
Math 129: Algebraic Number Theory
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William Stein

Tuesday, February 17, 2004

Note: There’s a book called Algebraic Number Theory and Fermat’s Last Theorem
by Stewart and Tall, which appears to have a detailed introduction to algebraic
number theory and assumes little background on the part of the reader. There is a
discussion of the definition of module, and proofs of basic facts about number fields,
and many exercises. If you find Swinnerton-Dyer’s book difficult, you might want
to try to get your hands on Stewart and Tall, which costs about $38 new. (Hand
around a copy.)

Today we will deduce, with complete proofs, the most important basic property
of the ring of integers OK of an algebraic number, namely that every nonzero ideals
can be written uniquely as products of prime ideals. After proving this fundamental
theorem, we will compute some examples using MAGMA. On Thursday the lecture
will consist mostly of examples illustrating the substantial theory we will have already
developed, so hang in there!

1 Dedekind Domains

Corollary 1.1. The ring of integers OK of a number field is Noetherian.

Proof. As we saw before using norms, the ring OK is finitely generated as a module
over Z, so it is certainly finitely generated as a ring over Z. By the Hilbert Basis
Theorem, OK is Noetherian.

If R is an integral domain, the field of fractions of R is the field of all elements
a/b, where a, b ∈ R. The field of fractions of R is the smallest field that contains R.
For example, the field of fractions of Z is Q and of Z[(1 +

√
5)/2] is Q(

√
5).

Definition 1.2 (Integrally Closed). An integral domain R is integrally closed in
its field of fractions if whenever α is in the field of fractions of R and α satisfies a
monic polynomial f ∈ R[x], then α ∈ R.

Proposition 1.3. If K is any number field, then OK is integrally closed. Also, the
ring Z of all algebraic integers is integrally closed.
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Proof. We first prove that Z is integrally closed. Suppose c ∈ Q is integral over Z,
so there is a monic polynomial f(x) = xn + an−1x

n−1 + · · · + a1x + a0 with ai ∈ Z
and f(c) = 0. The ai all lie in the ring of integers OK of the number field K =
Q(a0, a1, . . . an−1), and OK is finitely generated as a Z-module, so Z[a0, . . . , an−1] is
finitely generated as a Z-module. Since f(c) = 0, we can write cn as a Z[a0, . . . , an−1]-
linear combination of ci for i < n, so the ring Z[a0, . . . , an−1, c] is also finitely gen-
erated as a Z-module. Thus Z[c] is finitely generated as Z-module because it is a
submodule of a finitely generated Z-module, which implies that c is integral over Z.

Suppose c ∈ K is integral over OK . Then since Z is integrally closed, c is an
element of Z, so c ∈ K ∩ Z = OK , as required.

Definition 1.4 (Dedekind Domain). An integral domain R is a Dedekind domain
if it is Noetherian, integrally closed in its field of fractions, and every nonzero prime
ideal of R is maximal.

The ring Q ⊕ Q is Noetherian, integrally closed in its field of fractions, and the
two prime ideals are maximal. However, it is not a Dedekind domain because it is
not an integral domain. The ring Z[

√
5] is not a Dedekind domain because it is not

integrally closed in its field of fractions, as (1 +
√

5)/2 is integrally over Z and lies
in Q(

√
5), but not in Z[

√
5]. The ring Z is a Dedekind domain, as is any ring of

integers OK of a number field, as we will see below. Also, any field K is a Dedekind
domain, since it is a domain, it is trivially integrally closed in itself, and there are
no nonzero prime ideals so that condition that they be maximal is empty.

Proposition 1.5. The ring of integers OK of a number field is a Dedekind domain.

Proof. By Proposition 1.3, the ring OK is integrally closed, and by Proposition 1.1
it is Noetherian. Suppose that p is a nonzero prime ideal of OK . Let α ∈ p be a
nonzero element, and let f(x) ∈ Z[x] be the minimal polynomial of α. Then

f(α) = αn + an−1α
n−1 + · · · + a1α + a0 = 0,

so a0 = −(αn + an−1α
n−1 + · · · + a1α) ∈ p. Since f is irreducible, a0 is a nonzero

element of Z that lies in p. Every element of the finitely generated abelian group
OK/p is killed by a0, so OK/p is a finite set. Since p is prime, OK/p is an integral
domain. Every finite integral domain is a field, so p is maximal, which completes
the proof.

If I and J are ideals in a ring R, the product IJ is the ideal generated by all
products of elements in I with elements in J :

IJ = (ab : a ∈ I, b ∈ J) ⊂ R.

Note that the set of all products ab, with a ∈ I and b ∈ J , need not be an ideal, so
it is important to take the ideal generated by that set. (See the homework problems
for examples.)
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Definition 1.6 (Fractional Ideal). A fractional ideal is an OK-submodule of I ⊂
K that is finitely generated as an OK-module.

