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6.7 Applications of Taylor Series

Final exam: Wednesday, March 22, 7-10pm in PCYNH 109. Bring ID!
Last Quiz 4: Today (last one)
Today: 11.12 Applications of Taylor Polynomials
Next; Differential Equations

This section is about an example in the theory of relativity. Let m be the (relativistic)
mass of an object and m0 be the mass at rest (rest mass) of the object. Let v be the
velocity of the object relative to the observer, and let c be the speed of light. These
three quantities are related as follows:

m =
m0

√

1 − v2

c2

(relativistic) mass

The total energy of the object is mc2:

E = mc
2
.

In relativity we define the kinetic energy to be

K = mc2 − m0c
2. (6.7.1)

What? Isn’t the kinetic energy 1
2m0v

2?

Notice that

mc2 − m0c
2 =

m0c
2

√

1 − v2

c2

− m0c
2 = m0c

2

[

(

1 − v2

c2

)− 1
2

− 1

]

.

Let

f (x) = (1 − x)
− 1

2 − 1

Let’s compute the Taylor series of f . We have

f(x) = (1 − x)−
1
2 − 1

f ′(x) =
1

2
(1 − x)−

3
2

f ′′(x) =
1

2
· 3

2
(1 − x)−

5
2

f (n)(x) =
1 · 3 · 5 · · · (2n − 1)

2n
(1 − x)−

2n+1

2 .

Thus

f (n)(0) =
1 · 3 · 5 · · · (2n − 1)

2n
.
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Hence

f(x) =

∞
∑

n=1

f (n)(0)

n!
xn

=

∞
∑

n=1

1 · 3 · 5 · · · (2n − 1)

2n · n!
xn

=
1

2
x +

3

8
x2 +

5

16
x3 +

35

128
x4 + · · ·

We now use this to analyze the kinetic energy (6.7.1):

mc2 − m0c
2 = m0c

2 · f
(

v2

c2

)

= m0c
2 ·
(

1

2
· v2

c2
+

3

8
· v2

c2
+ · · ·

)

=
1

2
m0v

2 + m0c
2 ·
(

3

8

v2

c2
+ · · ·

)

And we can ignore the higher order terms if v2

c2 is small. But how small is “small”

enough, given that v2

c2 appears in an infinite sum?

6.7.1 Estimation of Taylor Series

Suppose

f(x) =
∞
∑

n=0

f (n)(a)

n!
(x − a)n.

Write

RN (x) := f(x) −
N
∑

n=0

f (n)(a)

n!
(x − a)n

We call

TN (x) =

N
∑

n=0

f (n)(a)

n!
(x − a)n

the Nth degree Taylor polynomial. Notice that

lim
N→∞

TN (x) = f(x)

if and only if

lim
N→∞

RN (x) = 0.

We would like to estimate f(x) with TN (x). We need an estimate for RN (x).

Theorem 6.7.1 (Taylor’s theorem). If |f (N+1)(x)| ≤ M for |x − a| ≤ d, then

|RN (x)| ≤ M

(N + 1)!
|x − a|N+1 for |x − a| ≤ d.
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For example, if N = 0, this says that

|R(x)| = |f(x) − f(a)| ≤ M |x − a|,

i.e.,
∣

∣

∣

∣

f(x) − f(a)

x − a

∣

∣

∣

∣

≤ M,

which should look familiar from a previous class (Mean Value Theorem).

Applications:

1. One can use Theorem 6.7.1 to prove that functions converge to their Taylor series.

2. Returning to the relativity example above, we apply Taylor’s theorem with N = 1
and a = 0. With x = −v2/c2 and M any number such that |f ′′(x)| ≤ M , we have

|R1(x)| ≤ M

2
x2.

For example, if we assume that |v| ≤ 100m/s we use

|f ′′(x)| ≤ 3

2
(1 − 1002/c2)−5/2 = M.

Using c = 3 × 108m/s, we get

|R1(x)| ≤ 4.17 · 10−10 · m0.

Thus for v ≤ 100m/s ∼ 225mph, then the error in throwing away relativistic
factors is 10−10M . This is like 200 feet out of the distance to the sun (93 million
miles). So relativistic and Newtonian kinetic energies are almost the same for
reasonable speeds.


