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2 S. W. ZHANG1. Introdu
tion and statements of resultsIn [20℄, Gross and Zagier proved a formula whi
h relates the 
entral derivatives of
ertain Rankin L-series and the heights of 
ertain Heegner points on ellipti
 
urves.Combined with Goldfeld's work on L-series [14℄, this formula gives a solution to Gauss'problem on 
lass numbers; and 
ombined with Kolyvagin's work on Euler system[16, 25℄, this formula gives the best eviden
e for the rank issue in the Bir
h andSwinnerton-Dyer 
onje
ture. In [17℄, Gross has proposed a program to generalize thisformula to totally real �elds with anti
y
lotomi
 
hara
ters. In our previous paper[31℄, we have worked out the program when the 
hara
ter is trivial and the nonsplitlevel stru
ture is small.The present paper is devoted to working out the weight 2 
ase of the program.One immediate appli
ation is to generalize the results of Kolyvagin and Loga
hev [26℄,and Bertolini and Darmon [6℄ to obtain eviden
e toward the Bir
h and Swinnerton-Dyer 
onje
ture in the rank 1 
ase for modular ellipti
 
urves over totally real �eldstwisted by some anti
y
lotomi
 
hara
ters.As a 
oprodu
t of the proof, we will also obtain a Gross-Zagier formula for the
entral values of 
ertain Rankin L-series for forms with mixed holomorphi
 and Maass
omponents at the ar
himedean pla
es. There will be two appli
ations of this Gross-Zagier formula. One is to generalize the re
ent work of Bertolini and Darmon [7, 8℄ toobtain eviden
e toward the Bir
h and Swinnerton-Dyer 
onje
ture in the rank 0 
ase.The other one is to use the re
ent work [4℄ of Cogdell, Piateski-Shapiro, and Sarnak toprove the equidistribution of 
ertain tori
 orbits of CM-points on quaternion Shimuravarieties. This equidistribution statement generalizes a result of Duke [11℄ and is alsore
ently announ
ed by Cohen [5℄ using Duke's original method.If we further assume that the work [4℄ of Cogdell, Piateski-Shapiro, and Sarnak 
anbe extended to unrami�ed anti
y
lotomi
 
hara
ters whi
h is predi
ted by GRH and(whi
h holds over Q by re
ent work of Kowalski, Mi
hel, and Vanderkam [27℄), thenour Gross-Zagier formula will imply the equidistribution to 
ertain Galois orbits ofCM-points and thus gives some eviden
e toward the Andr�e-Oort 
onje
ture 
on
erningthe Zariski topology of CM-points.The appli
ations to the Bir
h and Swinnerton-Dyer 
onje
ture and the Andr�e-Oort 
onje
ture will be treated in later papers.In the following, we will des
ribe the main results about the Gross-Zagier formulaand proof.1.1. Rankin-Selberg L-fun
tions and kernelsLet F be a totally real �eld of degree g and dis
riminant d, with ring of adeles A . Let� be a Hilbert modular form of weight (2; : : : ; 2; 0; � � � ; 0) over F , whi
h is a 
uspidalnewform of level N and has trivial 
entral 
hara
ter.Let K be a totally imaginary quadrati
 extension of F , and let ! be the nontrivialquadrati
 
hara
ter of A �=F�NA �K . The 
ondu
tor 
(!) is the relative dis
riminantof K=F . Let � be a 
hara
ter of �nite order of A �K =K�A � . The 
ondu
tor 
(�) isan ideal of OF , and we de�ne the ideal D = 
(�)2
(!). The theory of theta seriesallows one to de�ne a Hilbert modular form �� of weight (1; � � � ; 1), whose L-fun
tionis equal to the He
ke L-series of �.In this paper we will study the Rankin-Selberg 
onvolution L-fun
tionL(s; �; ��) = L(s; �; �):



GROSS-ZAGIER FORMULA FOR GL2 3This is de�ned by an Euler produ
t over primes } of F , where the fa
tors have degree� 4 in N}�s. This fun
tion has an analyti
 
ontinuation to the entire 
omplex plane,and satis�es a fun
tional equation. We will assume the following(1.1.1) hypothesis: ((
(!); 
(�)) = 1;ord}(D) � 1 =) ord}(N) � 1:The fun
tional equation is then(1.1.2) L(2� s; �; �) = (�1)#�
(�; �)1�sL(s; �; �)where 
(�; �) is the 
ondu
tor of the L-fun
tion L(s; �; �),
(�; �) = d4NF=Q[N;D℄2(N; 
(!))(here [�; �℄ denotes the least 
ommon multiple, and (�; �) denotes the greatest 
ommondivisor) and � is the following set of pla
es of F :(1.1.3) � =8<:v ������ v is ini�nite, and � has weight 2 at v, orv is �nite, v - D, and !v(N) = �1, orv is �nite, v j (N; 
(!)), and avbv = 1 9=;where av and bv are v-th Fourier 
oeÆ
ients of � and �� respe
tively. If v is in � andunrami�ed in K, �v = 1. Furthermore, if v is rami�ed in K, �v is unrami�ed and�2v = 1.The general theory of Rankin-Selberg 
onvolutions is due to Ja
quet [22℄, but wewill follow [20℄ in the 
ase above, and will show that there is a form �(s; g) of level[N;D℄ on GL2(A ) whi
h is a kernel for the 
onvolution. More pre
isely, we will showthat for all new forms � of level N :(1.1.4) L(s; �; �) = (�;�(s; g))[N;D℄where (�; �)[N;D℄ is the Peterson produ
t of level [N;D℄.We obtain the fun
tional equation for L(s; �; �) from that of �(s; g). Here ourapproa
h di�ers from [20℄, whi
h 
omputes tr[N;D℄=N(�(s; g)) as a kernel of level N .However, this tra
e is too diÆ
ult to 
ompute in the general 
ase (in [20℄, the authorswere for
ed to assume that D was square free, so 
(!) was odd and 
(�) = 1).Noti
e that the proje
tion ��(s; g) in the representation spa
e �(�) is no longer anewform. But it is a multiple of a unique form �℄s of level [N;D℄ whi
h is perpendi
ularto �� �℄s. The multiplier is then L(s; �; �)(�℄s; �℄s)ND :We 
all �℄s a quasi-newform and will give �℄s a dire
t de�nition in x3.1 in terms of
hara
ters �v for v rami�ed in K.1.2. Central derivativesOur main formula expresses the 
entral derivative L0(1; �; �) in terms of the heights ofCM-points on a Shimura 
urve, when � is holomorphi
 and the sign of the fun
tional



4 S. W. ZHANGequation (1.1.2) is �1, so #� is odd. Let v be any real pla
e of F , and let B =v B bethe quaternion algebra over F whi
h rami�ed at the pla
es in �� fvg. Let G be thealgebrai
 group over F , whi
h is an inner form of PGL2, and has G(F ) = B�=F�.The group G(Fv) ' PGL2(R) a
ts on H� = C �R. If bF = A f is the ring of �nitead�eles of F , and U � G( bF ) is open and 
ompa
t, we get an analyti
 spa
eMU (C ) = G(F )nH� �G( bF )=U:Shimura proved these were the 
omplex points of an algebrai
 
urve MU , whi
h de-s
ends 
anoni
ally to F (embedded in C , by the pla
es v). The 
urve MU over F isindependent of the 
hoi
e of v in �.To spe
ify MU , we must de�ne U � G( bF ). To do this, we �x an embeddingK �! B, whi
h exists, as all pla
es in � are either inert or rami�ed in K. ThenB = K +K� with � 2 B� satis�ng �� = ��� for � 2 K.Let Ov � Fv be the lo
al ring of integers, and let OK;v � Kv be the integral
losure of Ov . For ea
h �nite pla
e v of F , let Av be an order of B de�ned byAv = O
(�v) +OK;v � �v � 
(�v)Here O
(�v) is the order Ov + OK;v
(�v) of Kv and �v is 
hosen integral over Ovwhose norm N�v satis�es the following 
ondition:ordv(N�v) = ordv(N=(N;D)):De�ne an open 
ompa
t subgroup Uv of G(Fv) by(1.2.1) Uv = A�v =O�v :Let U = Qv Uv. This de�nes the 
urve MU up to F -isomorphism. Let X be its
ompa
ti�
ation over F , so X = MU unless F = Q and � = f1g, where X isobtained by adding many 
usps.Noti
e that X admits a natural a
tion by�T = Yvj
(�)T (Ov) � Yvj
(!)T (Fv)via right multipli
ation on G(A f ), sin
e �T normalizes U in G(A f ). Let � denotethe subgroup of G(A f ) generated by �T and U :(1.2.2) � = U ��Tand let �� denote the 
hara
ter on � de�ned by(1.2.3) �� : � �! �T ��! C� :We will now 
onstru
t points in J , the 
onne
ted 
omponent of Pi
(X), fromCM-points on the 
urve X . The CM-points 
orresponding to K on MU (C ) form theset G(F )+nG(F )+ � z �G( bF )=U = T (F )nG( bF )=U;where z 2 H+ is the unique �xed point of the torus points K�=F�. Let �� be adivisor on X with 
omplex 
oeÆ
ient de�ned by�� = XT (F )nT (Af )=UT ��1(t)[t℄



GROSS-ZAGIER FORMULA FOR GL2 5where UT = T (A f ) \ U = bO�
(�)= bO�:If � is not of form � = � � NK=F with � a quadrati
 
hara
ter of F�A � , then ��has degree 0 on ea
h �ber of X . Thus it de�nes a 
lass x� in Ja
(X)
 C . Otherwisewe need a referen
e divisor to send �� to Ja
(X). In the modular 
urve 
ase, one uses
usps. In the general 
ase, we use the Hodge 
lass � 2 Pi
(X)
 Q: the unique 
lasswhose degree is 1 on ea
h 
onne
ted 
omponent and su
h thatTm� = deg(Tm)�for all integral nonzero ideal m of OF prime to ND. The Heegner 
lass we want nowis the 
lass di�eren
e x� := [�� � deg(��)�℄ 2 Ja
(X)(K�)
 C ;where deg(��) is the multi-degree of �� on geometri
 
omponents, and K� is theabelian extention of K 
orresponding to the group T (F )nT (A f )=U .Noti
e that this 
lass has 
hara
ter �� under the a
tion by � on Ja
(K�). Lety� denote the �-typi
al 
omponent of ��.Our main theorem is now the followingTheorem 1.2.1. Let �℄ be the quasi-newform as in x1 and x3.1. ThenL0(1; �; �) = 2g+1d�1=2K=F � k�℄k2 � ky�k2where � dK=F is the relative dis
riminant of K over F ;� k�℄k2 is the L2-norm with respe
t to the Haar measure dg whi
h is the produ
tof the the standard measure on N(A )A(A ), and the measure on the standardmaximal 
ompa
t group withvol(SO(F1)U0([N;D℄) = 1;� ky�k is the Neron-Tate height of y�.Gross and Zagier [20℄ originally proved Theorem 1.3.2 in the following spe
ial
ase: 8><>:F = Q;� is unrami�ed, (D; 2N) = 1, andp j N =) p is split in K.The 
ase treated in our previous paper [31℄ is when8><>:F is totally real,� is trivial, (D; 2N) = 1, and}2 j N =) } is split in K.One immediate appli
ation of our Gross-Zagier formula is to generalize the work ofKolyvagin-Loga
hev and Bertolini-Darmon [16, 25, 6℄ to obtain some eviden
e toward



6 S. W. ZHANGthe Bir
h and Swinnerton-Dyer 
onje
ture in rank 1 
ase. The details will be given inlater papers. Here we just noti
e y� a
tually lives in some fa
tor A whose L-fun
tionis given by � and its 
onjugates.Let Z[�(�)℄ be the subring of C generated by values �(�). and let Z[�℄ denotethe subring generated by eigenvalues a} of T} for all } - N . Then we haveTheorem 1.2.2. There is a unique abelian subvariety of the Ja
obian Ja
(X)whi
h is isogenous to Z[�(�)℄
ZA (
ompatible with a
tion by �). Here \
" meanstensor produ
t of abelian groups, and where A is an abelian variety over F of dimen-sion equal to rankZ[�℄ with an a
tion by Z[�℄ su
h thatL(s; A) � Y�:Z[�℄!C L(s; ��) mod (fa
tors at pla
es dividing N � 1)By Faltings' theorem, A is uniquely determined by the above equality of L-fun
tions up to isogenies.1.3. Central valuesWe now return to the 
ase where � has possible nonholomorphi
 
omponents, but weassume that the sign of the fun
tional equation of L(s; �; �) is +1, or equivalently, � iseven. In this 
ase, we have an expli
it formula for L(1; �; �), whi
h has an appli
ationto the distribution of CM-points on lo
ally symmetri
 varieties 
overed by (H+)nwhere n is the number of real pla
es of F where � has weight 0.More pre
isely, let B be the quaternion algebra over F rami�ed at �, and G thealgebrai
 group asso
iated to B�=F�. ThenG(F 
 R) ' PGL2(R)n � SOg�n3a
ts on (H�)n. The lo
ally symmetri
 variety we will 
onsider isMU = G(F )n(H�)n �G( bF )=U;where U =QUv was de�ned in the previous x. Then we have the following q-prin
iple:Theorem 1.3.1 (x2.4). There is a unique 
uspidal fun
tion �� on MU with thefollowing properties:1. �� has 
hara
ter �� under the a
tion of �;2. for ea
h �nite pla
e v not dividing N � D, �� is the eigenform for He
keoperators Tv with the same eigenvalues as �.The CM-points on MU , asso
iated to the embedding K �! B, form the in�niteset G(F )+nG(F )+z �G( bF )=U ' HnG( bF )=Uwhere z is a point in Hn �xed by T and H � G is the stabilizer of z in G. Noti
ethat H is either isomorphi
 to T if n 6= 0 or H = G if n = 0. In any 
ase there is a�nite map CU := T (F )nG(A f )=U �!MU :The Gross-Zagier formula for 
entral value we want to prove is the following:



GROSS-ZAGIER FORMULA FOR GL2 7Theorem 1.3.2 (x4.4). Let �℄ be the form de�ned in x1, 1. ThenL(1; �; �) = 2g+nd�1=2K=F � (k�℄k=k��k)2 � j`�(��)j2where1. `�(��) is the integral against �(t�1) on T (F )nT (A f ) with respe
t to the stan-dard measure;2. k��k2 are L2-norms with respe
t to the measure on G(A ) whi
h is the prod-u
t of the standard measure on G(R) and the measure on G(A f ) su
h thatvol(�) = 1.Noti
e that `�(��) is a
tually the evaluation of �� at the 
y
le �� de�ned in x1.2:`�(��) = Xt2T (F )nT (Af )=UT ��1(t)��(t):There are two appli
ations of this theorem. The �rst one is to generalize a re
entwork of Bertolini and Darmon [7, 8℄ to obtain some eviden
e about BSD-
onje
turein rank 0 
ase. The se
ond appli
ation is to use a re
ent work of Cogdell, Pieteski-Shapiro, and Sarnak [4℄ to obtain 
ertain equidistribution statement of the tori
 orbitsof CM-points. The details will be given in later papers.1.4. Remarks on proofThe proof in this paper will be based on the following prin
iple used in the originalpaper of Gross and Zagier [20℄:� The Fourier 
oeÆ
ients of a 
ertain kernel form representing the derivativeof the Rankin L-series should be given by the height pairing of CM-points.But the te
hniques used in their proof are diÆ
ult to apply in the more generalsituation due to following fundamental obstru
tions:� On a Shimura 
urve, there is no referen
e point su
h as a 
usp, to send pointson the 
urve to its Ja
obian.� On a Shimura 
urve, there is no referen
e modular form su
h as a Dedekind�-fun
tion to be used to 
ompute the lo
al self-interse
tion on CM-points.� When an anti
y
lotomi
 
hara
ter is rami�ed, sin
e the tra
e 
omputation isvery massive, there is no workable expression of the kernel form to representthe derivative of the Rankin L-series,� On a Shimura 
urve or even a modular 
urve, there is no expli
it semistablemodel whi
h 
an be used to 
ompute the lo
al interse
tion index of CM-pointsat supersingular points.In our previous paper [31℄, we solved the �rst two problems by using multipli
ityone for modular forms and Hodge index theory in Arakelov theory [12, 13℄. Thepresent paper is devoted to solve the remaining two issues with the following methods:� We will work dire
tly on kernel fun
tions of high level but use quasi-newformproje
tion instead of newform proje
tion.� We will not 
ompute dire
tly the lo
al interse
tion at pla
es where theShimura 
urve has high level. Instead, we will obtain an asymptoti
 formulaand show that this formula is suÆ
ient by a tori
 newform theory.Besides these te
hni
al improvements, we will also develop a notion of geometri
pairing and prove a lo
al Gross-Zagier formula. This formula repla
es all mass 
om-binatori
 
omputations in the previous approa
hes and also provides a foundation for
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tral de
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ouragement.2. Automorphi
 forms on GL2In this 
hapter, we want to review various fa
ts about automorphi
 L-fun
tions ofGL1, GL2, and the Rankin-Selberg 
onvolution of two forms on GL2. Our basi
referen
es are the papers of Tate [29℄, Ja
quet and Langlands [23℄, and Ja
quet [22℄.Beside the general theory, we will also try to make 
omputations using 
ertainnewforms with respe
t to the a
tion of unipotent subgroups or the torus. The unipo-tent newform theory, or Atkin-Lehner theory, is dis
ussed in Casselman's paper [3℄ inthe adeli
 setting, while the tori
 newform theory is mainly due to Waldspurger [30℄.2.1. L-fun
tions for GL1We �rst start with Tate's theory of L-fun
tions for GL1.Nonar
himedean 
ase. Let F be a nonar
himdean lo
al �eld with a lo
al pa-rameter �. We normalize the absolute value on F su
h that q = j�j�1 is the 
ardinalityof the residue �eld of F .Let ! be a 
hara
ter of F� with 
ondu
tor 
(!) := �o(!)OF , that is the maximalideal of OF su
h that ! is trivial on (1 + 
(!))�: The integer o(!) is 
alled the orderof !. Then the L-fun
tion of ! is de�ned as follows:(2.1.1) L(s; !) = ((1� !(�)q�s)�1 if ! is unrami�ed,1 if ! is rami�ed.where s 2 C .Let  be a �xed nontrivial additive 
hara
ter of F . For a fun
tion � 2 S(F ) (thespa
e of 
ompa
tly supported and lo
ally 
onstant fun
tions) we de�ne the Fouriertransform by(2.1.2) b�(x) = ZF �(y) (xy)dywhere dx is a Haar measure on F su
h that b̂�(x) = �(�x). If  (x) is 
hanged to a(x) :=  (ax) then dx is 
hanged to jaj1=2dx and �̂(x) is 
hanged to jaj1=2�̂(ax).



GROSS-ZAGIER FORMULA FOR GL2 9For example if  has the 
ondu
tor 
( ) := �o( )OF , that is the maximal fra
tionalideal where  is trivial, then dx is su
h that the volume of OF is j��o( )j1=2. Theinteger o( ) is 
alled the order of  .For any � 2 S(F ) we de�ne the Mellin transform by(2.1.3) Z(s; !;�) = ZF� �(x)!(x)jxjsd�x (s 2 C ; Re(s) >> 0)where d�x is a measure on F� su
h that the volume of O�F is 1. Then Z(s; !;�)is really a rational fun
tion of qs; q�s. One may show that the set of all Z(s; !;�)is a fra
tional ideal of C [qs ; q�s℄ with L(s; !) as a generator. The lo
al fun
tionalequation shows the 
hange when s is repla
ed by 1� s:(2.1.4) Z(1� s; !�1; b�)L(1� s; !�1) = �(s; !;  )Z(s; !;�)L(s; !)where �(s; !;  ) is independent of � and is 
alled the �-fa
tor of ! with respe
t to  .If  is 
hanged to  a then �(s; !;  ) is 
hanged to !(a)jajs�1=2�(s; !;  ).If ! is unrami�ed, and  is of order 0, then we may use the 
hara
teristi
 fun
tion�1 on OF to 
ompute the �-fa
tor:(2.1.5) Z(s;�1) = L(s; !); �(s; !;  ) = 1:If ! is rami�ed and o( ) = 0, we may 
ompute the �-fa
tor by using the restri
tion�! of the fun
tion !�1 on O�F :Z(s;�!) = L(s; !) = 1;�(s; !;  ) = �(!;  )j�
(!)js�1=2;(2.1.6) �(!;  ) = jaj1=2 ZO�F !(xa)�1 (xa)dx;where a is a generator of 
(!)�1. Noti
e that �(!;  ) is a number of norm 1 if ! isunitary.Ar
himedean 
ase. First we 
onsider the 
ase where F = R with the usualabsolute value. Then any nontrivial 
hara
ter will have the form (x) = e2�iÆx; (Æ 2 R� )The self-dual measure dx is jÆj1=2 times the usual measure on R.Let ! be a quasi-
hara
ter of R� of the form!(t) = jtjrsgn(t)m; (r 2 C ; m = 0; 1):Then we de�ne(2.1.7) L(s; !) = ��(s+r+m)=2��s+ r +m2 � :One may de�ne the Mellin transform Zeta fun
tion as in the nonar
himedean 
aseand show that L(s; !) 
olle
ting all poles of these Zeta fun
tions, and that the Zetafun
tions and L-fun
tion satisfy the same fun
tional equation as in nonar
himedean
ase.



10 S. W. ZHANGAgain to 
ompute the �-fa
tor we may assume that Æ = 1. We 
an use the fun
tion�!(x) = xme��x2to 
ompute the �-fa
tor: Z(s;�!) = L(s; !)�(s; !;  ) = im:(2.1.8)We now 
onsider the 
ase where F = C with normalized absolute value jajC = jzj2.Any nontrivial 
hara
ter of C has the form (z) = e4�iRe(Æz); (Æ 2 C� )whose self-dual measure is jÆj1=2C times 2dxdy (z = x+ yi).Let ! be a quasi-
hara
ter of C� with the form!(z) =8><>:jzjrC zmorjzjrC �zm; (r 2 C ; m � 0)We de�ne the L-fun
tion of ! to be(2.1.9) L(s; !) = 2(2�)�(s+r+m)�(s+ r +m):Assume that Æ = 1. We may use the fun
tion�!(z) =8><>:e��jzj2 �zmore��jzj2zmto 
ompute the �-fa
tor:(2.1.10) Z(s;�!) = L(s; !); �(s; !;  ) = im:Global theory. Let F be now a global �eld and let A denote the ring of adelesof F . Let  : FnA ! C be a �xed nontrivial additive adele 
lasses 
hara
ter of F .Let ! : A �=F� ! C� be an idele 
lass quasi-
hara
ter of F . Then we de�ne theL-fun
tion L(s; !) and �-fa
tor by the produ
t:L(s; !) =Yv L(s; !v)(2.1.11) �(s; !) =Yv �(s; !v;  v)(2.1.12)where v runs through the set of all pla
es of F , and !v and  v are 
omponents of ! and at the pla
es v. One 
an show that these produ
ts are 
onvergent for Re(s) >> 0,and 
an be 
ontinued to a meromorphi
 fun
tions on the whole 
omplex plane, andthat L(s; !) satis�es a fun
tional equation(2.1.13) L(s; !) = �(s; !)L(1� s; !�1):
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tional equation 
an be proved by 
ombining the lo
al fun
tional equationwith the global fun
tional equationYv Z(s; !v;�v) =Yv Z(1� s; !v; b�v)for some S
hwartz fun
tions �v whi
h are the 
hara
teristi
 fun
tion of Ov for almostall pla
es. This last fun
tional equation is essentially a 
onsequen
e of the Poissonsummation formula.2.2. L-fun
tions for GL2Nonar
himedean 
ase. First we 
onsider the 
ase where F is a nonar
himedeanlo
al �eld. Let  be a �xed nontrivial additive 
hara
ter of F .Let � be an irredu
ible, in�nite dimensional, admissible representation of GL2(F )with 
entral 
hara
ter !, and with the L-fun
tion L(s;�) whi
h has the form(2.2.1) L(s;�) = 1(1� �j�js)(1� �j�js) :Then � 
an be realized in a Whittaker model W(�;  ), a spa
e of lo
ally 
onstantfun
tions W on GL2(F ) su
h that(2.2.2) W ��1 x0 1� g� =  (x)W (g); 8x 2 F:The L-fun
tion L(s;�) 
an be determined analyti
ally by this model just as in GL1
ase.More pre
isely, for any W 2 W(�;  ) de�ne(2.2.3) 	(s; g;W ) = ZF�W ��a 00 1� g� jajs�1=2d�awhere d�x is an invariant measure on F� su
h that the volume of O�F is 1. Thenone may show that this integral is a
tually a rational fun
tion of qs; q�s, that L(s;�)
olle
ts all poles of these Mellin transforms, and that the Mellin transforms and theL-fun
tion satisfy the following fun
tional equation(2.2.4) 	(1� s; wg;fW )L(1� s; e�) = �(s;�;  )!�1(det g)	(s; g;W )L(s;�) ;where� e� is the 
ontragradient of � whi
h has the forme� = �
 !�1;� fW (g) =W (g)!�1(det g) whi
h is in W(e�;  );� w = � 0 1�1 0�;� �(s;�;  ) is independent of �.



12 S. W. ZHANGFor Æ 2 F�, if we 
hange  , W , fW respe
tively to Æ; WÆ(g) :=W ��Æ 00 1� g� ; !(Æ)fWÆ ;then �(s;�;  ) is 
hanged to !(Æ)jÆj2s�1�(s;�;  ). Thus in the 
omputation of �-fa
tors we may assume that the 
ondu
tor of  is 1. In this 
ase, the �-fa
tor has theform(2.2.5) �(s;�;  ) = j�o(�)js�1=2�(�;  )where o(�) is a nonnegative integer and is 
alled the order of �. The ideal �o(�)OF is
alled the 
ondu
tor of �, and the 
omplex number �(�;  ) is 
alled the root numberof �. Noti
e that the root number has norm 1 if ! is unitary.Ar
himedean 
ase. We now 
onsider the real 
ase F = R with additive 
hara
-ter  (x) = e2�ix. Then an irredu
ible, admissible, and in�nite dimensional represen-tation � of GL2(R) is really a representation of (G; U) rather than a representationof GL2(R) itself, where G = M2(R) is the Lie algebra of GL2(R), and U = O2(R).Su
h a representation 
an still be realized in a Whittaker model W(�;  ) of smoothfun
tions on GL2(R) with moderate growth where (G; U) a
ts by the right transla-tion. One still 
an de�ne the L-fun
tion L(s;�) whi
h 
an then be determined (upto invertible fun
tions) by analyti
 properties of W(�;  ).Prin
ipal series. Let F be a lo
al �eld and let �1; �2 be two quasi-
hara
ter ofF�. Let B(�1; �2) denote the spa
e admissible fun
tions f on GL2(F ) su
h thatf ��a x0 b� g� = �1(a)�2(b) ���ab ���1=2 f(g); 8�a x0 b� 2 GL2(F )where admissible means lo
ally 
onstant in the nonar
himedean 
ase, and meanssmooth and O2(R)-�nite fun
tions in the ar
himedean 
ase. The B(�1; �2) admitsan admissible representation by right translations. One may show that B(�1; �2) isisomorphi
 to B(�2; �1) when it is irredu
ible. To 
onstru
t a Whittaker model forthis representation, we noti
e that for any fun
tion f in B(�1; �2), there is a S
hwartzfun
tion � 2 S(F 2) su
h that(2.2.6) f = f�(g) := �1(det g)j det(g)j1=2 ZF� �[(0; t)g℄�1��12 (t)jtjd�t:The Whittaker fun
tion 
orresponding to f = f� is given by the following formula:(2.2.7) W�(g) = �1(det g)j det(g)j1=2 ZF�(�(g)�)0[(t; t�1)℄�1��12 (t)d�twhere �(g) is the right translation, and �0 is the inverse Fourier transform with respe
tto the se
ond variable:(�(g)�)0(x; y) = ZF �[(x; u)g℄ (�uy)du:Let �F denote the norm on F : �F (x) = jxj. If �1��12 6= ��1F the representationB(�1; �2) is irredu
ible and is denoted by �(�1; �2). We 
all this representation a
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ipal representation. One has the following formula for the L-fun
tion and �-fa
tors of � = �(�1; �2) by the following formulas:L(s;�) = L(s; �1)L(s; �2);(2.2.8) �(s;�;  ) = �(s; �1;  )�(s; �2;  ):(2.2.9)The 
entral 
hara
ter of � is ! := �1�2. The 
ontragradient of �(�1; �2) is�(��11 ; ��12 ). If F is nonar
himedean then the order of � is(2.2.10) o(�) = o(�1) + o(�2):If F = R, we de�ne the weight of � to be an integer k = 0; 1 su
h that !(�1) = (�1)k.If �1��12 = �F , then we may write �1 = � � �1=2F , �2 = � � ��1=2F with � aquasi-
hara
ter of F�. Then B(�1; �2) 
ontains a unique irredu
ible representationof 
odimension 1. We 
all this representation a spe
ial representation with twist �,and denote it as �(�). We de�ne the L-fun
tion and �-fa
tor of � = �(�) byL(s;�) = L(s; �1);(2.2.11) �(s;�;  ) = �(s; �1;  )�(s; �2;  )L(1� s; ��11 )L(s; �2) :(2.2.12)The 
entral 
hara
ter of � is ! = �1�2 = �2. The 
ontragradient of �(�) is �(��1).If F is nonar
himdean, then the order of � is 1 if � is unrami�ed, and 2o(�) if � isrami�ed. If F = R, then the weight of � is de�ned to be 2.One 
ase we will use is when F is nonar
himedean and � is unrami�ed. In this
ase �(�) has �-fa
tor ��(�) by taking limit s �! 1=2 in the above formula.If F is nonar
himdean, a representation is 
alled super
uspidal if it is not prin
ipalor spe
ial.Weil representation. LetK be a quadrati
 extension of F . Let � be a 
hara
teron F� 
orresponding to the extension K=F . Let � be a quasi-
hara
ter of K�. Thenthere is a unique irredu
ible and admissible representation � = �(�) of GL2(F ) su
hthat L(s;�) = LK(s; �);(2.2.13) �(s;�;  ) = �(s; !;  )�K(s; �;  K);(2.2.14) �(�;  ) = �(!;  )�K(�;  K);where  K =  Æ trK=F . The 
entral 
hara
ter of �(�) is ! = � � �jF� . If theresidue 
hara
ter of F is not 2, every irredu
ible, admissible, in�nite dimensionalrepresentation of GL2(F ) is either prin
ipal, spe
ial, or isomorphi
 to �(�).If K=F is nonar
himedean, and � is of the form � � NK=F , then(2.2.15) �(�) = �(�; � � �)where � is an unrami�ed 
hara
ter of F�.If K=F is nonar
himedean, and � is not of the form as above, then �(�) issuper
uspidal in the sense that L(s;�(�)
 �) = 1 for any 
hara
ter � of F�.If K = C , and � has a form�(z) = jzjrC zm; (m � 0);then �(�) is dis
rete of weight m+1. This means that �(�) appears in L2(GL2(R))as dis
rete spe
trum. More pre
isely, we may take this dis
rete spe
trum generatedby a holomorphi
 modular form of weight m+ 1.
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quet-Langlands lo
al 
orresponden
e. One may also 
onstru
t repre-sentations by using a de�nite quaternion algebra B. By Ja
quet-Langlands 
orre-sponden
e, there is a 1-1 
orresponden
e between irredu
ible, admissible, and dis
reterepresentations of GL2 and irredu
ible representations of B�. In this 
orresponden
e,one dimensional 
hara
ters � � det of B� will give spe
ial representations �(�).Langlands lo
al 
orresponden
e. First lets 
onsider the 
ase F is nonar-
himedean. Let WF denote the Weil group: the subgroup of Gal( �F=F ) of ele-ments whose images in the residue group Gal(F=Fq ) are integral powers of the Frobe-nius. Then Langlands 
orresponden
e gives a 1-1 
orresponden
e between irredu
ibletwo dimensional representations of WF and super
uspidal representations of GL2(F )whi
h is 
ompatible with twists by 
hara
ters and the formalism of L-fun
tions and�-fa
ts. For example if � = �(�) with � a 
hara
ter of K�, here K is a quadrati
extension of F , then we may 
onsider � as a 
hara
ter of the Weil groupWK via lo
al
lass �eld theory. The representation of WF 
orresponding to �(�) is the indu
edrepresentation IndWFWK (�).We now 
onsider the 
ase where F = R. Then the Weil group WR is generatedby C� and j su
h that j2 = �1; jx = �xj; 8x 2 C� :One has obvious homomorphismsW abR ' R� �! R�=R�+ ' Gal(C =R):The Langlands 
orresponden
e gives a 1-1 
orresponden
e between irredu
ible repre-sentation of WR and dis
rete series of GL2(R) whi
h has the same properties as inthe nonar
himedean 
ase.2.3. Theories on newformsWe now 
ontinue to work on representations of GL2(F ) for F a lo
al �eld.Atkin-Lehner theory. Just as in the GL1 
ase, the 
ondu
tor or the order of� will measure the rami�
ation of �. For any 
 � 0, lets de�neU0(�
) = �
 2 GL2(OF ) : 
 � �� �0 �� mod �
� :(2.3.1) U1(�
) = �
 2 GL2(OF ) : 
 � �� �0 1� mod �
� :(2.3.2)We say that a fun
tion W in W(�;  ) has level �
 if it is invariant under U1(�
).Then we have the following:Proposition 2.3.1 ([3℄). The order o(�) is the minimal nonnegative integer 
su
h that W(�;  ) has a nonzero fun
tion of level �
. Moreover,1. If 
 = o(�), then the spa
e W(�;  ) has a unique element W� of level �
 andtakes value 1 at the unit element e in GL2(F ).2. If 
 � o(�) then the spa
e of fun
tions in W(�;  ) of level �
 has dimension
� o(�) + 1 and is generated byW�;i(g) :=W �g���i 00 1�� (i = 0; 1; � � � ; 
� o(�)):
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tion W�(g) is 
alled a Whittaker newform with respe
t to 
hara
ter  .With this fun
tion and de�nition in (2.2.3), one has the followingL(s;�) = 	(s;W�);(2.3.3) W� (gh) = �(�;  )We�(g)!(det g)�1;(2.3.4)where(2.3.5) h := � 0 1��
 0� ; 
 = o(�)is the Atkin-Lehner operator of order 
.In this paper we will use a modi�ed notion of newforms. To de�ne it, we assumethat � is unitary. Then there is a hermitian and positive pairing(�; �) : W(�;  )�W(�;  ) �! Csu
h that (�(g)W1; �(g)W2) = (W1;W2):We say a ve
tor W 2 W(�;  ) is quasi-new, if W is nonzero, and(W;W� �W ) = 0:Let V be a spa
e of forms in W(�;  ) 
ontaining the newve
tor W�. Then the
orresponden
e v �! fw 2 V; (v; w) = 0ggives a one-one 
orresponden
e between the quasi-newve
tor in V and hyperplane not
ontaining W�.For example, let 
 � o(�) be a �xed integer, then we may take V to be the spa
eof forms of level �
. Then there is unique quasi-new ve
tor perpendi
ular toW ����i 00 1�� ; 
� o(�) � i � 1:Weights. The analogue of the order of a representation in the ar
himedean 
aseis weight: we say a form W 2 W(�;  ) has weight m if(2.3.6) W �g� 
os � sin �� sin � 
os ��� =W (g)e2�im�; 8� 2 R=Z:One 
an show that the weight k of a representation � is the minimal nonnegativeinteger su
h that � has a nonzero ve
tor of weight k. Moreover for any integer n, thespa
e of forms in W(�;  ) is one dimensional if jnj � k, n � k (mod 2). Otherwise itis 0.If � is not of the form � = �(�r1sgn; �r2sgn), then with de�nition in (2.2.3),there is a unique and Whittaker fun
tions W� of weight k su
h thatL(s;�) = 	(s;W�);(2.3.7) W� (gw) = �(�;  )We�(g)!�1(det g):(2.3.8)Again, we 
all W� the new ve
tor for � with respe
t to the additive 
hara
ter  .In 
ase � = �(�r1sgn; �r2sgn), we 
all a Whittaker fun
tion W (g) of weight 0 anewform if W (g)sgn(det g) is a newform for �(�r1 ; �r2). Noti
e that 	(s;W ) = 0 asW �a 00 1� is odd in a 2 R� .