To avoid confusion, we will sometimes call a genuine ideal I ⊂ OK an integral
ideal. Also, since fractional ideals are finitely generated, we can clear denominators
of a generating set to see that every fractional ideal is of the form aI = {ab : b ∈ I}
for some a ∈ K and ideal I ⊂ OK .

For example, the collection 1

2
Z of rational numbers with denominator 1 or 2 is a

fractional ideal of Z.

Theorem 1.7. The set of nonzero fractional ideals of a Dedekind domain R is an
abelian group under ideal multiplication.

Before proving Theorem 1.7 we prove a lemma. For the rest of this section OK

is the ring of integers of a number field K.

Definition 1.8 (Divides for Ideals). Suppose that I, J are ideals of OK . Then I
divides J if I ⊃ J .

To see that this notion of divides is sensible, suppose K = Q, so OK = Z.
Then I = (n) and J = (m) for some integer n and m, and I divides J means that
(n) ⊃ (m), i.e., that there exists an integer c such that m = cn, which exactly means
that n divides m, as expected.

Lemma 1.9. Suppose I is an ideal of OK. Then there exist prime ideals p1, . . . , pn

such that p1 · p2 · · · pn ⊂ I. In other words, I divides a product of prime ideals. (By
convention the empty product is the unit ideal. Also, if I = 0, then we take p1 = (0),
which is a prime ideal.)

Proof. The key idea is to use that OK is Noetherian to deduce that the set S of
ideals that do not satisfy the lemma is empty. If S is nonempty, then because OK

is Noetherian, there is an ideal I ∈ S that is maximal as an element of S. If I were
prime, then I would trivially contain a product of primes, so I is not prime. By
definition of prime ideal, there exists a, b ∈ OK such that ab ∈ I but a 6∈ I and
b 6∈ I. Let J1 = I + (a) and J2 = I + (b). Then neither J1 nor J2 is in S, since I is
maximal, so both J1 and J2 contain a product of prime ideals. Thus so does I, since

J1J2 = I2 + I(b) + (a)I + (ab) ⊂ I,

which is a contradiction. Thus S is empty, which completes the proof.

We are now ready to prove the theorem.

Proof of Theorem 1.7. The product of two fractional ideals is again finitely gener-
ated, so it is a fractional ideal, and IOK = OK for any nonzero ideal I, so to prove
that the set of fractional ideals under multiplication is a group it suffices to show
the existence of inverses. We will first prove that if p is a prime ideal, then p has
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an inverse, then we will prove that nonzero integral ideals have inverses, and finally
observe that every fractional ideal has an inverse.

Suppose p is a nonzero prime ideal of OK . We will show that the OK-module

I = {a ∈ K : ap ⊂ OK}

is a fractional ideal of OK such that Ip = OK , so that I is an inverse of p.
For the rest of the proof, fix a nonzero element b ∈ p. Since I is an OK-module,

bI ⊂ OK is an OK ideal, hence I is a fractional ideal. Since OK ⊂ I we have
p ⊂ Ip ⊂ OK , hence either p = Ip or Ip = OK . If Ip = OK , we are done since
then I is an inverse of p. Thus suppose that Ip = p. Our strategy is to show that
there is some d ∈ I not in OK ; such a d would leave p invariant (i.e., dp ⊂ p), so
since p is an OK-module it will follow that d ∈ OK , a contradiction.

By Lemma 1.9, we can choose a product p1, . . . , pm, with m minimal, such that

p1p2 · · · pm ⊂ (b) ⊂ p.

If no pi is contained in p, then we can choose for each i an ai ∈ pi with ai 6∈ p; but
then

∏
ai ∈ p, which contradicts that p is a prime ideal. Thus some pi, say p1, is

contained in p, which implies that p1 = p since every nonzero prime ideal is maximal.
Because m is minimal, p2 · · · pm is not a subset of (b), so there exists c ∈ p2 · · · pm

that does not lie in (b). Then p(c) ⊂ (b), so by definition of I we have d = c/b ∈ I.
However, d 6∈ OK , since if it were then c would be in (b). We have thus found our
element d ∈ I that does not lie in OK . To finish the proof that p has an inverse,
we observe that d preserves the OK-module p, and is hence in OK , a contradiction.
More precisely, if b1, . . . , bn is a basis for p as a Z-module, then the action of d on p is
given by a matrix with entries in Z, so the minimal polynomial of d has coefficients
in Z. This implies that d is integral over Z, so d ∈ OK , since OK is integrally closed
by Proposition 1.3. (Note how this argument depends strongly on the fact that OK

is integrally closed!)
So far we have proved that if p is a prime ideal of OK , then p−1 = {a ∈ K :

