5.3 Trigonometric Substitutions

Return more midterms?
Rough meaning of grades:
29-34 is A
$23-28$ is B
$17-22$ is C
$11-16$ is D
Regarding the quiz - if you do every homework problem that was assigned, you'll have a severe case of deja vu on the quiz! On the exam, we do not restrict ourselves like this, but you get to have a sheet of paper.

The first homework problem is to compute

$$
\begin{equation*}
\int_{\sqrt{2}}^{2} \frac{1}{x^{3} \sqrt{x^{2}-1}} d x \tag{5.3.1}
\end{equation*}
$$

Your first idea might be to do some sort of substitution, e.g., $u=x^{2}-1$, but $d u=2 x d x$ is nowhere to be seen and this simply doesn't work. Likewise, integration by parts gets us nowhere. However, a technique called "inverse trig substitutions" and a trig identity easily dispenses with the above integral and several similar ones! Here's the crucial table:

Expression	Inverse Substitution	Relevant Trig Identity
$\sqrt{a^{2}-x^{2}}$	$x=a \sin (\theta),-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$	$1-\sin ^{2}(\theta)=\cos ^{2}(\theta)$
$\sqrt{a^{2}+x^{2}}$	$x=a \tan (\theta),-\frac{\pi}{2}<\theta<\frac{\pi}{2}$	$1+\tan ^{2}(\theta)=\sec ^{2}(\theta)$
$\sqrt{x^{2}-a^{2}}$	$x=a \sec (\theta), 0 \leq \theta<\frac{\pi}{2}$ or $\pi \leq \theta<\frac{3 \pi}{2}$	$\sec ^{2}(\theta)-1=\tan ^{2}(\theta)$

Inverse substitution works as follows. If we write $x=g(t)$, then

$$
\int f(x) d x=\int f(g(t)) g^{\prime}(t) d t
$$

This is not the same as substitution. You can just apply inverse substitution to any integral directly-usually you get something even worse, but for the integrals in this section using a substitution can vastly improve the situation.

If g is a $1-1$ function, then you can even use inverse substitution for a definite integral. The limits of integration are obtained as follows.

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=\int_{g^{-1}(a)}^{g^{-1}(b)} f(g(t)) g^{\prime}(t) d t \tag{5.3.2}
\end{equation*}
$$

To help you understand this, note that as t varies from $g^{-1}(a)$ to $g^{-1}(b)$, the function $g(t)$ varies from $a=g\left(g^{-1}(a)\right.$ to $b=g\left(g^{-1}(b)\right)$, so f is being integrated over exactly the same values. Note also that (5.3.2) once again illustrates Leibniz's brilliance in designing the notation for calculus.

Let's give it a shot with (5.3.1). From the table we use the inverse substition

$$
x=\sec (\theta)
$$

We get

$$
\begin{aligned}
\int_{\sqrt{2}}^{2} \frac{1}{x^{3} \sqrt{x^{2}-1}} d x & =\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{1}{\sec (\theta)} \sqrt{\sec ^{2}(\theta)-1} \sec (\theta) \tan (\theta) d \theta \\
& =\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{1}{\sec (\theta)} \tan (\theta) \sec (\theta) \tan (\theta) d \theta \\
& \left.=\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \cos ^{(} \theta\right) d \theta \\
& =\frac{1}{2} \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} 1+\cos (2 \theta) d \theta \\
& =\frac{1}{2}\left[\theta+\frac{1}{2} \sin (2 \theta)\right]_{\frac{\pi}{4}}^{\frac{\pi}{3}} \\
& =\frac{\pi}{24}+\frac{\sqrt{3}}{8}-\frac{1}{4}
\end{aligned}
$$

Wow! That was like magic. This is really an amazing technique. Let's use it again to find the area of an ellipse.

