Explicitly Computing With Modular Abelian Varieties

William Stein Harvard University

June 18, 2003 Computational Arithmetic Geometry Workshop in Sydney

Overview of Talk

- 1. Modular Abelian Varieties
- 2. Computerizing Modular Abelian Varieties
- 3. Computing Endomorphism Rings of Modular Abelian Varieties of Level N

Abel

Modular Abelian Varieties

Abelian variety: A complete group variety

Examples:

- 1. Elliptic curves, e.g., $y^2 = x^3 + ax + b$
- 2. Jacobians of curves
- 3. Quotients of Jacobians of curves

The Modular curve $X_1(N)$

Let $\mathfrak{h}^* = \{z \in \mathbb{C} : \Im(z) > 0\} \cup \mathbb{P}^1(\mathbb{Q}).$

Hecke

- 1. $X_1(N)_{\mathbf{C}} = \Gamma_1(N) \setminus \mathfrak{h}^*$ (compact Riemann surface)
- 2. In fact, $X_1(N)$ is an algebraic curve over \mathbf{Q}
- 3. $X_1(N)(\mathbf{C}) = \{(E, P) : ord(P) = N\} / \sim (moduli space)$

1. Cuspidal modular forms

$$S_2(N) = H^0\left(X_1(N), \Omega^1_{X_1(N)}\right)$$

2. $f \in S_2(N)$ has $q(z) = e^{2\pi i z}$ -expansion:

Modular forms

$$f = \sum_{n=1}^{\infty} a_n q^n$$

3. Hecke algebra (commutative ring):

$$\mathbf{T} = \mathbf{Z}[T_1, T_2, \ldots] \hookrightarrow \mathsf{End}(S_2(N))$$

The Modular Jacobian $J_1(N)$

Jacobi

1. Jacobian of $X_1(N)$:

 $J_1(N) = \operatorname{Jac}(X_1(N))$

- 2. $J_1(N)$ is an abelian variety over **Q** of dimension $g(X_1(N))$.
- 3. The elements of $J_1(N)$ parameterize degree 0 divisor classes on $X_1(N)$.

Modular Abelian Varieties

A modular abelian variety A over a number field K is any abelian variety quotient (over K) Shimura

In other words, an abelian variety is **modular** if there exists a surjective morphism $J_1(N) \rightarrow A$.

 $J_1(N) \longrightarrow A.$

Examples and Conjectures

Suppose dim A = 1.

- Theorem (Wiles, Breuil, Conrad, Diamond, Taylor). If $K = \mathbf{Q}$ then A is modular.
- Theorem (Shimura). If A has CM then A is modular.
- Definition: A over Q is a Q-curve if for each Galois conjugate A^σ of A there is an isogeny A → A^σ.
 Conjecture (Ribet, Serre). Over Q the non-CM modular elliptic curves are exactly the Q-curves.

Ken Ribet

Defn. A/Q is of (primitive) GL_2 -type if

GL₂-type

$$\operatorname{End}_0(A/\mathbf{Q}) = \operatorname{End}(A/\mathbf{Q}) \otimes \mathbf{Q}$$

is a number field of degree $\dim(A)$.

Shimura associated GL_2 -type modular abelian varieties to T-eigenforms:

$$f = q + \sum_{n \ge 2} a_n q^n \in S_2(N)$$
$$I_f = \operatorname{Ker}(\mathbf{T} \to \mathbf{Q}(a_1, a_2, a_3, \ldots)), \ T_n \mapsto a_n$$

Abelian variety A_f over \mathbf{Q} of dim = [$\mathbf{Q}(a_1, a_2, ...)$: \mathbf{Q}]:

$$A_f := J_1(N) / I_f J_1(N)$$

Theorem (Ribet). Shimura's A_f is Q-isogeny simple since

$$\operatorname{End}_0(A_f/\mathbf{Q}) = \mathbf{Q}(a_2, a_3, \ldots).$$

Also $J_1(N) \sim \prod_f A_f$, where the product is over Galois-conjugacy classes of f.

