by (¢,1) and (1,¢), where we identify F,;* with F\* x F\. = Q, x Q. Then we have a
6
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canonical splitting F v = AZf x F 1> and since p is odd

(sz)_ = (Féff)_ X (Fgftr)_- (4)
DEFINITION 5.1. If £ # p splits in F', define the finite-singular isomorphism

gs : (ngf)_ = (ngtr)_ ® Ip/I}
by

¢(@) = (6.1) @ ([on, Fa(pe)/Fa] = 1) + (1,0) @ ([ear, Faxr (1) / Far] = 1)
= (6,07 @ ([ex, Falpe) /Fa] = 1)
where x = (zy,z)r) € FY x FYS = Q) x Q) with zy» = 2! € Z), and [ -, F\(p,)/F)] is the local
Artin symbol. (Concretely, note that if u € Z, then [u, F\(p,)/F)] is the automorphism in Ty that
sends (; to Qfl.) Then gbﬁs is a well-defined isomorphism (both the domain and range are free of
rank one over Z,/(¢ — 1)Z,), independent of the choice of A versus \".
DEFINITION 5.2. Let NV, := {n € N : ptn}. A Kolyvagin system k (for the Galois representation
Z,(1) ® wp) is a collection
{kin € (FX)" @IV :n € N}
saAtisfying the following properties for every rational prime ¢. Let (k,); denote the image of k,, in
(F)” @I, .
(i) If £1n, then (kn)e € (F))™ @ IRV

(i) If £ | ny, then (k) = (65 ® 1) (Knjee)-
(iii) If €| n/ny, then k, = Ky, .
Let KS(F') denote the Z,-module of Kolyvagin systems for Z,(1) ® wg.
REMARK 5.3. Let Nf := {n € N}, : all £ | n split in F//Q}. In [5], a Kolyvagin system was defined

to be a collection of classes {x, € (F,*)” ® (®,'¢) : n € N;f }, and ¢ took values in (thr)_ @ Ty
We use Proposition d.2(iv) to replace ®,,, I'e by Zp*" and () to replace I'; by Ip/I2, which will be
more convenient for our purposes here. Also, a Kolyvagin system {x, : n € N,J} as in [5] extends
uniquely to {sn : n € Nj,} simply by setting r,, := k,, for n € N, = Nf.

The following theorem is the key to our proof of Theorem 3.9
THEOREM 5.4. Suppose k,k’ € KS(F). If k1 = K}, then k,, = k|, for every n € N,.

Proof. We follow §6.1 of [5], with R =Z,, p =wp, T = Z,(1) ® wp, and with the Selmer structure
denoted F in [5]. By Lemma 6.1.5 and Proposition 6.1.6 of [5], the hypotheses needed to apply the
results of §5.2 of [5] all hold, and the core rank of T is 1.

By Theorem 5.2.10(ii) of [5], KS(F) is a free Z,-module of rank one. Therefore (switching x
and k' if necessary) there is an a € Z, such that k¥’ = ak, i.e., k|, = ak, for every n € N,. If K is
identically zero, then so is k" and we are done. If k is not identically zero, then (since the ideal class
group of F' is finite) Theorem 5.2.12(v) of [5] shows that x; # 0. Since &} = k1 in the torsion-free
Z,-module (F*)~ (in fact property (i) above shows that x; € (O ®Z,)”), we must have a = 1. [

6. Pre-Kolyvagin systems

Keep the fixed odd prime p. The right-hand and left-hand sides of Conjecture B.8 are “almost”
Kolyvagin systems. If they were Kolyvagin systems, then since they agree when n = 1 (Proposition
B.10), they would agree for all n by Theorem (5.4, and Theorem 3.9 would be proved.
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In this section we define what we call “pre-Kolyvagin systems”, and show that a pre-Kolyvagin
system can be transformed into a Kolyvagin system. Using Theorem [5.4] we deduce (Corollary
below) that if two pre-Kolyvagin systems agree when n = 1, then they agree for every n. In §7l and
g8l respectively, we will show that the left- and right-hand sides of Conjecture 3.8 are pre-Kolyvagin
systems. Then Theorem [3.9] will follow from Corollary and Proposition 310