16 S. W. ZHANGWaldspurger theory. Let F be a nonar
himedean lo
al �eld. Let K be aquadrati
 extension of F (whi
h is either split K = F � F or a �eld) embedded intoM2(F ). Let T denote the torus K�=F� in G = PGL2(F ).Let G0 = B�=F� where B is a quaternion division algebra over F . We alsoembed K into B if K is nonsplit and also denote T , the torus K�=F� in G0.Let � be an irredu
ible, admissible, and in�nite dimensional representation ofG. If � is L2, let �0 denote the 
orresponding representation of G0 by the Ja
quet-Langlands 
orresponden
e.Let U(�; T ) (resp. U(�0; T )) denote the spa
e of linear maps from � (resp. �0)to the spa
e of 
ontinuous fun
tions on TnG (resp. T 0nG0) with 
ompatible G. (resp.G0) a
tion. Set U(�0; T ) to be zero if it is 
an't be de�ned as above.If T is not split, let �T (resp. (�0)T ) denote the subspa
e of � (resp. �0) invariantunder T . Then we have the following fundamental 
riterion for the existen
e of T -invariant ve
tors in � or �0.Theorem 2.3.2 ([30℄, Proposition 1, Lemma 1, Theorem 2). With notation asabove, one has that dimU(�; T ) + dim(�0; T ) = 1and that if T is not split then,dimU(�; T ) = dim�T ; dimU(�0; T ) = dim(�0)T :Moreover,1. If T is split or � is prin
ipal, then U(�; T ) 6= 0.2. If T is not split and � = �(�) (�2 = 1) is spe
ial, thenU(�; T ) 6= 0 () � ÆNK=F 6= 1;U(�0; T ) 6= 0 () � ÆNK=F = 1:3. If T is nonsplit and K=F is unrami�ed, thenU(�; T ) 6= 0 () o(�) is even;U(�0; T ) 6= 0 () o(�) is odd:Tori
 newforms and Gross-Prasad's theory. In [19℄, Gross and Prasad stud-ied the invariant ve
tor from a di�erent point of view, i.e., by analyzing the subspa
e�� (resp. (�0)�) of ve
tors invariant under � = R� where R is an order of M2(F ) orB of dis
riminant 
(�) 
ontaining OK .Theorem 2.3.3 ([19℄, see also [31℄). Assume either K=F is unrami�ed, or � isprin
ipal, or � is spe
ial with prime 
ondu
tor. Thendim�� = dimU(�; T ); dim(�0)� = dimU(�0; T ):Everything is proved in [32℄ ex
ept the 
ase where K=F is rami�ed and � = �(�).Lemma 2.3.4 ([19℄). If K=F is rami�ed and � = �(�) is spe
ial of prime
ondu
tor, then1. �� is one dimensional and stable under T with a unrami�ed 
hara
ter whi
hsends �K to ��(�).



GROSS-ZAGIER FORMULA FOR GL2 172. (�0)� is one dimensional and stable under T with a unrami�ed 
hara
terwhi
h sends �K to �(�).Proof. Indeed, there is nothing to prove in the 
ase of a one dimensional repre-sentation. In 
ase of �, � is isomorphi
 to U0(�) while �K a
ts like the Atkin-Lehneroperator. Thus the lemma follows from the fun
tional equation of the Whittakernewform and 
omputation of the epsilon-fa
tor �(�;  ) = ��(�).Let � now be a 
hara
ter of K�=F�. We want to study invariant ve
tors underthe a
tion of T with 
hara
ter � under the same 
onditions as in Theorem 2.3.3.When � is unrami�ed, then either � = 1 in the situation of Theorem 2.3.3, or in thesituation of Lemma 2.3.4 with des
ribed 
hara
ter. Thus we need only treat the 
asewhere � is rami�ed.We assume that o(�) � 1. Lets assume that OK is embedded into M2(OF ) andlet(2.3.9) � = (OK + 
(�)M2(OF ))�:Now � 
an be extended to a 
hara
ter of � in the obvious way. We are 
on
erned theexisten
e of a nonzero subspa
e �� of ve
tors v in � su
h that(2.3.10) 
v = �(
)v; 
 2 �:Theorem 2.3.5. Assume that K=F is unrami�ed, that � is rami�ed, and thato(�) � 1. Then dim�� = 1.Proof. Our assumption implies � is in
luded in the spa
e B(�; ��1) of lo
ally
onstant fun
tions on GL2(F ) su
h thatf ��a x0 b� g� = �(a=b)ja=bj1=2f(g);where � is an unrami�ed 
hara
ter of F�. It suÆ
es to show the theorem for thisspa
e be
ause in the 
ase � = �(�), �2 = �F , the one-dimensional subquotient ofB(�; ��1) is isomorphi
 to � � det g whi
h does not have �-eigen ve
tors.The �-eigen subspa
e of B(�; ��1) for � is the spa
e of fun
tions f on GL2(OF )su
h that f ��a x0 b� g
� = �(a=b)f(g)�(
)for all 
 in �.First we treat the 
ase where K is a �eld. Let u be a tra
e-free element of O�K .Then we have an embedding K !M2(F ) given bya+ bu �! � a bbu2 a� :With this embedding one has the de
omposition GL2(F ) = B1(F )T (F ) where B1(F )is the set of matri
es of the form �a b0 1�. Sin
e � is trivial on F�, the �-eigensubspa
e for � is in
luded in the �-eigen subspa
e for T . But it is easy to see thatthe �-eigen subspa
e of T is one-dimensional and is generated byf0��a b0 1� t� = jaj1=2�(a)�(t):



18 S. W. ZHANGTo show the theorem for this 
ase, we need only show that f0 is in the �-eigen subspa
eof �. In other words we want to show for any g 2 GL2(F ), 
 2 �, thatf0(g
) = f0(g)�(
):Sin
e T normalizes � and �xes the 
hara
ter �, one has the de
ompositiong = � � t; (� 2 B1(F ); t 2 T (F ));t
t�1 = � � � (� 2 B1(OF ); � 2 T (OF ):Thus g
 has the de
omposition �� � �t. The above equation follows easily.It remains to 
onsider the 
ase where K = F � F and � = (�; ��1). Let K beembedded into M2(F ) diagonally. Then � 
onsists of matri
es 
ongruent to elementsin T (OF ) modulo �n. It is not diÆ
ult to show that B(F )nG(F )=� is represented bythe following elements e := �1 00 1� ; � := �1 01 1� ;�m := � 1 0�m 1� ; 
m := � 0 1�1 �m� (0 < m < n):One 
an verify expli
itly that the �-eigen subspa
e of V is one dimensional and isgenerated by the following fun
tion supported on B(F )��:f0��a x0 b��
� = ja=bj1=2�(a=b)�(
):We 
all the spa
e �� the spa
e of tori
 newve
tors with a pres
ribed 
hara
ter�. Noti
e when � is rami�ed, our treatment is slightly di�erent than [19℄, whereGross-Prasad obtained the same result about invariants under eR� with eR an orderof B 
ontaining O
(�) optimally.2.4. Automorphi
 forms on GL2Automorphi
 forms and 
usp forms. Let F be a number �eld. Let A denotethe adeles of F . Let ! be a quasi-
hara
ter of F�nA � . Let A(!) denote the spa
eof automorphi
 forms on GL2(A ) whi
h are the smooth fun
tions with moderategrowth on GL2(F )nGL2(A ), and with 
hara
ter ! under the translation by the 
enterZ(A ) = A � . The spa
e A(!) admits a representation � of GL2(A ):(2.4.1) (�(g)f)(x) = f(xg)For ea
h pla
e v of F let �v be a representation of Fv su
h that for all but �nite manyv, �v is unrami�ed with a �xed newve
tor v}. Then we 
an de�ne the representation� := 
v�v of GL2(A ) as a dire
t limit�S := 
v2S�vover �nite subsets S of F su
h that for two S � S0 
ontaining all ar
himedean pla
esand rami�ed pla
es of �v , the stru
ture map �S �! �S0 is given by tensoring with
S0nSv}:
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, if � is isomorphi
 to a subrepresentation of A(!).Let  be a �xed nontrivial 
hara
ter of FnA . Then for � 2 A(!) one has thefollowing Fourier expansion(2.4.2) �(g) = C�(g) + X�2F�W���� 00 1� g�where C�(g) is the 
onstant 
oeÆ
ient, and and W�(g) is the Whittaker 
oeÆ
ient of�: C�(g) := ZFnA ���1 x0 1� g� dx(2.4.3) W�(g) := ZFnA ���1 x0 1� g� (�x)dx:(2.4.4)Here dx is the asso
iated self-dual measure on FnA whi
h is a
tually the unique Haarmeasure of volume 1.A form � 2 A(!) is 
alled 
uspidal if C�(g) = 0 for all g 2 GL2(A ). Let A0(!)denote the spa
e of 
usp forms in A(!) whi
h is stable under the a
tion by GL2(A ).An irredu
ible, admissible, and in�nite dimensional representation � of GL2(A ) of
entral 
hara
ter ! is 
alled 
uspidal if it appears in A0(!). It is well known that if� is 
uspidal then the multipli
ity of � in � is 1:Theorem 2.4.1 (Strong multipli
ity one, [3℄). Let � = 
�v and �0 = 
�0v betwo 
uspidal representations of GL2(A ) su
h that �v ' �0v for all but �nitely manypla
es v of F . Then � ' �0.For a 
uspidal representation �, we let A(�) denote the spa
e of 
uspidal forms.Then for any 
olle
tion of Whittaker fun
tions in Wv 2 W(�v : v) with almost allWv are newform, one may form a global Whittaker fun
tion W = 
vWv , and a 
uspform(2.4.5) �(g) = X�2F�W ��� 00 1� g� :L-fun
tions. Let � = 
�v be a 
uspidal representation of GL2(A ). Let L(s;�)denote the produ
t of L(s;�v) and let �(s;�) denote the produ
t of �(s;�v;  v) whi
his 
onvergent for Re(s) >> 0. Then we haveTheorem 2.4.2. The fun
tion L(s;�) (Re(s) >> 0) 
an be 
ontinued to aholomorphi
 fun
tion on the whole 
omplex plane and satis�es the fun
tional equation(2.4.6) L(s;�) = �(s;�)L(1� s;�)Proof. Indeed, for any pla
e v, one may �nd a Whittaker fun
tion Wv su
h that	(s; e;Wv) 6= 0, and that for almost all �nite v, Wv equals the standard spheri
alfun
tion. Let � be a form with Whittaker fun
tion W :=QWv . Then one hasYv 	(s; e;Wv) = ZF�nA� ��a 00 1� jajs�1=2d�a;



20 S. W. ZHANGand Yv 	(1� s; w;fWv) = ZF�nA� ���a 00 1�w�!�1(a)jaj1=2�sd�a:These two quantities are equal sin
e���a 00 1�w� = ��w�1 �a 00 1�w� = !(a)��a�1 00 1� :Let Æ 2 A � be su
h that every lo
al additive 
hara
ter 0v(x) :=  v(Æ�1v x)has 
ondu
tor 1. LetW 0v (g) be the newform for �v . Then we may de�ne a Whittakerfun
tion W (g) = 
Wv(g) for  0 := 
 0v and a newform �� by(2.4.7) ��(g) = X�2F�W ���Æ 00 1� g�With this newform, sin
e jÆj = d�1F , one hasZF�nA� ���a 00 1�� jajs�1=2d�a =ZA� W �aÆ 00 1� jajs�1=2d�a=ds�1=2F L(s;�):He
ke operators. Assume that ! = 1 and let � be a �xed form in A0(!). LetS be a �nite subset of pla
es su
h that if v =2 S, then v is a nonar
himedean pla
eand � is invariant under GL2(Ov). For a nonzero a 2 bOS an integral �nite S- idele,let Ta be the He
ke operator 
orresponding to the 
hara
teristi
 fun
tion on the set(2.4.8) H(a) = ng 2M2( bOSF ); det g � bOSF = a � bOSFo :Then H(a) has a disjoint de
omposition:(2.4.9) H(a) = a�;�;
�� �0 
�GL2( bOSF )where �; 
 are integral ideles modulo bOS;�F su
h that �
 = a, and � is an integraladele modulo �.It follows that for g 2 GL2(A S ) and y 2 A S ,TaW� �g�y 00 1�� = X�;�;
W��g�y�=
 y�=
0 1 ��= X
jyfÆ�W��g�y�=
 00 1�� X� mod � (y�=
)= Xa;djyfÆW��g�y�=
 00 1�� j�j�1:



GROSS-ZAGIER FORMULA FOR GL2 21Thus we have the formula(2.4.10) TaW��g�y 00 1�� = X
j(yfÆ;a)W� �g�ya=
2 00 1�� j
=ajIt follows that if a is prime to yfÆ,(2.4.11) W� �g�ya 00 1�� = jajTaW� �g�y 00 1�� :If � belongs to an irredu
ible and 
uspidal representation �, then we have jajTa�=b�(a)� where(2.4.12) b�(a) =WS �a 00 1�It follows that(2.4.13) Xa b�(a)jajs�1=2 = Y}=2SL(s;�}):For } =2 S, �} is unrami�ed, thus is uniquely determined by L(s;�}) and then bya}. Ja
quet-Langlands 
orresponden
e. Let B be a quaternion algebra over Fand let G = B� as an algebrai
 group over F . Then we have the same notions ofautomorphi
 forms, automorphi
 representations, and the multipli
ity one or strongmultipli
ity one.Let �0 = 
�0v be an irredu
ible and admissible representation of G(A ) and let� = 
�v be an irredu
ible and admissible representation of GL2(A ) obtained byapplying Ja
quet-Langlands 
orresponden
e 
omponentwise. Then �0 is automorphi
and 
uspidal if and only if � is automorphi
 and 
uspidal.Proof of Theorem 1.2.2 and 1.3.1. We now return to the situation of Intro-du
tion where a form � over a totally real �eld F and a 
hara
ter � of A �K =K�A � aregiven su
h that the hypothesis (1.1.1) is satis�ed, where K is an imaginary quadrati
extension of F . The fun
tional equation of L(s; �; �) has sign (�1)#� where � is a�nite set of pla
es de�ned in (1.1.3).Let S be a �nite set of ar
himedean pla
es of F su
h that� S [ � 
ontains all ar
himedean pla
es of F ,� �� S has even 
ardinality.Let B be a quaternion algebra over F whi
h is rami�ed exa
tly at pla
es in ��S andlet G be the inner form of PGL2;F asso
iate to B�=F�. Let � be an open 
ompa
tsubgroup of G(A f ) de�ned in (1.2.2) and �� a 
hara
ter on � de�ned in (1.2.3).Theorem 2.4.3. There is a unique 
usp form �� on G(A ) with the followingproperties:1. �� has the same weight as � at pla
es in S, and has weight 0 at other in�nitepla
es;2. �� has 
hara
ter �� under the a
tion of �;3. for ea
h �nite pla
e v not dividing N � D, �� is the eigenform for He
keoperators Tv with the same eigenvalues as �.



22 S. W. ZHANGProof. Let � be the irredu
ible and 
uspidal representation of GL2(A ) generatedby �. For ea
h pla
e v in �, �v is nonprin
ipal. This is 
lear for v j 1; for v �nite,we just need to noti
e that any prin
ipal representation has even order. Thus � willhave a Ja
quet-Langlands 
orresponden
e �0 of G(A ). The existen
e and uniquenessof �� now is determined by the lo
al representation �0v and follows from the resultsin the last se
tion x2.3.To prove Theorem 1.2.2, we take S to be the set f�g. Then the form �� inTheorem 2.4.3 is on the Shimura 
urve X de�ned in x1.2. Theorem 1.2.2 now followsfrom the standard Ei
hler-Shimura theory.To prove Theorem 1.3.1, we take S = ;.q-expansion prin
iple. Let �1 = (�v ; v j 1) be a �xed representation ofGL2(F1) = Qvj1GL2(Fv) at the ar
himedean pla
e with trivial 
entral 
hara
ter.Let N be an ideal of OF . For ea
h representation � with 
ondu
tor N and in�nite
omponent �1, �x one quasi-newform ��. Let A℄(�1; N) denote the spa
e of 
usp-forms generated by ��. Noti
e that A℄(�1; N) is a �nite dimension spa
e with ana
tion by He
ke operators Ta for (a;N) = 1.Let ` be a unique linear fun
tional on A℄(�1; N) su
h that`(��) = 1:Theorem 2.4.4 (q-expansion prin
iple). Let S be a set of pla
es 
ontainingin�nite pla
es and pla
es dividing N . Let T℄ = T℄(�1; N) denote the ring of endo-morphism of A℄ = A℄(�1; N) generated by Ta for a prime to S. Then the pairingT℄ �A℄ �! C ; ht; �i = `(t�)is nondegenerate in both variables.Proof. The spa
e A℄ is a dire
t sum of one dimensional spa
e C �� . The a
tionof T℄ is given by a 
hara
ter t �! a�(t). The (strong) multipli
ity one implies thatthe 
hara
ters t �! a�(t) are all di�erent. The assertion now follows from the linearindependen
e of the 
hara
ters a�(t).2.5. Rankin-Selberg 
onvolutionIn the rest of this 
hapter, we will review Ja
quet's theory [22℄ of Rankin-Selberg 
on-volutions of L-fun
tions for GL2. For our purpose, we only 
onsider the 
onvolutionswhi
h 
an be written as a single Mellin-transform of Whittaker fun
tions. First, lets
onsider the nonar
himedean 
ase.Nonar
himedean 
ase. Let F be a nonar
himdean �eld. Let �i (i = 1; 2)be two admissible representations of GL2(F ) with 
entral 
hara
ters !i. Then the
onvolution L-fun
tion L(s;�1 � �2) is the inverse of a polynomial of q�s whi
h isthe 
ommon denominator of all the following Mellin transforms:(2.5.1) 	(s;W1;W2;�) = ZZ(F )N(F )nG(F )W1(g)W2(�g)f�(s; !; g)dg:where � = ��1 00 1�, Wi 2 W(�i;  ), � 2 S(F 2), ! = !1 � !2, and(2.5.2) f�(s; !; g) = j det gjs ZF� �[(0; t)g℄jtj2s!(t)d�t:
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tional equation:(2.5.3) 	(1� s;fW1;fW2; e�)L(1� s; e�1 � e�2) = �(s;�1 ��2;  )	(s;W1;W2;�)L(s;�1 ��2)where fWi(g) =Wi(g)!i(det(g))�1(2.5.4) e�(x; y) = Z �(u; v) (yu� xv)dudv:(2.5.5)The L-fun
tion L(s;�1 � �2) 
an also be de�ned by algebrai
 means. If one of�i is prin
ipal, say �1 = �(�1; �2), thenL(s;�1 ��2) = L(s; �1 
�2) � L(s; �2 
�2)(2.5.6) �(s;�1 ��2;  ) = �(s; �1 
�2;  ) � �(s; �2 
�2;  ):(2.5.7)If one of �i is spe
ial, say �1 = �(�), thenL(s;�1 ��2) = L(s; ��1=2F 
�2);(2.5.8) �(s;�1 ��2;  ) = �(s; ��1=2F 
�2;  )�(s; ���1=2F 
�2;  )(2.5.9) � L(1� s; e�2 
 ��1=2��1)L(s;�2 
 ��1=2�) :Assume now that both �i are super
uspidal. Then ea
h �i 
orresponds to someirredu
ible two dimensional representation �i of the Weil group WF . Then we have:L(s;�1 ��2) = L(s; �1 � �2):(2.5.10) �(s;�1 ��2;  ) = �(s; �1 � �2;  ):(2.5.11)In general, L(s;�1��2) is some 
ombination of 	(s;W1;W2;�). But it will havea ni
e expression as a single Mellin transform under the following hypothesis:� One of �i is either unrami�ed or spe
ial with an unrami�ed twist.In this 
ase, if we writeL(s;�1) = 2Yi=1(1� �ij�js)�1; L(s;�2) = 2Yj=1(1� �j j�js)�1;then one 
an show that the Rankin-Selberg 
onvolution L-fun
tion is given by:(2.5.12) L(s;�1 ��2) = 2Yi;j=1(1� �i�j j�js)�1:Without loss of generality, we assume that �1 satis�es the above hypotheses and(2.5.13) 
1 := ord(�1) � 
2 := ord(�2);and that the additive 
hara
ter  has order 0. In the following we want to show thatL(s;�1 � �2) = 	(s;W1;W2;�);



24 S. W. ZHANGwhere Wi be the Whittaker newfun
tion for �i, and(2.5.14) �(x; y) = 8><>:1 if o(!) = 0, jxj � j�j
2 , jyj � 1,!�1(y) if o(!) > 0, jxj � j�j
2 , jyj = 1,0 otherwise.Noti
e that an invariant measure dg on Z(F )N(F )nGL2(F ) has de
ompositiondg = jaj�1dadk with respe
t to the de
omposition G(F ) = Z(F )N(F )A(F )U whereda 
orresponds to the Haar measure on F� su
h that O�F has volume 1 and dk is ameasure on GL2(OF ). We normalize the measure su
h that the volume of U0(�
2) is1. Proposition 2.5.1. Assume that either �1 or �2 is not spe
ial of prime 
on-du
tor. For ea
h j between 0 and 
2 � 
1, one has	�s; ����j 00 1�W1;W2;�� = j�jj(s�1=2)�jL(s;�1 ��2)where �n is de�ned by L(s;�2) =Xn �nj�jns:Proof. Using the de
omposition G(F ) = Z(F )N(F )A(F )U , we may write	�s; ����j 00 1�W1;W2;��=ZF��U W1��a 00 1� k���j 00 1�� ��W2 ���a 00 1� k� f(s; !; k;�)jajs�1dkd�aIf 
2 = 
1 = j = 0, then by de�nition of �, one 
an show that for k 2 U ,f(s; !; k;�) = L(2s; !):It follows that	(s;W1;W2;�) = L(2s; !) ZF�W1��a 00 1��W2���a 00 1�� jajs�1d�a:The proposition now follows from the formulaXn W ��n 00 1� j�jn(s�1=2) = L(s;�i):If 
2 > 
1+j then � = �1+�2 where �1 is the restri
tion of !�1 on �
2OF �O�Fwhile �2 is either zero or the 
hara
teristi
 fun
tion of �
2OF � �OF . It is easy tosee that �2 is invariant under U1(�
2�1). Thus in the above formula, we may repla
e� by �1 sin
e ����j 00 1�W1 is invariant under U1(�
2�1) while �2 has 
ondu
tor
2. Now for k 2 U , f(s; !; k;�1) = (!(k)�1 if k 2 U0(�
2),0 otherwise,
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 d� 2 U0(�
2) with 
2 > 0, !(k) is de�ned to be !(d).It follows that	�s; ����j 00 1�W1;W2;��= ZF�W1 ��a��j 00 1��W2���a 00 1�� jajs�1d�a=j�jj(s�1) ZF�W1��a 00 1��W2���a�j 00 1�� jajs�1d�a=j�jj(s�1=2)�j ZF�W1��a 00 1��W2 ���a 00 1�� jajs�1d�a=j�jj(s�1=2)�jL(s;�1 ��2):Here we have used the fa
t that sin
e �2 is rami�ed, L(s;�2) is of degree 1 or 0 and�i�j = �i+j . It follows that for a integral,W2 ��a�j 00 1� = j�jj=2�jW2 ��a 00 1� :It remains to treat the 
ase where 
2 = 
1 + j > 0. If ! is rami�ed, then we mayuse the same method to 
ompute as above. If ! is unrami�ed then using the fa
tsthat W1 �g���j 00 1�� = 
onst �W1�g� 0 1��
2 0��!1(det g);W2�g� 0 1��
2 0�� = 
onst �fW2(g)!2(det g);where fWi is the standard Whittaker fun
tion for e�i, we have	�s; ����j 00 1�W1;W2;�� = 
ont �	�s;fW1;fW2; �� 0 1��
2 0��� :Sin
e �� 0 1��
2 0�� is invariant under GL2(OF ), the integral must be zero by usingthe de
omposition G(F ) = Z(F )N(F )A(F )U .Ar
himedean 
ase. Let �i (i = 1; 2) be two irredu
ible, admissible and in�nitedimensional representations of GL2(R). Then we 
an de�ne the Rankin-Selberg 
on-volution in the same manner as in the nonar
himdean 
ase. In parti
ular if one of �iis prin
ipal, say �2 ' �(�1; �2) then one 
an show thatL(s;�1 ��2) = L(s;�1 
 �1)L(s;�1 
 �2);(2.5.15) �(s;�1 ��2) = �(s;�1 
 �1;  )L(s;�1 
 �2;  ):(2.5.16)If both �i are dis
rete, say �i = �(�i), then one 
an show thatL(s;�1 ��2) = LC (s; �1 
 �2)LC (s; �1 
 ��2)(2.5.17) �(s;�1 ��2;  ) = �C (s; �1 
 �2;  C )�C (s; �1 
 ��2;  C ):(2.5.18)



26 S. W. ZHANGIndeed, �i 
orresponds to two representations of the Weil groupWR: Ind(�1) andInd(�2) by Langlands lo
al 
orresponden
e. Thus �1 
�2 
orresponds to Ind(�1)
Ind(�2). The 
on
lusion now follows from the fa
t thatInd(�1)
 Ind(�2) ' Ind (�1 
 Ind(�2)jC� ) ' Ind(�1 
 �2 � �1 
 ��2):As in the nonar
himedean 
ase, we want to express L(s;�1 ��2) as a 
anoni
alMellin transform 	(s;W1;W2;�). For this, we assume the following� For ea
h i, �i is either dis
rete, or prin
ipal of type �(�r1 ; �r2).Without loss of generality, we assume further that their weights ki satis�es k1 � k2.Then we have Whittaker fun
tions Wi of �i of weights k1;�k2 su
h thatZR�Wi �a 00 1� jajs�1=2d�a = L(s;�i):Moreover our assumption implies that the fun
tiona �! �i(a) :=Wi �a 00 1�is either even or supported on one 
onne
ted 
omponent of R� .We �x a measure dg on N(R)Z(R)nGL2(R) whi
h is a produ
t jaj�1dadk withrespe
t to the de
omposition GL2(R) = Z(R)N(R)A(R)SO2(R), where da is indu
edby a usual measure on R� , and dk is su
h that SO2(R) has volume 1.Proposition 2.5.2. Assume that the 
ondu
tor of  is 1. Let � be the fun
tionin S(R2 ) de�ned by �(x; y) = 
(ix+ y)n1�n2e��(x2+y2);where 
 is a positive 
onstant:
 = (1 if �2 are prin
ipal,2k2�1 if �2 is dis
rete.Then 	(s;W1;W2;�) = L(s;�1 ��2):Proof. First we use the de
omposition G(F ) = Z(F )N(F )A(F )U and the fa
tthat f� has weight k2 � k1. We may write	(s;W1;W2;�) = 
0 Z 10 �1(a)�2(�a)f�(s; !; e)jajs�1d�awhere 
0 = 1 unless both �i are of weight 0. Otherwise 
0 = 1. Write !(x) =jxjrsgn(x)k1�k2 , then f�(s; !; e) = 
G2(2s+ t+ k1 � k2):We need to 
ompute the integral here. WriteG1(s) = ��s=2�(s=2); G2(s) = 2(2�)�s�(s) = G1(s)G1(s+ 1):
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h thatZ 10 �1(a)jajs�1=2d�a = 
1L(s;�1) = 
1G1(s+ �1)G1(s+ �2);Z 10 �2(a)jajs�1=2d�a = 
2L(s;�2) = 
2G1(s+ �1)G1(s+ �2);where 
i = 1 unless �i is of weight 0. Otherwise 
i = 1=2. Now by Barnes lemma,Z 10 �1(a)�2(�a)jajs�1d�a = 2 
1
2Qi;j G1(s+ �i + �j)G1(2s+ �1 + �2 + �1 + �2) :In summary we have	(s;W1;W2;�) = 2

0
1
2 G1(2s+ t+ k1 � k2)G1(2s+ �1 + �2 + �1 + �2)Yi;j G1(s+ �i + �j):We now want to 
he
k if the right hand side equals L(s;�1 
�2).First 
ase: both �i are prin
ipal of weight 0. We write�1 = �(��1R ; ��2R ); �2 = �(��1R ; ��2R );then t = �1 + �2 + �1 + �2; L(s;�1 
�2) =Yi;j G1(s+ �i + �j):The identity follows.Se
ond 
ase: �1 is dis
rete and �2 is prin
ipal. Then we may write�1 = �(�); �(z) = jzjrC zm; �2 = �(��1 ; ��2):In this 
ase �1 = r +m; �2 = r +m+ 1; k1 = m+ 1; k2 = 0;t = 2r +m+ �1 + �2 L(s;�1 
�2) =Yi;j G1(s+ �i + �j):Again, the identity follows also.Last 
ase: both �i are dis
rete. We write�i = �(�i); �i(z) = jzjriC zmi ; (m1 � m2):Then ki = mi + 1; �1 = r1 +m1; �2 = r1 +m1 + 1;�1 = r2 +m2; �2 = r2 +m2 + 1; t = 2r1 + 2r2 +m1 +m2;L(s;�1 ��2) = G2(s+ r1 + r2 +m1 +m2)G2(s+ r1 + r2 +m1):Equality now follows as we express everything in terms of G1(s+u) using the formulaG1(2s) = 2s�1G2(s) = 2s�1G1(s)G1(s+ 1)If �1 is dis
rete and �2 = sgn � �02 where �02 = (�r1 ; �r2), thenL(s;�1 
�2) = L(s;�1 
�02)Thus the proposition still works in this 
ase.Similarly, we may treat the 
ase �i = sgn ��0i of the above type.



