5.7 Improper Integrals

```
Exam 2 Wed Mar 1: 7pm-7:50pm in ??
Today: 7.8 Improper Integrals
Monday - president's day holiday (and almost my bday)
Next - }11.1\mathrm{ sequences
```

Example 5.7.1. Make sense of $\int_{0}^{\infty} e^{-x} d x$. The integrals

$$
\int_{0}^{t} e^{-x} d x
$$

make sense for each real number t. So consider

$$
\lim _{t \rightarrow \infty} \int_{0}^{t} e^{-x} d x=\lim _{t \rightarrow \infty}\left[-e^{-x}\right]_{0}^{t}=1
$$

Geometrically the area under the whole curve is the limit of the areas for finite values of t.

Figure 5.7.1: Graph of e^{-x}

Example 5.7.2. Consider $\int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}} d x$ (see Figure 5.7.2). Problem: The denominator of the integrand tends to 0 as x approaches the upper endpoint. Define

$$
\begin{aligned}
\int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}} d x & =\lim _{t \rightarrow 1^{-}} \int_{0}^{t} \frac{1}{\sqrt{1-x^{2}}} d x \\
& =\lim _{t \rightarrow 1^{-}}\left(\sin ^{-1}(t)-\sin ^{-1}(0)\right)=\sin ^{-1}(1)=\frac{\pi}{2}
\end{aligned}
$$

Here $t \rightarrow 1^{-}$means the limit as t tends to 1 from the left.
Example 5.7.3. There can be multiple points at which the integral is improper. For example, consider

$$
\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x
$$

Figure 5.7.2: Graph of $\frac{1}{\sqrt{1-x^{2}}}$

A crucial point is that we take the limit for the left and right endpoints independently. We use the point 0 (for convenience only!) to break the integral in half.

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x & =\int_{-\infty}^{0} \frac{1}{1+x^{2}} d x+\int_{0}^{\infty} \frac{1}{1+x^{2}} d x \\
& =\lim _{s \rightarrow-\infty} \int_{s}^{0} \frac{1}{1+x^{2}} d x+\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{1}{1+x^{2}} d x \\
& =\lim _{s \rightarrow-\infty}\left(\tan ^{-1}(0)-\tan ^{-1}(s)\right)+\lim _{t \rightarrow \infty}\left(\tan ^{-1}(t)-\tan ^{-1}(0)\right) \\
& =\lim _{s \rightarrow-\infty}\left(-\tan ^{-1}(s)\right)+\lim _{t \rightarrow \infty}\left(\tan ^{-1}(t)\right) \\
& =-\frac{-\pi}{2}+\frac{\pi}{2}=\pi
\end{aligned}
$$

The graph of $\tan ^{-1}(x)$ is in Figure 5.7.3.
Example 5.7.4. Brian Conrad's paper on impossibility theorems for elementary integration begins: "The Central Limit Theorem in probability theory assigns a special significance to the cumulative area function

$$
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-u^{2}} u d u
$$

under the Gaussian bell curve

$$
y=\frac{1}{\sqrt{2 \pi}} \cdot e^{-u^{2} / 2}
$$

It is known that $\Phi(\infty)=1$."
What does this last statement mean? It means that

$$
\lim _{t \rightarrow \infty} \frac{1}{\sqrt{2 \pi}} \int_{-t}^{0} e^{-u^{2}} u d u+\lim _{x \rightarrow \infty} \frac{1}{\sqrt{2 \pi}} \int_{0}^{x} e^{-u^{2}} u d u=1
$$

Figure 5.7.3: Graph of $\tan ^{-1}(x)$

Example 5.7.5. Consider $\int_{-\infty}^{\infty} x d x$. Notice that

$$
\int_{-\infty}^{\infty} x d x=\lim _{s \rightarrow-\infty} \int_{s}^{0} x d x+\lim _{t \rightarrow \infty} \int_{0}^{t} x d x
$$

This diverges since each factor diverges independtly. But notice that

$$
\lim _{t \rightarrow \infty} \int_{-t}^{t} x d x=0
$$

This is not what $\int_{-\infty}^{\infty} x d x$ means (in this course - in a later course it could be interpreted this way)! This illustrates the importance of treating each bad point separately (since Example 5.7.3) doesn't.

Example 5.7.6. Consider $\int_{-1}^{1} \frac{1}{\sqrt[3]{x}} d x$. We have

$$
\begin{aligned}
\int_{-1}^{1} \frac{1}{\sqrt[3]{x}} d x & =\lim _{s \rightarrow 0^{-}} \int_{-1}^{s} x^{-\frac{1}{3}} d x+\lim _{t \rightarrow 0^{+}} \int_{t}^{1} x^{-\frac{1}{3}} d x \\
& =\lim _{s \rightarrow 0^{-}}\left(\frac{3}{2} s^{\frac{2}{3}}-\frac{3}{2}\right)+\lim _{t \rightarrow 0^{+}}\left(\frac{3}{2}-\frac{3}{2} t^{\frac{2}{3}}\right)=0
\end{aligned}
$$

This illustrates how to be careful and break the function up into two pieces when there is a discontinuity.