If z € (F*)~ @I /I%, let 24 denote the image of = in (F;*)~ @ I, /In*", and if £ € N, splits in
F/Q,let x5 € (Fgf)_ @ I"/I7T and @y, € (thr)_ ® I /171 denote the projections of zy induced
by the splitting (@). Let (z)2° € (F*)~ ® 2" denote the projection of z induced by the splitting
of Proposition £2)(i), and similarly for (zy)n®" and (z, ).

n n

DEFINITION 6.1. If n € A and d = [[._, ¢ divides ny, let M, 4 = (m;;) be the t x t matrix with
entries in I,, /12
Tnya(Fre, —1) ifi=j,
mij = oo .
mo; (Frg, — 1) ifd # 5.
We let My := Mg 4, where m;(Fr, — 1) is understood to be zero, so that all diagonal entries of My
are zero. Define

Dy g = det(M, q) € IL/TEY Dy = det(My) € I3V C I, /I,
By convention we let D,, 1 = D1 = 1. Note that D,, 4 and Dy are independent of the ordering of the

prime factors of d.

DEFINITION 6.2. A pre-Kolyvagin system k (for Z,(1) ® wr) is a collection
{kn € (F)" @ IN/I"T i n € Ny}
where r = r(n), satisfying the following properties for every rational prime /:
(i) TIf €4 n, then (k,)¢ € (F5) @ I/ T3+,
(ii) If £ | ny, then (1 ® 7y, /0)kin = K e T e(1 — Fry).
(ii)) If £ | 4, then ((kn)eer)n™ = (67 © D({(Kne)e)ny)-
(iv) If €[ ny, then } g, ((ﬁn/d)gﬂ;ﬁ‘g Dy =0.
(v) If £ | n/ny, then (kp)p®" = (/{n/@fle/vg.
Let PKS(F) denote the Z,-module of pre-Kolyvagin systems for Z,(1) ® wp.

DEFINITION 6.3. If k = {k,, : n € N} is a pre-Kolyvagin system, define & = {k,, : n € N} by

Ry i= Z Kn/d Dn,d-

dlny
LEMMA 6.4. Suppose n € N, and d | n.
(i) If€|d then 7, ;((Dpa) = T q(Fre — 1)Dyy g, ase-
(ii) If €1 d then Wn/g(Dmd) =Dy /pa-
(ili) 7g(Dp,g) = Dg € T3V,
Proof. Suppose ¢ | d. The column of 7, /,(My, 4) corresponding to ¢ consists of all zeros except for

7a(Fre — 1) on the diagonal. The first assertion follows from this, and (ii) and (iii) follow directly
from the definition. O

~

PROPOSITION 6.5. The map k — K of Definition is a Z,-module isomorphism PKS(F) —
KS(F) between free Z,-modules of rank one.
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Proof. The Z,-linearity is clear. The injectivity is clear as well, since it follows easily by induction
that if K, = 0 for all n, then x,, = 0 for all n.

We next show that if k is a pre-Kolyvagin system, then & is a Kolyvagin system. In other words,
we need to show for every n € N, that

(2) fn € ()" @I,

(b) if £fn then (Ry)e € (F)%)~ ® IR,

if ¢ | ny then (Fp)esr = (6F @ 1)((Knse)e),
if £ | ny then (R,)es =0,

if £|n/ny then &, = &,/

(c
(d
(e

Fix n € N,, and suppose that ¢ | ny. Then

(1@ ) (Rn) = Z (1® mp/¢)(KngDn,a) + Z (1 ® 7,/¢)(Kn/aDn,a)

din s td dinsfld
= Z Kin/(de) Tn/t(Pn,ae) + (1 @ T pae)) (Knya) Tne(Dnd)-
d\(n /1)

