jsMath
Edit this. Download. Other published documents...

Mazur - Finding Meaning in Error Terms

See this page if it is available, for a much better version of this page.

0 seconds ago by was



Figure 1.1: The step function (N)  counts the number of primes up to N 



       
       
       



Figure 1.2: The smooth function slithering up the staircase of primes up to 100 is Riemann’s approximation that uses the “first” 29 zeroes of the Riemann zeta function.



       

       
CPU time: 9.70 s,  Wall time: 9.70 s
CPU time: 9.70 s,  Wall time: 9.70 s

       
       



Table of number of ways to write p as a sum of 24 squares.



       
2 	1104
3 	16192
5 	1362336
7 	44981376
11 	6631997376
13 	41469483552
17 	793229226336
19 	2697825744960
23 	22063059606912
29 	282507110257440
31 	588326886375936
37 	4119646755044256
41 	12742799887509216
43 	21517654506205632
47 	57242599902057216
53 	214623041906680992
59 	698254765677746880
61 	1007558483942335776
67 	2827903926520931136
71 	5351602023957373056
73 	7264293802635839712
79 	17319684851070915840
83 	29819539398107307072
89 	64258709626203556320
97 	165626956557080594016
2 	1104
3 	16192
5 	1362336
7 	44981376
11 	6631997376
13 	41469483552
17 	793229226336
19 	2697825744960
23 	22063059606912
29 	282507110257440
31 	588326886375936
37 	4119646755044256
41 	12742799887509216
43 	21517654506205632
47 	57242599902057216
53 	214623041906680992
59 	698254765677746880
61 	1007558483942335776
67 	2827903926520931136
71 	5351602023957373056
73 	7264293802635839712
79 	17319684851070915840
83 	29819539398107307072
89 	64258709626203556320
97 	165626956557080594016

       

       

       



Figure 1.3: Probability distribution of Error terms. The Sato-Tate distribution 2p1t2 , the smooth profile curve in this figure, can be compared with the probability distribution of scaled error terms for the number of ways N(p)  in which a prime number p  can be written as a sum of 24  squares (p<106 ).



       

       
x21p1x2
pi - --- 2
x21p1x2
pi - --- 2

       
normalized
distributed
saving...
CPU time: 34.22 s,  Wall time: 34.22 s
normalized
distributed
saving...
CPU time: 34.22 s,  Wall time: 34.22 s

       

       
       


Figure 3.1: Sato-Tate for the curve 11a



       
CPU time: 44.07 s,  Wall time: 44.07 s
CPU time: 44.07 s,  Wall time: 44.07 s

       
       



Figure 1.4: q-q-plot on (0;+1)  for the cutoff C=100



       
[1, 1, 1, 1, 1, 1, 1, 1, 1]
[1, 1, 1, 1, 1, 1, 1, 1, 1]

       
       

       



Figure 1.5: q-q-plot on (0;+1)  for the cutoff C=1000



       
       
       

       



Figure 1.6: The difference between undercounts and overcounts



       

       
[33152/691, 1525760/691, 135790592/691, 16/691, -32/691, 65536/691]
[33152/691, 1525760/691, 135790592/691, 16/691, -32/691, 65536/691]

       

       

       

       
CPU time: 44.75 s,  Wall time: 44.75 s
CPU time: 44.75 s,  Wall time: 44.75 s

       
       

       



Figure 2.1: E  is the curve y2+y=x3x2 . Sate-Tate on the unit circle in 3d



       

       

       
CPU time: 2.01 s,  Wall time: 2.88 s
CPU time: 2.01 s,  Wall time: 2.88 s

       

       



Figure 2.2: E  is the curve y2+y=x3x2 . The race between NE(p)<p+1  and NE(p)>p+1 



       
y2+y=x3x210x20 
CPU time: 32.35 s,  Wall time: 32.35 s
y2+y=x3x210x20 
CPU time: 32.35 s,  Wall time: 32.35 s

11a.eps   11a.pdf
       

       

       



Figure 2.3: E  is the curve 37a. The race between NE(p)<p+1  and NE(p)>p+1 



       
y2+y=x3x 
CPU time: 33.37 s,  Wall time: 33.37 s
y2+y=x3x 
CPU time: 33.37 s,  Wall time: 33.37 s

37a.eps   37a.pdf
       

       



Figure 2.4: E  is the curve 389a. The race between NE(p)<p+1  and NE(p)>p+1 



       
y2+y=x3+x22x 
CPU time: 29.39 s,  Wall time: 29.39 s
y2+y=x3+x22x 
CPU time: 29.39 s,  Wall time: 29.39 s

389a.eps   389a.pdf
       

       



Figure 2.5: E  is the curve 5077a. The race between NE(p)<p+1  and NE(p)>p+1 



       
y2+y=x37x+6 
CPU time: 31.23 s,  Wall time: 31.30 s
y2+y=x37x+6 
CPU time: 31.23 s,  Wall time: 31.30 s

5077a.eps   5077a.pdf