Conjecture. (Serre, Ribet) If A/Q is of GL_2 -type, then A is modular.

2. Computerizing Abelian Varieties

Motivating Problem: Given N, "list" the modular abelian varieties $A/\overline{\mathbf{Q}}$, that are quotients of $J_1(N)$. Much work towards this by the Barcelonians Josep and Enrique González and Joan-C. Lario, building on work of Shimura, Ribet, and others. See Lario and Gonzalez, \mathbf{Q} -curves and their Manin Ideals.

Representation: $J_1(N)(\mathbf{C}) \cong V/\Lambda$,

where

 $V = \text{ complex vector space of } \dim d = \dim J_1(N)$ $\Lambda = \text{ lattice, so } \Lambda \cong \mathbf{Z}^{2d} \text{ and } \mathbf{R}\Lambda = V$

Quotients of $J_1(N)$

If $A(\mathbf{C}) = V_A / \Lambda_A$ then surjective morphism $\pi : J_1(N) \to A$ induces

$$\pi_V : V \to V_A \text{ and } \pi_{\Lambda} : \Lambda \to \Lambda_A$$

with $Coker(\pi_{\Lambda})$ finite.

Notice that π and $A = J_1(N) / \text{Ker}(\pi)$ are determined by π_{Λ} . So if we had an explicit map $J_1(N)(\mathbf{C}) \cong V / \Lambda$, we could specify Aby giving a map $\Lambda \to \Lambda_A \cong \mathbf{Z}^n$ with finite cokernel.

Modular Symbols

Modular symbols are a model for

Manin

 $\Lambda \cong H_1(X_1(N), \mathbf{Z})$

on which one can give formulas for Hecke and other operators.

Intensively studied by Birch, Manin, Shokurov, Mazur, Merel, Cremona, and others.

Let $S_2(N)$ denote the space of modular symbols for $\Gamma_1(N)$. There is an explicit finite Manin symbols presentation for $S_2(N)$ and map from pairs $\alpha, \beta \in \mathbf{P}^1(\mathbf{Q})$ to $\{\alpha, \beta\} \in S_2(N)_{\mathbf{Q}}$; here $\{\alpha, \beta\}$ corresponds to the homology class in $H_1(X_1(N), \mathbf{Q})$ defined by path in \mathfrak{h}^* from α to β . We have $S_2(N) \cong H_1(X_1(N), \mathbf{Z})$.

Specifying a Modular Abelian Variety (I)

DATA: A homomorphism $S_2(N) \to \mathbb{Z}^n$ for some N and n.

This data completely specifies a modular abelian variety A.

Note that **not** just any homomorphisms defines a modular abelian variety, but any modular abelian variety can be "recorded" by giving such a homomorphism. I do not know an algebraic way to decide whether such data in fact defines a modular abelian variety.

Dirichlet Character Decomposition

There is an action of $(\mathbf{Z}/N)^*$ on $\mathcal{S}_2(N)$ by "diamond bracket operators".

Let $\varepsilon : (\mathbf{Z}/N)^* \to \mathbf{C}^*$ be a Dirichlet character and set $K = \mathbf{Q}(\varepsilon)$. The space $\mathcal{S}_2(N,\varepsilon)_{\mathbf{Q}}$ is the biggest quotient of $\mathcal{S}_2(N)_K$ on which $(\mathbf{Z}/N)^*$ acts through ε . We view $\mathcal{S}_2(N,\varepsilon)_{\mathbf{Q}}$ as a **Q**-vector space by restriction of scalars.

Lattice Structure on $S_2(N,\varepsilon)_Q$

There is a decomposition

$$\mathcal{S}_2(N)_{\mathbf{Q}} = \bigoplus_{\{\varepsilon\}} \mathcal{S}_2(N,\varepsilon)_{\mathbf{Q}},$$

where the sum is over all Galois-conjugacy classes of mod N Dirichlet characters.