Fix a divisor d of ny /f. By Lemma [6.4i),

Kn/(de) Tn/e(Pn.de) = Knyde) Tnyde) (Fre — 1) Dy e a-
Also, (1@ 7y /(a0))(Fn/a) = Fn(de) Tn(de) (1 — Frg) by Definition [6.2(ii), so by Lemma [6.41(ii)
(L ® (e (Knya)®n e(Dn,a) = Kny(de) Tnj(ae) (1 — Fre) Dy g-
Thus (1 ® m,/¢)(kn) = 0 for every £ dividing n. Since (F*)~ is a free Z,-module, it follows from
Proposition E2(iii) that &, € (F*)~ ® Z2°¥. This is property (a) above.
By (a), and using that mq(Dy, q) € I3V, we have
Fn = (F)n™ = Y (Knja)ngs 7a(Dna)-
dn4
If ¢ {1 n, then property (i) of Definition of a pre-Kolyvagin system shows that ((/ﬁln7d)g>2‘7§ €
(Fgf)_ ® I,9 for every d, so (Fn)e € (Fgf)_ ® ZPeV. This is (b).
Now suppose ¢ | ny. For (c), using property (i) of Definition [6.2] we have
(Fn)etr = Z(Hn/d)z,trpn,d = Z (Kn/d)erDn.d-
dlng dl(n4/0)
Projecting into ZV, and using (a), (ii) of Definition [6.2, and Lemma [6.4{(ii), we have
(Fn)eie = ((Fn)eu)n” = Z ((Knja)e i Dna)n™
d|(ny./€)
= Z (85 @ 1)((Kn)(d0))e) T je(Pr,a) )0
d|(ny./€)
= > {(@F @ V)((Bnyae))Prjeahn™
d|(ny./€)
= (96 @ V) (Ryo))n™ = (07 @ V)((Rnse)iys) = (07 © 1)(Rse)-
This is (c). For (d), using (a), Lemma [6.4{(iii), and (iv) of Definition [6.2] we have
(Rn)es = ((Fn)ee)n™ = Y ((5nja)en)nga (maPua)Vi™ = Y ((5nja)es)njiDa = 0.

din4 din4
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Finally, suppose that ¢ | n/n,. Using Definition [6.2(v) and property (a) above,
fin = (Fn)n™ = > ((Enja)naDa= Y ((Kns(ae))nitaey P = (Fnpe)ni = Finye-
dlng dl(n/€)+
This completes the proof that £ is a Kolyvagin system.

Since KS(F') is a free Z,-module of rank one [5, Theorem 5.2.10(ii)], to complete the proof it
remains only to show that the map PKS(F) — KS(F) is surjective. If & € KS(F'), then (since
D,1 = 1) we can define inductively a collection & := {s, € (F*)~ @ I’/I:*' : n € N,} such that
> din.. Fon/d Dy,.q = Ry for every n. It is straightforward to check that & is a pre-Kolyvagin system;
since we will not make use of this, we omit the proof. By Definition the image of k in KS(F)
is K. [l
COROLLARY 6.6. Suppose k, k' € PKS(F). If k1 = &}, then k, = k), for every n € N,,.

Proof. Let & and &’ be the images of k and &/, respectively, under the map of Definition [6.3l Then
% and &' are Kolyvagin systems, and &) = 1 = x] = &}. Therefore & = &’ by Theorem [5.4] so by
the injectivity assertion of Proposition we have k = K/, i.e., k, = K, for every n € N,,. O

We will use the following definition and lemma to replace property (iv) in the definition of a
pre-Kolyvagin system by an equivalent property that will be easier to verify. See Remark below.

