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5.3 Trigonometric Substitutions

Return more midterms?
Rough meaning of grades:

29–34 is A
23–28 is B
17–22 is C
11–16 is D

Regarding the quiz—if you do every homework problem that was assigned, you’ll have a severe
case of deja vu on the quiz! On the exam, we do not restrict ourselves like this, but you get to
have a sheet of paper.

The first homework problem is to compute

∫ 2

√
2

1

x3
√

x2 − 1
dx. (5.3.1)

Your first idea might be to do some sort of substitution, e.g., u = x2−1, but du = 2xdx
is nowhere to be seen and this simply doesn’t work. Likewise, integration by parts gets
us nowhere. However, a technique called “inverse trig substitutions” and a trig identity
easily dispenses with the above integral and several similar ones! Here’s the crucial
table:

Expression Inverse Substitution Relevant Trig Identity√
a2 − x2 x = a sin(θ),−π

2 ≤ θ ≤ π
2 1 − sin2(θ) = cos2(θ)√

a2 + x2 x = a tan(θ),−π
2 < θ < π

2 1 + tan2(θ) = sec2(θ)√
x2 − a2 x = a sec(θ), 0 ≤ θ < π

2 or π ≤ θ < 3π
2 sec2(θ) − 1 = tan2(θ)

Inverse substitution works as follows. If we write x = g(t), then

∫

f(x)dx =

∫

f(g(t))g′(t)dt.

This is not the same as substitution. You can just apply inverse substitution to any
integral directly—usually you get something even worse, but for the integrals in this
section using a substitution can vastly improve the situation.

If g is a 1 − 1 function, then you can even use inverse substitution for a definite
integral. The limits of integration are obtained as follows.

∫ b

a

f(x)dx =

∫ g−1(b)

g−1(a)

f(g(t))g′(t)dt. (5.3.2)

To help you understand this, note that as t varies from g−1(a) to g−1(b), the function
g(t) varies from a = g(g−1(a) to b = g(g−1(b)), so f is being integrated over exactly
the same values. Note also that (5.3.2) once again illustrates Leibniz’s brilliance in
designing the notation for calculus.

Let’s give it a shot with (5.3.1). From the table we use the inverse substition

x = sec(θ).
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We get

∫ 2

√
2

1

x3
√

x2 − 1
dx =

∫ π

3

π

4

1

sec(θ)

√

sec2(θ) − 1 sec(θ) tan(θ)dθ

=

∫ π

3

π

4

1

sec(θ)
tan(θ) sec(θ) tan(θ)dθ

=

∫ π

3

π

4

cos( θ)dθ

=
1

2

∫ π

3

π

4

1 + cos(2θ)dθ

=
1

2

[

θ +
1

2
sin(2θ)

]
π

3

π

4

=
π

24
+

√
3

8
− 1

4

Wow! That was like magic. This is really an amazing technique. Let’s use it again
to find the area of an ellipse.

Example 5.3.1. Consider an ellipse with radii a and b, so it goes through (0,±b) and
(±a, 0). An equation for the part of an ellipse in the first quadrant is

y = b

√

1 − x2

a2
=

b

a

√

a2 − x2.

Thus the area of the entire ellipse is

A = 4

∫ a

0

b

a

√

a2 − x2 dx.

The 4 is because the integral computes 1/4th of the area of the whole ellipse. So we
need to compute

∫ a

0

√

a2 − x2 dx

Obvious substitution with u = a2 − x2...? nope. Integration by parts...? nope.
Let’s try inverse substitution. The table above suggests using x = a sin(θ), so

dx = a cos(θ)dθ. We get

∫ π

2

0

√

a2 − a2 sin2(θ)dθ = a2

∫ π

2

0

cos2(θ)dθ (5.3.3)

=
a2

2

∫ π

2

0

1 + cos(2θ)dθ (5.3.4)

=
a2

2

[

θ +
1

2
sin(2θ)

]
π

2

0

(5.3.5)

=
a2

2
· π

2
=

πa2

4
. (5.3.6)
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Thus the area is

4
b

a

πa2

4
= πab.

Consistency Check: If the ellipse is a circle, i.e., a = b = r, this is πr2, which is a
well-known formula for the area of a circle.

Remark 5.3.2. Trigonometric substitution is useful for functions that involve
√

a2 − x2,√
x2 + a2,

√
x2 − a, but not all at once!. See the above table for how to do each.

One other important technique is to use completing the square.

Example 5.3.3. Compute
∫ √

5 + 4x − x2 dx. We complete the square:

5 + 4x − x2 = 5 − (x − 2)2 + 4 = 9 − (x − 2)2.

Thus
∫

√

5 + 4x − x2 dx =

∫

√

9 − (x − 2)2 dx.

We do a usual substitution to get rid of the x − 2. Let u = x − 2, so du = dx. Then

∫

√

9 − (x − 2)2 dx =

∫

√

9 − y2 dy.

Now we have an integral that we can do; it’s almost identical to the previous example,
but with a = 9 (and this is an indefinite integral). Let y = 3 sin(θ), so dy = 3 cos(θ)dθ.
Then

∫

√

9 − (x − 2)2 dx =

∫

√

9 − y2 dy

=

∫
√

32 − 32 sin2(θ)3 cos(θ)dθ

= 9

∫

cos2(θ) dθ

=
9

2

∫

1 + cos(2θ)dθ

=
9

2

(

θ +
1

2
sin(2θ)

)

+ c

Of course, we must transform back into a function in x, and that’s a little tricky. Use
that

x − 2 = y = 3 sin(θ),

so that

θ = sin−1

(

x − 2

3

)

.
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∫

√

9 − (x − 2)2 dx = · · ·

=
9

2

(

θ +
1

2
sin(2θ)

)

+ c

=
9

2

[

sin−1

(

x − 2

3

)

+ sin(θ) cos(θ)

]

+ c

=
9

2

[

sin−1

(

x − 2

3

)

+

(

x − 2

3

)

·
(

√

9 − (x − 2)2

3

)]

+ c.

Here we use that sin(2θ) = 2 sin(θ) cos(θ). Also, to compute cos(sin−1
(

x−2
3

)

), we draw

a right triangle with side lengths x − 2 and
√

9 − (x − 2)2, and hypotenuse 3.

Example 5.3.4. Compute
∫

1√
t2 − 6t + 13

dt

To compute this, we complete the square, etc.

∫

1√
t2 − 6t + 13

dt =

∫

1
√

(t − 3)2 + 4
dt

[[Draw triangle with sides 2 and t − 3 and hypotenuse
√

(t − 3)2 + 4. Then

t − 3 = 2 tan(θ)
√

(t − 3)2 + 4 = 2 sec(θ) =
2

cos(θ)

dt = 2 sec2(θ)dθ

Back to the integral, we have

∫

1
√

(t − 3)2 + 4
dt =

∫

2 sec2(θ)

2 sec(θ)
dθ

=

∫

sec(θ)dθ

= ln | sec(θ) + tan(θ)| + c

= ln

∣

∣

∣

∣

√

(t − 3)2 + 42 +
t − 3

2

∣

∣

∣

∣

+ c.