28 S. W. ZHANGGlobal 
ase. Let F be a totally real �eld with nontrivial 
hara
ter  = 
 v ofA F =F . For i = 1; 2, let �i be an irredu
ible and 
uspidal representation of GL2(A F ).Then we 
an de�ne the global Rankin-Selberg 
onvolution L-fun
tion and �-fa
tors:L(s;�1 ��2) =Yv L(s;�1;v ��2;v);(2.5.19) �(s;�1 ��2) =Yv �(s;�1v ��2v ;  v):(2.5.20)Of 
ourse the de�nition of �(s;�1 � �2) does not depend on the 
hoi
e of  even ifthe lo
al 
omponents �(s;�1v � �2v ;  v) do. One may show that the above produ
tis absolutely 
onvergent for Re(s) >> 0 and L(s;�1 � �2) 
an be 
ontinued to aholomorphi
 fun
tion to the whole 
omplex plane. Moreover, L(s;�1 � �2) satis�esan obvious fun
tional equation:(2.5.21) L(s;�1 ��2) = �(s;�1 ��2)L(1� s;�1 ��2):To prove the fun
tional equation, one takes Whittaker fun
tions Wi(g) =
vWi;v(gv) for �i with respe
t to  and a fun
tion � = 
�v in S(A 2 ) su
h that	(s;W1v ;W2v;�v) 6= 0 for every v. Let �i now be automorphi
 fun
tions with Whit-taker fun
tions Wi(g). Let f�(s; g) denote a fun
tion on C �G(A ) de�ned by(2.5.22) f�(s; g) =Yv f�v (s; gv):Then f�(s; g) is invariant under the left multipli
ation by B(F ) and with 
hara
ter!�1 under the a
tion by the 
enter Z(A ). Let E(s; g) be an Eisenstein series de�nedby the following formula:(2.5.23) E�(s; g) = X
2B(F )nG(F ) f�(s; 
g):Then ZZ(A)GL2(F )nGL2(A) �1(g)�2(g)E�(s; g)dg=ZZ(A)B(F )nGL2(A) �1(g)�2 (�g) f�(s; g)dg=ZZ(A)N(F )nGL2(A) �1(g)W2 (�g) f�(s; g)dg=ZZ(A)N(A )nGL2(A) W1(g)W2(�g)f�(s; g)dg=	(s;W1;W2;�);where the measures dg on PGL2(A ) and N(A )Z(A )nGL2(A ) are 
hosen su
h thattheir \ratio" on N(F )nN(A ) has volume 1. The fun
tional equation now follows fromthe lo
al equations and the fun
tional equation for Eisenstein series:(2.5.24) E�(s; g; !) = !(det g)Ee�(1� s; g; !�1):



GROSS-ZAGIER FORMULA FOR GL2 29Let Æ 2 A � su
h that the 
hara
ter  0v(x) :=  (Æ�1v x) of Fv has 
ondu
tor 1 atevery pla
e. Assume that with respe
t to  0 there are Whittaker fun
tions W 0i of �iand a fun
tion � 2 S(A 2 ) su
h thatL(s;�1 ��2) = 	(s;W 01 ;W 02 ;�);su
h as the sele
ted 
ases we have treated in last two se
tions. Then if we de�neWi(g) =W 0i ��Æ 00 1� g�It follows that 	(s;W1;W2;�) = jÆj1=2�s	(s;W 01 ;W 02 ;�):In other words, if we take �i with Whittaker fun
tions Wi, then we have the simpleexpression for the Rankin L-fun
tion:(2.5.25) L(s;�1 ��2) = jÆjs�1=2 ZZ(A)G(F )nG(A ) �1(g)�2(g)E�(s; g)dg:3. Kernel fun
tionsIn this 
hapter we will study the kernel fun
tion for 
ertain Rankin-Selberg 
onvolu-tions. More pre
isely, we will �rst 
onstru
t a kernel �(s; g) as des
ribed in the endof x1.1. This kernel depends only on the 
hara
ter � and the type of � but is notbe unique. We 
hoose the simplest one so that a fun
tional equation holds. Thenwe 
ompute the 
entral value, the 
entral derivative, and the holomophi
 proje
tion.These pro
edures are quite 
lose to those used by Gross and Zagier [20℄.The important di�eren
e is that we will not take the tra
e to the same level as �.A
tually some experimental 
omputation shows that the tra
e is so 
ompli
ated thatthere is no way to 
ompare with the geometri
 pairing. Of 
ourse, there will be someproblems 
reated by high levels if we don't take tra
e. But this 
an be taken 
areof by our new notion of quasi-newforms in x2.3. On the other hand, sin
e no tra
eneeded, this method has better 
exibility than [20℄. For example even in the 
lassi
al
ase F = Q, � = 1, our method works for even dis
riminant D.3.1. Kernel fun
tionsWe now start with our basi
 setting as in x1.1. Let F be a totally real �eld. Let � bean irredu
ible and 
uspidal representation of GL2(A ) with trivial 
entral 
hara
ter,and 
ondu
tor N . Assume that at ea
h ar
himedean pla
e � is either prin
ipal, ordis
rete of weight 2.Let K=F be a totally imaginary quadrati
 extension. Let ! denote the as-so
iated quadrati
 
hara
ter of A � with 
ondu
tor 
(!). Let � be a �nite 
har-a
ter of A �K =A �K� whose 
ondu
tor 
(�) is prime to 
(!). Let �(�) be the in-du
ed irredu
ible representation of GL2(A ). Then �(�) has weight (1; � � � ; 1), levelD = 
(�)2
(!), and 
entral 
hara
ter !.



30 S. W. ZHANGEpsilon-fa
tors. Assume that for } j D, ord}(N) � 1. (For appli
ations weneed only assume this after both �} and �(�)} are twisted by quadrati
 
hara
tersat }.) Let  = 
 v be a nontrivial 
hara
ter of A F =F . The �-fa
tor is given asfollows:(3.1.1) �v(�1 ��2;  ) = (�!v(�1) if v 2 �,!v(�1) if v =2 �,where(3.1.2) � : 8>>><>>>:in�nite pla
es where � has weight 2,�nite pla
es } - D su
h that !}(N) = �1,�nite pla
es } j (N; 
(!)) su
h that �}�}(�) = 1,where �} = �}(�}), �} = �} ÆNK}=F} .Noti
e that in the last 
ase of the above list, �}(�) and �}(�) are a
tually the pa-rameters of the lo
al L-fun
tions of �} and �}:L(s;�}) = 11� �}(�)j�js ; L(s; �}) = 11� �}(�)j�js :Kernel �T . We now want to apply x2.5 to �1 = �, �2 = �(�). We write(3.1.3) L(s;�1 ��2) =: L(s;�
 �):Let � be the newform for �, and let �� be the newform for �(�) de�ned in (2.4.7).Then(3.1.4) L(s;�
 �) = jÆjs�1=2 Z �(g)��(g)E(s; g)dgwhere Æ 2 A � is the 
ondu
tor of any �xed additive 
hara
ter. Thus jÆj�1 is thedis
riminant d of F .Let S be the set of pla
es dividing 
(!). For ea
h v 2 S, �x a uniformizer �v su
hthat !v(�v) = 1. For ea
h subset T of S, let hT denote the Atkin-Lehner operatorof level 
(!): an element in G(A ) whi
h has 
omponent 1 outside of T , and has
omponent(3.1.5) hv := � 0 1��o(!v)v 0�at v 2 T , and let ��T denote the idele whi
h has 
omponent 1 out side T and haselements(3.1.6) ��v := �o(!v)�o(�v)vat v. Also we de�ne 
T (s) = Yv2T 
v(s);(3.1.7) 
v(s) = �v(�v)o(!v)j��v j1=2�s � (�1)#fvg\�:



GROSS-ZAGIER FORMULA FOR GL2 31Set(3.1.8) �T (s; g) = 
T (s)��(gh�1T )E(s; gh�1T ):Lemma 3.1.1. For any integral idele a dividing [N;D℄=N = D=(N;D), one hasjÆjs�1=2 Z ��g�a�1 00 1���T (s; g)dg=jaS�T =aT js�1=2��(a)L(s;�
 �);where ��(a) = (�(a) if aj
(!),0 otherwise.Proof. Indeed, let h0T be the Atkin-Lehner operator of level 
(�) over pla
es overT , then by Proposition 2.5.1,Z ��g�a�1 00 1�� ��(ghT )E(s; ghT )dg= Z ��gh�1T �a�1 00 1�� ��(g)E(s; g)dg=�(1=2;�T ) Z ��gh�1T �a�1 00 1�h0T� ��(g)E(s; g)dg=�(1=2;�T )�(��T )j��T � aS�T =aT js�1=2
T (a)L(s;�
 �);The 
on
lusion now follows from the fa
t that�(1=2;�v) = (1 if �v is unrami�ed,��v(�v) if �v = �(�v).Kernel �. We de�ne a kernel fun
tion by(3.1.9) �(s; g) = 2�jSjjÆjs�1=2 XT�S�T (s; g):Then(3.1.10) L(s;�
 �) = ZZ(A)G(F )nG(A ) �(g)�(s; g)dg:Noti
e that � has level N but � has level [N;D℄. By Lemma 3.1.1, we have:Lemma 3.1.2. For any integral idele a dividing [N;D℄=N = D=(N;D), one hasZZ(A)G(F )nG(A ) ��g�a�1 00 1���(s; g)dg=YvjS jajs�1=2v + jaj1=2�sv2 � ��(a)L(s;�
 �):



32 S. W. ZHANGThe advantage of using � instead of �T is that it has more symmetry. A
tuallyfrom Lemma 3.1.2, one sees that the proje
tion of �(s; g) on the spa
e � should havethe same fun
tional equation as L(s;� 
 �). We will show this fun
tional equationin the next se
tion.But now let us give an important de�nition to des
ribe this proje
tion.Definition 3.1.3. The quasi-new form �℄s is de�ned to be the unique quasi-newform of level [N;D℄ propotional to the proje
tion of ��(s; g). In other words, �℄sis perpendi
ular to the following hyperplane whi
h is the orthogonal 
omplement of��(s; g) on the subspa
e of forms in � of level [N;D℄:8><>: Xa�� D(N;D) 
a��g�a�1 00 1�� : X 
a��s (a) = 0;9>=>;where ��(a)s =YvjS jajs�1=2v + jaj1=2�sv2 (�(a) if aj
(!),0 otherwise.Write �℄ = �℄1=2.By Lemma 3.1.2, we haveProposition 3.1.4. The proje
tion of ��(s; g) on � is given byL(s;�
 �)(�℄s; �℄s) � �℄s:3.2. Fun
tional equationIn this se
tion we want to show the fun
tional equation of the kernel fun
tion 
on-stru
ted in the last se
tion:Theorem 3.2.1. �(s; g) = �(s;�
 �)�(1� s; g);where �(s;�
 �) = (�1)#�j
( )�4
(�
 �)js�1=2and 
(�
 �) = [N;D℄2(N; 
(!)):By Lemma 3.1.2, this gives a new proof of the following fun
tional equation ofRankin-Selberg L-fun
tions without using the lo
al equations.Theorem 3.2.2. L(s;�
 �) = �(s;�
 �)L(1� s;�
 �):



GROSS-ZAGIER FORMULA FOR GL2 33The main idea of the proof is to use the fun
tional equation of the Eisensteinseries(3.2.1) E�(s; g) = !(det g)Ee�(1� s; g)and a pre
ise 
omputation of e�. Noti
e that � is a produ
t of lo
al �v in S(F 2v ).Thus we will 
ompute e�v 
ase by 
ase.Lemma 3.2.3. Let Æv 2 F�v su
h that  0v(x) :=  (Æ�1v x) is of order 0.1. For a �nite pla
e v, e�v(x; y) = jÆv�
vv j� [(x; y)Æv�
vv ℄ ;if !v is unrami�ed, ande�v(x; y) = jÆv�3
v=2v j�(!;  0)�v [��
vÆv(x; y)hv ℄if !v is rami�ed, where �v is a �xed lo
al parameter su
h that !v(�v) = 1,and 
v = ordv([N;D℄), and hv = � 0 1��
vv 0� ;2. For an ar
himedean pla
e v,e�v(x; y) = �jÆvj�(xÆv ; yÆv):Proof. Let e�0v denote the Fourier transform with respe
t to  0v . Thene�v(x; y) = jÆvje�0v(xÆv ; yÆv):Let assume that v is nonar
himedean �rst. For ea
h 
hara
ter � of F�v de�ne��(x) = 8><>:1 if 
(�) = 0, jxj � 1,��1(x) if 
(�) > 0, jxj = 1,0 otherwise.Then �v(x; y) = �1v (x��
vv )�!v (y)where 1v denote the trivial 
hara
ter of F�v . It follows thate�0v(x; y) = j�v j
v b�01v (y�
vv )b�0!(�x):Noti
e that for a general 
hara
ter � of F�,b�0�(x) = j�v jo(�)=2��1(�o(�)v )�(�;  0)���1(x�o(�)):It follows thate�v(x; y) = jÆv je�0v(xÆv ; yÆv)= jÆv�
vv jb�01v (y�
vv Æv)b�0!(�xÆv)= jÆv�
v+o(!)=2v j!(�o(!)v )�(!;  0)�1v (y�
vv Æv)�!(�x�o(!)Æv):



34 S. W. ZHANGIf !v is unrami�ed, thene�v(x; y) =jÆv�
vv j�1v (y�
vv Æv)�1v (xÆv)=jÆv�
vv j� [(x; y)Æv�
vv ℄ :If !v is rami�ed, then 
v = o(!v), ande�v(x; y) = jÆv�3
v=2v j!(�
vv )�(!;  0)�v(y�2
vv Æv;�x�
vÆv)= jÆv�3
v=2v j!(�
vv )�(!;  0)�v [��
vÆv(x; y)hv ℄ :It remains to 
onsider the 
ase where v is ar
himedean. In this 
ase�v(x; y) = (ix+ y)e��(x2+y2);e�0v(x; y) = ��v(x; y):Lets now �nd a fun
tional equation for f�(s; g). By de�nition,fe�v (1� s; g) = j det gj1�s ZF�v e�v[(0; t)g℄jtj2(1�s)!(t)d�t:Lemma 3.2.4. Write fv(s; g) (resp. efv(s; g)) for f�v (s; g) (resp. fe�v (s; g)). Let�v(s) denote the fun
tion�v(s) = 8><>:j�
vv j2s�1!v(�
vv ) if v -1, o(!v) = 0,j�3
vv js�1=2�(!v;  0) if v -1, o(!v) > 0,1 if v j 1.Then: efv(1� s; g) = (jÆv j2s�1!(�Æv)�v(s)fv(1� s; ghv): if v -1, o(!v) > 0,jÆj2s�1!v(�Æv)�v(s)fv(1� s; g) otherwise.Proof of Theorem 3.2.1. Lets write S (resp. �S) for �nite pla
es where !v isrami�ed (resp. unrami�ed). Let �(s) be the produ
t of �v(s), thenfe�(1� s; g) = jÆj2s�1!(Æ)�(s)f(1� s; ghS);E(s; g) = !(det g)Ee�(1� s; g) = jÆj2s�1!(Æ det g)�(s)E(1� s; ghS):It follows that�(s; g) =2�#SjÆjs�1=2 XT�S 
T (s)��(gh�1T )E(s; gh�1T )=2�#SjÆj3s�3=2!(Æ det g))XT�S 
0T (s)��(gh�1T )E(1� s; gh�1T hS)=2�#SjÆj3s�3=2!(Æ det g)XT�S 
0�T (s)��(ghTh�1S )E(1� s; ghT );



GROSS-ZAGIER FORMULA FOR GL2 35where �T = S n T , 
0T (s) = �(s)
T (s):Re
all that �� is a form whose Whittaker fun
tion isW�(g) :=W 0� ��Æ 00 1� g� ;where W 0�(g) =Yv W�;v(gv);with W�;v a newform in W(�(�v);  0v) unless v is in�nite and �v is of weight 2. If vis in�nite and �v is of weight 2, �(�)W 0�;v(g) is a newform of �v where � = ��1 00 1� :Lemma 3.2.5. Let 1+ (resp. 1� denote the ar
himedean pla
es where �v isweight 2 (resp. 0). ThenW 0�;v(g) =W�;v(g)0!v(det g) 8v 2 �S [1�;W 0�;v(gh�1v ) = !v(��
vv det g)�v(�
vv )�(!v;  0v)W 0�;v(g) 8v 2 S;W 0�;v(g) =W 0�;v(g)!v(� det g); 8v 2 1+:Proof. The �rst equality is true be
ause both sides are newforms for �v = �v
!v.The se
ond one follows from our Atkin-Lehner theory in x2.3 and the fa
t that�(�(�)v ;  0v) = �(�v;  0v)�(�v � !v;  0v) = �v(�
vv )�(!v;  0v):The last one is true be
ause both sides are newforms after g is repla
ed by g�.By this lemma, we have the following fun
tional equation of theta series:��(gh�1S ) = ��(g) � !(Æ det g)(�1)#1��;where � = Yv2S �v; �v = �v(�
vv )�(!v ;  0v):It follows that�(s; g) = 2�#SjÆj3s�3=2 XT�S 
�T (s)��(ghT )E(1� s; ghT );where 
�T (s) =�(s) � 
 �T (s) � (�1)#1� � �=Yv2 �S j�
vv j2s�1 �Yv2T j�3
vv js�1=2�v(�
vv )(�1)#T\��Yv2 �T j�2
v+o(�v)v js�1=2 � (�1)#�=(�1)#� Yv2 �S j�2
vv js�1=2 �Yv2S j�2
v+o(�v)v js�1=2
T (1� s):Theorem 3.2.1 now follows easily.



36 S. W. ZHANG3.3. Fourier expansionIn this paper we will study the Fourier expansion of � in great detail, i.e., the 
onstantterm C�(s; g) and the Whittaker fun
tion W�(s; g). Let��(g) = C�(g) + X�2F�W� ��� 00 1� g� ;(3.3.1) E(s; g) = C(s; g) + X�2F�W �s;�� 00 1� g� ;(3.3.2)be Fourier expansions of �� and E(s; g) respe
tively. Then �(s; g) will have Fourierexpansion(3.3.3) �(s; g) = C�(s; g) + X�2F�W��s;�� 00 1� g� ;with C�(s; g) = X�+�=0�;�2F�W (s; �; �; g) + C��(s; g);(3.3.4) W�(s; g) = X�+�=1�;�2F�W (s; �; �; g) +W ��(s; g);(3.3.5)where W (s; �; �; g) = 2�#SjÆjs�1=2 XT�S 
T (s)W� ��� 00 1� gh�1T �(3.3.6) �W �s;�� 00 1� gh�1T � ;C��(s; g) = 2�#SjÆjs�1=2 XT�S 
T (s)C�(gh�1T )C(s; gh�1T );(3.3.7) W ��(s; g) = 2�#SjÆjs�1=2 XT�S 
T (s)�C�(gh�1T )W (s; gh�1T )(3.3.8) +W�(g)C(s; gh�1T )�:Noti
e that W (s; �; �; g), C��(s; g), and W ��(s; g) share the same fun
tion equation asL(s;�
�) by the same argument as above, sin
e the fun
tional equation of E(s; g) and��(g) will give the same fun
tional equations to ea
h term of their Fourier expansions.In the following we want to 
ompute the Fourier expansion expli
itly for g of theform �aÆ�1 00 1�. But �rst we need to 
ompute them for E(s; gh�1T ) and ��(gh�1T ).Fourier expansion of Eisenstein series. Lets �rst 
ompute the 
onstant termC(s; g) Using de
omposition(3.3.9) GL2(F ) = P (F )aP (F )wN(F ); w = � 0 1�1 0� ;
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ompute the Fourier expansion with respe
t to  to obtainC(s; g) =ZFnA E �s;�1 x0 1�� dx = f(g) + ZA f �w�1 x0 1� g� dx(3.3.10) =f(s; g) + !(det g) ef(s; g)Sin
e f(s; g) and ef(1 � s; g) are in the spa
e of prin
ipal series B(�s�1=2; �1=2�s!),we have the followingLemma 3.3.1.C ��aÆ�1 00 1�h�1T � = jajsfT (s) + jaj1�s!(a) efT (s);where fT (s) = jÆjs�1=2f(s; h�1T ); efT (s) = jÆj1=2�s!(Æ) ef(s; h�1T ):Lets now 
ompute the Whittaker fun
tion.W (s; g) = ZFnA E �s;�1 x0 1�� (�x)dx = ZA f �w�1 x0 1� g� (�x)dx=j det gjs ZA� jtj2s!(t)dt� ZA �[(�t;�tx)g℄ (�x)dx=j det gjs ZA� (�(g)�)0(t; t�1)jtj2s�1!(t)dt�;where �0 is the partial inverse Fourier transform:�0(x; y) = ZFv �(x; u) v(�uy)du:For ea
h pla
e v, writeWv(s; g) using the same formula in lo
al integrals. In the follow-ing we want to 
ompute fv(g) 
ase by 
ase for g = �aÆ�1v 00 1� or g = �aÆ�1v 00 1�h�1v .Lemma 3.3.2. Assume that v is �nite and !v is unrami�ed. For a 2 F�v ,W �s;�aÆ�1v 00 1�� 6= 0 only if jaj � j�
vv . In this 
ase it is given byjaj1=2j�
vv Ævjs�1=2!v(Æv) ja�1�
vv js�1=2 � ja�1�
vv j1=2�s!(a�1�
vv )j�v js�1=2 � j�j1=2�s!(�v) :Proof. Re
all that �v(x; y) is given by�v(x; y) = �1v (��
vv x)�1v (y)



38 S. W. ZHANGwhere 1v denotes the trivial 
hara
ter of F�v .W �s;�aÆ�1v 00 1�� =jaÆ�1v js ZF�v �0(aÆ�1v t; t�1)jtj2s�1!(t)d�t=jajs ZF�v jÆv j1=2�s�1v (aÆ�1v t��
vv )�1v (t�1Æv)jtj2s�1!(t)d�t=jajsjÆv j1=2�s Zj�
vv a�1Ævj�jtj�jÆvj jtj2s�1!(t)d�t=jajsjÆv js�1=2!(Æv) ordv(a)�
vXi=0 j�ij1�2s!(�i);where the sum is zero if 
v > ordv(a).Lemma 3.3.3. Assume that v is �nite and !v is rami�ed.1. For a 2 F�v , W �s;�aÆ�1v 00 1�� 6= 0 only if jaj � 1. In this 
ase it is givenby jajsjÆvjs�1=2!(�Æv)j�
vv j2s�1=2�(!v;  0v):2. For a 2 F�v , W �s;�aÆ�1v 00 1�h�1v � 6= 0 only if jaj � 1. In this 
ase it isgiven by jaj1�sjÆv js�1=2!(�aÆv)j�
vv js:Proof. Again, we know that�v(x; y) = �1v (��
vv x)�!v (y):The Fourier transform of �!v with respe
t to the unrami�ed 
hara
ter  0v is given byj�
vv j1=2�(!v;  0)�!v (x�
vv ):It follows thatW �s;�aÆ�1v 00 1��=jaÆ�1v js ZF�v �0(aÆ�1v t; t�1)jtj2s�1!(t)d�t=jajs ZF�v jÆvj1=2�sj�vj
v=2�(!v;  0v)�1v (aÆ�1v t��
vv )�!v (�t�1Æv�
vv )jtj2s�1!(t)d�t=jÆvjs�1=2!(�Æv)j�
vv j2s�1=2�(!v;  0v)�1v (a)jajs:This proves the �rst part of the lemma. For the se
ond part, we noti
e that� �(x; y)�aÆ�1v 00 1�h�1v � = �(y;�aÆ�1v ��
vv x):



GROSS-ZAGIER FORMULA FOR GL2 39It follows thatW �s;�aÆ�1v 00 1�h�1v �=jaÆ�1v ��
vv js ZF�v �0(aÆ�1v t; t�1)jtj2s�1!(t)d�t=jajs ZF�v jÆv j1=2�sj�
vv j1�s�1(�
vv Ævt�1)�!v (�aÆ�1v ��
vv t)jtj2s�1!(t)d�t=jaj1�sjÆvjs�1=2!(�aÆv)j�
vv js�1v (a):Lemma 3.3.4. Assume that Fv = R, thenW �s;�aÆ�1v 00 1�� =jÆv js�1=2!(�aÆv)�(s+ 1=2)�s+1=2� jaj1�s � ZR e2�iax(i+ x)(1 + x2)s�1=2 dx:Proof. In this 
ase, �v(x; y) = (ix+ y)e��(x2+y2):First 
hange the order of the Fourier transform and Mellin transform:W �s;�aÆ�1 00 1��=jaÆ�1js ZR� ZR�(aÆ�1t; x)e�2�it�1Ævxdxjtj2s�1!(t)d�t=jajsjÆv js�1=2!(Æv) ZR� ZR�(at;�tx)e2�ixdxjtj2s!(t)d�t=jajsjÆv js�1=2!(Æv) ZR e2�ixdx ZR� �(at;�xt)jtj2ssgn(t)d�t;The integral over R� is2(ia� x) Z 10 t1+2se��t2(a2+x2)d�t=(ia� x) Z 10 � t�(a2 + x2)�s+1=2 e�td�t=(ia� x) �(s+ 1=2)(�(a2 + x2))s+1=2 :It follows thatW �s;�aÆ�1 00 1��=jÆjs�1=2!v(Æv)�(s+ 1=2)�s+1=2 � jajs � ZR (ia� x)e2�ix(a2 + x2)s+1=2 dx=jÆjs�1=2!v(�aÆv)�(s+ 1=2)�s+1=2 � jaj1�s � ZR e2�ax(i+ x)(1 + x2)s�1=2 dx:



40 S. W. ZHANGFourier expansion of theta series. Re
all that the series �� is a form in thespa
e of the representation �(�) whi
h has Whittaker fun
tionW 0� ��Æ 00 1� g� ;where W 0�(g) = QW 0�;v(gv) and W 0v (gv) are new ve
tors unless v is ar
himedeanwhere �v has weight 2. If �v is of weight 2, then W 0�;v �g��1 00 1�� is a new ve
tor.In the following lets 
ompute the Fourier expansion of ��. Again we will start withthe 
onstant term.Lemma 3.3.5. The 
onstant term C�(g) is nonzero only if � is of the form� �NK=F with � a quadrati
 
hara
ter on F�nA � . In this 
ase we haveC� ��aÆ�1 00 1�h�1T � = �(a)jaj1=2
�;T + �!(a)jaj1=2e
�;Twhere 
�;T , e
�;T are 
onstants independent of a.Proof. The representation �(�) is non-
uspidal only if � = � �NK=F . In this 
ase,it is the prin
iple series �(�; �!). Thus there is a � 2 S(A 2 ) su
h that the 
onstantterm is given by f�(g; �; �!) + fe�(g; �!; �)where for two 
hara
ters �1; �2,f�(g; �1; �2) = �1(det g)j det gj1=2 ZA� �[(0; t)g℄�1��12 (t)!(t)jtjd�t:The 
on
lusion of the lemma now follows easily.Lemma 3.3.6. Assume that v is nonar
himdean.1. If Kv = Fv � Fv, �v = (�v ; ��1v ), thenW 0� �a 00 1� = jaj1=28><>:�(a�)���1!(a�)�(�)���1!(�) if jaj � 1, o(�) = 0,1 if jaj = 1,0 otherwise.2. If Kv=Fv is unrami�ed �eld extension, thenW 0� �a 00 1� = 8><>:jaj1=2 if �v = 1, ord(a) 2 2Z�0,1 if jaj = 1,0 otherwise.3. If Kv=Fv is a rami�ed �eld extension, � = � ÆNKv=Fv , thenW 0�;v �a 00 1� = (jaj1=2�(a) if jaj � 1,0 otherwise.