DEFINITION 6.7. If n € N, let &(n) denote the set of permutations of the primes dividing n, and
let G1(n) C &(n) be the subset

S1(n) :={o € &(n) : the primes not fixed by o form a single o-orbit}.
If o € &(n) let d, := Hé\m,a(@# £, the product of the primes not fixed by o, and define
(o) := H Tq(Froq) — 1)
qlds

LEMMA 6.8. Suppose that A is an abelian group, ¢ is a prime that splits in F/Q, and z,, € AQZI!V
for every n € N,. Then the following are equivalent:

(i) For every n divisible by ¢, Zd|n+ Ty aDa = 0.

(ii) For every n divisible by ¢, x,, = — Z sign (o), /q, 11(0).
c€eB1(n)
o(L)#L

Proof. We show first that (ii) implies (i) (which is the implication we use later in this paper). Let
G&'(d) C &(d) denote the derangements, i.e., the permutations with no fixed points. Then we can
evaluate the determinant Dy = det(Mj) as follows. Let m, o be the (¢, ¢')-entry in M. Then

Di= Y sign(@) [[ oo = 3. sign(o)TI(o), (5)
ceS(d) qld ceS (d)
where the second equality holds since the diagonal entries of My vanish.
Fix an n divisible by ¢, and let

S1= > piDa S2= Y n4Da

dn.,ttd d|ng|d
Using property (ii) we have
Si==> > sign(o)((@n/dds))e)nSta,) (o) Da- (6)
dny 0€&:(n/d)
td  o(O)#

10
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Fix a divisor ¢ of n, that is divisible by £. We will show that the coefficient of x,,/5 in S1 in (@) is
—Ds, which exactly cancels the coefficient of x,,/5 in Sz. Using (&), the coefficient of z,,/5 in S; in

[©) is
— Z Z <sign(0)H(J) Z sign(n)II > Z Z Z sign(on)I(on).

d|(6/£) o€B1(n/d) ned’ (d) d|(6/£) o€B1(n/d) ne&'(d)
d

0'26/d o=
For every p € &'(9) there is a unique triple (d, o, n) such that
d|é/t, o€ 6i(n/d), dy =5/d, n € &'(d), and p=on.

To see this, simply write p as a product of disjoint cycles, let ¢ be the cycle containing ¢, and let
d=4/d, and n = 0~ !p. Thus the coefficient of Tys in Sy in (@) is (using (B]) again)

— Y sign(p)T(p) = —Ds.
pEE(4)
Therefore 3y, #n/aDa = 51+ 52 =0, so (i) holds.

Although we will not need it, here is a simple argument to show that (i) implies (ii). Suppose
that X := {2z, € AQI} : n € N,} satisfies (i). If £ | n, then (since D; = 1) we can use (i)
recursively to express z, as a linear combination of x4 with £t d. Thus X is uniquely determined
by the subset X' := {z, € AQ I}V : n € N,, £ {n}. Clearly X’ determines a unique collection
Y = {y, € ARIL®™ : n € N,} satistying (ii), with y,, = x,, if £ { n. We showed above that (ii)
implies (i), so Y satisfies (i). Since (i) and X’ uniquely determine both X and Y, we must have
X =Y, and so X satisfies (ii). O

REMARK 6.9. We will apply Lemma as follows. Let A := (Féxf)_, and let z, = ((kn)ee)n"-
Then Lemma [6.8 says that we can replace property (iv) in Definition [6.2] of a pre-Kolyvagin system
by the equivalent statement:

(iv)' if €] nyg, then ((kn)er)p™ = — > sign(o){(Knya, )e)niy, (o).
c€S1(n)
o(L)#L

7. The cyclotomic unit pre-Kolyvagin system

Fix an odd prime p. If n € N, let s(n) be the number of prime factors of n/n. In this section we
will show that the collection {275(@ :n e N,} is a pre-Kolyvagin system. Recall that

NF:={n €N, :all £|nsplit in F/Q}.
PROPOSITION 7.1 (Darmon). If n € N, then

> 0 a ][ wnsare—1) =25, in (F*)” @3
diny ¢ld

where for n € Nf, B, € (FX)~ ® IV is the Kolyvagin derivative class denoted k(n) in [I, §6], or
Kn in [6, Appendix].

