6.6 Taylor Series

```
Final exam: Wednesday, March 22, 7-10pm in PCYNH 109. Bring ID!
Last Quiz 4: This Friday
Next: 11.10 Taylor and Maclaurin series
Next: 11.12 Applications of Taylor Polynomials
Midterm Letters:
A, 32-38
B, 26-31
C, 20-25
D, 14-19
Mean: 23.4, Standard Deviation: 7.8, High: 38, Low: }6
```

Example 6.6.1. Suppose we have a degree-3 (cubic) polynomial p and we know that $p(0)=4, p^{\prime}(0)=3, p^{\prime \prime}(0)=4$, and $p^{\prime \prime \prime}(0)=6$. Can we determine p ? Answer: Yes! We have

$$
\begin{aligned}
p(x) & =a+b x+c x^{2}+d x^{3} \\
p^{\prime}(x) & =b+2 c x+3 d x^{2} \\
p^{\prime \prime}(x) & =2 c+6 d x \\
p^{\prime \prime \prime}(x) & =6 d
\end{aligned}
$$

From what we mentioned above, we have:

$$
\begin{aligned}
& a=p(0)=4 \\
& b=p^{\prime}(0)=3 \\
& c=\frac{p^{\prime \prime}(0)}{2}=2 \\
& d=\frac{p^{\prime \prime \prime}(0)}{6}=1
\end{aligned}
$$

Thus

$$
p(x)=4+3 x+2 x^{2}+x^{3} .
$$

Amazingly, we can use the idea of Example 6.6.1 to compute power series expansions of functions. E.g., we will show below that

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

Convergent series are determined by the values of their derivatives.

Consider a general power series

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\cdots
$$

We have

$$
\begin{aligned}
& c_{0}=f(a) \\
& c_{1}=f^{\prime}(a) \\
& c_{2}=\frac{f^{\prime \prime}(a)}{2} \\
& \ldots \\
& c_{n}=\frac{f^{(n)}(a)}{n!},
\end{aligned}
$$

where for the last equality we use that

$$
f^{(n)}(x)=n!c_{n}+(x-a)(\cdots+\cdots)
$$

Remark 6.6.2. The definition of $0!$ is 1 (it's the empty product). The empty sum is 0 and the empty product is 1 .

Theorem 6.6.3 (Taylor Series). If $f(x)$ is a function that equals a power series centered about a, then that power series expansion is

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& =f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\cdots
\end{aligned}
$$

Remark 6.6.4. WARNING: There are functions that have all derivatives defined, but do not equal their Taylor expansion. E.g., $f(x)=e^{-1 / x^{2}}$ for $x \neq 0$ and $f(0)=0$. It's Taylor expansion is the 0 series (which converges everywhere), but it is not the 0 function.
Definition 6.6.5 (Maclaurin Series). A Maclaurin series is just a Taylor series with $a=0$. I will not use the term "Maclaurin series" ever again (it's common in textbooks).
Example 6.6.6. Find the Taylor series for $f(x)=e^{x}$ about $a=0$. We have $f^{(n)}(x)=$ e^{x}. Thus $f^{(n)}(0)=1$ for all n. Hence

$$
e^{x}=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\cdots
$$

What is the radius of convergence? Use the ratio test:

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{\frac{1}{(n+1)!} x^{n+1}}{\frac{1}{n!} x^{n}}\right| & =\lim _{n \rightarrow \infty} \frac{n!}{(n+1)!}|x| \\
& =\lim _{n \rightarrow \infty} \frac{|x|}{n+1}=0, \quad \text { for any fixed } x .
\end{aligned}
$$

Thus the radius of convergence is ∞.
Example 6.6.7. Find the Taylor series of $f(x)=\sin (x)$ about $x=\frac{\pi}{2} .{ }^{1}$ We have

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(\frac{\pi}{2}\right)}{n!}\left(x-\frac{\pi}{2}\right)^{n} .
$$

[^0]To do this we have to puzzle out a pattern:

$$
\begin{aligned}
f(x) & =\sin (x) \\
f^{\prime}(x) & =\cos (x) \\
f^{\prime \prime}(x) & =-\sin (x) \\
f^{\prime \prime \prime}(x) & =-\cos (x) \\
f^{(4)}(x) & =\sin (x)
\end{aligned}
$$

First notice how the signs behave. For $n=2 m$ even,

$$
f^{(n)}(x)=f^{(2 m)}(x)=(-1)^{n / 2} \sin (x)
$$

and for $n=2 m+1$ odd,

$$
f^{(n)}(x)=f^{(2 m+1)}(x)=(-1)^{m} \cos (x)=(-1)^{(n-1) / 2} \cos (x)
$$

For $n=2 m$ even we have

$$
f^{(n)}(\pi / 2)=f^{(2 m)}\left(\frac{\pi}{2}\right)=(-1)^{m}
$$

and for $n=2 m+1$ odd we have

$$
f^{(n)}(\pi / 2)=f^{(2 m+1)}\left(\frac{\pi}{2}\right)=(-1)^{m} \cos (\pi / 2)=0
$$

Finally,

$$
\begin{aligned}
\sin (x) & =\sum_{n=0}^{\infty} \frac{f^{(n)}(\pi / 2)}{n!}(x-\pi / 2)^{n} \\
& =\sum_{m=0}^{\infty} \frac{(-1)^{m}}{(2 m)!}\left(x-\frac{\pi}{2}\right)^{2 m}
\end{aligned}
$$

Next we use the ratio test to compute the radius of convergence. We have

$$
\begin{aligned}
\lim _{m \rightarrow \infty} \frac{\left|\frac{(-1)^{m+1}}{(2(m+1))!}\left(x-\frac{\pi}{2}\right)^{2(m+1)}\right|}{\left|\frac{(-1)^{m}}{(2 m)!}\left(x-\frac{\pi}{2}\right)^{2 m}\right|} & =\lim _{m \rightarrow \infty} \frac{(2 m)!}{(2 m+2)!}\left(x-\frac{\pi}{2}\right)^{2} \\
& =\lim _{m \rightarrow \infty} \frac{\left(x-\frac{\pi}{2}\right)^{2}}{(2 m+2)(2 m+1)}
\end{aligned}
$$

which converges for each x. Hence $R=\infty$.
Example 6.6.8. Find the Taylor series for $\cos (x)$ about $a=0$. We have $\cos (x)=$ $\sin \left(x+\frac{\pi}{2}\right)$. Thus from Example 6.6.7 (with infinite radius of convergence) and that the Taylor expansion is unique, we have

$$
\begin{aligned}
\cos (x) & =\sin \left(x+\frac{\pi}{2}\right) \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!}\left(x+\frac{\pi}{2}-\frac{\pi}{2}\right)^{2 n} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}
\end{aligned}
$$

[^0]: ${ }^{1}$ Evidently this expansion was first found in India by Madhava of Sangamagrama (1350-1425).