GROSS-ZAGIER FORMULA FOR GL2 41Proof. All the 
on
lusions follow from the identityZF�W 0�;v �a 00 1� jajs�1=2d�a = L(s;�(�v)) = L(s; �v);and the fa
t that the value W �a 00 1� depends only on jaj.Lemma 3.3.7. Assume that Fv = R.1. If � is of weight 0, thenW 0�;v �a 00 1� = (2jaj1=2e�2�a if a > 0,0 otherwise.2. If � is of weight 2, thenW 0�;v �a 00 1� = (2jaj1=2e2�a if a < 0,0 otherwise.Proof. It is suÆ
ient to show the �rst part. Noti
e that in this 
ase, the valuesof W at �a 00 1� determine the values of W (g) as it has weight 1. One only needsnow to show that this W (g) gives the right L-fun
tion when twisted with 
hara
tersof R� .Fourier expansion of �(s; g). Lets start with W (s; �; �; g) for g = �aÆ�1 00 1�.From our de�nition, it is a
tually a produ
t of Wv(s; �; �; gv) whereWv(s; �; �; g)(3.3.11) =12 jÆjs�1=2W�;v ��� 00 1� g�Wv �s;�� 00 1� g�+ 12 jÆjs�1=2
v(s)W�;v ��� 00 1� gh�1v �Wv �s;�� 00 1� gh�1v � ;if !v is rami�ed; otherwise(3.3.12) Wv(s; �; �; g) = jÆjs�1=2W�;v ��� 00 1� g�Wv �s;�� 00 1� g� :Thus, the value of W (s; �; �; g) has been 
omputed in the previous lemmas. When !vis rami�ed, we have the following simpli�
ation:Lemma 3.3.8. Assume that !v is rami�ed. Then W (s; �; �; e) is nonzero only ifboth j� � 1, and j�j � 1. In this 
aseWv �s; �; �;�Æ�1 00 1�� =12 jÆvj2s�1!(�Æv)�(!;  v) � j���
v j1=2�(�)j��+v js�1=2� hj���v �js�1=2 + (�1)fvg\�!v(���)j���v �j1=2�siwhere ��+v = �o(!v)+o(�)=2v ; ��+v = �o(!v)�o(�)=2v :



42 S. W. ZHANGProof. Apply Lemma 3.3.3, 3.3.6, 3.2.5.Also it is not diÆ
ult to 
he
k the followingLemma 3.3.9. For ea
h pla
e v of F , �; � 2 F�v ,Wv(s; �; �; g) = !v(���)�(s;�
 �;  )W (1� s; �; �; g):It remains to treat C�� and W �� .Lemma 3.3.10. The fun
tion C��(s; g) = 0 unless � is of form � � NK=F . It is alinear 
ombination of fun
tions inf1(s; g) 2 B(�s�; ��s�); f2(s; g) 2 B(�s�!; ��s�!);f3(s; g) 2 B(�1�s�!; �s�1�!); f4(s; g) 2 B(�1�s�; �s�1�);whi
h are holomorphi
 in s, of opposite weight as �, and invariant under U0([N;D℄).Proof. It is 
lear that the fun
tion C��(s; g) = 0 unless � is of form � � NK=F . Inthis 
ase it is a linear 
ombination of 
onstant terms of produ
ts of a form in �(�; �!)and a form in �(�s�1=2; �1=2�s!) with 
oeÆ
ients holomorphi
 in s.Noti
e that the 
onstant term of a form Ef 2 �(�1; �2) has 
onstant termf(g) + ef(g); f 2 B(�1; �2); ef 2 B(�2; �1):Sin
e the produ
t of two prin
ipal in B(�1; �2), B(�1; �2) will be inB(�1�1�1=2; �2�2��1=2);we see that C��(s; g) is a linear 
ombination of fun
tions inf1(s; g) 2 B(�s�; ��s�); f2(s; g) 2 B(�s�!; ��s�!);f3(s; g) 2 B(�1�s�!; �s�1�!); f4(s; g) 2 B(�1�s�; �s�1�):Lemma 3.3.11. Let g denote �aÆ�1 00 1�. If � is not of the form � ÆNK=F , thefun
tion W �� (s; g) (a 2 A �) is a sum of W�� (s; g), whereW+� (s;�) 2 W(�(�) 
 �s;  ); W�� (s;�) 2 W(�(�)
 �1�s;  ):If � = � ÆNK=F , then W ��(s; g) is a sum of the above two terms and two more termsW�� (s; g), whereW+� (s;�) 2 W(�(�s�; �1�s�!);  ); W�� (s;�) 2 W(�(�1�s�; �s�!);  ):Moreover, W�� (resp. W�� ) are invariant under U1([N;D℄) and holomorphi
 in s, andhas opposite weight as �� (resp. E(s;�)).Proof. This follows from the de�nition and Lemma 3.3.1, 3.3.5, and the fa
t thatevery fun
tion f(s; g) in B(�s�1=2; �1=2�s!) is holomorphi
 in s.3.4. Central values and derivativesDepending on whether � is even or odd, in this se
tion we want to 
ompute the valuesor derivatives of the Fourier 
oeÆ
ients of �(s; g) at s = 1=2.



GROSS-ZAGIER FORMULA FOR GL2 43Central values. Assume that � is even. We want to 
ompute the Fourier 
oeÆ-
ients of �(1=2; g) for g = �aÆ�1 00 1�. The degenerate terms are easily dedu
ed fromLemma 3.3.10, 3.3.11. We now treat 
ompute Wv(1=2; �; �; g). First assume that Fis non-ar
himedean and ! is unrami�ed. In this 
ase,Wv(1=2; �; �; g) =W�;v ���aÆ�1 00 1��Wv �12 ;��aÆ�1 00 1�� :If �v is unrami�ed then by Lemma 3.3.6,W�;v ��aÆ�1 00 1�� =W 0�;v ��a 00 1�� 6= 0only if a 2 N(OK;v). In this 
aseW�;v ��aÆ�1 00 1��=jaj1=2(1 if Kv is a �eld,Pi+j=ord(a) �(�i�j) if Kv = Fv � Fv , �v = (�; ��1).Similarly by Lemma 3.3.2,Wv �1=2;�aÆ�1v 00 1�� 6= 0only if a��
vv 2 N(OK). In this 
ase,Wv �12 ;�aÆ�1v 00 1�� = jaj1=2!v(Æv)(1 if Kv is a �eld,ord(a��
vv ) + 1 if Kv = Fv � Fv ,where 
v = ordv([N;D℄). We assume further that either 
v or ordv(a) is zero. Thenwe have the following:Lemma 3.4.1. Assume that both � and ! are unrami�ed. The valueWv(1=2; �; �; g) 6= 0only if both �a and �a��
 are in N(OK). In this 
ase it is given byWv(1=2; �; �; g) = !v(Æv)j��j1=2jajif K is a �eld, andWv(1=2; �; �; g) = !(Æv)j��j1=2jaj�(�a�) � ��1(�a�)�(�) � ��1(�) � ord(�a�1�
)if K = F � F and � = (�; ��1).If �v is rami�ed, then W�;v ��aÆ�1v 00 1�� 6= 0



44 S. W. ZHANGonly if a is invertible. In this 
aseW ��a 00 1�� = 1:Lemma 3.4.2. Assume that �v is rami�ed. Let g0 = �Æ�1v 00 1�. Then the valueWv(1=2; �; �; g0) 6= 0 only if both j�jv = 1 and ���
 are in N(OK;v). In this 
ase it isgiven by Wv(1=2; �; �; g) = !v(Æv)j��j1=2vif Kv is a �eld, andWv(1=2; �; �; g) = !v(Æv)j��j1=2v � ord(��1�
v )if Kv = Fv � Fv.Lets now treat the 
ase where !v is rami�ed. In this 
ase �v = � � N with � aquadrati
 
hara
ter of F�v .Lemma 3.4.3. Assume that !v is rami�ed. Then Wv(1=2; �; �; g0) 6= 0 only ifj�jv � 1; !v(���) = (�1)#fvg\�:In this 
ase, Wv(1=2; �; �; g0) = �(!;  v)�1j���
v j1=2v �(�):It remains to treat the ar
himedean 
ase Fv = R. By Lemma 3.3.4, 3.3.7, thekernel fun
tion Wv(1=2; g) with g = �aÆ�1 0o 1� is a produ
t of two fun
tionsW�;v(g) =8><>:2jaj1=2e�2�a if a > 0, v 2 1�,2jaj1=2e2�a if a < 0, v 2 1+,0 otherwise,and Wv(1=2; g) =!(�aÆv)��1jaj1=2 ZR� e2�iaxi+ x dx=(0 if a > 0,�2i!v(Æv)jaj1=2e2�a otherwise.Thus we haveLemma 3.4.4. Assume that F = R. ThenW (1=2; �; �; g) = (�4i!v(Æv)j��j1=2jaje2�a(���) if a� > 0 and a� < 00 Otherwise



GROSS-ZAGIER FORMULA FOR GL2 45if �v is of weight 0, andWv(1=2; �; �; g) = (�4i!v(Æv)j��j1=2jaje2�a(�+�) if a� < 0, a� < 00 otherwiseif �v of weight 2The lemma a
tually implies that the 
omplex 
onjugation of �(1=2; g) is holo-morphi
 of weight 2 (resp. nonholomorphi
 of weight 0) at in�nite pla
es where � isof weight 2 (resp. non-holomorphi
 of weight 0).Central derivatives. Assume that � is odd. Then by Theorem 3.2.1,�(1=2; g) = 0. We want to 
ompute its derivative �0(1=2; g) at s = 1=2. Againthe degenerate term 
an be easily dedu
ed from Lemma 3.3.10, 3.3.11. Lets now
ompute the 
entral derivative for W (s; �; �; g) for g of the form �aÆ�1 00 1�. Re
allthat W (s; �; �; g) is a produ
t of Wv(s; �; �; g), and that Wv(s; �; �; g) satis�es thefun
tional equationWv(s; �; �; g) = !v(���)�(s;�v 
 �v)Wv(1� s; �; �; g);(3.4.1) �(1=2;�v 
 �v) = (�1)#�\fvg:(3.4.2)It follows that(3.4.3) W 0(1=2; �; �; g) =Xv W v(1=2; �; �; gv) �W 0v(1=2; �:�; g)where W v is the produ
t of W` over pla
es ` 6= v, and W 0v is the derivative for thevariable s, and v runs through the pla
es with!v(���) = (�1)1+#�\fvg; !`(���) = (�1)#�\f`g; 8` 6= v:In parti
ular we need only 
onsider the �nite pla
es whi
h are not split in K. In thefollowing we want to 
ompute W 0v(1=2; �; �; g) su
h that(3.4.4) !v(���) = (�1)1+#�\fvg = (1 if v 2 �,�1 if v =2 �.First, let's 
onsider the 
ase where v is a pla
e of F whi
h is inert and unrami�edfor the extension K=F , and su
h that �v is unrami�ed. In this 
aseWv(s; �; �; g) =W�;v ��aÆ�1v 00 1�Wv �s;��aÆ�1v 00 1�� :Then by Lemma 3.3.2, 3.3.6, the W�;v term is nonzero only if ord(�a) is even andnonnegative in whi
h 
ase the value is given by j�aj1=2. Then the Wv(s;�) term iszero at s = 1=2 and has nonzero derivative only if ord(�a��
) is odd and nonnegativein whi
h 
ase the derivative is given by!(Æv)j�aj1=2 log j�a�1�
j:Lemma 3.4.5. Let v be a �nite pla
e of F whi
h is inert and unrami�ed in Ksu
h that �v is unrami�ed. Then the only non trivial 
ontribution is when ord(�a) iseven and nonnegative, and ord(�a��
) is odd and positive. In this 
ase, we haveW 0v(1=2; �; �; g) = !v(Æv)j��j1=2v � jajv � log j�a�1�
jv :



46 S. W. ZHANGWe now 
onsider the 
ase where v is inert in K and �v is rami�ed. Assume thata = Æ�1v . The W�;v term is nonzero only if � is invertible. In this 
ase its value is 1.Lemma 3.4.6. Let v be a �nite pla
e of F whi
h is inert and unrami�ed in Ksu
h that �v is rami�ed. Then the only non trivial 
ontribution is when ord(�) = 1and ord(���
) is odd and positive. In this 
ase, we haveW 0v(1=2; �; �; g0) = !v(Æv)j�j1=2v � log j��1�
jv :Lets now treat the 
ase where ! is rami�ed. In this 
ase, by Lemma 3.3.8,�v = � �NK=F and for j�j � 1,W (s; �; �; g0) =12�(!;  v)�1j���
v j1=2�(�)j��+js�1=2�� �j����js�1=2 � j����j1=2�s� :Lemma 3.4.7. Assume that !v is rami�ed and �v = � Æ NK=F . Then the only
ase with nontrivial 
ontribution is when both � and � are integral and!v(���) = (1 if v 2 �,�1 if v =2 �.In this 
ase W 0(1=2; �; �; g0) = �(!v;  )�1j���
v j1=2v �(�) log j����jv :Finally we treat the ar
himedean pla
e. The nontrivial 
ase is when �a < 0 (resp.�a > 0) when v 2 1+ (resp. v 2 1�) and �a > 0. In this 
ase, W 0(1=2; �; �; g) is theprodu
t of W ��� 00 1� g� = 2j�aj1=2e�2�j�aj;and W 00�1=2;�� 00 1� g� =!(�a�Æv)��1j�aj1=2 ��s ����s=1=2 ZR e2�i�axdx(i+ x)(1 + x2)s�1=2=2i!v(Æv)j�aj1=2q0(4��a)e2��a;where q0(t) = Z 10 e�t=xd�x:Thus �nally we haveLemma 3.4.8. The only trivial 
ontribution is when �a < 0 (resp. �a > 0) ifv 2 1+ (resp. v 2 1�) and �a > 0. In this 
ase,W 0(1=2; �; �; g) = 4i!v(Æv)j��j1=2 � jaj � q0(4��a) � e2�(�a�j�aj):



GROSS-ZAGIER FORMULA FOR GL2 473.5. Holomorphi
 proje
tionIn this se
tion we assume that � is odd, and that at every in�nite pla
e � is dis
reteof weight 2. We want to �nd the holomorphi
 proje
tion of ��0(1=2; g). That is aholomorphi
 form � of weight 2 su
h that ��0(1=2; g) � � is perpendi
ular to anyholomorphi
 form. Here a form � of weight 2 is 
alled holomorphi
 if its Whitta
kerfun
tion satis�es(3.5.1) W� �ay1Æ�1 00 1� = b�(a)W1 �y1 00 1�where b� is a fun
tion of integral ideles a, and W1 = Qv-1Wv is the Whittakerfun
tion for weight 2 su
h that:(3.5.2) Wv ��a 00 1�� = (2ae�2�a if a > 0,0 otherwise.The number b�(a) is 
alled the a-th Fourier 
oeÆ
ient of �.Lets �rst state a formula for holomorphi
 proje
tion. For any Whittaker fun
tionW on GL2(A ) of weight 2, any integral idele a 2 A �f , and any 
omplex numberRe(�) > 0, let's de�ne(3.5.3) W�(a) = (2�)g ZF+1W ��y � aÆ�1 00 1�� e�2�yy�d�yprovided the integral 
onverges.Lemma 3.5.1. Let e� be an automorphi
 form for PGL2(A ) whi
h has asymptoti
behavior O(jaj1��) near ea
h 
usp. Then We�;�(a) is holomorphi
 at � = 0 and theholomorphi
 proje
tion � of e� has Fourier 
oeÆ
ients given by the following formula:b�(a) = lim�!0We�;�(a):Proof. For a �xed subgroup U0([D;N ℄) as before and a �nite idele a lets de-�ne Ha;�(g) to be a Whittaker fun
tion on GL2(A ) of weight 2, invariant underZ(A )U0 ([N;D℄), supported on Z(A )A(A )U0 ([D;N ℄), and su
h thatHa;� ��yÆ�1 00 1�� = 8><>:jyj�W1  y1 0o 1!! if yf 2 a bO�F ,0 otherwise,where � is a 
omplex number. Let Pa;�(g) denote the following Poin
are�e seriesPa;�(g) = X
2Z(F )N(F )nGL2(F )Ha;�(
g):Then Pa;� is absolutely 
onvergent for Re(�) > 0 and de�nes a nonholomorphi
 form



48 S. W. ZHANGof weight 2 for U0([N;D℄). For any 
uspform e� for U0([N;D℄) of weight 2, we have(e�; Pa;�) =ZZ(A)G(F )nG(A ) e�(g) �Pa;�(g)dg = ZZ(A)N(F )nG(A ) e�(g) �Ha;�(g)dg=ZZ(A)N(A )nG(A ) (We� �Ha;�)(g)dg = ZA� (We� �Ha;�)��� 00 1�� d��j�j=jÆjjaj� ZF+1We���y � aÆ�1 00 1�� e�2�yy�d�y:If � is the holomorphi
 proje
tion of e� then (�; Pa) = (e�; Pa). As We�(g) =W1(g1)W�(gf ), we have(e�; Pa) =(�; Pa) = 2gjÆjjaj�W���aÆ�1f 00 1��ZF+1 e�4�yy1+�d�y=jÆjjaj�W���aÆ�1f 00 1�� � 2g�(1 + �)g(4�)g(1+�) :Taking the limit � ! 0, the lemma follows.We want to apply Lemma 3.5.1 to ��0. First of all lets study the asymptoti
behavior at a 
usp.Lemma 3.5.2. There is an automorphi
 form E0(g) on PGL2(A ) whi
h is a sumof Eisenstein series or their derivatives su
h that for any g 2 GL2(A ), a 2 A � , asa!1, ��0�1=2;�a 00 1� g� = E0��a 00 1� g�+Og(jaj1��):More pre
isely, E0(g) 6= 0 only if � = � �NK=F . In this 
ase it is a sumE0(g) = E01(1=2; g) +E02(1=2; g)where E1(s; g) and E2(s; g) are Eisenstein series formed by fun
tionsf1(s; g) 2 B(��s; ���s); f2(s; g) 2 B(�!�s; �!��s)whi
h are holomorphi
 in s near s=1/2, of weight 2, and invariant under U0([N;D℄).Proof. The 
onstant term of an automorphi
 form the is always invariant fromleft under B(F ). Thus we 
an form Eisenstein series using the 
onstant term of��0(1=s; g). To get informations on the asymptoti
 behavior, we want to study this
onstant more pre
isely. From the Fourier expansion, one easily sees that for anyg 2 GL2(A ), a 2 A � ,��0�1=2;�a 00 1� g� = �C�0� �1=2;�a 00 1� g�+Og(jaj1��)as a!1. By Lemma 3.3.10, the fun
tion �C��(s; g) 6= 0 only if � = � �NK=F . In this
ase it is a sum 4Xi=1 fi(s; g)



GROSS-ZAGIER FORMULA FOR GL2 49as in Lemma 3.3.10. When taking the derivative at s = 1=2, we may assume f3 =f4 = 0 as f4(1� s; g) will be in the �rst spa
e, and f3(1� s; g) will be in the se
ondspa
e.Let E1(s; g), E2(s; g) be Eisenstein series formed by f1 and f2. We de�ne E to bethe derivative at 1=2 of E1 +E2. Then E has 
onstant term f 01 + f 02 + ef 01 + ef 02 whereef1 2 B(��s�; �s�); ef2 2 (��s�!; �s�!):Thus f 01 and f 02 has the bound O(log jaj) at the 
usp. Thus, we have the right asymp-toti
 behavior given in the lemma.Let us apply this lemma for the form(3.5.4) e�(g) := ��0(1=2; g)�E0(g)whi
h has the same holomorphi
 proje
tion as ��0(1=2; g). Let � denote its holomor-phi
 proje
tion. With respe
t to the additive 
hara
ter  , the Whittaker fun
tion ofe� is a sum of following Whittaker fun
tions:W (v; �; �; g) := �W v(1=2; �; �; �g) �W 0v(1=2; �; �; �g);(3.5.5) A(g) := �W �0� (1=2; �g); B(g) := �W 0(�g);(3.5.6)where � = ��1 00 1�, W 0(g) is the Whittaker fun
tion of E0(g), �; � 2 F� and v is apla
e of F su
h that� + � = 1; !`(���) = (�1)#f`g\�; 8` 6= v:LetW�(v; �; �; a), A�(a) andB�(a) denote the integrals de�ned at the beginning of these
tion for these Whittaker fun
tions. Then by Lemma 3.5.1, the Fourier 
oeÆ
ientof � is given by(3.5.7) b�(a) = lim�!00�X�;�;vW�(v; �; �; a) +A�(a) +B�(a)1A :Lets des
ribe the 
ontributions of the last two terms �rst. We need some notation.Definition 3.5.3. Let NF denote the semigroup of nonzero ideals of OF . Forea
h a 2 NF , let jaj denote the inverse norm of a. For a �xed ideal M , let NF (M)denote the sub-semigroup of ideals prime to M .A fun
tion f on NF (M) is 
alled quasi-multipli
ative iff(a1a2) = f(a1) � f(a2)for all 
oprime a1; a2 2 NF (M). For a quasi-multipli
ative fun
tion f , let D(f) denotethe set of all f-derivations, that is the set of all a linear 
ombinationsg = 
f + hwhere 
 is a 
onstant, and h satis�esh(a1a2) = h(a1)f(a2) + h(a2)f(a1)



50 S. W. ZHANGfor all a1; a2 2 NF (M) with (a1; a2) = 1.For a representation �, the Fourier 
oeÆ
ients b�(a) is de�ned to beb�(a) :=W�;f �a 00 1� ;where W�;f is the produ
t of Whittaker newve
tors at �nite pla
es. In other words,b�(a) is de�ned su
h that the �nite part of L-series has expansionLf (s;�) =Xb�(a)jajs�1=2:Then b�(a) is quasi-multipli
ative.Let f�(a) be a fun
tion on NF (M) whi
h is meromorphi
ally depends on � 2 C ,Re(�) > 0 with at most a simply pole at � = 0, then we denote the quasi-limit0 lim�!0 f�(a)the 
onstant term in the Laurent expansion:0 lim�!0 f�(a) = lim�!0 �f�(a)� residue � ��1� :Lemma 3.5.4. The fun
tion f� is holomorphi
 at � = 0 with the 
onstant termA := lim�!0A� 2 D(b�(�)
 �1=2):The fun
tion B� is meromorphi
 at � = 0 with a simple pole with 
onstantB :=0 lim�!0B� 2 D(�(�1=2�; ��1=2�)) +D(b�(�1=2�!; ��1=2�!)):Proof. Let's study A�(a) �rst for a 2 NF (ND). By Lemma 3.3.11, for g =�ay1Æ�1 00 1�, the Whittaker fun
tion W �� (s; g) is a sum of four Whittaker fun
tionsW�� (s; g); W�� (s; g);where W�� 6= 0 only if � = � ÆNK=F . We want to study the 
ontribution of W�� . Theargument for W�� is similar. Due to the symmetry s �! 1 � s, when we 
omputeW �0� (1=2; g), we may forget W�� . Sin
e W+� is invariant under �1([N;D℄), it hasspheri
al de
ompositionW+� (s; g) =W 0� �s;�a 00 1�� �W1� �s;�y1 00 1�� �W+� (s);where W 0� is the produ
t of the newve
tors in the spa
e of Whittaker fun
tions forthe representation �(�) 
 �s over pla
es prime to ND, and where W1� (s;�) is theWhittaker fun
tion at 1 with weight �1. It follows that the 
ontribution to A�(a)from W+� is the derivative at s = 1=2 of the sum of the following integralsW�;�(s; a) := �W 0� �s;�a 00 1�� � �W+� (s) � I�(s; �);



GROSS-ZAGIER FORMULA FOR GL2 51where I�(s; �) = (2�)g ZF+1 �W1� �s;��y 00 1�� e�2�yy�d�:By expli
it 
omputation, one may show that I�(s; �) is holomorphi
 at (s; �) =(1=2; 0). It follows that the 
ontribution of W�� part is the derivative of W�;0(s; a) ats = 1=2. It is indeed in D(b�(�)
 �1=2):The 
omputation for B�(a) is similar. The only di�eren
e is that when 
omputingthe above integral with respe
t to the Whittaker fun
tion of �(�s; ��s) of GL2(R) ofweight 2, one gets singularity near (s; �) = (1=2; 0) of the form
onst � �� + s� 1=2 :Thus its value at s = 1=2 has no singularity at � = 0 but its derivative at s = 1=2has a simple pole at � = 0.It remains to 
ompute(3.5.8) W�(v; �; �; a) := (2�)g ZF+1 �W �v; �; �;��ayÆ�1 00 1�� e�2�yy�d�y:If v is �nite, it is equal to the produ
t�W vf �1=2; �; �;��aÆ�1f 00 1�� �W 0v �1=2; �; �;��aÆ�1f 00 1�� ;and (2�)g ZF+1 �W1�1=2; �; �;��y 00 1�� e�2�yy�d�ywhi
h is nonzero only if �a and �a are both integral. By Lemma 3.4.4, the last termis nonzero only if 0 < � < 1. In this 
ase, it is given by!1(Æ1)(2i)g j��j1=21 �(1 + �)g(4�)g� :It follows that for a �xed a there are only �nitely many triples �; �; v su
h thatW�(v; �; �; a) 6= 0. Thus, in the 
ontribution from �nite v, we may simply take spe
ialvalues.We now assume that v is an in�nite pla
e. Then �W�(v; �; �; a) is the produ
t�Wf �1=2; �; �;��aÆ�1f 00 1�� ;and Iv1;�(�; �) := (2�)g�1 ZF+1�fvg �W1�fvg�1=2; �; �;��y 00 1�� e�2�yd�y;and Iv;�(�; �) := (2�) Z 10 �W 0v �1=2; �; �;��y 00 1�� e�2�yysd�y:



52 S. W. ZHANGBy 3.4.4, Iv1;�(�; �) 6= 0 only if 0 < �1�fvg < 1 and the value is given byY`21�fvg!`(Æ`)(2i)j��j1=21 �(1 + �)(4�)� :By 3.4.8, Iv;�(�; �) 6= 0 only if �v < 0, and W 0-term is equal to4i!v(Æv)j��j1=2v jyjq0(4�j�jvy)e�2�y:Thus the integral is equal to� 8i!v(Æv)�j��j1=2 Z 10 q0(4�j�jvy)e�4�yy1+�d�y=� 2i!v(Æv)j��j1=2�(1 + �)(4�)� Z 11 dxx(1 + j�jvx)1+� :Proposition 3.5.5. With respe
t to the standard Whittaker fun
tion for holo-morphi
 weight 2 forms, the a-the Fourier 
oeÆ
ients b�(a) of the holomorphi
 pro-je
tion � of ��0(1=2; g) is a sumb�(a) = A(a) +B(a) +Xv b�v(a)where A, B are given in Lemma 3.5.4, and the sum is over pla
es of F whi
h are notsplit in K, with b�v(a) given by the following formulas:1. if v is a �nite pla
e then b�v(a) is a sum over � 2 F with 0 < � < 1 of thefollowing terms:(2i)g j��j1=21 � �W vf �1=2; �; �;�aÆ�1f 00 1�� � �W 0v �1=2; �; �;�aÆ�1f 00 1��2. if v is an in�nite pla
e, then b�v(a) is the 
onstant term at s = 0 of a sumover � 2 F su
h that 0 < �w < 1 for all in�nite pla
e w 6= v and �v < 0 ofthe following terms:(2i)gj��j1=21 � �Wf �1=2; �; �;�aÆ�1f 00 1�� � Z 11 �dxx(1 + j�jvx)1+s :4. Geometri
 pairing of CM-
y
lesIn this 
hapter, we will study the lo
al term of the so 
alled geometri
 pairing ofCM-
y
les indu
ed by a �xed multipli
ity fun
tion. The height pairing of CM-pointson Shimura 
urves will be the sums of various geometri
 pairings by 
hoosing dif-ferent quaternion algebras and multipli
ity fun
tions (or Green's fun
tions). Thesealgebras are the vB of the distan
e 1 from the odd set �, whi
h admit an embed-ding K �!v B. Our main result is the lo
al Gross-Zagier formula whi
h relates thelinking number of the pairing to some lo
al 
omponents of the Fourier 
oeÆ
ients ofthe kernel fun
tions and is given in the last 
hapter. This formula a
tually repla
esall the 
ombinatori
 
omputation in the original approa
hes of Gross and Zagier. Asan immediate appli
ation, we prove a Gross-Zagier formula for the 
entral values ofRankin L-fun
tions by spe
tral de
omposition of the geometri
 pairing when the themultipli
ity fun
tion is some Whittaker fun
tion.
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 pairing of CM-
y
lesCM-
y
les. Let G be an inner form of PGL2 over F . This means that G =B�=F� with B a quaternion algebra over F . Let K be a totally imaginary quadrati
extension of F whi
h is embedded into B. Let T denote the subgroup of G given byK�=F�. Then the set(4.1.1) C := T (F )nG(A f )is 
alled the set of CM-points. This set admits a natural a
tion by T (A f ) (resp.G(A f )) by left (resp. right) multipli
ations.There is a map from C to the Shimura variety de�ned by GG(F )+nHn �G(A f )as in x1.3 whi
h sending the 
lass of g 2 G(A f ) to the 
lass of (z; g) where z 2 Hn is�xed by T . This map is an embedding if G is not totally de�nite. In our later studyof lo
al interse
tion, there is a situtation where G is de�nite but Hn is repla
ed bythe formal neighborhood Y of a supersiggular point of a Shiumra variety. Thus inthis 
ase, one has an embedding of CM-points into a formal Shimura variety.The set of CM-points has a topology indu
ed fromG(A f ) and has a uniqueG(A f )-invariant measure dx up to 
onstants su
h that every open and 
ompa
t subset has�nite and positive measure. Lets �x one measure on T (A f ) su
h that the volume ofT ( bOF ) = QO�K;vF�v =F�v is 1. Then dx is uniquely determined by its quotient onT (A f )nG(A f ) whi
h we may de�ne as a produ
t of the measure on T (Fv)nG(Fv) overall �nite pla
es v of F . In pra
ti
e, we will insist that vol(T (Fv)nT (Fv) � Uv) = 1 forsome 
ompa
t and open subgroup of G(Fv).The set(4.1.2) S(C) = S(T (F )nG(A f ))of lo
ally 
onstant fun
tions with 
ompa
t support is 
alled the set of CM-
y
leswhi
h admits a natural a
tion by T (A f )�G(A f ). The L2-norm indu
es a hermitianstru
ture on S(C) su
h that the a
tion of T (A f )�G(A f ) is unitary. Sin
e T (F )nT (A f )is 
ompa
t, one has a natural orthogonal de
omposition(4.1.3) S(C) = ��S(�;C)where the sum is over 
hara
ters of T (F )nT (A f ).There is also a lo
al de
omposition for ea
h 
hara
ter �:(4.1.4) S(�;C) = 
vS(�v ; G(Fv))where tensor produ
t is a limit tensor produ
t over the set of all �nite pla
es of Fand S(�v ; G(Fv)) is the set of lo
ally 
onstant fun
tions on G(Fv) with 
hara
ter �vunder the left multipli
ation by T (Fv) and with 
ompa
t support modulo T (Fv). Fixa maximal order OB of B. Thus any element � in S(�;C) will have a de
omposition� = �S 
v=2S �0vwhere S is a �nite set of �nite pla
es whi
h 
ontains all pla
es over whi
h �p isrami�ed, �0} supported on T (Fv) �G(Ov) and takes value 1 on G(Ov), where G(Ov) =O�B;v � F�v =F�v . The hermitian stru
ture on S(�;C) is the produ
t of a hermitianstru
ture on S(�p; G(Fv)).