Proof. This is Proposition 9.4 of [1] (Note that x(n) in [I, §6] and k,, in [6, Appendix] are defined
to lie in (F)” @ (Z/ged(¢ — 1 : £|n)Z), after fixing generators of every I',. Without fixing such
choices, the elements defined in [I] and [6] live naturally in (F*)~ ® Zr°V.) O

!There is a typo in [I, Proposition 9.4]. The last two 7”s should be T'Q, as in [I, Lemma 8.1].

11
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THEOREM 7.2. The collection {27°("@! : n € N,} is a pre-Kolyvagin system.

Proof. We need to check the five properties of Definition[6.2l For n € N;’ , let G, be as in Proposition
1l

Since B, € (FX)~ @ IV for every n, it follows easily by induction from Proposition [Z1] that
0!, € (F*)~®I% /I, where r is the number of prime factors of n . This is property (i) of Definition
0.2

Suppose £ | n4. A standard property of cyclotomic units shows that

Pyt
NP () F(h)0) O = Qo] @,y -

It follows from the definition of ¢/, that

(L@me)O) = D Yan) @ T(V) = D YN )/F(p, ) 0n) @Y

vel'n ’\/EFn/e
F -1
= Z fy(an/g/anrfz )@y = Z V() @y Ty p0(1 — Frp) = 6’1’1/5 T 0(1 — Fry).
Y€ h e Y€ h e

of Definition [6.2]

i)
Projecting each of the summands in Proposition [I] into (13’ )T ®Zp°Y, one sees that all terms
with d > 1 vanish, yielding

Since ¢ | ny we have s(n) = s(n/f), so this verifies property (i

<2—s(n)é;>gew _ <ﬁn+>gew _ ﬁn+-
Properties (iii), (iv), and (v) of Definition follow from the corresponding properties of the 3, .
See [5, Proposition A.2] or [9, Theorem 4.5.4] for (iii), and [5, Theorem A.4] or [6, Proposition A.2]
for property (iv)’ of Remark Property (v) is immediate, since (3,, depends only on n. O

8. The regulator pre-Kolyvagin system

In this section we study relations among the regulator elements R,, to show that the collection
{hnRy : n € N} is a pre-Kolyvagin system.

LEMMA 8.1. Suppose n € N, £ | ny, and {\g — A],...,\r — AL} is a standard basis of X, with
A AL = L. Then {\g— A, ..., \r—1—A]_, } is a standard basis ofX;/Z, and we can choose an oriented

basis {€o, ..., €} of (1 —T)&, such that {eo, ..., €1} is an oriented basis of (1 — )&, ;.
With any such bases, ordy, (€;) = —hy/¢/hn and

h
n/t _ 'n/t
[Er])\r - hn

Tnge(1 = Fre) € Lo/ I 4.

Proof. Everything except the final sentence is clear. Comparing the determinants of the logarithmic
embeddings

U= 5 Xy (176 = X,

with respect to our given bases, we see that

det(&,) = log |e|x, det(&,/,)

because log |€;|y, = 0 for 0 < ¢ < r. Since our bases are oriented, both determinants are positive.
Hence

|€r|)w = E_Ord)\r(er) >1

so ordy, () < 0.

12
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The exact sequence

ordy,.

(1—1)& 22 7 2% Pic(Op[l/n]) — Pic(Op[L/n]) — 0
shows that
[Z : ordy, (€,)Z] = hy, 0/,
so ordy, (er) = —hy/¢/hn as claimed. Since F'(p,,/,)/F' is unramified at A,

e 3/ = @)y — 1 = ordy, (6) (Fre — 1) = Ry, o/l (Fr — 1)
in L/ I3 -
PROPOSITION 8.2. Supposen € N, £ | ny, and r = r(n). Then

(1 ® Fn/g)(han) = hn/an/g Fn/g(l - Frg) e F~ & [;;/[;;_H.

