The Modular Forms Database Project

William Stein
Harvard University

March 2003 for AIM Workshop

Newforms of Level 389 and Weight 2

Overview of Talk

1. Computing with modular forms
2. Hardware and software
3. Live tour of the database

Goal: Large Database

Create a large database of information about modular forms for (congruence) subgroups of $\mathrm{SL}_{2}(\mathbf{Z})$.

- Service to the mathematical community
- Frequent thanks from people for making this data available:

```
From: Brad Emmons <braemmon@indiana.edu>
To: was@math.harvard.edu, Date: 03/03/03 07:11 pm
Dear Dr. Stein,
My name is Brad Emmons and I am a graduate student in Mathematics at
Indiana University in Bloomington. I plan on finishing my dissertati
sometime this spring or early this summer. My thesis deals with
finding all cases where the product of two Hecke eigenforms is anothe
Hecke eigenform, and I think you will be happy to hear that I have
used a couple of the tables that you have posted on your website to
verify some of my results. [...]
```


Modular Forms

Defn: A cusp form of integer weight k and level N is a holomorphic function

Shimura

$$
f: \mathfrak{h}=\{z \in \mathbf{C}: \operatorname{Im}(z)>0\} \longrightarrow \mathbf{C}
$$

such that

$$
f\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{k} f(z)
$$

for all $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}_{2}(\mathbf{Z})$ with $N \mid c$ and $a \equiv 1(\bmod N)$, which has certain vanishing conditions at the cusps $\mathbf{Q} \cup\{\infty\}$.

$$
S_{k}(N)=\{\text { finite dimensional space of cuspforms }\} \hookrightarrow \mathbf{C}[[q]]
$$

Newforms

Fourier Expansion:

Oliver Atkin

$$
f=\sum_{n=1}^{\infty} a_{n} q^{n} \quad \text { where } q(z)=e^{2 \pi i z}
$$

Hecke algebra:

$$
\mathbf{T}=\mathbf{Z}\left[T_{2}, T_{3}, \ldots\right] \hookrightarrow \operatorname{End}\left(S_{k}(N)\right)
$$

Newform: A T-eigenform $f=\sum a_{n} q^{n}$ normalized so that $a_{1}=1$, which does not come from level M for $M \mid N$ and $M \neq N$.

Atkin-Lehner: The structure of $S_{k}(N)$ as a T-module can be completely understood in terms of newforms f.
Our Job: Compute huge numbers of newforms for various N, k.

Computing Newforms

Algorithm to compute newforms in
$S_{k}(N)$ for any N and any integer $k \geq 2$ (see

Loïc Merel Merel's LNM 1585 and Stein's Ph.D. thesis):

1. Compute modular symbols space $S_{k}(N)$, which is given as T-module by explicit generators and relations.
2. Compute $\mathcal{S}_{k}(N)^{\text {new }}=\operatorname{ker}\left(\mathcal{S}_{k}(N) \rightarrow \oplus\{\right.$ lower levels $\left.\}\right)$
3. Compute systems of T-eigenvalues $\left\{a_{p}\right\}$ using linear algebra tricks.

Example:

```
> M := ModularSymbols(Gamma1(13),2);
> S := CuspidalSubspace(M);
> Basis(S);
[
-1*{-1/2,0} + -1*{-1/3, 0} + {-1/8, 0} + {-1/10, 0} + -1*{2/5, 1/2},
-1*{-1/2, 0} + -1/2*{-1/3, 0} + 1/2*{-1/4, 0} + 1/2*{-1/5, 0}
    + 1/2*{-1/10, 0} + -1/2*{2/5, 1/2} + -1/2*{8/17, 1/2},
-1/2*{-1/3, 0} + -1/2*{-1/4, 0} + 1/2*{-1/5, 0} + 1/2*{-1/10, 0}
    + -1/2*{2/5, 1/2} + 1/2*{8/17, 1/2},
-1*{-1/3, 0} + {-1/10, 0}
]
> CharacteristicPolynomial(HeckeOperator(S,2));
x^4 + 6*x^3 + 15*x^2 + 18*x + 9 // This is (x^2 + 3*x + 3)^2
> D := NewformDecomposition(S); D;
[
Modular symbols space of level 13, weight 2, and dimension 4 over
Rational Field (multi-character)
]
> qEigenform(D[1],5);
q + (-zeta_6 - 1)*q^2 + (2*zeta_6 - 2)*q^3 + zeta_6*q^4 + O(q^5)
```


Some Interesting Items to Compute About f

- Invariants of number field $K_{f}=\mathbf{Q}\left(a_{1}, a_{2}, \ldots\right)$ and the order $O_{f}=\mathbf{Z}\left[a_{1}, a_{2}, \ldots\right]$ like discriminant, class number, etc. Uses Sturm bound.
- Trace $\operatorname{Tr}(f)=\sum \operatorname{Tr}\left(a_{n}\right) q^{n}$, simple to store and search
- Congruences between f and forms at other levels (Ribet's level raising and lowering) and weights (p-adic variation)

Items to Compute About Abelian Variety A_{f}

When $k=2$ there is an abelian variety $A_{f}=J_{1}(N) / I_{f} J_{1}(N)$ attached to f of dimension $\left[\mathbf{Q}\left(a_{2}, a_{3}, \ldots\right): \mathbf{Q}\right]$.

- Equations for A_{f}, especially when $\operatorname{dim} A_{f}$ small
- Rank of Mordell-Weil group $A_{f}(\mathbf{Q})$
- Analytic Rank ord ${ }_{s=1} L\left(A_{f}, s\right)$
- Torsion subgroup $A_{f}(\mathbf{Q})_{\text {tor }}$ (or at least bounds on order)
- Tamagawa numbers of A_{f}
- Canonical measure of $A_{f}(\mathbf{R})$
- Regulator of A_{f}
- Order of $\amalg\left(A_{f}\right)$ under Birch and Swinnerton-Dyer conjecture

Sources of Data: Elliptic Curves

John Cremona

Armand Brumer

Mark Watkins

- Cremona's tables: Extensive data about all elliptic curves of conductor ≤ 17000
- Brumer \& McGuinness: Data about many curves of prime conductor $<10^{8}$
- Stein-Watkins: Huge number of elliptic curves of not-too-big height (and their twists); mostly conductor $<10^{8}$.

Source of Data: Modular Forms

My MAGMA packages

William Stein's Watch

- Most non-elliptic curve data in my database comes from this modular symbols package
- MAGMA excels at dense linear algebra over \mathbf{Q}, mostly because of work of Allan Steel

Technology: Software

- MAGMA: Enthusiastic support
- Pari: Generally useful
- PostgreSQL: Dump all data computed in huge (>10GB) database; possible to make queries on data or produce tables from data
- Python: Nice interface with database - web interface to database so anyone can access data (no online searching yet); helps to coordinate computations
- Undergraduates: E.g., Dimitar Jetchev has been helpful

Technology: Hardware

- MECCAH Cluster: A rack of six custom-built

Meccah
dual Athlon 2000MP machines with $\geq 2 G B$ memory each. (Cost: \$20000 in March 2002.)

- Sun V480: A (new for us) quad processor 64-bit machine with 22GB (Cost: nothing - Sun education grant)

A Guided Tour

- Level 1, weight 12
- Level 37, weight 2
- Level 389, weight 2
- Running lots of jobs on MECCAH

Thank You

