jsMath
Edit this. Download. Other published documents...
Mazur - Finding Meaning in Error Terms
See this page if it is available, for
a much better version of this page.
0 seconds ago by was
Figure 1.1: The step function �(N) counts the number of primes up to N
Figure 1.2:
The smooth function slithering up the staircase of primes up to 100 is Riemann’s
approximation that uses the “first” 29 zeroes of the Riemann zeta function.
|
CPU time: 9.70 s, Wall time: 9.70 s
CPU time: 9.70 s, Wall time: 9.70 s
|
Table of number of ways to write p as a sum of 24 squares.
|
2 1104
3 16192
5 1362336
7 44981376
11 6631997376
13 41469483552
17 793229226336
19 2697825744960
23 22063059606912
29 282507110257440
31 588326886375936
37 4119646755044256
41 12742799887509216
43 21517654506205632
47 57242599902057216
53 214623041906680992
59 698254765677746880
61 1007558483942335776
67 2827903926520931136
71 5351602023957373056
73 7264293802635839712
79 17319684851070915840
83 29819539398107307072
89 64258709626203556320
97 165626956557080594016
2 1104
3 16192
5 1362336
7 44981376
11 6631997376
13 41469483552
17 793229226336
19 2697825744960
23 22063059606912
29 282507110257440
31 588326886375936
37 4119646755044256
41 12742799887509216
43 21517654506205632
47 57242599902057216
53 214623041906680992
59 698254765677746880
61 1007558483942335776
67 2827903926520931136
71 5351602023957373056
73 7264293802635839712
79 17319684851070915840
83 29819539398107307072
89 64258709626203556320
97 165626956557080594016
|
Figure 1.3: Probability distribution of Error terms.
The Sato-Tate distribution 2�p1�t2 ,
the smooth profile curve in this figure, can be compared with the probability distribution of scaled
error terms for the number of ways N(p) in which a prime number p can be written as a sum of
24 squares (p<106 ).
|
x2�1p1�x2
pi
- ---
2
x2�1p1�x2
pi
- ---
2
|
|
normalized
distributed
saving...
CPU time: 34.22 s, Wall time: 34.22 s
normalized
distributed
saving...
CPU time: 34.22 s, Wall time: 34.22 s
|
Figure 3.1: Sato-Tate for the curve 11a
|
CPU time: 44.07 s, Wall time: 44.07 s
CPU time: 44.07 s, Wall time: 44.07 s
|
Figure 1.4: q-q-plot on (0;+1) for the cutoff C=100
|
[1, 1, 1, 1, 1, 1, 1, 1, 1]
[1, 1, 1, 1, 1, 1, 1, 1, 1]
|
Figure 1.5: q-q-plot on (0;+1) for the cutoff C=1000
Figure 1.6: The difference between undercounts and overcounts
|
[33152/691, 1525760/691, 135790592/691, 16/691, -32/691, 65536/691]
[33152/691, 1525760/691, 135790592/691, 16/691, -32/691, 65536/691]
|
|
CPU time: 44.75 s, Wall time: 44.75 s
CPU time: 44.75 s, Wall time: 44.75 s
|
Figure 2.1: E is the curve y2+y=x3�x2 . Sate-Tate on the unit circle in 3d
|
CPU time: 2.01 s, Wall time: 2.88 s
CPU time: 2.01 s, Wall time: 2.88 s
|
Figure 2.2: E is the curve y2+y=x3�x2 .
The race between NE(p)<p+1 and NE(p)>p+1
|
y2+y=x3�x2�10x�20
CPU time: 32.35 s, Wall time: 32.35 s
y2+y=x3�x2�10x�20
CPU time: 32.35 s, Wall time: 32.35 s
11a.eps 11a.pdf
|
Figure 2.3: E is the curve 37a. The race between NE(p)<p+1 and NE(p)>p+1
|
y2+y=x3�x
CPU time: 33.37 s, Wall time: 33.37 s
y2+y=x3�x
CPU time: 33.37 s, Wall time: 33.37 s
37a.eps 37a.pdf
|
Figure 2.4: E is the curve 389a. The race between NE(p)<p+1 and NE(p)>p+1
|
y2+y=x3+x2�2x
CPU time: 29.39 s, Wall time: 29.39 s
y2+y=x3+x2�2x
CPU time: 29.39 s, Wall time: 29.39 s
389a.eps 389a.pdf
|
Figure 2.5: E is the curve 5077a. The race between NE(p)<p+1 and NE(p)>p+1
|
y2+y=x3�7x+6
CPU time: 31.23 s, Wall time: 31.30 s
y2+y=x3�7x+6
CPU time: 31.23 s, Wall time: 31.30 s
5077a.eps 5077a.pdf
|