Proof. To compute R,, fix bases for X, and &,; as in Lemma Rl By definition

60 61 DY 67”
R = o]y, lalk, - [&]3
eoly, el - e,

and then (1 ® m,/,)(R,) is the determinant of the matrix obtained by applying ,/ to rows 2

through r+1 of this matrix. For i < 7, ¢; is a unit at A, so the local Artin symbol [e;, F'(p,,) ./ F, ]

lies in the inertia group I'y. Hence 7, /¢([e;]} ) = [ei]ZZZ =0 for ¢ < r, and so

€0 to €r—1 €r
n/t n/l n/l
/- ey [6])
1@ M) (Ra) =| : :
n/t n/l n/t
eold*, o el eV
0 0 [Gr]f\ié

The upper left 7 x r determinant is the one used to define R,, /s, so

n hn ¢
(1® T0y0) (Ra) = Ruyelerl5) = 5

by Lemma Rl O

Ry e mp0(1 — Frp)

Fix an odd prime p as in §§5l and [6] and keep the rest of the notation of those sections as well.

LEMMA 8.3. If n € N, { is a prime not dividing n, and r = r(n), then
(Ro)e € ()~ @ I/ I+
Proof. Since £ {n, if € € &, then ¢ € (O)) = (Fgf)_ C (EJ)~. Now the lemma is clear, since
R, €& @ IL /I O
PROPOSITION 8.4. Suppose n € Ny, and £ | n. Then
(i (R)eee)n™ = (05 @ 1)({Pnpe(Rpye) e )-
Proof. Note that (¢f®1)((hy /(R jO)elnge) € (F i) @R is well-defined, since Lemma B3 shows
that (R, /) € (Fgf)_ ® [;751/172/6’
13
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As in the proof of Proposition B.2] fix a basis {\g — Aj,..., A\, — AT} of X with £ = A\ A7, and
an oriented basis {ep,..., e} of (1 —7)&, as in Lemma [RIl Then

(60)6,1:1" te (er—l)é,tr (er)é,tr 1 T 1 (67 6_1)
(Ru)ose — [60:]31 [61:]311 o [67«:]?1 — ord, () [€o], [61‘]31 o [ErKl
leol, [aly, - [er]3, leoly, [alX, -~ el

since (€r)p4r = (6,6‘1)"“1%(”), and (€)e4r = 1 for i < r. (Recall that when we evaluate these
determinants using (2]), the multiplicative notation in (ng )&r changes to additive notation in the
tensor product (), ® I7/I; %", so 1's in the top row become 0s, and (¢, £~ )" (¢) hecomes
ordy, (€,) - (¢,£71).) We have ordy, (€,) = —hy, /p/hyn by Lemma BTl For i < r we have ordy, (¢;) =0,
so [e]y = [Ei]ir € I,/1} and

Ple)) = (LY @ ey, € (Ff)a @ I/17.

Thus
¢§S((63)z) P ((er—1)e)
(Ra)en —@?f( yeryt| R el
leolx , - [er—1lX |
$B((eo)e) - B ((er—1)e)
e | Ll L, el [l
" hy, : : :
ol +leols,, o lermaV, H el

(the (—1)" because we moved column 7 + 1 to column 1, and the (—1)"~! because we moved row
r+1 to row 2). When we expand the last determinant (including expanding the sums [EZ]ZJ/ gat [ei]ﬁj),
each term that includes one of the [ei]gj lies in I? (since the top row also contributes one element

of Iy). Thus all such terms project to zero in Z2*V, and so

hn
<(Rn)£,tr>gew = In/t <d t(A)>nCW

hy,
where
73 (/)e) e (e 1/)6)
A= [ O]n o [6’" 1];\11
n/l n/l
[60])\/ RS = 1])\/ )
But then det(A) = (¢F @ 1)((R,¢)¢), so the proposition follows. O
Suppose n,n’ € N, n | n/, and r = r(n). Define
60 61 oo ET
[eoly, [aly, - ey

Syt = €& @I /I,

/

o)y, laly, o el
using any standard basis of X, and oriented basis of (1 — 7)&,. In particular S, , = R,,.