The image of $\mathcal{S}_2(N)$ in $\mathcal{S}_2(N,\varepsilon)_{\mathbf{Q}}$ defines a lattice $\mathcal{S}_2(N,\varepsilon)$.

Computing with $S_2(N,\varepsilon)$ is typically much more practical than computing with $S_2(N)$. For example, dim $S_2(N,1) = 334$, whereas dim $S_2(N) = 332334$.

Specifying a Modular Abelian Variety (II)

DATA: A homomorphism $S_2(N,\varepsilon) \to \mathbb{Z}^n$ for some N, n, and ε .

Since there is a natural homomorphism $S_2(N) \to S_2(N, \varepsilon)$, the above data completely specifies a modular abelian variety A.

3. Endomorphism Rings

A Motivating Problem. Compute $End(J_1(N)/\overline{\mathbf{Q}}) \subset End(\Lambda) \cong Mat_{2d \times 2d}(\mathbf{Z})$ with action of $Gal(\overline{\mathbf{Q}}/\mathbf{Q})$.

Solving this problem would facilitate computation of $End(A/\overline{\mathbf{Q}})$ for any modular abelian variety A, and listing all modular A.

End(A) versus $End_0(A)$

Suppose $A(\mathbf{C}) = V/\Lambda$. Given

 $\operatorname{End}_{0}(A) = \operatorname{End}(A) \otimes \mathbf{Q} \subset \operatorname{End}(A \otimes \mathbf{Q}),$

it is easy to compute End(A), since

$$\mathsf{End}(A) = \{\varphi \in \mathsf{End}_0(A) : \varphi(\Lambda) \subset \Lambda\}$$
$$= \mathsf{End}_0(A) \cap \mathsf{Mat}_{2d \times 2d}(\mathbf{Z}).$$

Inner Twists

Theorem (Ribet, Math. Ann. 1980): Ribet Description of generators for $End_0(A/\overline{Q})$.

Let $f = \sum a_n q^n \in S_2(N)$ be T-eigenform, and $E = \mathbf{Q}(a_1, a_2, ...)$. Let T be the set of inner twists, i.e., Dirichlet characters χ such that there exists $\gamma_{\chi} : E \to \mathbf{C}$ such that for all $p \nmid N$ we have $\chi(p)a_p = \gamma_{\chi}(a_p)$. (The γ form an abelian group and $\gamma_{\chi} \mapsto \chi$ is a 1-cocycle.) Then

$$\operatorname{End}_{0}(A_{f}/\overline{\mathbf{Q}}) = \bigoplus_{\chi \in T} E \cdot \eta_{\chi},$$

where η_{χ} is as defined by Shimura (and $\eta_{\chi}^2 = \chi(-1)r$). Also $\operatorname{End}_0(A_f/\overline{\mathbf{Q}})$ is a matrix ring over F=fixed field of all γ_{χ} or a matrix algebra over a quaternion division algebra with center F.

(Perhaps) Open Problem ????

Suppose $f \in S_2(N)$ is an eigenform with an inner twist by $\chi \neq 1$. Let $V \subset S_2(N, \varepsilon)_{\mathbf{Q}}$ be the subspace corresponding to f and its Galois conjugates. Efficiently compute η_{χ} on V.

Motivation: Needed to find $S_2(N,\varepsilon) \rightarrow \Lambda_A$ purely algebraically.

Shimura and Ribet: A formula for η_{γ} on modular forms. Let $r = \text{cond}(\chi)$. Then η_{γ} on $S_2(\text{lcm}(N, r^2, Nr))$ is given by

$$g \mapsto \sum_{u=1}^{r} \chi^{-1}(u)g|_{\begin{pmatrix} 1 & u/r \\ 0 & 1 \end{pmatrix}}.$$

By duality, the formula

$$x \mapsto \sum_{u=1}^{r} \chi^{-1}(u) \begin{pmatrix} 1 & u/r \\ 0 & 1 \end{pmatrix} (x)$$

defines η_{χ} on $S_2(\operatorname{lcm}(N, r^2, Nr)) \otimes \mathbb{Z}[\chi]$.