54 S. W. ZHANGGeometri
 pairing. In the following we will de�ne a 
lass of pairings on CM-
y
les whi
h are geometri
. To do this, lets write CM-points in a slightly di�erentway,(4.1.5) C = G(F )n(G(F )=T (F )) �G(A f );then the topology and measure of C is still indu
ed by those of G(A f ) and the dis
reteones of G(F )=T (F ).Let m be a real valued fun
tion on G(F ) whi
h is T (F )-invariant and su
h thatm(
) = m(
�1). Then m 
an be extended to G(F )=T (F )�G(A f ) su
h that(4.1.6) m(
; gf ) = (m(
) if gf = 1,0 otherwise.We now have a kernel fun
tion(4.1.7) k(x; y) = X
2G(F )m(x�1
y)on C � C. Then we 
an de�ne a pairing on S(C) byh�;  i =ZC2 �(x)k(x; y) � (y)dxdy(4.1.8) := limU!1 ZC2 �(x)kU (x; y) � (y)dxdywhere U runs through the open subgroup of G(A f ) andkU (x; y) = vol(U)�2 ZU2 k(xu; yv)dudv:This pairing is 
alled a geometri
 pairing with multipli
ity fun
tion m. For twofun
tion  and � in S(�; T (A f )nG(A f ), one hash�;  i = Z[T (F )nG(Af )℄2 �(x) X
2G(F )m(x�1
y) � (y)dxdy(4.1.9) = X
2T (F )nG(F )=T (F )m(
)h�;  i
where h�;  i
 =ZT (F )nG(Af ) XÆ2T (F )nT (F )
T (F )�(Æy) � (y)dy(4.1.10) =ZT
 (F )nG(Af ) �(
y) � (y)dyand where(4.1.11) T
 := 
�1T
 \ T = (T if 
 2 NT ,1 otherwise.whereNT is the normalizer of T in G. The integral h�;  i
 is 
alled the linking numberof � and  at 
.
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al linking numbers. Let � be a 
hara
ter of T (F )nT (A f ). In the followingwe want to 
ompute the linking number of the pairing on the spa
e S(�;C). In this
ase(4.1.12) h�;  i
 = ZT (Af )nG(Af ) e�(
; y) � (y)dywhere(4.1.13) e�(
; y) = ZT
(F )nT (Af ) �(t�1
ty)dt:If 
 2 NT , then(4.1.14) e�(
; y) = vol(T (F )nT (A f )) � �(
y)(1 if 
 2 T or �2 = 1,0 otherwise.If 
 =2 NT and � = 
�v , then we have de
omposition(4.1.15) e�(
; y) =Y e�v(
; yv); e�v(
; yv) = ZG(Fv) �(t�1
ty)dt:Noti
e that when 
 =2 NT , e�v(
; yv) depends on the 
hoi
e of 
 in its 
lass inT (F )nG(F )=T (F ) while their produ
t e�(
; y) does not. This problem 
an be solvedby taking 
 to be a tra
e free element in its 
lass whi
h is unique up to 
onjugationby T (F ). This 
an be seen for example by writing B = K +K� where � 2 B is anelement su
h that �2 2 F� and �x = �x�. Noti
e that the fun
tion(4.1.16) �(a+ b�) = N(b�)N(a+ b�)de�nes an embedding(4.1.17) T (F )nG(F )=T (F ) �! Fsu
h that �(
) = 0 (resp. 1) i� � 2 T (resp. � 2 NT � T ). The image of G(F ) nNTis the set of � 2 F su
h that � 6= 0; 1 and where for any pla
e v of F ,1� ��1 2 (N(K�) if Bv is split,F� nN(K�) if Bv is not split,or equivalently,(4.1.18) !v(���) = (�1)Æ(Bv);where � = 1��, and Æ(Bv) = 0 if Bv is split and Æ(Bv) = 1 if Bv is nonsplit. Then wemay write 
(�) for a tra
e free element 
 2 G(F ) with �(
) = �. We may write m(�)for m(
(�)) and e�(�; y) for e�(
(�); y). We extend m(�) to all F by setting m(�) = 0if � is not in the image of (4.1.17).In the following 
omputation, we will �x one order R of B su
h that(4.1.19) Rv = OK;v +OK;v�vwhere



56 S. W. ZHANG� �v 2 B�v su
h that �vx = �x�v for all x 2 K,� �2v 2 F�v , and �v is divisible by 
(�v).Let � be a subgroup of G(A f ) generated by images of bR� and K�v for v rami�edin K: � = Yv-
(!v)R�v F�v =F�v � Yvj
(!v)R�v K�v =F�vand take an a 2 A �f , su
h that ordv(a) = 0 if Rv is not maximal. Then we setthe measure on C su
h that the quotient measure on T (A f )nG(A f ) has volume 1 onT (A f )nT (A f )�. Now the 
hara
ter 
an be naturally extended to a 
hara
ter of �.We will 
ompute the geometri
 pairing for(4.1.20) � = Ta��;  = ��; �� =Y��vwith ��v supported on T (Fv) ��v and su
h that(4.1.21) ��(tu) = �(t)�(u); u 2 �:The He
ke operator here is de�ned as(4.1.22) Ta�(x) =Yv T(av)�v ; Tav�v = ZH(av) �v(xg)dg;where(4.1.23) H(av) := fg 2M2(Ov) : j det gj = jav jg ;and dg is a measure su
h that GL2(Ov) has volume 1. Then we havehTa��; ��i(4.1.24) =vol(T (F )nT (A f )) �m(0)Ta��(e) +m(1)Ta��(�)Æ�2=1�+ X� 6=0;1m(�)Yv `v(ordv(av); �)where � 2 NT n T , and(4.1.25) `v(n; �) = ZT (Fv) T (�nv )��v (t�1
(�)t)dt:4.2. Linking numbersIn this se
tion we want to 
ompute the lo
al linking numbers de�ned at the end ofthe last se
tion. Thus, we 
hange the notation to let F denote a nonar
himedeanlo
al �eld. Let B denote a quaternion algebra over F , and let G denote the algebrai
group B�=F�.Let K=F be a quadrati
 extension of F embedded into B. Let R be an order ofB of the type(4.2.1) R = OK +OK�; � = �mK �where
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h that ord(�2) = 0 unless B is nonsplit and K=F is unrami�edwhere ord(�2) = 1;� �K 2 K� is a lo
al parameter if K is nonsplit; otherwise it is the lo
alparameter of one 
omponent of K = F � F ;� m � ordK(�).Let T = K�=F� denote the subgroup of G. Let � be a 
hara
ter of T (F ) andlet � denote R� if K=F is unrami�ed, and R� � T (F ) if K=F is rami�ed. Thenthe 
hara
ter � 
an be extended to R�. Let � be a fun
tion on G(F ) supported onT (F ) �� su
h that(4.2.2) �(tu) = �(t)�(u) t 2 T (F ); u 2 �:Let n be a nonnegative integer su
h that n = 0 if � is not maximal. Then wewant to 
ompute the following degenerate terms(4.2.3) `(n; 0) := T�n�(e); `(n; 1) := T�n�(�)where � 2 NT n T and lo
al linking number is(4.2.4) `(n; �) := ZT (F ) T�n��(t�1
(�)t)dtwhere the dx is a Haar measure on T (F ) normalized su
h that the volume of T (Ov)is one if v is split, and the volume of T (Fv) is one if v is nonsplit. Here � 2 F su
hthat � 6= 0; 1 and su
h that(4.2.5) 1� ��1 2 (N(K�) if B is split,F� nN(K�) if B is non-split,and 
(�) 2 B� is a tra
e free element su
h that �(
) = �. We extend this de�nitionto all � 2 F by insisting that `(n; �) = 0 if � does not satisfy the above 
ondition.Lets start with the degenerate terms.Degenerate terms.Lemma 4.2.1. If n = 0, then`(0; 0) = 1; `(0; �) = (1 if �2 = 1, m = 0,0 otherwise.If n > 0, K=F is nonsplit, then`(n; 0) = `(n; 1) = (1 if n � 0 mod 2,0 otherwise.If n > 0 and K = F � F with � = (�; ��1), then`(n; 0) = `(n; 1) = Xi+j=n�(�)i�j :Proof. The 
ase of n = 0 is 
lear.



58 S. W. ZHANGIf n > 0, then B is split and � is maximal so we may �x one isomorphismG ' PGL2 su
h that � = PGL2(OF ). We are thus redu
ed to the 
omputation ofthe lo
al integrals ZH(�n) �(g)dg = ZH(�n) �(�g)dg;where H(�n) = fg 2M2(Ov) : ordv(det g) = ng :Lets evaluate this integral in two 
ases.Case 1: K is an unrami�ed �eld extension of F . Then we may writeM2(Fv) = Kv +Kv�;where �2 = 1 su
h that �x = �x� for all x 2 OK;v. Now H(�n) is a sum of Hi(i = 0; � � � ; [n=2℄) whereHi = ��i(a+ b�) 2 H(�n) : (a; b) = 1	 :Noti
e that Hi is not disjoint with K� if and only if i = n=2. It follows thatZH(�n) �(g)dg = (1 if n � 0 mod 2,0 otherwise.Case 2: K = F � F , and � = (�; ��1). Then H(�n) has the following represen-tatives modulo GL2(Ov):��i x0 �j� i+ j = n; x mod �i:The term with x 6= 0 has trivial 
ontribution to the integral. Thus we haveZH(�n) �(g)dg = Xi+j=n�(�)i�j :Unrami�ed 
ase. We now assume that both K=F and � are unrami�ed, thatB =M2(F ) is split, and � = PGL2(OF ) is maximal. We want to 
ompute `(n; �).Lemma 4.2.2. Assume that K is a �eld. Let � = 1� �. Then `(n; �) 6= 0 only ifboth ord(��n) and ord(��n) are even and nonnegative. In this 
ase,`(n; �) = 1:Proof. By de�nition `(n; �) 6= 0 only if ord(1 � ��1) = ord(���1) is even orequivalently, � = �(
) for some tra
e free 
 2M2(F ).Under our assumption, � = 1 and �(g) 6= 0 only if g 2 �n� for some n. In this
ase it is 1. It follows that `(n; �) 6= 0 only if ord�(det 
) + n is an even number, say2m. It follows that `(n; �) = ZT (F ) ZH(�n) �(��mt�1
tg)dgdt:



GROSS-ZAGIER FORMULA FOR GL2 59Without loss of generality we assume that 
 is given by u(1+��) where u is a tra
e-freeunit of OK , and �2 = �1. Let j�jw = j det 
j = j1� ���j. Then 2m = n+ w.Now H(�n) is the union of Hi (0 � i � [n=2℄):Hi = �i �a+ b� 2 H(�n�2i); (a; b) = 1	 :Thus `(n; �) =Xi�0 `i(n; �);where `i(n; �) = ZT (F ) ZHi �(��mt�1
tg)dgdt:If i = n=2, then H(1) = � and`i(n; �) = ZT (F ) � ��i�mt�1
t� dt:This is nonzero only if 
 2 �w=2� and is given byvol(T (F )) = 1:Noti
e that the 
ondition 
 2 �w=2� is equivalent to w � 0.If i < n=2, as det(a+ b�) = �aa� �2
�bb, one even has jaj = jbj = 1 for every a+ b�in Hi. Thus there is a �nite subset Bi of b 2 OK su
h that jN(b)� 1j = j�jn�2i su
hthat Hi = [b2Bi(1 + b�)�i�:To give a ni
e des
ription of Bi, we noti
e that for b; b0 2 OK withj�bb� 1j = j�bb� 1j = j�jn�2i;we have (�
 + b�)(�
 + b0�)�1 2 �;if and only if b � b0 (mod �n�2i). Thus the proje
tion O�K �! (OK=�n�2i)� isinje
tive on Bi. The image of Bi is exa
tly the set (OK=�n�2i)N=1 of elements ofnorm 1, sin
e every element b 2 (OK=�n�2iOK)� with norm 1 
an be lifted to anelement bb of O�K su
h that jN(bb)� 1j = j�jn�2i:The 
ontribution from Hi is given byXb2Bi Zjtj=1 � ��i�m(1 + �t�)(1 + b�)� dt:The matrix inside the integral is�i�m �(1 + ��bt) + (b+ �t)�� :



60 S. W. ZHANGIf we �rst sum over b and then 
ompute the integral, then the integral simply 
ountsthe number of b su
h that this matrix is integral. Write j = m � i = (n� 2i+ w)=2then 2j � w = 2n� i > 0 and the 
ontribution is`i(�; n) = #� b mod �2j�wjb�b� 1j = j�j2j�w ���� j�b�1 + �j � j�jjjb+ �j � j�jj � :Re
all that j1 � ���j = j�jw. If j�j < 1, then w = 0 and the last equation givesj � 0 � w=2. This is a 
ontradi
tion. If j�j > 1, then w < 0 and j�j = j�jw=2. Thelast equation implies that w=2 � j, whi
h is again a 
ontradi
tion. Thus we musthave j�j = 1 and w � 0.The last two equations imply that j�b�1 � bj � j�jj (resp. j���1 � �j � j�jj) orequivalently, j�bb � 1j � j�jj (resp. j��� � 1j � j�jj). By the �rst equation (resp.de�nition of w) we have 2j � w � j (resp. w � j). Thus we have j = w > 0. Noti
ethat in this 
ase the system has a unique solution.In summary, we obtain that `(n; �) 6= 0 only if n�w is even and nonnegative. Inthis 
ase, `(n; �) = 1:The lemma now follows sin
e � = �N(�)1�N(�) :Lemma 4.2.3. Assume that K = F � F is split, and � = (�; ��1). Then `(n; �)is nonzero only if j��nj � 1. In this 
ase,`(n; �) = �(��n+1)� ��1(��n+1)�(�) � ��1(�) � ord(��n+1)where � = 1� �.Proof. In this 
ase, we identify T with the group of matri
es �t 00 1� in PGL2,and set � = �0 11 0� ; 
 = ��1 �1 1� ; � = �1� � :Now H(�n) is the unionH(�n) = [i+j=nx2(OF =�k)���i 00 �j���k x0 1��:The fun
tion �(g) is nonzero if and only if this matrix is in ��u 00 �v�� for someu; v su
h that j�ju+v = j det gj: In this 
ase the value of � is given by �(�u�v). Thus`(n; �) = Xu+v=n+w �(�)u�v`(n; �; u; v);



GROSS-ZAGIER FORMULA FOR GL2 61where u; v are integers, j�jw = j det 
j = j1 + �j, and`(n; �; u; v) = Xi+j=nx2OF=�i ZF� �����u 00 ��v���1 �t�1t 1 ���i x0 �j�� :The produ
t of these 3 matri
es is���i�u �x��u + ��j�ut�1t�i�v t��vx+ �j�v � :Change variable t! t�v�i we obtain���i�u ��u(�x+ ��u�wt�1)t ��i(tx+ �u�w) � :Noti
e that the valueXx2OF=�i �����i�u ��u(�x+ ��u�wt�1)t ��i(tx+ �u�w) ��depends only on jtj. It follows that`(n; �; u; v) = #8<: 0 � i � n;k � 0x mod �i ������ i � ujx� ��u�w�kj � j�jujx+ �u�w�kj � j�ji�k 9=; :First we assume that w > 0. Let � = (�+ 1)��w 2 O�F then`(n; �; u; v) = #8<: 0 � i � n;k � 0x mod �i ������ i � ujx+ �u�w�k � ��u�k j � j�jujx+ �u�w�kj � j�ji�k 9=; :If u�w�k < 0 then the third 
ondition implies that u�w�k � i�k or u � w+i whi
h
ontradi
ts to the �rst 
ondition. Thus the quantity is nonzero only if n � u � w; inthis 
ase, we may repla
e x by �u�w�k+�i�ky for y 2 OF =�k. The equation be
omes`(n; �; u; v) = #8<: u � i � n;u� w � k � 0y mod �k ������ jy � ��u�ij � j�ju+k�i 9=; :If u < i, then the 
ondition implies u� i � u+ k � i or simply k = 0 and y = 0. The
ontribution in this 
ase is n�u. If u = i, then the equation has a unique solution iny. Thus the 
ontribution is u� w + 1. Thus we havew > 0 =) `(n; �; u; v) = (n� w + 1 if n � u � w,0 otherwise.We now 
onsider the 
ase w = 0. Write � = ��t with t � 0 and � 2 OF . Then`(n; �; u; v) = #8<: 0 � i � n;k � 0x mod �i ������ i � ujx� ��u+t�k j � j�jujx+ �u�kj � j�ji�k 9=; :



62 S. W. ZHANGIf u�k < 0, then the last equation gives u�k � i�k or u � i. Combining with the �rstequation we have u = i. The se
ond equation is solvable only if u+ t� k � 0. In this
ase it has the unique solution x = �uu+t�k, whi
h also satis�es the third equation.Thus this 
ase has nontrivial solution only if 0 � u � n; and the 
ontribution is t ( =the number of k's su
h that u+ t � k > u).Assume now that u � k. Then i � k and we may repla
e x by ��u�k + �i�kywith y 2 OF =�k. The 
ontribution is#8<: u � i � n;u � k � 0y mod �k ������ jy � (1 + �)�u�ij � j�ju+k�i 9=; :If u < i, the 
ondition implies that u � i � u � i + k. Thus k = 0. The equationhas a unique solution and the 
ontribution in this 
ase is n� u ( = the number of i'ssu
h that u < i � n). If u = i, then still the equation has a unique solution and the
ontribution is u+ 1. Thus we obtainw = 0 =) `(n; �; u; v) = (n+ t+ 1 if n � u � 0,0 otherwise.It remains to treat the 
ase where w < 0. Let � = (�+ 1)��w 2 O�F then`(n; �; u; v) = #8<: 0 � i � n;k � 0x mod �i ������ i � ujx+ �u�w�k � ��u�k j � j�jujx+ �u�w�kj � j�ji�k 9=; :It u� k < 0 then the se
ond equation implies that u� k � u. Thus k = 0 and u < 0;in this 
ase the se
ond equation trivially holds for all x. The last equation is solvableonly if u� w � 0 then it has a unique solution x = ��u�w. The 
ontribution in the
ase u < k is nonzero only if 0 > u � w. Then it is given by n+1 ( = number of i's).If u� k � 0, then we may repla
e x by��u�w�k + ��u�k + �uy; y 2 OF =�i�u:The 
ontribution is then#8<: u � i � n;u � k � 0y mod �i�u ������ j���k + yj � j�ji�k�u 9=; :If k > 0, then the equation implies that �k � i�k�u. Thus u = i. The 
ontributionis u (number of k's). If k = 0, then the equation still has a unique solution. The
ontribution is n� u+1 ( = number of i's). Thus the 
ontribution in the 
ase u � kis nonzero only if n � u � 0, and then it is given by n+ 1. Thus we havew < 0 =) `(n; �; u; v) = (n+ 1 if w � u � n,0 otherwise.We now apply the following formula for integers n � 
,Xa+b=n+

�a�n xayb = Xa+b=n�
0�a�n�
xa+
yb+
 = (xy)
 � xn�
+1 � yn�
+1x� y :



GROSS-ZAGIER FORMULA FOR GL2 63We obtain that `(n; �) is nonzero only if w � n. In this 
ase,`(n; �) = �(�)n�w+1 � ��1(�)n�w+1�(�)� ��1(�) � (n+ t� w + 1)where 
 = ��1 �1 1�, j�jw = j det 
j, j�jt = j�j. The lemma now follows sin
e� = 11 + �; � = �1 + �:Rami�ed 
ase. It remains to 
ompute `(0; �) in the rami�ed 
ase where � isnot maximal.Lemma 4.2.4. Assume that K is split, that � = (�; ��1). Then `(0; �) is nonzeroonly if j�j � j det�j. In this 
ase,`(0; �) = �(�1)ord(�� det ��1):Proof. We now embed K into the diagonal of M2(F ) su
h that �K is sent to�0 00 ��. Then R is the order of matri
es �x yz w� 2 GL2(OF ) with jzj � j�jm. Asbefore we may take 
 = ��1 �1 1� with � = �=(1 + �). The integral,`(0; �) = ZF� ����1 �t�1t 1 �� dt;is nonzero only if there are some elements u; v; t 2 F� su
h that�u 00 v���1 �t�1t 1 � = ��u u�t�1vt v � 2 �:This implies that u; v 2 O�F , that j�jord(�) � jtj � j�jm, and that ord(�) � m.Conversely, if ord(�) � m, then`(0; �) = Zj�jord(�)�jtj�j�jm ����1 �t�1t 1 �� dt= �(�1)(ord(�)�m+ 1):The lemma follows.Lemma 4.2.5. Assume that K is an unrami�ed extension of F . Then `(0; �) isnonzero only if � det��1 is even and non-negative. In this 
ase`(0; �) = �(u):Proof. Write ord(det �) = Æ(B) + 2m where Æ(B) = 0 if B is split and Æ(B) = 1if B is nonsplit, and where u is any tra
e free unit of OK .By de�nition, `(0; �) 6= 0 only if ordv(���1�Æ(B)v ) is even or equivalently, � = �(
)for some tra
e free element in B�.



64 S. W. ZHANGIn this way, we may write 
 = u(1 + ��) with u a tra
e free unit of OK . Now`(0; �) = ZT (OF ) �(t�1
t)dt:The integral is nonzero only if 
 2 T�. This is equivalent to the fa
t that thenumber w = ord(det 
) is even and � 0, and that j�j � j�jm�w=2. This in turn isequivalent to j�j � j�jm (then w = 0). In this 
ase the integral equals �(u). Sin
e� = N(�)�Æ(B)=(1 + N(�)�Æ(B)), the lemma follows.Lemma 4.2.6. Assume that K=F is rami�ed, that � is unrami�ed with the form� = � ÆN. Then `(0; �) is nonzero only ifj�j � j det�j; !v(���) = (�1)Æ(B)where � = 1 � �, and Æ(B) = 0 if B is split and Æ(B) = 1 if B is nonsplit. In this
ase, `(0; �) = �(��)where � is a (quadrati
) 
hara
ter of F� su
h that � = � ÆN.Proof. By de�nition, `v(0; �) is nonzero only if!v(1� ��1) = !v(���) = (�1)Æ(B)or equivalently, � = �(
) for some tra
e free element 
 2 B�. In this 
ase, the integralis a sum `(0; �) = ZT (OF ) �(t�1
t)dt+ Z�KT (OF ) �(t�1
t)dt= ZT (OF ) ��(t�1
t) + �(t�1��1K 
�Kt)� dt= �(
):In the last step, we have used the fa
t that �K normalizes �.Now �(
) is nonzero only if 
 2 T�, or equivalently, j�j � j�jm. In this 
ase�(
) = �(det 
). We may 
hoose 
 of the form �K(1 + ��) with �2K = � to be aparameter of F . Then�(
) = �(��(1� �2N(�)) = �(����1) = �(��):4.3. Lo
al Gross-Zagier formulaWe now go ba
k to the global setting in x3.1 and x4.1 with even � and the quaternionalgebra B rami�ed exa
tly at pla
es in � and the elements �v 2 B� given by thefollowing formula:(4.3.1) ord(det �v) = (ordv([D;N ℄) if v is unrami�ed in K,0 if v is rami�ed in K.



GROSS-ZAGIER FORMULA FOR GL2 65In this se
tion we want to prove a lo
al Gross-Zagier formula by 
omparing thelo
al Fourier 
oeÆ
ients Wv(1=2; �; �; g) 
omputed in x3.4 and the linking numbers`v(n; �) 
omputed in x4.2. Then we apply this to the global 
ase to get some pre-Gross-Zagier formula with arbitrary multipli
ity fun
tion.Let v be a �xed �nite pla
e of F . We have extended the de�nition to all � 2F n f0; 1g by insisting that `v(n; �) = 0 when � is not in the image of (4.1.17).Lemma 4.3.1 (Lo
al Gross-Zagier formula). Let � = 1� � and g = ��nv Æ�1v 00 1�su
h that n = 0 if �v is not maximal. Then�Wv �12 ; �; �; �g� = j
(!v)j1=2 � �(!v;  v)�v(u) � j��j1=2v j�nv j � `v(n; �)where u is any tra
e free element in K�.Proof. First lets 
onsider the unrami�ed 
ase: 
v = 0. This 
ase follows easilyfrom Lemma 3.4.1, Lemma 4.2.2, and 4.2.3.Lets 
onsider now the rami�ed 
ase: 
v > 0 but !v is unrami�ed. The formulafollows from Lemma 3.4.1, 3.4.2, 4.2.4, 4.2.5.The 
ase where !v is rami�ed follows from Lemma 3.4.3 and 4.2.6.Corollary 4.3.2 (pre-GZF). Let h�; �i be the geometri
 pairing on the CM-
y
lewith multipli
ity fun
tion m on F su
h that m(�) = 0 if � is not in the image of(4.1.17). Assume that Æv = 1 for v j 1. Then there are 
onstants 
1, 
2 su
h that foran integral idele a prime to ND,j
(!)j1=2jajhTa��; ��i =(
1m(0) + 
1m(1))jaj1=2W�;f (g)+ i[F :Q℄ X�2Fnf0;1g j��j1=21 �Wf (1=2; �; �; g)m(�);where g = �aÆ�1f 00 1�.Proof. This follows from the above theory and the fa
t that Qv �(!v;  v) = 1 andthat for v j 1, �(!v;  v) = i.This pre-GZF will be used for odd � with � repla
ed by v� for ea
h pla
e v,where(4.3.2) v� := (� n fvg if v 2 �,� [ fvg if v =2 �.Let vB denote the quaternion algebra rami�ed at v�.4.4. Gross-Zagier formula for spe
ial valuesWe now want to apply the pre-Gross-Zagier formula for multipli
ity fun
tion to bethe produ
t of the Whittaker fun
tion on GL2(Fv) (v j 1):(4.4.1) m(�; g1) = j��j�1=21 i�[F :Q℄ �W1(1=2; �; �; �g1)where g1 2 GL2(F1) is viewed as a parameter. We setm(0; g1) = m(1; g1) = 0:



66 S. W. ZHANGBy 
orollary 4.3.2, one obtains:Lemma 4.4.1. The 
omplex 
onjugate of the kernel fun
tion �� has Whittakerfun
tion: �W �1=2; �g1 ��aÆ�1 00 1�� = j
(!)j1=2jajhTa�; �i(g1)where a is a �nite integral idele whi
h has 
omponent 1 at those pla
es where either�, �, or K=F is rami�ed.Let 1+ (resp. 1�) be the in�nite pla
es of F where � is dis
rete (resp. prin
i-pal). Then m(�; g1) is a produ
t of mv(�; g) where mv(�; g) has weight 2 (resp. 0) ifv 2 1+ (resp. v 2 1�). By Lemma 3.4.4, its value at �a 00 1� is given as follows:(4.4.2) mv ��;�a 00 1�� = 8><>:4jaje�2�a if 1 � � � 0, a > 0, v 2 1+,4jaje2�a(���) if a� � 0, a� � 0, v 2 1�,0 otherwise.Spe
tral de
omposition. Let Uf =Qv Uv be an open and 
ompa
t subgroup ofG(A f ) de�ned in x4.1 with �v given in x4.3, and let U be the subgroup U1Uf of G(A )where U1 is the unique maximal 
onne
ted 
ompa
t subgroup of G(R) 
ontainingT (R). Take a measure on G(F )nG(A ) indu
ed by a standard measure on G(R) andsu
h that vol(U) = 1. We now 
onsider m as a fun
tion on G(R) for a �xed g1 2GL2(R). Let k(x; y) to be the kernel fun
tion(4.4.3) k(x; y) = X
2G(F )mU (x�1
y)where(4.4.4) mU (x) = ZU mU (xu)du:In this se
tion we want to de
ompose k(x; y) into the eigenfun
tions in x; y.Lemma 4.4.2. As Whittaker fun
tions on GL2(F1),k(x; y)(g1) = 2[F :Q℄+nX�i Wi(g1) � �i(x)��i(y) + 
ontinuous 
ontributionwhere n = #1�, and the sum is over all 
uspidal eigenforms � of Lapla
ian andHe
ke operators on G(F )nG(A )=U . Here \
ontinous 
ontribution" means a sum ofintegrations of Eisenstein series. Thus for a 
uspidal eigenform �,ZG(F )nG(A) k(x; y)��(y)dy = 2[F :Q℄+nW�(g1)�(x):Proof. Noti
e that for a fun
tion � on G(F )nG(A )=U one has the identityZG(F )nG(A) k(x; y)�(y)dy = ZG(A) mU (y)�(xy)dy= ZG(R)m(y)�(xy)dy=:�(m)(�)(x):
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es to study the a
tion de�ned by mv on the spa
e of fun
tions onG(Fv)=Uv = H�for v 2 1�.It is well known that the a
tion of �(mv) 
ommutes with the a
tion of the produ
tof Lapla
ians � = �y2� �2�x2 + �2�y2� ;and that the indu
ed a
tion of �(mv) on ea
h eigenspa
e of the Lapla
ian with �xedeigenvalue is 
onstant. Thus if � an eigenform for � with eigenvalue 14+t2 with t 2 C ,then � is also an eigenfun
tion of �(mv):�(mv)� := ZH� mv(x)�(xy)dy = ��(x)where � is a number depending only on t.For example, one may 
ompute � by 
hoosing a fun
tion � of weight 0 supportedon GL2(R)+ su
h that ���y x0 1�� = y1=2+it:Then � = (�(mv)�)(e) = Z mv ��y x0 1�� y�1=2+itdxd�y:Using 
oordinates ���y x0 1�� = � (y � 1)2 + x24y ;one obtains � =Zay>0 4jaj exp��2�ax2 + y2 + 12y � jyj�3=2+itdxdy=4jaj1=2 Z 10 exp ���jaj(y + y�1)� yitd�y=4Wt��a 00 1�� ;where Wt is the Whittaker newfun
tion for the representation �(�it; ��it)It follows that the pairing h�; �i on fun
tions on G(F )nG(A ) with 
ompa
t supportis automorphi
. More pre
isely, for any two fun
tions � and  on G(F )nG(A )=U , let�U (�;  ) denote the form of PGL2(A ) of weight 2 (resp. 0) at pla
es of 1+ (resp.1�) by the following formula:(4.4.5) �(�;  )(z) =Xi �i(z)℄(�i; �)(�i;  ) + 
ontinuous 
ontribution



68 S. W. ZHANGwhere �℄i is a quasi-newform of weight (2; � � � ; 2; 0; � � � ; 0) in the representation �i ofPGL2(A ) 
orresponding to the representation �0i of G(A ) generated by �i via Ja
quet-Langlands theory. We now haveLemma 4.4.3.jajhTa�;  i(g1) = 2[F :Q℄+nW�(�; )�g1 ��a 00 1�� :Proof. jajhTa�;  i(g1) =jaj(Ta�
  ; k(x; y)(g1))=2[F :Q℄+nXi Wi(g1)(�i; jajTa�)(�i;  )=2[F :Q℄+nXi Wi(g1)(jajTa�i; �)(�i;  )=2[F :Q℄+nXi Wi �g1�a 00 1�� (�i; �)(�i;  )=2[F :Q℄+nW�(�; )�g1 ��a 00 1�� :Gross-Zagier formula for 
entral values. Fix a 
hara
ter � of T (F )nT (A f ).We have de�ned a 
ertain fun
tion � = �� on S(�; T (A f )nG(A f )) in x4.1. Let 	denote the form 2[F :Q℄+nj
(!)j1=2�(�; �) whi
h has the form(4.4.6) 	(z) = 2[F :Q℄+nj
(!)j1=2Xi �℄i(z) j`�(�i;�)j2 + 
ontinuous 
ontributionwhere(4.4.7) `�(�i;�) = ZT (F )nT (Af ) �i;�(t)�(t�1)d�twhere d�t is a Haar measure su
h that bO�K has volume 1, and where �i;� is a tori
newform in �0 whi
h satis�es the following 
onditions:�i;� has 
hara
ter � under a
tion by �.Lemma 4.4.4. The forms ��(1=2;�) and 	 have the same proje
tion to quasi-newforms.Proof. Then by Lemma 4.4.1, 4.4.3, 4.3.2, 3.3.11, for �xed g1, we have shownthat the form ��(1=2;�)� 2[F :Q℄+nj
(!)j1=2	has Whittaker fun
tion in W(�(�) 
 �1=2) forg = �aÆ�1f 00 1� g1with a integral and prime to ND. It must be zero as �(�) 
 �1=2 has nontrivial
entral 
hara
ter. Thus �� and 	 must have the same proje
tion to quasi-newforms.
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ible and automorphi
 represen-tation of weight (2; � � � ; 0; � � � ) of PGL2(A ), and let �℄ and �� be the 
orrespondingforms for � and �0, then(4.4.8) L(1=2;�
 �) = (�℄; ��) = (�℄;	) = 2[F :Q℄+nj
(!)j1=2 � k�℄k2k��k2 j`�(��)j2where �� is a tori
 newform with 
hara
ter � under � via Ja
quet-Langlands. Noti
ethat the measures on PGL2(A ) and G(A ) are taken by taking a standard measure atar
himedean pla
e su
h that U0([D;N ℄) and bR� both have volume 1. Theorem 1.4.1now follows easily.5. Shimura 
urves and CM-pointsIn this 
hapter we want to review the theory of Shimura 
urves, following Shimura,Deligne[9℄, Caroyal[2℄, and the author's earlier work [31℄. We will start with some
anoni
al lo
al system on the Shimura 
urves whi
h is an analogue of the ellipti
 
urveon modular 
urves. For example, CM-points now be
ome the points with nontrivialendomorphisms. These system will be used to 
onstru
t the integral models, andto study the redu
tion of CM-points. Finally we will study the lo
al interse
tionindex of distin
t CM-point on the generi
 �ber on the model when the Shimura 
urvehas minimal level stru
ture. This is basi
ally a 
onsequen
e of Gross' theory [15℄ of
anoni
al and quasi-
anoni
al liftings.For high level stru
ture, the lo
al interse
tion numbers are diÆ
ult to 
omputeas one has no expli
it semistable model for Shimura 
urves. But the lo
al indexformula for minimal level will give an asymptoti
 formula for the index of high level.Thanks to the tori
 newform theory in x2.3, this asymptoti
 formula is suÆ
ient forour 
omputation in the next 
hapter. It may not be a bad idea in the future to re
overthe index formula for high level stru
ture from the Gross-Zagier formula proved inthe next 
hapter.5.1. Some lo
al systemsLets �x a totally real �eld F and a quaternion algebra B of F inde�nite at one pla
e� = �1 of F and de�nite at other real pla
es. In appli
ations, B will be the algebravB, with v = � , asso
iated to an odd set � 
ontaining all real pla
es. In this 
hapter,we will let G denote the algebrai
 group B� rather than B�=F�.Let h0 denote an embedding S �! GR of algebrai
 groups over R with trivial
oordinates at �i (i � 2), where S= C� as an algebrai
 group over R. Now for any
ompa
t open 
ompa
t subgroup U of G(A f ) we have the Shimura 
urve(5.1.1) MU = G(F )nH� �G(A f )=U:where H� is the 
onjuga
y 
lass of h0 under G(R) whi
h is isomorphi
 to C � R.Write V0 for B as a left B-module. Then the right multipli
ation of G on V0 givesan identi�
ation G = GLB(V0). The embedding h0 : S�! GR now de�nes a Hodgestru
ture on V0;R.