ap ⊂ OK} is the inverse of p in the monoid of nonzero fractional ideals of OK .
As mentioned after Definition 1.6, every nonzero fractional ideal is of the form aI
for a ∈ K and I an integral ideal, so since (a) has inverse (1/a), it suffices to
show that every integral ideal I has an inverse. If not, then there is a nonzero
integral ideal I that is maximal among all nonzero integral ideals that do not have
an inverse. Every ideal is contained in a maximal ideal, so there is a nonzero prime
ideal p such that I ⊂ p. Then I ⊂ p−1I ⊂ OK . If I = p−1I, then (arguing as
in the previous paragraph) each element of p−1 preserves that OK-ideal I and is
hence integral, so p−1 ⊂ OK , which implies that OK = pp−1 ⊂ p, a contradiction.
Thus I 6= p−1I. Because I is maximal among ideals that do not have an inverse,
the ideal p−1I does have an inverse, call it J . Then pJ is the inverse of I, since
OK = (pJ)(p−1I) = JI.

We can finally deduce the crucial Theorem 1.11, which will allow us to show that
any nonzero ideal of a Dedekind domain can be expressed uniquely as a product
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of primes (up to order). Thus unique factorization holds for ideals in a Dedekind
domain, and it is this unique factorization that initially motivated the introduction
of rings of integers of number fields over a century ago.

Theorem 1.10. Suppose I is an integral ideal of OK. Then I can be written as a
product

I = p1 · · · pn

of prime ideals of OK, and this representation is unique up to order. (Exception: If
I = 0, then the representation is not unique.)

Proof. Suppose I is an ideal that is maximal among the set of all ideals in OK

that can not be written as a product of primes. Every ideal is contained in a
maximal ideal, so I is contained in a nonzero prime ideal p. If Ip−1 = I, then
by Theorem 1.7 we can cancel I from both sides of this equation to see that p−1 =
OK , a contradiction. Thus I is strictly contained in Ip−1, so by our maximality
assumption on I there are maximal ideals p1, . . . , pn such that Ip−1 = p1 · · · pn.
Then I = p · p1 · · · pn, a contradiction. Thus every ideal can be written as a product
of primes.

Suppose p1 · · · pn = q1 · · · qm. If no qi is contained in p1, then for each i there is
an ai ∈ qi such that ai 6∈ p1. But the product of the ai is in the p1 · · · pn, which is
a subset of p1, which contradicts the fact that p1 is a prime ideal. Thus qi = p1 for
some i. We can thus cancel qi and p1 from both sides of the equation. Repeating
this argument finishes the proof of uniqueness.

Corollary 1.11. If I is a fractional ideal of OK then there exists prime ideals
p1, . . . , pn and q1, . . . , qm, unique up to order, such that

I = (p1 · · · pn)(q1 · · · qm)−1.

Proof. We have I = (a/b)J for some a, b ∈ OK and integral ideal J . Applying
Theorem 1.11 to (a), (b), and J gives an expression as claimed. For uniqueness, if
one has two such product expressions, multiply through by the denominators and
use the uniqueness part of Theorem 1.11

2 Using MAGMA

This section is a first introduction to MAGMA, which is an excellent package for
doing algebraic number theory computations. You can use it via the web page
http://modular.fas.harvard.edu/calc. MAGMA is not free, but if you would
like a copy for your personal computer, send me an email, and I can arrange for you
to obtain a legal copy for free. (Say something about my visiting MAGMA in Sydney
three times, and how MAGMA compares to Maple, Mathematica, and PARI.)

1. MAGMA web page

2. Example code to illustrate things so far in course, and relevant to each home-
work problems. Experiment with students suggesting what examples to try.
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3 Algorithms for Algebraic Number Theory

The best overall reference for algorithms for doing basic algebraic number theory
computations is Henri Cohen’s book A Course in Computational Algebraic Number
Theory, Springer, GTM 138.

Our main long-term algorithmic goals for this course are to understand good
algorithms for solving the following problems in particular cases:

• Ring of integers: Given a number field K (by giving a polynomial), compute
the full ring OK of integers.

• Decomposition of primes: Given a prime number p ∈ Z, find the decom-
position of the ideal pOK as a product of prime ideals of OK .

• Class group: Compute the group of equivalence classes of nonzero ideals of
OK , where I and J are equivalent if there exists α ∈ OK such that IJ−1 = (α).

• Units: Compute generators for the group of units of OK .

As we will see, somewhat surprisingly it turns out that algorithmically by far
the most time-consuming step in computing the ring of integers OK is to factor the
discriminant of a polynomial whose root generates the field K. The algorithm(s) for
computing OK are quite complicated to describe, but the first step is to factor this
discriminant, and it takes much longer in practice than all the other complicated
steps.
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