14
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PROPOSITION 8.5. Supposen € N and ¢ {n.

(i) If ¢ is inert in F/Q, then hye(Rue)2Y = hy, (R, )RV,

n

(ii) If ¢ splits in F'/Q and v € I, then

P {Snnev)ng" = (R)n" m(v) — Z hn/q (Sn/qm U>26W7T3(Frq - 1)

primes g|n4
in &, @IV,
Proof. Let r be the number of prime divisors of n4, so X, and (1 — 7)&, are free Z-modules of

rank r + 1. Choose a standard basis of X, and an oriented basis of (1—7)&,. For 1 <i < r =r(n),
let

a; = ([ol¥- [e]8, - [e]R), b= (feali, [l - [er]S,)-
Then
60 .. 67,,
a + by
St = . = > det(Ap) (7)
: TCc{1,...r}
a, + by
where Ap is the matrix whose top row is (eg, ..., €,) and whose (i + 1)-st row for 1 < i < ris b; if

i € T and a; if i ¢ T. Note that det(Ay) = R,, and that the entries of each b; are in I,/I2.

Suppose first that ¢ is inert in F/Q, so (nf); = ny. Then (det(Ar))2Y = 0 if T' is nonempty
(since ZP*V has no “¢ component”), so ([7l) shows that

(Snne)n™ = (det(Ag))n™ = (Rn)y™.

Further, since ¢ is inert in F//Q we have X, = X/, (1 = 7)€, = (1 — 7)&,, and hye = hy,. Thus
Spne = Ry, and so

hné<Rné>?£% = hn<5n,n€>gow = hn<Rn>gCW
This is (i).

Now suppose that ¢ splits in F//Q. Since the entries of each b; are in Iy, if #(T) > 2 we have
(det(Ap)v)no™ = 0. Thus (T) gives

(Snnev)pe™ = (det(Ag)o)ng™ + Y (det(Agy)o)pe™. (8)
i=1
By definition of R,
(det(Ap)v)yg" = (Rnv)ng” = (Rn)p™ me(v). (9)

To compute det(Ag; ), let ¢ = A\;A7, and assume that our oriented basis of (1 —7)&, was chosen
so that {eo,...,€-—1} is an oriented basis of (1 —7)&, /, with respect to the standard basis of X, ,
obtained by removing \; — A7 from {\; —A],..., A\, — AT} For 1 <j <r—1, ¢ is a unit at \;, so

15
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[ej]ﬁi = 0. Thus

€0 €r_ €r
[EO]S\Ll e [67“_1]3111 [ET]SLl €0 e €r—1
: : : i | l0R, e [ea]d
CAD= o 0 e | TV T |
: : : o]y, -+ el
[EO]S\LT T [Er—l]gr [ET]S\LT

= (_1)T+isn/q,n [ET]gi
(where the second determinant has no \; row). Further, an argument identical to that of Lemma

B shows that

hy,
elh, = (~) (B, — 1) € L/ 17,
Therefore

hy,
det(A{Z}) = _h—,/LqS"/q’" WE(FI‘Q —1).

Multiplying (8) by h,, and using (9) gives
B (Sn,ne V)ng” = B (R )y ™ mo(v) — Z hn/q (Sn/q,n v W(Frq —D)ni" -

qln+
Since Sn/q,n € I:L/I:L—H, we have
<S"/Q7" v ﬂ-Z(Frq - 1)>E‘zw = <Sn/q7n 7-‘-”(,0)>26W WZ(FI'q — 1)
This completes the proof of the proposition. O

If n € N, recall (Definition [6.7]) that &(n) denotes the set of permutations of the primes dividing
ni, 61(n) C &(n) is the subset