70 S. W. ZHANGBy the strong approximation theorem, the set of 
anoni
al 
omponent of MU isidenti�ed with G(F )nf�1g �G(A f )=U 'G(F )+nG(A f )=U(5.1.2) det'F�nA �f = det(U) =: ZdetU :Moduli interpretation of MU . We want to show that MU parameterizes thepairs of a Hodge stru
ture and an U -level stru
ture on V0 (see Deligne [9℄). Morepre
isely,MU parameterizes the set of the isomorphism 
lasses of the following obje
ts(V; h; ��) where1. V is a free B-module of rank 1;2. h is an embedding from S �! GLB(VR) whi
h has trivial 
omponent at �ifor i > 1;3. �� is a 
lass in Isom(V0; V )=U ;where an isomorphism of two obje
ts (V; h; ��) and (V 0; h0; ��0) is an isomorphism � :V �! V 0 of B-modules satisfying the following 
onditions:� h0 = � Æ h Æ ��1;� ��0 = � Æ ��.Indeed, for any obje
t (V; h; ��) as above we may �x an isomorphism � : V �! V0of B-modules. Then h� := � Æ h Æ �0 is an embedding of S into G(R) with trivial
omponents at �i for i > 1. Thus h� is 
onjugate to h0. It follows that h� de�nes anelement in H�. Also ��� de�nes an element in G(A f )=U . Thus the obje
t (V; h; ��)de�nes an element inMU . Conversely, for a given point x inMU represented by (h; g)one may de�ne an obje
t (V0; h; ��) where �� is the 
lass of multipli
ation by g on bV0.Moduli interpretation of ZD. One may also show that for a 
ompa
t opensubgroup D of A �F , the set ZD := F�+ nA �F =Dparameterizes the obje
ts (L; ��; ��) where F�+ denotes the set of totally positive ele-ments in F , and1. L is a free F -module of rank 1;2. � is an orientation of L: � 2 F�+ nIsom(L; F );3. �� is a D-level stru
ture: �� 2 Isom( bF ; bL)=D:Indeed, the 
orresponden
e is given by(L; ��; ��) �! F�+ � (� Æ �(1)) � U 2 ZD:Moduli interpretation of det : MU �! ZD. Let D = det(U). For any obje
t(V; h; ��) parameterized by MU , one may de�ne an obje
t (LV ; ��h; ���) as follows:1. LD is the F -ve
tor spa
e det(V ) generated by symbols hx; yi modulo rela-tions su
h that the pairing is symmetri
, F -bilinear, and B-hermitian in thefollowing sense: hbx; yi = hx;�byi; b 2 B:It 
an be showed that det(V ) is one dimensional.2. let � : V �! B = V0 be a B-linear isomorphism su
h that � Æ h Æ ��1 is in the
onne
ted 
omponent as h0. Then ��h is the 
lass ofdet(�) : F = det(B) �! det(V );where F = det(B) is identi�ed by sending 1 to h1; 1i.
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lass of det(�) : det(bV ) �! det( bB) = bF :Then it 
an be shown that the map MU �! ZdetU is given by this 
orresponden
e ofobje
ts.Universal obje
ts. When U is suÆ
iently small, the universal obje
t(VU ; hU ; ��U ) does exist in the sense that VU is a lo
al system of invertible B moduleson MU with a Hodge stru
ture hU whi
h makes V 1U = VU 
� R an algebrai
 ve
torbundle on MU of rank 2 with one a
tion by B whose tra
e is the standard one onB, and ��M is a level stru
ture �x : bV0 �! bVx for ea
h geometri
 point x 2 MU .Here for an abelian group M , 
M denotes M 
 bZ. Physi
ally, one has the followingidenti�
ation: VU = G(F )nV0 �H� �G(A f )=U;(5.1.3) V 1U = G(F )nV 10 �H� �G(A f )=U(5.1.4)where V 10 = V0 
�1 R su
h that U has trivial a
tion on V0 and su
h that 
 2 G(F )a
ts on V0 by right multipli
ation by 
�1. It follows that(5.1.5) bVU = G(F )nH� �G(A f )� bV0=Uwhere the a
tion of G(F ) on bV0 is trivial and the a
tion of U on bV0 is given by rightmultipli
ation. The map VU �! bVU is given by(v; z; g) �! (z; g; vg)and the level stru
ture �� is given by the 
lass of the identity map.Similarly, ZD has a universal obje
tLD = F�+ nF � bF�=D;(5.1.6) bLD = F�+ n bF� � bF=D:(5.1.7)Here the a
tion of (a; b) 2 F�+ �D sends (x; y) 2 F� bF to (xa�1; yb). The map LD �!bLD is given by (x; y) 2 F � bF� to (y; xy) 2 bF� � bF . The pairing VU � VU �! LDand bVU � bVU �! bLD are given in the obvious manner.Galois a
tions. By Shimura's theory, MU is de�ned over F with Galois a
tionon the set ZD of 
onne
ted 
omponents given by 
lass �eld theory� : Gal( �F=F ) �! F�+ nA �f =D:One may show that with this 
anoni
al stru
ture, the ve
tor bundle V 1U is de�nedover F . Thus for one obje
t x = (V; h; ��) 2 X( �F ) and � 2 Gal( �F=F ), the C -ve
torspa
es V 1x and V 1x� both have some �F -stru
ture V 1x; �F and V 1x�; �F and � indu
es an �-linear isomorphism (whi
h is still denoted as �) from V 1x; �F to V 1x�; �F .Similarly, the lo
al system bV is also de�ned over F . Thus for one obje
t x =(V; h; ��) and one � 2 Gal( �F=F ), there is a morphism whi
h is still denoted as �from bVx �! bVx� su
h that ��x� = �� Æ �. The determinant of this map indu
es asimilar map on the lo
al systems on ZD. More pre
isely, if x = (L; ��; ��) is one obje
tparameterized by ZD, then x� = (L; ��; �� � �(�)) and the morphism � : bL �! bL is justthe multipli
ation by �(�).
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ture. To get an integral stru
ture of lo
al systems, we may takea maximal order OB su
h that U � bO�B . Let V0;Zbe the latti
e in V0 
orresponding toOB . Then the latti
e �x(V0;Z) =: Vx;Z in Vx is independent of the 
hoi
e of �x 2 ��M .Thus MU also parameterizes integral obje
ts (VZ; h; ��) where VZ is an invertible OB-module, h is Hodge stru
ture on VR as before, and �� is an U -
lass of isomorphismbOB �! bVZ.Similarly, for any �xed OF -fra
tional ideal L0, ZD parameterizes obje
ts (LZ; ��; ��)where LZ is an invertible OF -module, and �� is an orientation of L := LZ
 Q, and ��is a D-
lass of isomorphism � : bL0;Z�! bLZ:For the morphism MU �! ZD, we take L0;Z to be the OF -submodule det(OB)of F generated by hx; yi for x; y 2 BZ. Then the image of an obje
t (VZ; h; ��) willbe (LV;Z; ��h; ���) with LV;Z= det(VZ). Thus eVU = VU=VU;Z and eLD = LD=LD;Z formsystems of divisible groups on MU and ZD.For any �xed positive integral idele n, one has a Weil pairinghx; yin := nhx0; y0ion eVU [n℄ with values in eLD[n℄, where x; y 2 eVU represented by x; y 2 VU . If U
ontains U(n) := (1+n eB)�, then the level U stru
ture 
an be des
ribed as a 
lass ofisomorphism eVU;0[n℄ �! eVU [n℄modulo U .If B =M2(Q), then MU parameterizes obje
ts of ellipti
 
urves with level stru
-ture with a universal obje
t (E ; �E). Then V 1U = Lie(E)2 with a natural a
tion by B,and eVU = E2tor.5.2. Homomorphisms and CM-pointsFor any two obje
ts x = (V; h; ��) and x0 = (V 0; h0; ��) of MU , one 
an de�ne the F -module Hom0(x; x0) of homomorphisms � 2 HomB(V; V 0) su
h that for any z 2 C� ,h0(z) Æ �R = �R Æ h(z):Write End0(x) for Hom0(x; x). Then End0(x) is either F or a totally imaginaryquadrati
 extension K of F . In the se
ond 
ase, we 
all x a CM-point by K. Theindu
ed a
tion of K on the 
omplex spa
e V 1 = V 
� R is given by a 
omplexembedding of K whi
h we still denote as � .For two points x; x0, the F -ve
tor spa
e Hom0(x; x0) has rank � 2. If this spa
eis nonzero, then we say x and x0 are isogenous and any nonzero element in this ve
torspa
e is 
alled a quasi-isogeny. It is easy to show that Hom0(x; x0) has dimension 2 ifand only if both x and x0 has CM by isomorphi
 imaginary quadrati
 extensions Kand K 0. We may further �x an isomorphisms K ' K 0 with respe
t to the embeddingsinto C de�ned in the previous paragraph.For a �xed imaginary quadrati
 extension K of F and an embedding � : K � Cextending that of F , the set CU of CM-points on MU by K is not empty. Indeed, wemay �x an embedding � : K �! B whi
h indu
es a Hodge stru
ture h0 on V0 = Bwith trivial 
omponent at pla
es �i for i 6= 1 and equal to �
�1 R at �1. We now may
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orresponding to the obje
t (V0; h0; ��) where � is theidentity map bB �! bV . For the identi�
ation(5.2.1) MU = G(F )nH� �G(A f )=U;x0 
orresponds to the point represented by (h0; 1) where h0 2 X is one of two �xedpoints by K� � G(F ). (The other one is the 
omplex 
onjugation of h0). All CM-points by K with �xed �1 are then given by(5.2.2) CU = G(F )nG(F )h0 �G(A f )=U = T (F )nG(A f )=Uwhere T = K� is the torus in G.By Shimura's theory, the Galois a
tion of Gal( �F=K) is given by 
lass �eld theoryand multipli
ation of T (A f ) from left hand side. More pre
isely, if � 2 Gal( �F=K),x = (V; h; ��), then x� = (V; h; �(�) ���) and the a
tion on lo
al system is given by rightmultipli
ation by �(�), where � is the re
ipro
ity map Gal( �K=K) �! K�nA �K;f .5.3. Canoni
al modelsIntegral model. It is well known that MU has a 
anoni
al integral model MUover OF whi
h is regular if U is suÆ
iently small. Let OU be the ring of the abelianextension FU of F 
orresponding to the 
lassF�+ n bF�= det(U):Then ZU has a model ZU over F and is isomorphi
 to Spe
FU . The map MU �! ZUindu
es a map(5.3.1) MU �! ZU := Spe
OU :The lo
al system V 1U and eVU 
an be extended to MU to a ve
tor bundle and alo
al system of divisible groups su
h that Lie(eVU ) = V 1U .Let �F denote the algebrai
 
losure of F in C . We want to study the redu
tion ofpoints on MU 
 �F . Noti
e that ZU 
 �F is naturally isomorphi
 to ZU ( �F ) � Spe
 �F .Thus ZU has an integral model(5.3.2) ZU := ZU ( �F )� Spe
 �OF := aZU ( �F ) Spe
 �OFNoti
e that this s
heme has a natural map to ZU . Let MU be the tensor produ
t ofZU and MU over ZU .Formal modules. We now �x one prime } of F and let �} be an extension of }to �F . We assume that U is a produ
t U = U} � U} and want to study redu
tion ofMU at }, following the method of Carayol [2℄ where } was assumed to be unrami�edin B. See also Katz-Mazur [24℄ for the 
ase of modular 
urves. Lets write O} forOF;}, O} for O �F; �}, MU;} for MU 
OF O}, and MU;} for MU 
OF O}.Then over MU;} , the prime to p-part of (eVU ; ��) 
an be extended to an etalesystem on MU;} but }-part (eVU 
O}; ��
O})
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an only be extended to a system of spe
ial formal OB;}-module with a Drinfeld levelstru
ture, (V ; ��):Here spe
ial modules and Drinfeld level stru
ture are de�ned as follows:� V is spe
ial means that Lie(V) is a lo
ally free sheaf over OMU 
OE of rank1 where OE is an unrami�ed quadrati
 extension O} in OB;}.� A Drinfeld level stru
ture means an U -
lass of morphisms� : }�nOB=OB �! V [}n℄su
h that 
y
les of the latter spa
e is generated by the image.When U} is suÆ
iently small,MU;} is regular and is lo
ally a universal deformationof V with its level stru
ture in the spe
ial �ber. We write V0 for the isogeny 
lass ofV . Similarly the lo
al system (eL; ��) will also extend to a divisible group over ZU;} =Spe
(OU;}) whose prime to }-part is etale, and its }-part is a formal O}-module witha level stru
ture (L; ��)su
h that the indu
ed a
tion of O} on L is the usual multipli
ation of O} inside OU;}.The level stru
ture again is also de�ned by a det(U)-
lass of surje
tive morphism� : }�nL0=L0 �! L[}�n℄where L0 = det(OB) is the pairing module of OB . For any generator t 2 OF of order1 at }, the level stru
ture is 
ompatible with the pairing:h�(x); �(y)it = �(hx; yit):The map ZU;} �! ZU;} then 
lassi�es the lifting (L; ��) to the geometri
 generi
�ber.Homomorphism. Let x and x0 be two geometri
 points in the spe
ial �ber ofMU;}. Then we de�ne Hom0(x; x0) to be the subgroup inHom((V0x; bV }x ); (V0x0 ; bVx0))generated by Hom0(y; y0) for all liftings y; y0 of x; x0 to the geometri
 points ofMU;}.We say x and x0 are isogenous if Hom0(x; x0) 6= 0 and any nontrivial element in thisgroup is 
alled a quasi-isogeny.5.4. Redu
tionsIn this se
tion we want to study the redu
tion of the integral model of a Shimura
urve for a �xed prime } of F . More pre
isely, we will study the set of irredu
ible
omponents in the �ber over }, and the set of three 
lasses of 
losed geometri
 pointsin the spe
ial �ber: ordinary points, supersingular points, and super spe
ial points.We will also identify the redu
tion of CM-points in ea
h �ber.
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onsider the 
ase where } is unrami�edin B. We want to study the smoothness of the spe
ial �ber of M}. Let U0 denoteU} �OB;}. Then one 
an show thatMU0;} has good redu
tion when U} is suÆ
ientlysmall, see Carayol [2℄ when } is unrami�ed in B, and Katz-Mazur [24℄ when B =M2(Q).To study the general 
ase, lets �x one isomorphism OB;} =M2(O}). Then everyOB;} module M 
an be uniquely written as(5.4.1) M = N �N N = �1 00 0�Mas OF -modules su
h that the a
tion of OB;} is given by left multipli
ation on N2. Onesymmetri
 pairingM�M �! P is equivalent to an alternative pairing N�N �! P .By this 
onvention, the formal OB;}-module V is then given by two 
opies of oneformal module E of dimension 1 with a usual Weil pairing with values in L. The levelstru
ture is then a usual level stru
ture(}�nO}=O})2 �! E [}n℄:A geometri
 point x at the spe
ial �ber of MU;} is 
alled supersingular, if Ex is
onne
ted. Otherwise, it is 
alled ordinary. If it is ordinary, then the level stru
turehas a kernel of rank 1 and thus de�nes an element in � 2 P1(F})=U}. One mayshow that for any given � 2 P1(F})=U}, and a �xed 
onne
ted 
omponentM0U;}, thepoints in the spe
ial �ber whi
h are either supersingular or ordinary 
orresponding to �a
tually form an irredu
ible 
omponent I� of the spe
ial �ber. Thus, the supersingularpoints are only singular points in the spe
ial �ber. These I�'s are 
alled the Igusa
urves. The nature map MU;} �!MU0;} indu
es an isomorphism between ea
h I�and the spe
ial �ber of the M0U0;}.Let F be the algebrai
 
losure of the residue �eld of F} and letMU;F (resp. MU;F)be the geometri
 spe
ial �ber of MU;} (resp. MU;}). Sin
e OU is totally rami�edover OU0 , the set of 
onne
ted 
omponent ofMU;F is the same as that ofMU0;F thusthe same as MU0 . It follows that the set of irredu
ible 
omponent of MU;F is givenby G(F )+nG(A f )=U0 � P(F})=U}:From this one easily obtains the following:Lemma 5.4.1. If } is split in B, then the set of irredu
ible 
omponents of MU;Fis given by G(F )+nG(A f )=U � P(F})=U}:Ordinary points. Let x be a �xed ordinary point on MU;F. Then it 
an beshown that K := End0(x) is a totally imaginary quadrati
 extension of F whi
h issplit at }. We may �x one splitting K} = F 2} , su
h that the divisible group Ex isisogenous to a dire
t sum Eetx � E0x 
ompatible with the a
tion of K, where E0x is aformal group of dimension 1 and Eetx is etale. In this way, one obtains the diagonalembedding K �! B su
h that at }, it is given by the diagonal embedding. Let }e; }0denote two indu
ed primes of K. It also 
an be shown that two ordinary points x andx0 are isogenous if and only if they have isomorphi
 endomorphism rings. We may �x
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h isomorphisms su
h that they indu
e the same a
tion on tangent spa
es of theasso
iated formal groups.Let K be a �xed totally imaginary quadrati
 extension of F with a �xed splittingK} ' F 2} . Then the set of geometri
 ordinary points on MU;F with endomorphismsby K and with given splitting 
an be identi�ed withK�0 n��1 �0 �� nGL2(O})��G(A }f )=U;where K�0 denotes the subgroup of K� of elements with order 0 at two pla
es of Kover }.Indeed, let x0 = (E0; eV }0 ; ��0) be a �xed ordinary point with CM by K. Using one� 2 ��, we may identify Eet0 with F}=O}, and eV }0 with bB}= bO}B . Then for any ordinarypoint x = (E ; eV }; ��) with CM by K, there is an isogeny � : x �! x0 whi
h indu
esan isomorphism on divisible groups at }. Su
h an � is unique up to multipli
ation byelements in K�0 . Su
h an isogeny now indu
es an element(z; g) 2 Hom�(O2};O})�G(A }f )su
h that the surje
tive map � Æ � = (z; g), where Hom� means the set of surje
tivehomomorphisms. In this way we may identify the set of ordinary points with CM byK with K�0 nHom�(O2};O})�G(A }f )=U:Our assertion now follows from the identityHom�(O2};O}) = pr1 �GL2(O}) = �1 �0 ���GL2(O})where pr1 denote the proje
tion of O} onto the �rst fa
tor.The maps from CM-points by K over �F}, to CM-points by K over F, and toirredu
ible 
omponents over F are given by the obvious ones, via the identityP1(F}) = �� �0 ���GL2(F}):We now want to study the ordinary points on MU;F whi
h are exa
tly ordinarypoints on MU with an lifting of determinant level stru
ture to the geometri
 generi
�ber. In the above setting, for a given isogeny � : E �! E0, we will have a triple(z; g; a) with a 2 O�F . The set of ordinary points on MU;F is then identi�ed withK�0 nHom�(O2};O})�O�F �G(A }f )=Uwhere K�0 and U} a
ts on O�F by determinants. It is easy to show that the mapg �! (pr1 � g; det g) indu
es a bije
tion:Hom�(O2};O})�O�F = N(O})nGL2(O})with 
ompatible a
tion by K�0 and U}. Thus we have shown that the set of ordinarypoints on MU;} is identi�ed withK�0 n (N(O})nGL2(O}))�G(A }f )=U:
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ompositionGL2(F}) = K�} �N(F}) �GL2(O})we then obtain the followingLemma 5.4.2. The set of ordinary points on MU;F with CM by K is identi�edwith K�n (N(F})nGL2(F}))�G(A }f )=U:The redu
tion maps from the CM-points onMU
F �F to ordinary points and irredu
ible
omponents on MU;F are given by the following obvious ones:K�nG(A f )=U �! K�n (N(F})nGL2(F}))�G(A }f )=U�! F�+ nA �f = det(U)� P(F})=U}where the se
ond map sends the 
lass of (g}; g}) to the 
lass of (det(g}g}); g}).Supersingular points. We now want to give a des
ription of the set of super-singular points on MU;F whi
h is the same as on MU0;F, where U0 = GL2(O})U}.It 
an be shown that all supersingular points are isogenous to ea
h other, and for a�xed supersingular point x0 = (V0; eV }0 ; ��0), the endomorphism ring B0 := End0(x0)is a quaternion algebra whi
h 
an be obtained from B by 
hanging invariants at �and }. In other words, in our notation B =� B and B0 =} B with rami�
ation set v�and }� de�ned at (4.3.2) respe
tively. Let G0 denote the algebrai
 group (B0)� overF . Fix one �0 2 ��0. We may embed B into G(A }f ) and identify bV }0 with bB}. Thenfor any supersingular point x = (V ; eV }; ��), we have an isogeny � : x �! x0 of degreeprime to p whi
h is unique up to 
omposition with elements of G0(F )0 of order 0 at}. The level stru
tures now indu
e one element g 2 G(A }f ) su
h thatg := � Æ � 2 G(A }f ):By this way we may show that the set of supersingular points onMU;F 
an be identi�edwith G0(F )0nG(A }f )=U} = G0(F )nG0(A f )=U 0where U 0 = O�B0;} � U}. The morphism from supersingular points to the set of 
on-ne
ted 
omponents det : B �! F�+ ;and the map from CM-points by K to the set of supersingular points is given byT (F )nG(A f )=U �! G0(F )nG0(A f )=U 0[g℄ �! [g0} � g}℄;where g0} 2 B(})} is any element with norm det g}. Similarly, one 
an show thefollowing.Lemma 5.4.3. The set of supersingular points on MU;F is identi�ed withG0(F )0nO�} �G(A }f )=U = G0(F )nF�} �G(A }f )=U



78 S. W. ZHANGwhere G0(F ) and U} a
t on F�} by determinant. The maps from CM-points onMU
F�F to supersingular points and to the set of 
onne
ted 
omponents on MU;F are givenby the following obvious ones:K�nG(A f )=U �! G0(F )nF�} �G(A }f )=U�! F�+ nA �f = det(U)where the �rst map sends the 
lass of g to the 
lass of (det g}; g}) and the se
ond mapsends the 
lass of (x; g}) to the 
lass of x det g}.Case of rami�ed primes. It remains to study the redu
tion of MU;} in the
ase that B is not split at }. In this 
ase, the group eV is a 
onne
ted formal group.It follows that the map MU;} !MU0;}is purely inseparable at the �ber over }. So the set of irredu
ible 
omponents ofMU;Fover } is the same as that of MU0;F.In this nonsplit 
ase, one 
an show that all points in the spe
ial �ber are F -isogenous, and the F -endomorphism ring is a quaternion algebra B0 over F obtainedby 
hanging the invariants of B at � and }. Again, we let G0 denote the algebrai
group (B0)� over F .To study the irredu
ible 
omponents ofMU0;F over } we 
an use the uniformiza-tion theorem of Cerednik { Drinfeld [1, 10℄. We need some notations to state thistheorem. Let 
MU0 denote the formal 
ompletion of MU0 along its spe
ial �ber over}. Fix an isomorphism: bB0 'M2(F}) � bB}where the supers
ript } means that the 
omponent at the pla
e } is removed. Let b
denote Deligne's formal s
heme over O} obtained by blowing-up P1 along its rationalpoints in the spe
ial �ber over the residue �eld k of O} su

essively. So the generi
�ber 
 of b
 is a rigid analyti
 spa
e over F} whose �F} points are given by P1( �F})�P1(F}): The group GL2(F}) has a natural a
tion on b
. The theorem of Cerednik-Drinfeld gives a natural isomorphism(5.4.2) 
MU0 ' G0(F )nb
b
Our} � bB�;}=U}where Our} denote the 
ompletion of the maximal unrami�ed extension of O} with ana
tion by G0(F ) given by g 2 B(})� �! Fr�ord} det g:Sin
e 
 is 
onne
ted, the set of geometri
 
omponents of MU;F is identi�ed withG0(F )nZ� bB};�=U} = G0(F )0n bB};�=U};where G0(F )0 means elements of B0 of order 0 at }. Taking det, this set is thenidenti�ed with F�+ n bF�=U0:
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ription of the spe
ial �ber of 
MU0 , we noti
e that the irredu
ible
omponents of spe
ial �ber of b
 
orrespond one-to-one to the 
lasses modulo F� ofO} latti
es in F 2} . Consequently, one has the following.Lemma 5.4.4. The set of geometri
 irredu
ible geometri
 
omponents of 
MU0over } is indexed by the setG0(F )nGL2(F})=F�} GL2(O})�Z� bB�;}=U}'G0(F )enG0(A f )=GL2(O})U};where G0(F )e means the set of elements in B0 with even order at }.Superspe
ial points. A point x in the spe
ial �ber of MU0;} is 
alled super-spe
ial if the 
orresponding formal OB;}-module VF is a dire
t sum of two formalO}-module of dimension 1 and height 2. Let 
F be a �xed formal O}-module over Fof dimension 1 and height 2 whi
h is unique up to isomorphism. LetOB;} ' EndO}(
)be a �xed isomorphism whi
h is unique up to 
onjugation. Then there is an isomor-phism VF ' 
F � 
Fwhi
h is unique up to 
onjugation by GL2(OB;}). The a
tion of OB;} on V is givenby an embedding � : OB;} �!M2(OB;}):It is easy to see that the set of isomorphism 
lasses of superspe
ial VF is in 1-1
orresponden
e with the set of 
onjuga
y 
lasses of �. For a �xed �, let R� denote the
entralizer of the image of �.Fix one superspe
ial point x0 = (V0; bV }0 ; �}) of 
onjuga
y 
lass [�℄. Via �}0 , onemay identify bV } with bB}, and bB0} with bB}. Then for any superspe
ial point x =(Vx; bV }x ; �}x) we may �nd a quasi-isogeny � : x �! x0 whi
h indu
es an isomorphismbetween Vx and V0. Su
h an � is unique up to multipli
ation by elements of G0(F )0of elements whose 
omponents at } is in R�� . The level stru
ture �}x now indu
es oneg} 2 G0(A }f ). Thus we have the following:Lemma 5.4.5. The set of superspe
ial points of 
lass [�℄ is identi�ed withG0(F )0nG0(A }f )=U};where G0(F )0 denotes the elements in G0(F ) with images in R�� .Now, let K be a totally imaginary quadrati
 extension embedded in B. We wantto study the redu
tion CU of CM points by K. We will only 
onsider spe
ial points inCU , i.e., those points whose endomorphism has maximal 
omponent at }. We wantto show that the spe
ial CM-points have superspe
ial redu
tion. First, let's 
onstru
tsome spe
ial formal OB;}-module over O}.Then OB;} 
an be written as(5.4.3) OB;} = OK;} +OK;}�where � 2 B�} su
h that x� = ��x for any x 2 K}, and that �2 2 F�} with order(5.4.4) ord}(�2) = (1 if K}=F} is unrami�ed,0 if K}=F} is rami�ed.
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 be a formal OK;}-module of height 1 and dimension 1 over �O}. A K}-spe
ialmodule over �O} is the following module:V ' 
� 
;su
h that for x; y 2 
; � 2 OK;},�(x; y) = (�2y; x); �(x; y) = (�x; ��y):In this 
ase all K}-spe
ial points have superspe
ial redu
tion with the same 
on-juga
y 
lass and the 
orresponding ring R} := R� is given by the followingR} = OK + �2OK�0; �0 = �0 ��1� 0 � :Lemma 5.4.6. All K}-spe
ial points have K}-spe
ial module at }. Moreover theset of spe
ial CM -points by K is given byT (F )0nG0(A }f )=U}where T (F )0 denotes the set of elements in T (F ) whose 
omponents at } has order 0.Moreover the map from spe
ial CM-points by K to the set of superspe
ial points andto the set of irredu
ible 
omponents are given by the following natural proje
tion:T (F )0nG0(A }f )=U} �! G0(F )0nG0(A }f )=U}�! G0(F )enG0(A f )=GL2(O})U}Proof. For any spe
ial CM-point x = (V; h; �), it suÆ
es to show that the Tatemodule T} := T}(eV ) is isomorphi
 to OB;} with a
tion by OB;} by left multipli
ationand with a
tion by OK;} by right multipli
ation.First, we 
onsider the 
ase where K} is unrami�ed. AsOK;} 
OK;} = O2K;};any OB;} 
OK;}-module is a dire
t sum with an a
tion by �. The 
on
lusion followseasily.We now 
onsider the 
ase where K} over F} is rami�ed. Then any OB;} 
OK;}module is a module M over the dis
rete valuation ring A := OK;}[�℄ with an a
tion� : OK;} �! EndOK;}(M);su
h that �(a)� = ��(�a) for any a 2 OK;}. The OB;} 
OK;}-module T} := T}(V})now has rank 1 over A, thus is free of rank 1. Lets �x one isomorphism� : T} ' A;and let � 2 End(T}) be the endomorphism over OK;} given by the 
onjugation ofA=OK;}. Then for any a 2 OK;} whi
h is tra
e free, �(a)� 
ommutes with �. Thus itmust be given by �(a) = ��1 Æ �ax Æ �where x 2 A�. Sin
e �(a2) = a2 we have that x�x = 1. Thus, there is an y 2 R�,x = y=�y. By repla
ing � by y Æ �, we may assume that x = 1. The 
on
lusion followseasily.
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al CM-interse
tionsIn this se
tion we are going to 
ompute the lo
al interse
tion index of CM-points attheir redu
tion. When the level stru
ture is minimal, the formula 
an be proved usingGross' theory of 
anoni
al and quasi-
anoni
al lifting. When the level stru
ture is notmaximal then there are some fundamental obstru
tions to 
omputing the lo
al index,sin
e no expli
it semistable model is known. We will prove asymptoti
 formulas whi
hare apparently suÆ
ient for the appli
ations in the next 
hapter.Ordinary 
ase. First lets 
onsider a prime } of F whi
h is split in K. Let � bea �xed lo
al parameter of F}. Then all CM-points in CU will have ordinary redu
tionover F. In parti
ular all these redu
tions are smooth points in the spe
ial �ber. If Uis suÆ
iently small so that MU;} is representable, the geometri
 interse
tion index(x; y)U;} of two distin
t CM points x and y in MU 
an be de�ned to be the maximalrational number t su
h that �x = �y mod �twhere �x and �y are 
losures of x and y in MU . This de�nition 
an be extended todivsiors with disjoint support in CU . For general U , we take U 0 a subgroup of U su
hthat MU 0;} is representable and then de�ne(x; y)U;} = [U : U 0℄�1(��x; ��y)U 0;}where �� denote the pull-ba
k map of divisors indu
ed by the proje
tion MU 0;} �!MU;}.We have shown that the redu
tion of ordinary CM-points onMU is given by thefollowing proje
tion:(5.5.1) T (F )nG(A f )=U �! T (F )n [N(F})nG(F})℄�G(A }f )=U:Thus the interse
tion of CM-points is taken in the set N(F}). More pre
isely, let x; ybe two CM-points with the same ordinary redu
tion. Then x and y 
an be representedby elements g; h 2 G(A f ) su
h thath} = g}; h} = ng}with n 2 N(F}). Then the interse
tion of x and y depends only n when U} issuÆ
iently small. In order to des
ribe interse
tion pre
isely, lets give a modularinterpretation of N(F}).Let L be the unique formal O}-module over O} of dimension 1 and height 1 witha �xed base � of T}(L). By a polarization on an O}-module E over O}, we mean asystem of Weil pairings of group s
hemesh�; �in E [}n℄� E [}n℄ �! L[}n℄with respe
t to a uniformizer � of O}. This pairing thus indu
es a pairing on T}(E).Let X be the set of isomorphism 
lasses of obje
ts (E ; �; �) where1. E is a polarized divisible O}-module over OF of height 2;2. � is an isomorphism from EF to F}=O} �LF;3. � is an isomorphism from O2} ! T}(E);su
h that the following two 
onditions are veri�ed:



82 S. W. ZHANG� det� is of determinant 1 in sense that when 
omposing with the Weil pairing,det� as a level stru
ture of L is given by the base �;� the morphism T}(�) Æ � : O2} �! T}(F}=O})is given by the �rst proje
tion and the base � = limn ��n of of T}(F}=O}).Then X} may be identi�ed with N(F}). Indeed, let E0 be the divisible group L �F}=O} with a 
anoni
al polarization, a 
anoni
al deformation �0, and a 
anoni
allevel stru
ture �0 : F 2} �! V}(E0); �0(a; b) = a� + b�:Then for any obje
t (E ; �; �) there is a unique isogeny � : E ! E0 so that � respe
tsthe redu
tion maps �'s. Now � and �'s indu
e an element g 2 N(F}) whi
h a
ts onF 2} by right multipli
ations on row ve
tors.For any x 2 F} let (Ex; �x; �x) be the obje
t 
orresponding ton(x) := �1 x0 1� 2 N(F})in the above 
orresponden
e. For n a positive integer, let m(n; x) be the maximalrational number t su
h that modulo �t, the (Ex; �x) is isomorphi
 to (E0; �0) andthat � and �0 indu
es the same level stru
ture modulo }n.Lemma 5.5.1. Assume that n � ord(x) + 1. Thenm(n; x) = 1qn�ord(x)�1(q � 1) :Proof. Under the quasi-isogeny � : Ex ! E0 with respe
t to the redu
tionmorphism �'s , the image T}(Ex) is the following latti
e of T}(E0) = O2}:O2} � �1 x0 1� � ���� = O}(x� + �) +O}�;with the level stru
ture �(a; b) = a(x� + �) + b�:We �rst 
onsider the 
ase where x 2 O}. Then � is an isomorphism of divisiblemodules. We may take Ex = E0 with the above level stru
ture. Modulo }n this levelstru
ture gives two generators x�}n + �}n ; �}n :Thus for n � ord(x) + 1,m(n; x) = ord(x�}n) = ord(�}n�ord(x)) = 1qord(x)�n�1(q � 1) :Here we have used the fa
t that Our} (�}n) is a totally rami�ed Galois extension of Our}with group (O}=}n)�:
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ase where x =2 O}. Let x = x0��s with x0 2 O�} . Letu : E0 ! E0 be an isogeny indu
ing the mapa� + b� �! x�1a� + b�on V}(E0) ' F 2} . Then there is an isogeny v : E0 �! E su
h that � Æ v = u. For �to be an isomorphism over some OF -s
heme S if and only if the isogeny uS and vShave the same kernel. By 
onstru
tion,ker(u) = O}x� +O}�O}� +O}� = O}�}sker(v) = O}(x� + x�) +O}�O}� +O}� = O}(�}s + �}s):Thus if � is an isomorphism of formal groups over some Our} -s
heme S, then one musthave �}s = 0 on S. Assume now this is the 
ase. Then � is an isomorphism whi
htransform the level stru
ture � modulo }n on E0 to the level stru
ture(a; b) �! a(�}n + x0�}n+s) + b�}n :(Noti
e that �}n+s 2 E0(S)[}n℄ as �}s = 0) The 
ondition � = �0 modulo }n isequivalent to �}n+s = 0. Thusm(n; x) = ord(�}n+s) = 1qn+s�1(q � 1) :This 
ompletes the proof of the proposition.Supersingular 
ase. We now 
onsider a prime } of F whi
h is nonsplit in Kbut split in B =� B. As usual, let B0 =} B and let G and G0 denote the algebrai
groups over F asso
iated to B� and (B0)�. Let �F} be an algebrai
 
losure of K}with algebrai
ally 
losed residue �eld F. Then all points in CU have supersingularredu
tions at F and the redu
tion is given by the following map(5.5.2) T (F )nG(A f )=U �! G0(F )nF�} �G(A }f )=U:If we write CM-points as(5.5.3) G0(F )n �G(F )�T (F ) G(F})��G(A }f )=U;then this redu
tion map is given byG0(F )�T (F ) G(F})=U} �! F};(5.5.4) g1 � g2 �! det(g1) � det(g2):It follows that the lo
al interse
tion of CM-points is given by a distribution on�(g1; g2) 2 G0(F})�T (F}) G(F}) �� det(g1) det(g2) 2 det(U}) 	 :More pre
isely, let x and y be two CM-points with the same redu
tion. Then x andy 
an be represented by g; h 2 G(A f ) su
h thath} = 
g}; det(h}) = det(
) � det(g})
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 2 G0(F ). The interse
tion of x and y depends only on (
; g} � h�1} ) in theabove set when U} is suÆ
iently small.To des
ribe the lo
al interse
tion morepre
isely we need a des
ription of this setin terms of formal O}-modules. Let �E be a polarized formal O}-module of height 2over F with an endomorphism given by B0} whi
h is unique up to isomorphism. LetX} denote the set of isomorphism 
lasses of obje
ts (E ; �; �) where1. E is a polarized formal O}-module of height 2 over O} with endomorphismby some order in K};2. � : EF ! �E is an isomorphism of formal O}-modules with degree 1 (withrespe
t to the polarizations);3. � : F 2} �! V}(EF ) is an isomorphism of degree 1.Then we have an identi�
ationX} = �(g1; g2) 2 G0(F})�T (F}) G(F}) : det(g1) � det(g2) = 1	 :To see this let E0 be the 
anoni
al deformation of �E with respe
t to the embeddingK} ! B} with the 
anoni
al rigidi�
ation �0 and a �xed U}-level stru
ture �0. Thenfor any obje
t (E ; �; �), we have an isogeny � : E �! E0 with 
ompatible a
tion byelements in K. The isogeny � indu
es element (g1; g2) 2 G0(F})�G(F}):g1 : �E ��1F�! EF ��! �Eg2 : F 2} ��! V}(EF ) V}(�)�! V}(E0;F ) ��10�! F 2} :It is easy to see that the 
lass of (g1; g2) in G0(F}) �T (F}) G(F}) is independent of
hoi
e of �.Conversely, for any pair [(g1; g2)℄ as above, there is an isogeny � : E ! E0 and anU -level stru
ture � su
h that g2 is given by the above formula. The isogeny � indu
esan isogeny �F : EF ! �E . There is a unique isogeny � : EF ! E su
h that g1 is givenby the above formula.The interse
tion theory on X} is diÆ
ult to des
ribe be
ause the universal defor-mation ring of supersingular points with level stru
ture is singular in general. Butfor the minimal level stru
ture, the interse
tion theory 
an be formulated by Gross'theory of 
anoni
al and quasi-
anoni
al liftings. In the following lets des
ribe theinterse
tion for the minimal level stru
ture: U} = GL2(O}).Fix one element (g1; g2) of X}. Modulo GL2(O}), we may assume that g2 =�1 00 �
� for some 
 � 0. Indeed, write OK = O} + O}Æ and take an embedding ofT into GL2 by the obvious isomorphism O2} ' OK . Then by multiplying g2 by someelement of K�} , we may assume that OK � g2(OK) and g2(OK)=g2(OK) is 
y
li
 andis generated by the image of ��
. This implies thatg2(OK) = O}}�
 +O}Æ = ���
 00 1�OKfor some 
 2 N. Consequently, g2 2 ���
 00 1�GL2(O}). We 
all 
 the 
ondu
torof (g1; g2). Let (E
; �
; �
) be the obje
t of 
ondu
tor 
 and let m(g1; g2) denote themaximal rational number t su
h that this obje
t is isomorphi
 to (E0; �0; �0) modulo�t.
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e free element in B0} su
h that x� = ��x for any x 2 K}. ThenB0} = K} +K}�. For any g = a+ b� 2 (B0})� de�ne(5.5.5) �(g) = det b�det g = ��2N(b)N(a)� �2N(b) :Lemma 5.5.2. If 
 = 0, thenm(g1; g2) = 12ord(��(g1)):If 
 > 0, then m(g1; g2) = ( 1q2
�2(q2+1) if K}=F} is unrami�ed,12q
 if K}=F} is rami�ed.Proof. By 
onstru
tion, g�12 is integral thus ��1 gives an isogeny  : E0 �! E
with kernel generated by a � 2 E0[}
℄. Now g1 is given byg1 = � �  F:The number m(g1; g2) is the maximal rational number t su
h that � 
an be extendedto isomorphism modulo �t. Thus m(g1; g2) is also the maximal rational number tsu
h that g1 
an be extended to an endomorphism of E0 modulo �t, and su
h that g1kills kernels of  , or equivalently, g1 kills �.First we assume that 
 = 0. Then g1 and  are isomorphisms and Gross' theoremshows that m(g1; g2)e(K}=F}) is the maximal integer m su
h that g1 2 OK;} +�m�1K OB . We may 
hoose a de
omposition B} = K}+K}� su
h that �x = �x� for anyx 2 K}, and �2 2 F�} with order given byord(�2) = (1 if K}=F} is unrami�ed,0 if K}=F} is rami�ed.Write g1 = a+ �m�1K b� with a 2 OK ; b 2 O�K , then�(g1) = ��2m�2K �2b2 det(g1)�1:We now assume that 
 > 0. Then over OurK;}, all 
y
li
 submodules Di of E0[}
℄are 
onjugate to ea
h other. The total interse
tion is 1. Thus(e(K}=F})m(g1; g2))�1 = #(OK;}=�
)�=(O}=�
)�:We want to treat now the 
ase where U} is not maximal where MU need to berepla
ed by some resolution of singularities after a base 
hange. We will only 
onsiderso 
alled spe
ial CM-points C0U whi
h are represented by g 2 G(A f ) whose 
omponentat } is in T (F}) � U}. Thus we have identi�
ation:C0U = T (F )0nG(A }f )=U}where T (F )0 denotes the elements in T (F ) whose image in T (F}) is in U}. Let G0(F )0denote the elements in G0(F ) whose image in G0(F}) has determinant in det(U}).



86 S. W. ZHANGLemma 5.5.3. Let L be a �nite extension of OurF over whi
h all points in C0U arerational. Let M0U;} be the minimal resolution of singularities of MU 
OL. Then theredu
tion of C0U is given byT (F )0nG(A }f )=U} �! G0(F )0nG0(A f )=U 0where U 0 = U 0} �U} with U 0} an open 
ompa
t subgroup of G0(F})0 
ontaining T (F})0.Proof. Then the redu
tion on MU;} is given byT (F )0nG(A }f )=U} �! G0(F )0nG(A }f )=U}:Let X be the formal neighborhood of a supersingular point in MU;} stru
turewhen U} is suÆ
iently small. Then X is isomorphi
 to the universal defomations
heme of a formal O}-module of height 2 with level U}-stru
ture. It is wellknownthat X is regular and has an a
tion by G0(F})0. Let X 0 be the inverse image of X inM0U;} whi
h is also the minimal resolution of sigularities of X
OL. By fun
toriality,X 0 has an a
tion by G0(F})0. It indu
es an a
tion on the spe
ial �ber X 0F of X 0.By 
ontinuity, it is fa
tored by an open subgroup U 0} of G0(F})0. Thus redu
tion ofCM-points whi
h is given lo
ally byG0(F})0=T (F})0 �! X 0Fhas a �nite image Y . The redu
tion of CM-points in the minimal regular modelMU 
 L is given byT (F )0nG(A }f )=U} �! G0(F )0nY �G(A }f )=U}:Sin
e we may rewrite C0U in the formC0U = G0(F )0nG0(F )0=T (F )0 �G0(A }f )=U};thus the redu
tion of CM-points is indu
ed by the mapG(F})0=T (F})0 �! G0(F})=U}:The interse
tion theory is given by some fun
tion m(g) on G0(F})0=T (F})0 in thefollowing sense when U} is suÆ
iently small. Let x; y be two spe
ial CM-points inC0U represented by g; h 2 G(A }f ). Then x and y have the same redu
tion only if thereis a 
 2 G0(F ) su
h that h = 
g. Then the lo
al interse
tion of x and y is given bym(
).Lemma 5.5.4. The lo
al interse
tion of CM-points with respe
t to U-level stru
-ture is given by a fun
tion on G0(F})0=T (F})0 su
h thatm(g) = m0(g) +m0(g); g =2 T (F})where m0(g) is supported on U 0} and is the restri
tion of 12ord�(g) and m0(g) is alo
ally 
onstant fun
tion on G0(F}).Proof. Let X0 denote X in the proof of the previous lemma 
orresponding tothe maximal group GL2(O}). Let X 00 denote the base 
hange X0 
OL. Then X 00 issmooth and the map X 0 �! X 00 is generi
ally etale. Let y be a point in Y . Then thelo
al ring of y at Y is isomorphi
 to OL[[T ℄℄, so is the lo
al ring of x in X 0L. Thus themap X 0 �! X 0L is given by a power series f(T ) =Pi aiT i 2 OL[[T ℄℄ with a1 6= 0. Itfollows that ord(f(T )=T ) is lo
ally 
onstant.
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ial 
ase. It remains to treat the 
ase where } is a prime of F whi
his not split in B. First, let's 
onsider the 
ase where U} is maximal. The redu
tionfrom the spe
ial CM-points to superspe
ial points takes the form(5.5.6) T (F )0nG(A }f )=U} �! G0(F )0nG0(A }f )=U};where G0(F )0 is the subgroup of elements on G0(F ) whose 
omponents at } are inR�} , where R} is 
onstru
ted in the last se
tion whi
h takes the formR} = OK + �2OK�0; �0 = �0 ��1� 0 � :Thus the lo
al interse
tion o

urs in G0(F )0=T (F )0. More pre
isley if x and y aretwo spe
ial CM-points with the same redu
tion. Then x and y 
an be represented byg; h 2 G(A }f ) su
h that h = 
gwith a 
 2 G0(F )0. When U} is suÆ
iently small, the interse
tion of x and y dependsonly on 
. As in previous 
ases, we need a modular interpretation in the formalOB;}-module level.Let �V be a superspe
ial OB;}-module over F. Consider the set X} of the followingobje
ts (E ; �) where1. V is a formal OB;} 
OK;}-module;2. � : �V �! VF is an isomorphism.It is easy to see that this set is identi�ed withR�} =O�K;}:More pre
isely, let (V0; �0) be a �xed obje
t. We identify �V with V0;F via �0. Thenfor any obje
t (V ; �) there is an isomorphism � : V �! V0 of OB;} 
OK;} -moduleswhi
h is unique up to a
tion by O�K;}. There is an element g 2 R�} = Aut(�V0) su
hthat �F Æ � = g.Lemma 5.5.5. Let (V ; �) be an obje
t 
orresponding to an obje
t g 2 R�} : Thenthe maximal rational number t su
h that (V ; �) and (V0; �0) are isomorphi
 modulo�t is given by m(g) = ( 12ord�(g) if K}=F} is unrami�ed12ord��(g) if K}=F} is rami�edProof. Let V0;m denote V0 
 OurK;}=�mK and Vm denote V 
 OurK;}=�mK . Then theinterse
tion number times e(K}=F}) is the maximal integer m su
h that � : V0;F �!VF 
an be extended to an isomorphism from V0;m to Vm, or the maximal integer msu
h that g = �F Æ � 2 Rm := EndOB;}(V0;m):By Lemma 5.4.6, we may de
ompose V0 as a dire
t sum V0 = 
 � 
 where 
 isa OK;}-module of dimension 1 and height 1 over Our} with standard a
tion byOB;} = OK;} +OK;}�



88 S. W. ZHANGgiven as follows. For x; y 2 
, � 2 OK;},�(x; y) = (�x; ��y); �(x; y) = (�2y; x):Let 
m denote the redu
tion of 
 modulo �mK . Now Rm is the 
entralizer of OB;} inEnd(V0;m) and, therefore, Rm = R} \M2(End(
0;m)):By Gross' theorem, End(
m) = OK;} + �m�1K OK;}�:It is easy now to see that Rm = OK + �2�m�1K OK�0:For g = a+ �2b�m�1K �0 2 R�} with b 2 O�K;}, thenord�K (�(g)) = ord�K (N(�2�m�1K )) = (2m if K}=F} is unrami�ed,2(m� 1) if K}=F} is rami�ed.We 
onsider now the general 
ase of U}. The same proof of Lemma 5.5.3, 5.5.4gives the following:Lemma 5.5.6. Let C0U denote the set of spe
ial points with level U stru
ture. LetL be a �nite extension of OurF over whi
h all points in C0U are rational. Let M0U;}be the minimal resolution of singularities of MU 
OL. Then the redu
tion of C0U isgiven by T (F )0nG(A }f )=U} �! G0(F )0nG0(A f )=U 0where U 0 = U 0} �U} with U 0} an open 
ompa
t subgroup of G0(F}) 
ontaining T (F})0.Moreover the lo
al interse
tion of CM-points with respe
t to U-level stru
ture is givenby a distribution on G0(F})0=T (F})0 su
h thatm(g) = m0(g) +m0(g); g =2 T (F})where m0(g) is supported on U 0} and is the restri
tion of 12ord�(g) and m0(g) is alo
ally 
onstant fun
tion on G0(F}).6. Gross-Zagier formulaIn this 
hapter, we are going to 
ompute the height pairing and �nish the proof of theGross-Zagier formula. We will start with a review of Arakelov theory on an arithmeti
surfa
e, and the arithmeti
 Hodge index theorem whi
h will express height pairingsas a sum of Green's fun
tions over pla
es of number �elds with respe
t to a �xedarithmeti
 polarization. Then, we apply this theory to Shimura 
urves polarized bythe Hodge 
lass, and 
ompute the Green's fun
tions of distin
t CM-points on Shimura
urves. Stri
tly speaking, we 
an only 
ompute the height pairing of CM-pointsmodulo (1) the 
ontributions from interse
tions of CM-points with Eisenstein 
lass,(2) self-interse
tions of CM-points, and (3) the 
oeÆ
ients of some forms on 
ompa
tquaternion algebras. Finally, we will show that all these non-
omputable 
ontributionsare negligible.
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ulus on arithmeti
 surfa
esIn this se
tion we will reviewing the Arakelov theory on arithmeti
 surfa
es andarithmeti
 Hodge index theory. The basi
 referen
es are [12, 13, 28, 32℄. The onlynew 
on
ept is the Green's fun
tion over nonar
himedean pla
es.Arithmeti
 divisors and hermitian line bundles. Let F be a number �eld.By an arithmeti
 surfa
e over Spe
OF , we mean a proje
tive and 
at morphismX �! Spe
OF su
h that that X is a regular s
heme of dimension 2. Let dDiv(X )denote the group of arithmeti
 divisors on X . Re
all that an arithmeti
 divisor on Xis a pair bD := (D; g) where D is a divisor on X and g is a fun
tion onX(C ) =aX� (C )with some logarithmi
 singularities on jDj su
h that for ea
h ar
himedean pla
e � ofF , and ea
h point x0 2 X� (C ) with lo
al 
oordinate t, the fun
tionx �! g(x) + ordx0(D� ) log jt(x)j
an be extended to a smooth fun
tion in a neighborhood of x0. The form �� ���i g onX(C ) n jDj 
an be extended to a smooth form 
1( bD) on X(C ) whi
h is 
alled the
urvature of the divisor bD. If f is a nonzero rational fun
tion on X then we 
ande�ne the 
orresponding prin
ipal arithmeti
 divisor by(6.1.1) 
divf = (divf;� log jf j):An arithmeti
 divisor (D; g) is 
alled verti
al (resp. horizontal) if D is supported inthe spe
ial �bers (resp. D does not have 
omponent supported in the spe
ial �ber).The group of arithmeti
 divisors is denoted by dDiv(X ) while the subgroup ofprin
ipal divisor is denoted by 
Pr(X ). The quotient 
Cl(X ) of these two groups is
alled the arithmeti
 divisor 
lass group whi
h is a
tually isomorphi
 to the group
Pi
(X ) of hermitian line bundles on X . Re
all that a hermitian line bundle on X is apair L = (L; k �k), where L is a line bundle on X and k �k is hermitian metri
 on L(C )over X(C ). For a rational se
tion ` of L, we 
an de�ne the 
orresponding divisor by(6.1.2) 
div(`) = (div`;� log k`k):It is easy to see that the divisor 
lass of 
div(`) does not depend on the 
hoi
e of `.Thus one has a well de�ned map from 
Pi
(X ) to 
Cl(X ). This map is an isomorphismwith 
onverse de�ned by assigning an arithmeti
 divisor bD = (D; g) to an arithmeti
line bundle O( bD) = (O(D); k �k) su
h that the 
anoni
al se
tion ` of O(D) has metri
k`k(x) = e�g(x):One may show that the 
urvature of an arithmeti
 divisor depends only on its 
lassand thus 
an be de�ned on 
Pi
(X ) su
h that the 
urvature of hermitian line bundleL is(6.1.3) 
1(L) = � ���i log k`k:



90 S. W. ZHANGLet bDi = (Di; gi) (i=1, 2) be two arithmeti
 divisors on X with disjoint supportin the generi
 �ber: jD1F j \ jD2F j = ;:Then one 
an de�ne an arithmeti
 interse
tion pairingbD1 � bD2 =Xv ( bD1 � bD2)vwhere v runs through the set of pla
es of F . To de�ne the interse
tion we may assumethat Di are irredu
ible. Then the lo
al interse
tion is de�ned as follows:� if D1 is verti
al, and v is �nite pla
e( bD1 � bD2)v = degD1(O(D2)) log qv;where degD1(O(D2)) is the geometri
 degree.� if D2 is horizontal and v is �nite, then( bD1 � bD2)v = Xx2jXv j log#OX;x=(f1; f2);where x runs through the set of 
losed point of X over v, and fi are de�ningequation of Di near x;� if v is in�nite, then( bD1 � bD2)v = g1(D2v)�v + ZXv(C) g2
1( bD1)�v ;where �v = 1 if v is real and �v = 2 if v is 
omplex.One may show that the prin
ipal arithmeti
 divisor has 0-interse
tion with any otherdivisors. Thus the interse
tion pairing only depends on the divisor 
lass. On the otherhand, for any two arithmeti
 divisor 
lasses, we 
an always �nd representatives withdisjoint support at the generi
 �ber. It follows that we have a well de�ned pairing on
Pi
(X ): (L;M) �! b
1(L) � b
1(M) 2 R:Let V (X ) be the group of verti
al metrized line bundles: namely L 2 
Pi
(X ) withL ' OX . Then we have an exa
t sequen
e0 �! V (X ) �! 
Pi
(X ) �! Pi
(XF ) �! 0:De�ne the group of 
at bundles 
Pi
0(X ) as the orthogonal 
omplement of V (X ).Then we have an exa
t sequen
e0 �! 
Pi
0(OF ) �! 
Pi
0(X ) �! Pi
0(XF ) �! 0:Re
all that the Ja
obian Ja
(X) has a Neron-Tate hight papring on its algebrai
points de�ned by theta fun
tions [12℄. The following theorem gives a relation betweeninterse
tion pairing and height pairing:Theorem 6.1.1 (Hodge index theorem [12℄). For L;M2 
Pi
0(X ),hLF ;MF i = �b
1(L) � b
1(M)



GROSS-ZAGIER FORMULA FOR GL2 91where the left hand side denotes the Neron-Tate height pairing on Pi
0(X) =Ja
(X)(F ).In the following we want to introdu
e a proje
tion formula for the interse
tionpairing or the height pairing. Let L be a �nite extension of F and Y �! OL be anarithmeti
 surfa
e over OL. Let f : Y �! X be a morphism over OF whi
h is �niteat the generi
 �ber. Then we 
an de�ne the pull-ba
k mapf� : dDiv(X ) �!dDiv(Y):The interse
tion pairing satis�es the following proje
tion formula: for bDi 2 Div(X )(i = 1; 2)(6.1.4) f� bD1 � f� bD2 = deg f � ( bD1 � bD2):Moreover, if bDi are disjoint at the generi
 �ber, then proje
tion formula is true forlo
al interse
tion:(6.1.5) Xwjv(f� bD1 � f� bD2)w = deg f � ( bD1 � bD2)v :For X a 
urve over F , let 
Pi
(X) denote the proje
tive limit of 
Pi
(X ) over allmodels over X . Then the interse
tion pairing 
an be extended to 
Pi
(X). Let �Fbe an algebrai
 
losure of F and let 
Pi
(X �F ) be the dire
t limit of Pi
(XL) for all�nite extensions L of F , then the interse
tion pairing on 
Pi
(XL) times [L : F ℄�1 
anbe extended to an interse
tion pairing on 
Pi
(X �F ). One still has the Hodge indextheorem to relate the normalized heights pairing on Ja
(X)( �F ) and the interse
tionpairing on the 
at bundles of 
Pi
0(X �F ).Adeli
 Green's fun
tions. Let X be an arithmeti
 surfa
e as before and letX be the generi
 �ber of X . Let L 2 
Pi
(X )Q be a �xed 
lass with degree 1 at thegeneri
 �ber. Let x 2 X(F ) be a rational point and let �x be the 
orresponding se
tionX (OF ). Then �x 
an be extended to a unique element bx = (x+D; g) in dDiv(X )Q su
hthat � the bundle O(bx)
L�1 is 
at;� for any �nite pla
e v of F , the 
omponent Dv of D on the spe
ial �ber of Xover v satis�es Dv � 
1(L) = 0;� for any in�nite pla
e v, ZXv(C) g
1(L) = 0:We de�ne now the Green's fun
tion gv(x; y) onX(F )�X(F ) n diagonalby(6.1.6) gv(x; y) = (bx � by)v= log qv;



92 S. W. ZHANGwhere log qv = 1 or 2 if v is real or 
omplex. It is easy to see that gv(x; y) is symmetri
,and does not depend on the model X of X in the following sense: if X 0 is di�erentmodel of X and L0 is a hermitian line bundle on X 0, su
h that over some model X 00whi
h dominates both X and X 0, L0 and L have the same pull-ba
k, then the Green'sfun
tions de�ned by (X ;L) and (X 0;L0) are same. Also, the Green's fun
tion gv(x; y)is stable under base 
hange. Thus we have a well-de�ned Green's fun
tion on X( �F )for ea
h pla
e v of F .In fa
t one 
an de�ne a Green's fun
tion gv(x; y) on X(C v ) where C v is the
ompletion of �F at a pla
e over v. We don't need this fa
t in this paper.Pra
ti
ally, one may 
onstru
t gv(x; y) in the following manner. If v is a 
omplexpla
e then gv(x; y) is a solution to the equation(6.1.7) �y�y�i gv(x; y) = Æx(y)� 
1(L)(y):Let v be a �nite pla
e. Then it is easy to see that(bx � by)v = (�x � �y)v + (Dv � �y):Thus we have de
omposition(6.1.8) gv(x; y) = iv(�x; �y) + jv(�x; �y)where(6.1.9) iv(�x; �y) = (�x � �y)v= log qv jv(�x; �y) = (Dv � �y)= log qv :Noti
e that iv(x; y) is the usual geometri
 interse
tion index in the sense of algebrai
geometry over algebrai
ally 
losed �elds, and jv(x; y) a
tually depends only on theredu
tions of x and y in the set of irredu
ible 
omponents of the spe
ial �ber of Xover v.The de
omposition gv = iv+ jv depends on the model X . But if we only work onsemistable model, we 
an a
tually get a well-de�ned fun
tion iv and jv over X( �F ).We will not need this fa
t in this paper.6.2. Global heights of CM-pointsHeights and interse
tion on tower of Shimura 
urves. We now want toapply the general theory of the previous se
tion to interse
tions of CM-points toShimura 
urves XU over a totally real �eld F as de�ned in x1.3. Re
all that XU hasthe form(6.2.1) XU = G(F )nH� �G(A f )=U [ f
uspsgwhi
h is a smooth and proje
tive 
urve over F but may not be 
onne
ted. Let's �rsttry to extend the theory in the last se
tion to the proje
tive limit X of XU . Let
Pi
(X) denote the dire
t limit of 
Pi
(XU ) with respe
t to the pull-ba
k maps. We�x one measure on G(A f ). Then the interse
tion pairing 
an be extended to 
Pi
(X)if we modify the pairings on Pi
(XU ) by the s
ale vol(U). Similarly, we 
an modifylo
al interse
tion pairing and extend the height pairing to Ja
(X) = Pi
0(X), whi
his the dire
t limit of Pi
0(XU ) where Pi
0(XU ) is the subgroup of Pi
(XU ) with 
lasswhose degree is 0 on ea
h 
onne
ted 
omponent.
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lasses and Eisenstein 
lasses. To de�ne Green's fun
tion we need tode�ne a 
anoni
al 
lass in Pi
(X)Q. On ea
h XU , there is a unique adeli
 metrizedline bundle �U 2 Pi
(XU )Q of degree 1 on ea
h 
onne
ted 
omponent su
h that(6.2.2) Ta�U = �1(a) � �; �1(a) := degTa =Xbja N(b);for any integral idele a prime to the level of XU . The uniqueness is 
lear as the di�er-en
e of two su
h 
lass will be a 
lass in Pi
0(XU )Q = Ja
(XU )(F )Q whi
h is 
uspidalunder the a
tion of the He
ke algebra. For existen
e, we let U 0 be a suÆ
iently smallnormal subgroup su
h that every geometri
 
onne
ted 
omponent of XU 0 does nothave any ellipti
 �xed point. Then [
XU0 ℄ will have the same degree on ea
h 
ompo-nent and satis�es the above equation. Certainly some power of this 
lass will des
endto a 
lass �0 in Pi
(XU ) with the same positive degree on ea
h geometri
 
onne
ted
omponent. We may now de�ne �U to be a 
onstant multiple of �0 in Pi
1(XU )Q. We
all �U the Hodge 
lass on XU .It is an interesting question to 
onstru
t an adeli
 metri
 on �U su
h that theabove equation holds for ��U . But in [32℄, Corollary 4.3.3, we have 
onstru
ted ametri
 on �U su
h that(6.2.3) Tab�U = �1(a)b�U + �(a)where �(a) 2 
Pi
(F ) is a �-derivation, i.e., for any 
oprime a0; a00�(a0a00) = �(a0)�(a00) + �(a00)�(a0):Let Pi
(XU )EisQ be the subgroup of elements whose restri
tion on ea
h 
onne
ted
omponent is a multiple of the restri
tion of �. It is easy to show that(6.2.4) Pi
(XU )Q = Pi
(XU )EisQ � Pi
0(XU )Q:We de�ne 
Pi
(XU )EisQ to be the 
lass whose restri
tion on ea
h irredu
ible 
omponentis a sum of a 
onstant 
lass and a multiple of the restri
tion of that of b�. Let Pi
(X)EisQ(resp. 
Pi
(X)EisQ ) denote the limit of Pi
(XU )EisQ .The a
tion of the G(A f ) on Pi
(X)EisQ is Eisenstein. Indeed, let's de�nedU : Pi
(XU )Q �! S(ZU )to be the degree map times vol(U) where ZU = F�+ nA �f = det(U) is the set of 
onne
ted
omponents of XU . It is easy to extend dU to a map(6.2.5) d : Pi
(X)Q �! S(F�+ nA �f ):It is easy to see that this map is G(A f )-equivariant and its restri
tion on Pi
(X)EisQis inje
tive. Thus the a
tion of G(A f ) on Pi
(X)EisQ is Eisenstein. Similarly, one mayshow that the a
tion of G(A f ) on 
Pi
(X)EisQ is quasi-Eisenstein.We 
an now de�ne Green's fun
tions gv on divisors on X( �F ) whi
h are disjointat the generi
 �ber for ea
h pla
e v of F by multiplying the Green's fun
tions on XUby vol(U).



