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5.3 Trigonometric Substitutions

Return more midterms?
Rough meaning of grades:

29-34 is A

2328 is B

17-22is C

11-16 is D
Regarding the quiz—if you do every homework problem that was assigned, you’ll have a severe
case of deja vu on the quiz! On the exam, we do not restrict ourselves like this, but you get to
have a sheet of paper.

The first homework problem is to compute

2
1

Your first idea might be to do some sort of substitution, e.g., u = % — 1, but du = 2zdx
is nowhere to be seen and this simply doesn’t work. Likewise, integration by parts gets
us nowhere. However, a technique called “inverse trig substitutions” and a trig identity
easily dispenses with the above integral and several similar ones! Here’s the crucial
table:

Expression | Inverse Substitution Relevant Trig Identity
Va2 —a2? |z =asin(f), -3 <0< % 1 —sin®(f) = cos?(h)

Va?+2? | z=atan(d),-Z <0< % 1 + tan?(0) = sec?(0)
V2 —a? r=asec(d),0<O< T orm<0< 37“ sec?(0) — 1 = tan?(0)

Inverse substitution works as follows. If we write = g(¢), then

[ o= [ riae)g @

This is not the same as substitution. You can just apply inverse substitution to any
integral directly—usually you get something even worse, but for the integrals in this
section using a substitution can vastly improve the situation.

If g is a 1 — 1 function, then you can even use inverse substitution for a definite
integral. The limits of integration are obtained as follows.

b g~ (b)
/fww=/ Fla(t))d (B)dt. (5.3.2)
a g~ 1(a)

To help you understand this, note that as ¢ varies from g=*(a) to g~1(b), the function
g(t) varies from a = g(g~*(a) to b = g(g=1(b)), so f is being integrated over exactly
the same values. Note also that (5.3.2) once again illustrates Leibniz’s brilliance in
designing the notation for calculus.

Let’s give it a shot with (5.3.1). From the table we use the inverse substition

x = sec(6).
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We get

2 1 31
I = 3 2 _ 1 <
/\/5 x?’mdm /Z' sec(0) sec?(9) — 1sec(6) tan(9)d?

E
= / sec(0) tan(6) sec(f) tan(6)dd

= /3 cos' 0)de

™

1 + cos(26)df

I
N —
—

]

INE]

Wow! That was like magic. This is really an amazing technique. Let’s use it again
to find the area of an ellipse.

Example 5.3.1. Consider an ellipse with radii a and b, so it goes through (0, +b) and
(+a,0). An equation for the part of an ellipse in the first quadrant is

20
y=> 1*2—226\/(1271}2.

Thus the area of the entire ellipse is
)
A:4/ —va? —z2dx.
0o a

The 4 is because the integral computes 1/4th of the area of the whole ellipse. So we

need to compute
a
/ Va2 —z2dx
0

Obvious substitution with u = a? — 22...7 nope. Integration by parts...? nope.

Let’s try inverse substitution. The table above suggests using x = asin(f), so
dx = acos(0)df. We get

us

/2 \/a? — a?sin*(0)dl = a? / ’ cos?(6)df (5.3.3)
0 0

@ [
= 5/ 1 + cos(26)do (5.3.4)
0
a? 1 2
== ~ sin(2 3.
5 [9 + 5 sin( 9)} . (5.3.5)
a> © ma?
— ? N 5 — T. (5~3~6)
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Thus the area is
2

Consistency Check: If the ellipse is a circle, i.e., @ = b = r, this is 772, which is a
well-known formula for the area of a circle.

Remark 5.3.2. Trigonometric substitution is useful for functions that involve va2? — 22,
Va2 4+ a2, vVz2 — a, but not all at once!l. See the above table for how to do each.

One other important technique is to use completing the square.
Example 5.3.3. Compute f V5 + 4z — 22 dx. We complete the square:
S5+dr—2?=5— (-2 +4=9—(z—2)%
Thus

/\/mdx:/ 9— (z—2)2da.

We do a usual substitution to get rid of the x — 2. Let u = 2 — 2, so du = dx. Then

[Vi-@-2rde= [ Vo=ia

Now we have an integral that we can do; it’s almost identical to the previous example,
but with @ =9 (and this is an indefinite integral). Let y = 3sin(#), so dy = 3 cos(6)d6.
Then

[V a = [ ViR
=/\/32—3281n2(9)3cos(9)d9
= 9/0052(9) de

g/l—l—cos(%)d@
9
2

<9 + % sin(29)> +e

Of course, we must transform back into a function in z, and that’s a little tricky. Use
that

x —2=y=3sin(f),

—2
—gin!(2—2).
Sin ( 3 )

so that



50 CHAPTER 5. INTEGRATION TECHNIQUES

/ 9 (z—22dr=---

(9 + % sin(29)) +e

{sin_l (I 3 2) + sin(0) cos(e)] .
[Sinl <x;2> . <x;2> . < 9-(;-2)2)

Here we use that sin(20) = 2sin(6) cos(6). Also, to compute cos(sin™" (£52)), we draw

a right triangle with side lengths  — 2 and /9 — (x — 2)2, and hypotenuse 3.

+c.

NI© N©O© N

Example 5.3.4. Compute

1
R —
V2 — 6t + 13

To compute this, we complete the square, etc.
1 1
/ - / S
V2 — 6t + 13 V(t—3)2+4

[[Draw triangle with sides 2 and ¢ — 3 and hypotenuse /(¢ — 3)2 + 4. Then

t — 3 =2tan(f)
2
cos(0)

(t—3)2+4=2sec(h) =
dt = 2sec*()df
Back to the integral, we have

1 [ 2sec?(0)
/ N | )
= /sec(@)dG
= In|sec(d) + tan(0)| + ¢

t—3
\/(t—3)2+42+T +c.

=In




