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5.5 Integration of Rational Functions Using Partial

Fractions

Today: 7.4: Integration of rational functions and Supp. 4: Partial fraction expansion
Next: 7.7: Approximate integration

Our goal today is to compute integrals of the form

∫

P (x)

Q(x)
dx

by decomposing f = P (x)
Q(x) . This is called partial fraction expansion.

Theorem 5.5.1 (Fundamental Theorem of Algebra over the Real Numbers).
A real polynomial of degree n ≥ 1 can be factored as a constant times a product of linear
factors x − a and irreducible quadratic factors x2 + bx + c.

Note that x2 + bx + c = (x − α)(x − ᾱ), where α = z + iw, ᾱ = z − iw are complex
conjugates.

Types of rational functions f(x) = P (x)
Q(x) . To do a partial fraction expansion, first

make sure deg(P (x)) < deg(Q(x)) using long division. Then there are four possible
situation, each of increasing generality (and difficulty):

1. Q(x) is a product of distinct linear factors;

2. Q(x) is a product of linear factors, some of which are repeated;

3. Q(x) is a product of distinct irreducible quadratic factors, along with linear factors
some of which may be repeated; and,

4. Q(x) is has repeated irreducible quadratic factors, along with possibly some linear
factors which may be repeated.

The general partial fraction expansion theorem is beyond the scope of this course.
However, you might find the following special case and its proof interesting.

Theorem 5.5.2. Suppose p, q1 and q2 are polynomials that are relatively prime (have
no factor in common). Then there exists polynomials α1 and α2 such that

p

q1q2
=

α1

q1
+

α2

q2
.

Proof. Since q1 and q2 are relatively prime, using the Euclidean algorithm (long divi-
sion), we can find polynomials s1 and s2 such that

1 = s1q1 + s2q2.

Dividing both sides by q1q2 and multiplying by p yields

p

q1q2
=

α1

q1
+

α2

q2
,

which completes the proof.
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Example 5.5.3. Compute
∫

x3 − 4x − 10

x2 − x − 6
dx.

First do long division. Get quotient of x + 1 and remainder of 3x− 4. This means that

x3 − 4x − 10

x2 − x − 6
= x + 1 +

3x − 4

x2 − x − 6
.

Since we have distinct linear factors, we know that we can write

f(x) =
3x − 4

x2 − x − 6
=

A

x − 3
+

B

x + 2
,

for real numbers A,B. A clever way to find A,B is to substitute appropriate values in,
as follows. We have

f(x)(x − 3) =
3x − 4

x + 2
= A + B · x − 3

x + 2
.

Setting x = 3 on both sides we have (taking a limit):

A = f(3) =
3 · 3 − 4

3 + 2
=

5

5
= 1.

Likewise, we have

B = f(−2) =
3 · (−2) − 4

−2 − 3
= 2.

Thus
∫

x3 − 4x − 10

x2 − x − 6
dx =

∫

x + 1 +
1

x − 3
+

2

x + 2

=
x2 + 2x

2
+ 2 log |x + 2| + log |x − 3| + c.

Example 5.5.4. Compute the partial fraction expansion of x2

(x−3)(x+2)2 . By the partial

fraction theorem, there are constants A,B,C such that

x2

(x − 3)(x + 2)2
=

A

x − 3
+

B

x + 2
+

C

(x + 2)2
.

Note that there’s no possible way this could work without the (x + 2)2 term, since
otherwise the common denominator would be (x − 3)(x + 2). We have

A = [f(x)(x − 3)]x=3 =
x2

(x + 2)2
|x=3 =

9

25
,

C =
[

f(x)(x + 2)2
]

x=−2
= −4

5
.

This method will not get us B! For example,

f(x)(x + 2) =
x2

(x − 3)(x + 2)
= A · x + 2

x − 3
+ B +

C

x + 2
.

While true this is useless.
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Instead, we use that we know A and C, and evaluate at another value of x, say 0.

f(0) = 0 =
9
25

−3
+

B

2
+

− 4
5

(2)2
,

so B = 16
25 . Thus finally,

∫

x2

(x − 3)(x + 2)2
=

∫ 9
25

x − 3
+

16
25

x + 2
+

− 4
5

(x + 2)2
.

=
9

25
ln |x − 3| + 16

25
ln |x + 2| +

4
5

x + 2
+ constant.

Example 5.5.5. Let’s compute
∫

1
x3+1dx. Notice that x + 1 is a factor, since −1 is a

root. We have
x3 + 1 = (x + 1)

(

x2 − x + 1
)

.

There exist constants A,B,C such that

1

x3 + 1
=

A

x + 1
+

Bx + C

x2 − x + 1
.

Then

A = f(x)(x + 1)|x=−1 =
1

3
.

You could find B,C by factoring the quadratic over the complex numbers and getting
complex number answers. Instead, we evaluate x at a couple of values. For example, at
x = 0 we get

f(0) = 1 =
1

3
+

C

1
,

so C = 2
3 . Next, use x = 1 to get B.

f(1) =
1

13 + 1
=

1
3

(1) + 1
+

B(1) + 2
3

(1)2 − (1) + 1

1

2
=

1

6
+ B +

2

3
,

so

B =
3

6
− 1

6
− 4

6
= −1

3
.

Finally,

∫

1

x3 + 1
dx =

∫ 1
3

x + 1
−

1
3x

x2 − x − 1
+

2
3

x2 − x − 1
dx

=
1

3
ln |x + 1| − 1

3

∫

x − 2

x2 − x + 1
dx

It remains to compute
∫

x − 2

x2 − x + 1
dx.

First, complete the square to get

x2 − x + 1 =

(

x − 1

2

)2

+
3

4
.
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Let u = (x − 1
2 ), so du = dx and x = u + 1

2 . Then

∫

u − 3
2

u2 + 3
4

du =

∫

udu

u2 + 3
4

− 3

2

∫

1

u2 +
(√

3
2

)2 du

=
1

2
ln

∣

∣

∣

∣

u2 +
3

4

∣

∣

∣

∣

− 3

2
· 2√

3
tan−1

(

2u√
3

)

+ c

=
1

2
ln
∣

∣x2 − x + 1
∣

∣−
√

3 tan−1

(

2x − 1√
3

)

+ c

Finally, we put it all together and get

∫

1

x3 + 1
dx =

1

3
ln |x + 1| − 1

3

∫

x − 2

x2 − x + 1
dx

=
1

3
ln |x + 1| − 1

6
ln
∣

∣x2 − x + 1
∣

∣+

√
3

3
tan−1

(

2x − 1√
3

)

+ c

Discuss second quiz problem.
Problem: Compute

R

cos2(x)e−3xdx using complex exponentials. The answer is

−
1

6
e
−3x +

1

13
e
−3x sin(2x) −

3

26
e
−3x cos(2x).

Here’s how to get it.

Z

cos2(x)e−3x
dx =

Z

e2ix + 2 + e−2ix

4
e
−3x

dx

=
1

4

»

e(2i−3)x

2i − 3
−

2

3
e
−3x +

e(−2i−3)x

−2i − 3

–

+ c

= −
1

6
e
−3x +

e−3x

4

»

e2ix

2i − 3
−

e−2ix

2i + 3

–

+ c

To simplify the inside part do this:

e2ix

2i − 3
−

e−2ix

2i + 3
=

1

13
(−2ie

2ix − 3e
2ix + 2ie

−2ix − 3e
−2ix)

=
1

13
(4 sin(2x) − 6 cos(2x))