94 S. W. ZHANGHeight pairing of CM-points. Let � = �� be a divisor on XU de�ned by ananti
y
lotomi
 idele 
lass 
hara
ter � of K of degree �, where U = ker��. Noti
ethat � is nonzero only if � is trivial. Let z = [� � � � �℄ denote the 
lass of � � � � �in Ja
(XU ). Noti
e that this 
lass a
tually lives in Ja
(X)(L)
 C where L is a �niteabelian extension �xed by the kernel of �. The linear fun
tionala �! jajhz;Taziis now the Fourier 
oeÆ
ient of a 
uspform 	 of weight 2:(6.2.6) b	(a) = jajhz;Tazi:In the following we want to express this height in terms of interse
tions modulo someEisenstein series and theta series.Let �� be the arithmeti
 
losure of � with respe
t to ��. Then the Hodge indextheorem gives jajhz;Tazi =� jaj ��� � ��; Ta�� � degTa ���=� jaj(��;Ta��) + bE(a);where bE(a) is the Fourier 
oeÆ
ient of 
ertain derivations of Eisenstein series.The divisor � and Ta� has some 
ommon 
omponent. We want to 
ompute its
ontribution in the interse
tions. Let r�(a) denote the Fourier 
oeÆ
ients of the thetaseries asso
iated to �: r�(a) =Xbja �(b):The we have the following:Lemma 6.2.1. The divisor T0a� := Ta� � r�(a)�is disjoint with �.Proof. The multipli
ity of � in Tm� is given by the following integralZT (A)nG(A f ) Ta�(x)��(x)dx = Ta�(1)where �(x) is supported on T (A f )U with 
hara
ter �. In our terminology in x4.2,this is `(m; 0) and is 
omputed previously in Lemma 4.2.1.In summary, we have shown that the fun
tionala �! jajhz;Taziis essentially given by the sum of lo
al interse
tions� 1[L : F ℄Xv X�2Gal(L=F ) gv(T0a��; ��)jaj log qv



GROSS-ZAGIER FORMULA FOR GL2 95modulo some derivations of Eisenstein series, and �(�)
�1=2, (where L is the sub�eldof �F �xed by the kernel of �). The Galois a
tion of Gal(Kab=F ) is given by 
lass �eldtheory � : Gal(Kab=F ) �! NT (F )nNT (A f );and the left multipli
ation of the group NT (A f ). It follows that if � is de�ned by afun
tion �(g) on T (F )nG(A f ), and �� is de�ned by �(�(�)�1g).If �(�) 2 T (F )nT (A f ), then �(�(�)�1g) = ��1(�)�(g). Otherwise,�(�) = �(�0) � � 2 T (F )nT (A f )�;then �(�(�)g) = �(�0)�(�g) = T��(�g�):Noti
e that �(�g�) de�ne the divisor �� 
orresponding to the 
hara
ter ��. Sin
e Ta isself-adjoint and 
ommutes with 
omplex 
onjugation,gv(T0a��; ��) = gv(��;T0a��) = gv(T0a��; ��) = gv(T0a�; �):Thus, we have proved the following.Lemma 6.2.2. Modulo the derivations of �1 and r�, the fun
tional of heightpairing a �! jajhz;Taziis the sum �jajXv gv(�;T0a�) log qv:Noti
e that for two CM-divisors A and B onXU with disjoint support representedby two fun
tions � and  on T (F )nG(A f ), the Green's fun
tion at a pla
e v dependsonly on � and  . Thus we may simply denote it asgv(A;B) = gv(�;  ):6.3. Green's fun
tionsIn this se
tion we are going to 
ompute the Green's fun
tion of CM-points usingformulas obtained in Chapter 4.Ar
himedean 
ase. For ea
h ar
himedean pla
e �i of F , the Riemann surfa
eX 
�i C is a
tually de�ned by the same way as X 
� C with �1 repla
ed by �i. Thusit suÆ
e to 
ompute the Green's fun
tion over the original pla
e � .The 
omplex points of X = XU are identi�ed with(6.3.1) X(C ) = G(F )nH� �G(A f )=Uwhi
h is really a disjoint union of 
urves of the type�nH:
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ase, the �� has 
urvature proportional to the hyperboli
 metri
 dxdy=y2 forz = x+ yi 2 H. The set of CM-points is identi�ed with T (F )nG(A f )=U .The Green's g� (x; y) on X is nonzero only if both x and y are in the same
onne
ted 
omponent. In this 
ase, it is given by the 
onstant term as s ! 0 of thefollowing 
onvergent series for Re(s) > 0:(6.3.2) X
2�Qs�1 + jx� 
yj22ImxIm
y�where(6.3.3) Qs(t) = Z 10 �x+pt2 � 1 
oshx��1�s dx:We refer to Gross [18℄ and Gross-Zagier [20℄ for more details.Noti
e that if x = gi; y = hi thenjx� yj22ImxImy = �2�(g�1h);where � is a fun
tion on T (R)nGL2(R)=T (R) de�ned as before.Lets de�ne a fun
tion ms on T (F )nG(F )=T (F ) as follows:(6.3.4) ms(g) = (Qs(1� 2�(g� )) if �(g� ) < 0,0: otherwise.ThenLemma 6.3.1. For two CM-points x; y 2 X(C ), the Green's fun
tion at � isgiven by the 
onstant term of a geometri
 pairing as de�ned in x4.1 with multipli
ityfun
tion ms.Proof. Extend m to a fun
tion on T (F )nG(F )=T (F ) � G(A f ) with support onT (F )nG(F )=T (F )� feg. Then we need to show thatgs(x; y) = X
2G(F )ms(g�1
h);where g; h are two elements in G(A f ) representing x and y. Indeed, if the right handside is nonzero then there is a 
0 2 G(F ) su
h that g�1
h has �nite 
omponent inU and su
h that 
 has positive determinant. It follows that x and y are in the same
onne
ted 
omponent. It is easy to show that gs(x; y) has the same expression asbefore.Ordinary 
ase. We now want to 
onsider the Green's fun
tion at a prime } ofF whi
h is split in K. For U = U}U} we have shown the following for the modelMU : 1. the set of ordinary points is given byK�n(N(F})nGL2(F}))�G(A }f )=U ;2. the spe
ial �ber �MU;F over } has 
onne
ted 
omponents indexed byG(F )+nG(A f )=U ;
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h 
omponent is a union of irredu
ible 
omponents indexed byP1(F})=U};4. every two irredu
ible 
omponents interse
ts at the set of supersingular pointsindexed by G(F )nG(A f )=U 0;where U 0 = U 0} � U} with U 0} is the maximal 
ompa
t subgroup of G(F}).In the following we want to 
ompute the Green's fun
tion g} for CM-divisors A;Brepresented by fun
tions � and  on T (F )nG(A f )=U . Let L be a �nite extension ofF where every point in A;B is rational and let XU;L be the minimal resolution ofsingularity of M
OL. Then we have the de
ompositiong}(A;B) = i}(A;B) + j}(A;B):Noti
e that in general i; j depends on U but when U} is suÆ
iently small, theni(A;B); j(A;B) will not depend on U for �xed � and  . This is be
ause the morphismMU1;} �!MU2;}is smooth at ordinary points when U}i are suÆ
iently small. So we have a well de�nedde
omposition g}(�;  ) = i}(�;  ) + j}(�;  ):First let's start to 
ompute the geometri
 interse
tion index i}(��;T0a��) usingLemma 5.5.1. Let d�(g) be a distribution on G(A f ) supported on N(F}) over whi
hit is indu
ed by the multipli
ative measure on F�} :d��1 x0 1� = d�x = 11� q�1 dxjxj :De�ne a distribution d�(x; y) on [T (F )nG(A f )℄2 su
h that for any �(x; y) 2S(T (F )nG(A f ))(6.3.5) Z �(x; y)d�(x; y) = ZT (F )nG(Af ) dx ZG(Af ) �(x; gx)d�(g);where dx is a measure on G(A f ).Lemma 6.3.2. The geometri
 interse
tion index of CM-divisors is given by thefollowing distribution. Let A and B be two CM-divisors on XU represented by twofun
tions � and  on T (F )nG(A f )=U . Theni}(A;B) = Z �(x) � (y)d�(x; y):Proof. It is easy to see that both sides are additive in both B and A and areinvariant under the a
tion by G(A f ). Thus it is suÆ
ient to prove the lemma in the
ase where A = U , B = �1 a0 1�U ,U} = (1 + }nM2(O}));



98 S. W. ZHANGand n � ord(a) + 1. Then Lemma 5.5.1 givesi}(A;B) = vol(U) 1qn�ord(x)�1(q � 1) ;where q = N(}). On the other hand, its is easy to obtain thatZ �(x) � (y)d�(x; y) = vol(U) Zjx�aj�j�jn d�x = vol(U) j�jn(1� q�1)jaj :The lemma now follows.Lemma 6.3.3. The lo
al interse
tion index is given byi}(�;T0a�) = r�(a0) Xi+j=nv �(�)i�jj logN(}) =: r}�(a)where a = a0}n} is the primary de
omposition.Proof. The interse
tion we want is(�;T0a�)} = Z[T (F )nG(Af )℄2 T0a�(x)��(y)d�(x; y)= ZT (F )nT (Af ) ��(y)dy ZG(Af )T0a�(gy)d�(g)=vol(T (F )nT (A f )) ZG(Af ) T0a�(g)d�(g):Write a = a0}n with a0 prime to }. Re
all that T0m� is simply the part of Ta�restri
ted to the 
omplement of T (A f )U . Thus, on the support of the distribution ofm, T0a� is simply T0}n�} �Ta0�}:Thus the last integral here is a produ
t of two integralsZG(A}f ) Ta0�}(x)d�(x) = Ta0�}(1) = r�(a0);and ZFv T0}n��1 x0 1� dx�:This integral is zero if n = 0.



GROSS-ZAGIER FORMULA FOR GL2 99If n > 0, then U} is the maximal GL2(O}), and this last integral isZjxj>1T}n��1 x0 1� dx�=Zjxj>1 Xi+j=nvy2Ov=�i �} ��1 x0 1���i y0 �j�� dx�=Zjxj>1 Xi+j=nvy2Ov=�i �} ���i 00 �j��1 y��i + x�j�i0 1 �� dx�= Xi+j=nv �(�)i�j Xx2��jOv=Ov�f0g qord(x)(q � 1)�1= Xi+j=nv �(�)i�jj:Write r0�(a) for the sum of all r}�(a), whi
h is a �nite sum over } j a. Then it iseasy to see that r0�(a) is one derivative for r�(a), i.e., for any 
oprime a, n,r0�(ab) = r�(a)r0�(b) + r0�(a)r�(b):We now 
ompute the Green's fun
tion for CM-points. Sin
e the He
ke operatorT` for ` 6= } a
ts trivially on P1(F})=U}, the set of ordinary 
omponents. Thus, wehave the following identity of the pairingsj(�;T0a�) = deg(T0a)j(�; �):In summary, we have shown the followingLemma 6.3.4. For an ordinary pla
e }, the fun
tiona �! jajg}(�;T0a�)is a sum of an Eisenstein series and a derivation of the theta series�(�)
 �1=2:Supersingular 
ase. We now want to handle the 
ase where } is a �nite primeof F whi
h is split in B but not split in K. Then all CM-points will have supersingularredu
tion. The redu
tion takes the following form:(6.3.6) T (F )nG(A f )=U �! G0(F )nF�} �G(A }f )=U;where G0 = (B0)� with B0 a de�nite quaternion algebra obtained from B by 
hanginginvariants at } and � . Noti
e that this redu
tion is taken on some base 
hanges ofthe original models. So the redu
tions may not be regular points. To do interse
tiontheory one must use the minimal regular models. The redu
tion should then take adi�erent form.First, let's treat the simplest 
ase where K=F is unrami�ed at } and where U}is the maximal 
ompa
t subgroup GL2(O}). In this 
ase the redu
tion is given by(6.3.7) T (F )nG(A f )=U �! G0(F )nG0(A f )=U 0;



100 S. W. ZHANGwhere U 0 = U 0} � U} with U 0} = O�B0;}. Here we have used the identi�
ationG(F})=U} ' G0(F})=U 0} ' Z=2Z:Noti
e that MU;} has smooth spa
ial �ber if U} is suÆ
iently small. The inter-se
tion is given by a distribution onX 0} := �(x; y) 2 G0(F})�T (F}) G(F}) : j det(x) det(y)j} = 1	given in Lemma 5.5.2. More pre
isely, we have:Lemma 6.3.5. For any g2 2 G(F}), Let m(g1; g2) be a fun
tion onG0(F )�G0(A f )with support on G0(F ) given by Lemma 5.5.2. For two disjoint CM divisors repre-sented by two fun
tions � and  on T (F )n eG(A }f )=U supported onT (F )tU} �G(A }f ); T (F )�U} �G(A }f )respe
tively, with t 2 T (F}) and � 2 G(F}). Then, the Green's fun
tion is given byg}(�;  ) = Z[T (F )nG0(Af )℄2 �0(x) X
2G0(F )m(x�1
��1y) � 0(y)dxdywhere �0 and  0 are fun
tions on T (F )nG0(A f )=U 0 supported onT (F )U 0} �G0(A }f );su
h that �0(1; g}) = �(t; g});  0(1; g}) =  (�; g}):Proof. It is easy to see that both sides are additive in � and  and invariant underthe a
tion of G(A }f ). Thus, we may assume that � is the 
hara
teristi
 fun
tion ofT (F )tU , and that  is the 
hara
teristi
 fun
tion of some T (F )yU for some y 2 G(A f )with y} = �. Now g}(�;  ) 6= 0 only if they have the same redu
tion or equivalently,for some 
0 2 G0(F ), y 2 
0U 0. In this 
ase, the interse
tion is given byvol(U)m(
�10 x; y}) = vol(U)m(
�10 ; y}):On the other hand the integral is given byvol(U) X
2G0(F )m(
y) = vol(U)m(
�10 ; y}):Lemma 6.3.6. Assume that K} is unrami�ed over F}. For n a non-negativeinteger, de�ne a fun
tion on G0(F ) bymn(
) =8><>: 12ord}(�(
)�1+n) if �(
) 6= 0, ord}(�(
)�n) is odd,n=2 if �(
) = 0, n is even,0 otherwise.



GROSS-ZAGIER FORMULA FOR GL2 101For two disjoint CM divisors represented by two fun
tions � and  onT (F )nT (F})U} �G(A }f )=U ' T (F )nT (F})U 0} �G(A }f )=U 0whi
h are invariant under the a
tion from left hand side by T (F}), the lo
al interse
-tion index is given by the geometri
 pairing for the multipli
ity fun
tion mn:g}(�;T}n ) = Z[T (F )nG0(Af )℄2 �(x) X
2G0(F )mn(x�1
y) � (y)dxdy:Proof. Consider the de
ompositionG(F}) = 1a
=0T (F})��
 00 1�GL2(O});and de�ne 
onstants,

 = T}n } ��
 00 1� � vol�T (F})��
 00 1�GL2(O})� :Then by Lemma 6.3.5,g}(�;  ) = Z[T (F )nG(Af )℄2 �(x) X
2G0(F )m0 �x�1
y� � (y)dxdy;where m0(g) is a distribution on G0(A f ) supported on G0(F}) su
h thatm0(
) =X
�0m�
 ���
 00 1�� 

:We now want to 
ompute 

. Noti
e that in our 
ase, �} is a
tually the 
hara
-teristi
 fun
tion of PGL2(O}). It follows thatT}n�}��
 00 1� = Xi+j=nx mod �i �} ���
 00 1���i x0 �j��= Xi+j=nx mod �i �} ��i+
 x�
0 �j �=(1 if n� 
 is even and � 0,0 otherwise.On the other hand,vol�T (F})��
 00 1�GL2(O})� =#(OK;}=�
)�=(O}=�
)�=(1 if 
 = 0,q
�1(q + 1) if 
 > 0.
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 =8><>:1 if 
 = 0, n is even,q
�1(q + 1) if n� 
 is even, n � 
 > 0,0 otherwise.By Lemma 5.5.2, we havem0(
) =8>>><>>>: 12ord}(�(
)�n+1) if both n, ord}(det 
) are even, and �(
) 6= 0,n=2 if both n, ord}(det 
) are even, � = 0,(n+ 1)=2 if both n, ord(det 
) are odd0 otherwise.We want to show that m0 = mn. Write 
 = a + b� with a; b 2 OK;}, �x = �x� �2 2 �,(a; b) = 1. Then �(
) = �N(b)�= det(
); det 
 = N(a)�N(b)�:If a is invertible then ord}(det 
) = 0 and �(
) = 0 or ord}(�(
)) is odd. If a is notinvertible, then ord}(det(
)) = 1, and ord}(�(
)) = 0.We want now to treat the 
ase where U} is not maximal. We will only 
onsiderso 
alled spe
ial CM-points. By blowing up the models we may assume that theredu
tion fa
tors the following map(6.3.8) T (F )nT (F})U} �G(A }f )=U �! G0(F )nG0(A f )=U 0;where U 0 = U 0} � U} with(6.3.9) U 0} = (OK;} + 
(�)OK;}�)�;where � is as before: �x = �x� for any x 2 K, and �2 2 F} with ord(�2) = 0; 1.Lemma 6.3.7. The lo
al interse
tion is given by a 
ertain distribution m onG0(A f ). For any two CM-divisor represented by fun
tions � and  on T (F )nG(A f )=Uwhose 
omponents at } are supported on T (F})U} with 
hara
ter �, we haveg}(�;  ) = h�;  i0 + Z[T (F )nG0(Af )℄2 �(x)k(x; y) � (y)dxdy:Here h�; �i0 is the geometri
 pairing de�ned by the multipli
ity fun
tionm(
) = ( 12ord}(�(
)) if 0 < j�(
)j < 1,0 otherwise,and k(x; y) is a lo
ally 
onstant fun
tion on [G0(F )nG0(A f )℄2.Proof. We will use the minimal resolution of the singularly XU;L of XU 
 L to
ompute Green's fun
tion. Thus we have a de
ompositiong}(�;  ) = i}(�;  ) + j}(�;  ):By Lemma 5.5.2, 5.5.4, 6.3.6, the interse
tion index i}(�;  ) 
an be given by a formulawith the same property des
ribed in the lemma. The fun
tion j}(�;  ) is lo
ally
onstant so must be given by a lo
ally 
onstant kernel.
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ial 
ase. We now assume that } is not split in B. The redu
tion ofCM-points whi
h is se
ial at } fa
tors the following map(6.3.10) T (F})nT (F})U}G(A }f )=U �! G0(F})nG(A }f )=U 0where U 0 = U 0} � U} with(6.3.11) U 0} = (OK;} + 
(�)OK;}�)�:Lemma 6.3.8. The lo
al interse
tion is given by a 
ertain distribution m onG0(A f ). For any two CM-divisor represented by fun
tions � and  on T (F )nG(A f )=Uwhose 
omponents at } are supported on T (F})U} with 
hara
ter �, we haveg}(�;  ) = h�;  i0 + Z[T (F )nG0(Af )℄2 �(x)k(x; y) � (y)dxdy:Here h�; �i0 is the geometri
 lo
al pairing de�ned by the multipli
ity fun
tionm(
) = ( 12ord}(�(
)) if 0 < j�(
)j < 1,0 otherwise.and k(x; y) is a lo
ally 
onstant fun
tion on [G0(F )nG0(A f )℄2.Proof. Use Lemma 5.5.5, 5.5.6 and the same argument as in the proof of Lemma6.3.7.6.4. Gross-Zagier formula for 
entral derivativesIn this se
tion we will 
omplete the proof of Gross-Zagier formula (Theorem 1.3.2) forthe derivatives of Rankin's L-series, by 
omparing heights of CM-points and Fourier
oeÆ
ients of the kernel fun
tion of the Rankin-Selberg 
onvolution. The prin
iple isas same as that in Gross-Zagier's original paper [20℄. Up to a 
onstant and modulosome negligible forms, the new form 	 with Fourier 
oeÆ
ient(6.4.1) b	(a) := jajh�;Ta�iis equal to the holomorphi
 
usp form � de�ned in x3.5 whi
h represents the derivativeof Rankin L-fun
tion L0(1=2;� 
 �). Thus we need to show that the fun
tionala �! b	(a) is equal to the Fourier 
oeÆ
ient a �! b�(a) for for a 2 NF (ND), thesemigroup of integral ideals of OF prime to ND.In x3.5 and x6.2, up to derivations of Eisenstein series and theta series �(�)
�1=2,we have de
omposed both b�(a) and b	(a) into a sum of lo
al terms b�v(a) and b	v,where(6.4.2) b	v(a) := �jajgv(�v ;T0a�)v log qv :Thus, it suÆ
es to 
ompare these lo
al terms for ea
h pla
e v of F and ea
h idele
lass a 2 NF (ND). We need only 
onsider v whi
h is not split in K, sin
e b�v = 0and b	v is quasi-Eisenstein.Our main tool is the pre-Gross-Zagier formula, Corollary 4.3.3, for quaternionalgebra vB with rami�
ation set(6.4.3) v� = (� [ fvg if v =2 �,� n fvg if v 2 �.Let vG denote the algebrai
 group vB�=F�.
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himedean 
ase. Lemma 6.4.1. For v an in�nite pla
e,b�v(a) = 2g+1j
(!)j1=2 b	v(a):Proof. By Proposition 3.5.5, b�v(a) is the 
onstant term at s = 0 of a sum over� 2 F su
h that 0 < �w < 1 for all in�nite pla
e w 6= v and �v < 0 of the followingterms: (2i)g!1(Æ1)j��j1=21 � �Wf �1=2; �; �;�aÆ�1f 00 1�� � Z 11 �dxx(1 + j�jvx)1+s :By the pre-Gross-Zagier formula, Corollary 4.3.2, b�v(a) is thus equal to the 
on-stant term at s = 0 of �2gj
(!)j1=2jajhTa�; �is;for a geometri
 pairing of CM-points T (F )nvG(A f ) with multipli
ity fun
tion mvs onT (F )nvG(F )=T (F ). Further, mvs(g) 6= 0 only if �(g)v < 0; in this 
ase it is given bymvs(g) = Z 11 dxx(1 + j�jvx)1+s :Now, by Lemma 6.3.1, gv(�;T0a�) is the 
onstant term of a geometri
 pairing of� and Ta� with multipli
ity fun
tion ms = Qs(1 � 2�) supported on � < 0. Noti
ethat as a fun
tion of �, one has2Qs(1 + 2j�j) = Z 11 dt(z +pz2 � 1 
osh t)1+s = Z 11 (x � 1)sdxx1+s(1 + j�jx)1+s :It follows that b	(a)� 2g+1j
(!v)j1=2b�(a)is the 
onstant term of a geometri
 pairing of � and Ta� with multipli
ity fun
tionms � 2Qs:It is not diÆ
ult to show thatms � 2Qs = O(j�j�s�2)as j�j �! 1, and vanishes at s = 0. Thus if we use the di�eren
e to de�ned theinterse
tion pairing, then it vanishes at s = 0.Unrami�ed 
ase. If v is a �nite pla
e, by Proposition 3.5.5 b�v(a) is a sum over� 2 F with 0 < � < 1 of the following terms:(2i)gj��j1=21 � �W vf �1=2; �; �;�aÆ�1f 00 1�� � �W 0v �1=2; �; �;�aÆ�1f 00 1�� :We want to write this as the geometri
 pairing on T (F )nvG(A f ) of � and Ta0� wherea = �na0 (} - a0), and � is the standard fun
tion on T (F )nG0(A f )=U 0 with 
hara
ter�, and U 0 = U 0}U} with U 0} = (OK;} + 
(�)OK;}�)�:
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onsider the unrami�ed 
aseLemma 6.4.2. Let v be a pla
e of F where ! and � are both unrami�ed andordv(N) = 0. Then there is a 
onstant 
 su
h thatb�v(a)� 2g+1j
(!)j1=2 b	v(a) = 
 log jajv � jaj1=2b�(�)(a):Proof. By Lemma 3.4.5,W 0v �1=2; �; �;�aÆ�1f 00 1�� 6= 0;only if ordv(�a) is even and nonnegative, and ordv(�a) is odd and positive; in this
ase it is given by �(!v;  v)j��j1=2v jajv log j�ajv:Thus, we see that up to a multiple ofjaj1=2b�(�)(a) log jajv;the fun
tional b�(a) is equal to 2gj
(!)j1=2h�;Ta�ifor a geometri
 lo
al pairing on T (F )nvGs(A f ) with multipli
ity fun
tionma(�) whi
his nonzero only if ordv(�a) is odd and positive, and ordv(�a) is even and nonnegative.In this 
ase ma(�) = log j�a�jv :Here � is the standard fun
tion on G(A f ) with maximal support at T (A f ) bR� with
hara
ter �, where Rw is as before for w 6= v, and Rv is the maximal order of thede�nite quaternion algebra vBv .As a fun
tion of � = �(
), we 
laim thatma(
) = �2mn(
) log qv ;if � 6= 0; 1, where mn is given by Lemma 6.3.6. In other words, we want to show thatmn(
) 6= 0 only if ord((1 � �)�n) is even and nonnegative, and ord(��n) is positiveand odd, and in this 
ase In this 
ase,mn(
) = 12ord(��n+1):We need only 
he
k the positivity. Write
 = a+ b�whose norm at } is either 0 or 1. In the �rst 
ase, ord(�) is odd and positive, and inthe se
ond 
ase, ord(1� �) is odd and positive.
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ase. We now want to treat the 
ase where v is a rami�ed pla
e for f ,�, or !. In this 
ase we will not be able to prove the identity as in the ar
himedean
ase, or the unrami�ed 
ase. But we 
an prove the following:Lemma 6.4.3. For v a �nite pla
e, the di�eren
eb�(a)� 2g+1j
(!)j1=2 b	(a) = 
jaj1=2b�(�)(a) +v bfwhere 
 is a 
onstant, and v bf is a form on vG(F )nvG(A f ). Moreover, the fun
tionvf has 
hara
ter � under the right translation by K�v .Proof. We will only 
onsider so 
alled spe
ial CM-points. As in the unrami�ed
ase, using Lemma 3.4.6 and 3.4.7, one 
an show that b� is equal the geometri
 lo
alpairing of 2gj
(!))j1=2jajh�;Ta�ifor a multipli
ity fun
tion m(g) on vG(F ) with singularitylog j�jv:On other hand, by Lemma 6.3.7, and 6.3.8, we know thatb	(a) = �gv(�;T0a�) log qvis also a geometri
 pairing with singularity12 log j�jv :Thus, b�(a)� 2g+1j
(!)j1=2 b	(a);is a geometri
 pairing without singularity. In other words, it is given byZ[T (F )nvG(Af )℄2 �(x)k(x; y)Ta�(y)dxdy;for k(x; y) a lo
ally 
onstant fun
tion of (vG(F )nvG(A f ))2. The lemma now follows,sin
e we de
ompose k(x; y) =Xi 
i(x)fi(y)into eigenfun
tions fj for He
ke operators on vG(F )nvG(A f ) to obtainXi �i(a) ZT (F )nvG(Af ) �(x)
i(x)dx � ZT (F )nvG(Af ) fi(y)��(y)dy;where �(a) is the eigenvalue of Ta for fi. Thus we may takevf =Xi ZT (F )nvG(Af ) �(x)
i(x)dx � ZT (F )nvG(Af ) fi(y)��(y)dy:
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lusion of Proof of Theorem 1.3.2. In summary, at this stage we haveshown that the quasi-newform �� 2g+1j
(!)j1=2	has Fourier 
oeÆ
ients whi
h are a sum of the following terms:� derivations A of Eisenstein series,� derivations B of theta series �(�) 
 �1=2,� fun
tions vf appearing in vG(F )nvG(A f ) with 
hara
ter � under the righttranslation of K�v , where v are pla
es dividing DN .By linear independen
e of Fourier 
oeÆ
ients of derivations of forms [31℄ Propo-sition 4.5.1, we may 
on
lude that A = B = 0.Let � now be the representation de�ned by the form f in the introdu
tion andlet vf� be its proje
tion in �. If vf� 6= 0 then both ��v and (�0v)� are nonzero.If � is trivial, then this is a 
ontradi
tion by Theorem 2.3.2.If � is nontrivial then �v must be spe
ial with unrami�ed twist. Thus, (�0v) isgiven by an unrami�ed 
hara
ter. Thus � is unrami�ed and K=F is rami�ed at v.This 
ontradi
ts Lemma 2.3.4.In summary we have shown that � � 2g+1j
(!)j1=2	 has trivial quasi-newformproje
tion. By Proposition 3.1.3, we thus obtainL0(1=2;�
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