However, dim $S_2(\text{lcm}(N, r^2, Nr))$ can be huge! First example: N = 13, $\varepsilon : (\mathbb{Z}/13)^* \to \mu_6$, $\chi = \varepsilon^{-1}$, r = 13,

 $\operatorname{lcm}(N, r^2, Nr) = 169$

dim $S_2(169) = 2140$.

Conjecture (W. Stein). ???

Let $\gamma \in \text{Gal}(\mathbf{Q}(\varepsilon)/\mathbf{Q})$ be such that $\chi^2 \varepsilon = \gamma(\varepsilon)$. Let $N' = \text{Icm}(N, r^2, sr)$ where $r = \text{cond}(\chi)$ and $s = \text{cond}(\varepsilon)$. **Conjectural formula** for η_{χ} on $V \subset \mathcal{S}_2(N, \varepsilon)_{\mathbf{Q}}$:

$$\eta_{\chi}(x) = * \sum_{u=1}^{r} \chi(u)^{-1} \sum_{\begin{pmatrix} a & b \\ c & d \end{pmatrix}} \gamma(\varepsilon)(a) \cdot \left(\begin{pmatrix} 1 & u/r \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) \gamma(x),$$

where the inner sum is over $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N') \setminus \Gamma_0(N)$. (Here * is a nonzero scalar that does not depend on x and is easy to identify in practice from the fact that $\eta_{\chi}^2 = \chi(-1)r$. Guess: $* = \varphi(N'/N)$?)

Evidence

- 1. I've computed formula for every $f \in S_2(N)$ for $N \leq 49$ and it satisfies some consistency checks.
- 2. Formula motivated by formally composing

Example: $J_1(13)$

 $f = q + (-\omega - 1)q^2 + (2\omega - 2)q^3 + \omega q^4 + (-2\omega + 1)q^5 + \cdots$ where $\omega^3 = 1$. Character ε of f of order 6 and $\chi = \varepsilon^{-1}$ is inner twist. Using above formula, get

$$\eta_{\chi} = \begin{pmatrix} 0 & 3 & 0 & -4 \\ 3 & 0 & -4 & 0 \\ 0 & -1 & 0 & -3 \\ -1 & 0 & -3 & 0 \end{pmatrix}$$

in terms of basis

$$b_{1} = \{-1/8, 0\} - 2\{-1/6, 0\} - 2\omega\{-1/6, 0\}$$

$$b_{2} = \{-1/4, 0\} - \{-1/6, 0\} - 2\omega\{-1/6, 0\}$$

$$b_{3} = -2\{-1/6, 0\} - \omega\{-1/8, 0\}$$

$$b_{4} = -2\{-1/6, 0\} - \omega\{-1/4, 0\} - \omega\{-1/6, 0\}$$

Note that $\eta_{\chi}^2 = \chi(-1)13 = 13$.

With respect to this basis, we also have

$$T_2 = \begin{pmatrix} -1 & 0 & -1 & 0 \\ 0 & -1 & 0 & -1 \\ 1 & 0 & -2 & 0 \\ 0 & 1 & 0 & -2 \end{pmatrix}$$

We have $\operatorname{End}(J_1(13)/\overline{\mathbf{Q}}) = \operatorname{Mat}_2(\mathbf{Q})$ generated as a \mathbf{Q} -vector space explicitly by 1, η_{χ} , T_2 and $T_2\eta_{\chi}$.

Using η_{χ} and a formula in Gonzalez-Lario, we can algebraically find a map from $S_2(13) \rightarrow \Lambda_A$ for an elliptic curve factor A of $J_1(13)/\overline{\mathbb{Q}}$.

Thank you for coming!

Acknowledgements:

Papers of Ken Ribet, Goro Shimura, etc. Conversations with David Kohel, Enrique Gonzalez Kite photos by Allan Steel