S1(n) := {0 € &(n) : the primes not fixed by o form a single o-orbit},
and if 0 € &(n) then do := [[,(p) 2 ¢ and (o) := [] 4, Tg(Fro(g) — 1)
THEOREM 8.6. If n € N, and ¢ | ny, then

(Pn(Ru)eon™ == > sign(0)(hja, (Ruja,)e)ns, (o).
ceBi(n)
o(L)#L

Proof. As usual, fix a basis {A\g — AJ,..., A\, — AL} of X7 with £ = A\, and an oriented basis
{€0, .- &} of (1 —7)&, as in Lemma Bl so that {eo,...,e-—1} is an oriented basis of (1 —7)&, /-
Then

(€0)es (er—1)es  (er)es
(€0l [er—a]3,  [erX
(Rn)es = M . . .
[EO]S\LT T [Er—l]gr [ET]S\LT
For each i, we have [¢;]} = [ei]ZZZ + [ei]g\r. If i < r, then ¢ is a unit at A, so [ei]zfg = 0. Thus
(€0)es -+ (er)ef (€0)es -+ (e&r—1)ef (&r)ef
(Rn)ep = [602]31 [er:]ﬁl + [60.] oo [er_.lhl [GT:] .
eolf, - lel§, 0 0[]
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The map € — [e]§ = [¢, F), (1y)/F,] — 1 is an isomorphism from ()~ = (0)) to (Iy/1?) @ Zy,

and is zero on (F,},)” because ¢ is a norm in the extension Fj (p,)/F, = Qe(py)/Qe. Hence
the first determinant in the equation above is zero, because the top and bottom rows are linearly

dependent. Also, if ¢ < r then ¢; is a unit at A, so (¢;)rr = (€;), and

(€)e -+ (&r—1)e
(Rn)é,f = [60:])\1 - [er_:lb\l [Gr]zié = (Sn/f,n)é [ET]ZT/.Z.
eo]h, . o e},

By Lemma B1] [er]zfe = —(hyye/hn) T ye(Frg — 1). Thus

P {(Rn)e)n™ = —hpse{(Snyemn)e T pe(Fre — 1))57. (10)

We can now “simplify” (I0) by inductively expanding the right-hand side using Proposition
Specifically, expand ((Sy,/z,n T e (Fre — 1))3°" using Proposition B.5](ii). Then expand each of the
new

resulting (S, /(¢q),n/e Tn/(qe) (Frg — 1)>n/£ using Proposition B5[(ii) again. Continue until no terms
Sm/qm remain. The resulting sum consists of one term

k
k new
(—1) <hn/(q1~~~Qk)(Rn/(Q1~~~Qk))Z>n/(q1---qk) Hﬂ'qi (Frg, ., — 1)
i=1
for each sequence ¢1 = /¢, qa,...,q of distinct primes dividing n4 (with gxy1 = ¢). Identifying
this sequence with the k-cycle o := (¢,qa,...,qr) € S1(n) gives the formula of the theorem, since
sign(o) = (—1)¥1. O

THEOREM 8.7. The collection {hy, Ry : n € N,} is a pre-Kolyvagin system.

Proof. We need to check the five properties of Definition Property (i) is Lemma B3] (ii) is
Proposition B2 (iii) is Proposition [84] (iv) is Theorem along with of Remark [6.9] and (v) is
Proposition [R.5l(i). O

9. Proof of Theorem [(3.9]

Proof of Theorem [3.9. Fix an odd prime p. By Theorems[Z.21land B.7], we have pre-Kolyvagin systems
(270, - ne Ny}, {—haR,:neN,}.
By Proposition B3.10] 0~’1 = —hi Ry in O /{£1}. Hence by Corollary [6.6]
275, = —h,R, in (F*)” @IV ® Z, for every n € N,,. (11)

If p | n € N, then Proposition [4.2(iv) shows that (p —1)Z*" = 0. Therefore (F*)” @ Z)*V ® Z, = 0
and (II)) holds vacuously in this case. Since (1) holds for every n € N and every odd prime p, this
completes the proof of Theorem O
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