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NOTES for 2006-02-22
Midterm 2: Wednesday, March 1, 2006, at 7pm in Pepper Canyon 109
Today: 7.8: Comparison of Improper integrals
11.1: Sequences
Next 11.2 Series

Example 5.7.7. Compute
∫ 3

−1
1

x−2dx. A few weeks ago you might have done this:

∫ 3

−1

1

x − 2
dx = [ln |x − 2|]3−1 = ln(3) − ln(1) (totally wrong!)

This is not valid because the function we are integrating has a pole at x = 2 (see
Figure 5.7.4). The integral is improper, and is only defined if both the following limits
exists:

lim
t→2−

∫ t

−1

1

x − 2
dx and lim

t→2+

∫ 3

t

1

x − 2
dx.

However, the limits diverge, e.g.,

lim
t→2+

∫ 3

t

1

x − 2
dx = lim

t→2+
(ln |1| − ln |t − 2|) = − lim

t→2+
ln |t − 2| = −∞.

Thus
∫ 3

−1
1

x−2dx is divergent.
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Figure 5.7.4: Graph of 1
x−2

5.7.1 Convergence, Divergence, and Comparison

In this section we discuss using comparison to determine if an improper integrals con-
verges or diverges. Recall that if f and g are continuous functions on an interval [a, b]
and g(x) ≤ f(x), then

∫ b

a

g(x)dx ≤
∫ b

a

f(x)dx.
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This observation can be incredibly useful in determining whether or not an improper
integral converges.

Not only does this technique help in determing whether integrals converge, but it
also gives you some information about their values, which is often much easier to obtain
than computing the exact integral.

Theorem 5.7.8 (Comparison Theorem (special case)). Let f and g be continuous
functions with 0 ≤ g(x) ≤ f(x) for x ≥ a.

1. If
∫∞

a
f(x)dx converges, then

∫∞
a

g(x)dx converges.

2. If
∫∞

a
g(x)dx diverges then

∫∞
a

f(x)dx diverges.

Proof. Since g(x) ≥ 0 for all x, the function

G(t) =

∫ t

a

g(x)dx

is a non-decreasing function. If
∫∞

a
f(x)dx converges to some value B, then for any

t ≥ a we have

G(t) =

∫ t

a

g(x)dx ≤
∫ t

a

f(x)dx ≤ B.

Thus in this case G(t) is a non-decreasing function bounded above, hence the limit
limt→∞ G(t) exists. This proves the first statement.

Likewise, the function

F (t) =

∫ t

a

f(x)dx

is also a non-decreasing function. If
∫∞

a
g(x)dx diverges then the function G(t) defined

above is still non-decreasing and limt→∞ G(t) does not exist, so G(t) is not bounded.
Since g(x) ≤ f(x) we have G(t) ≤ F (t) for all ≥ a, hence F (t) is also unbounded, which
proves the second statement.

The theorem is very intuitive if you think about areas under a graph. “If the bigger
integral converges then so does the smaller one, and if the smaller one diverges so does
the bigger ones.”

Example 5.7.9. Does
∫∞
0

cos2(x)
1+x2 dx converge? Answer: YES.

Since 0 ≤ cos2(x) ≤ 1, we really do have

0 ≤ cos2(x)

1 + x2
≤ 1

1 + x2
,

as illustrated in Figure 5.7.5. Thus

∫ ∞

0

1

1 + x2
dx = lim

t→∞
tan−1(t) =

π

2
,

so
∫∞
0

cos2(x)
1+x2 dx converges.

But why did we use 1
1+x2 ? It’s a guess that turned out to work. You could have used

something else, e.g., c
x2 for some constant c. This is an illustration of how in mathematics

sometimes you have to use your imagination or guess and see what happens. Don’t get
anxious—instead, relax, take a deep breath and explore.
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Figure 5.7.5: Graph of cos(x)2

1+x2 and 1
1+x2

For example, alternatively we could have done the following:

∫ ∞

1

cos2(x)

1 + x2
dx ≤

∫ ∞

1

1

x2
dx = 1,

and this works just as well, since
∫ 1

0
cos2(x)
1+x2 dx converges (as cos2(x)

1+x2 is continuous).

Example 5.7.10. Consider
∫∞
0

1
x+e−2x

dx. Does it converge or diverge? For large values

of x, the term e−2x very quickly goes to 0, so we expect this to diverge, since
∫∞
1

1
xdx

diverges. For x ≥ 0, we have e−2x ≤ 1, so for all x we have

1

x + e−2x
≥ 1

x + 1
(verify by cross multiplying).

But
∫ ∞

1

1

x + 1
dx = lim

t→∞
[ln(x + 1)]t1 = ∞

Thus
∫∞
0

1
x+e−2x

dx must also diverge.

Note that there is a natural analogue of Theorem 5.7.8 for integrals of functions that
“blow up” at a point, but we will not state it formally.

Example 5.7.11. Consider

∫ 1

0

e−x

√
x

dx = lim
t→0+

∫ 1

t

e−x

√
x

dx.

We have
e−x

√
x

≤ 1√
x

.

(Coming up with this comparison might take some work, imagination, and trial and
error.) We have

∫ 1

0

e−x

√
x

dx ≤
∫ 1

0

1√
x

dx = lim
t→0+

2
√

1 − 2
√

t = 2.
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thus
∫ 1

0
e−x

√
x

dx converges, even though we haven’t figured out its value. We just know

that it is ≤ 2. (In fact, it is 1.493648265 . . ..)

What if we found a function that is bigger than e−x

√
x

and its integral diverges?? So

what! This does nothing for you. Bzzzt. Try again.

Example 5.7.12. Consider the integral

∫ 1

0

e−x

x
dx.

This is an improper integral since f(x) = e−x

x has a pole at x = 0. Does it converge?
NO.
On the interal [0, 1] we have e−x ≥ e−1. Thus

lim
t→0+

∫ 1

t

e−x

x
dx ≥ lim

t→0+

∫ 1

t

e−1

x
dx

= e−1 · lim
t→0+

∫ 1

t

1

x
dx

= e−1 · lim
t→0+

ln(1) − ln(t) = +∞

Thus
∫ 1

0
e−x

x dx diverges.