Example 5.3.1. Consider an ellipse with radii a and b, so it goes through $(0, \pm b)$ and $(\pm a, 0)$. An equation for the part of an ellipse in the first quadrant is

$$
y=b \sqrt{1-\frac{x^{2}}{a^{2}}}=\frac{b}{a} \sqrt{a^{2}-x^{2}} .
$$

Thus the area of the entire ellipse is

$$
A=4 \int_{0}^{a} \frac{b}{a} \sqrt{a^{2}-x^{2}} d x .
$$

The 4 is because the integral computes $1 / 4$ th of the area of the whole ellipse. So we need to compute

$$
\int_{0}^{a} \sqrt{a^{2}-x^{2}} d x
$$

Obvious substitution with $u=a^{2}-x^{2} \ldots$? nope. Integration by parts...? nope.
Let's try inverse substitution. The table above suggests using $x=a \sin (\theta)$, so $d x=a \cos (\theta) d \theta$. We get

$$
\begin{align*}
\int_{0}^{\frac{\pi}{2}} \sqrt{a^{2}-a^{2} \sin ^{2}(\theta)} d \theta & =a^{2} \int_{0}^{\frac{\pi}{2}} \cos ^{2}(\theta) d \theta \tag{5.3.3}\\
& =\frac{a^{2}}{2} \int_{0}^{\frac{\pi}{2}} 1+\cos (2 \theta) d \theta \tag{5.3.4}\\
& =\frac{a^{2}}{2}\left[\theta+\frac{1}{2} \sin (2 \theta)\right]_{0}^{\frac{\pi}{2}} \tag{5.3.5}\\
& =\frac{a^{2}}{2} \cdot \frac{\pi}{2}=\frac{\pi a^{2}}{4} . \tag{5.3.6}
\end{align*}
$$

Thus the area is

$$
4 \frac{b}{a} \frac{\pi a^{2}}{4}=\pi a b
$$

Consistency Check: If the ellipse is a circle, i.e., $a=b=r$, this is πr^{2}, which is a well-known formula for the area of a circle.

Remark 5.3.2. Trigonometric substitution is useful for functions that involve $\sqrt{a^{2}-x^{2}}$, $\sqrt{x^{2}+a^{2}}, \sqrt{x^{2}-a}$, but not all at once!. See the above table for how to do each.

One other important technique is to use completing the square.
Example 5.3.3. Compute $\int \sqrt{5+4 x-x^{2}} d x$. We complete the square:

$$
5+4 x-x^{2}=5-(x-2)^{2}+4=9-(x-2)^{2}
$$

Thus

$$
\int \sqrt{5+4 x-x^{2}} d x=\int \sqrt{9-(x-2)^{2}} d x
$$

We do a usual substitution to get rid of the $x-2$. Let $u=x-2$, so $d u=d x$. Then

$$
\int \sqrt{9-(x-2)^{2}} d x=\int \sqrt{9-y^{2}} d y
$$

Now we have an integral that we can do; it's almost identical to the previous example, but with $a=9$ (and this is an indefinite integral). Let $y=3 \sin (\theta)$, so $d y=3 \cos (\theta) d \theta$. Then

$$
\begin{aligned}
\int \sqrt{9-(x-2)^{2}} d x & =\int \sqrt{9-y^{2}} d y \\
& =\int \sqrt{3^{2}-3^{2} \sin ^{2}(\theta)} 3 \cos (\theta) d \theta \\
& =9 \int \cos ^{2}(\theta) d \theta \\
& =\frac{9}{2} \int 1+\cos (2 \theta) d \theta \\
& =\frac{9}{2}\left(\theta+\frac{1}{2} \sin (2 \theta)\right)+c
\end{aligned}
$$

Of course, we must transform back into a function in x, and that's a little tricky. Use that

$$
x-2=y=3 \sin (\theta)
$$

so that

$$
\theta=\sin ^{-1}\left(\frac{x-2}{3}\right)
$$

$$
\begin{aligned}
\int \sqrt{9-(x-2)^{2}} d x & =\cdots \\
& =\frac{9}{2}\left(\theta+\frac{1}{2} \sin (2 \theta)\right)+c \\
& =\frac{9}{2}\left[\sin ^{-1}\left(\frac{x-2}{3}\right)+\sin (\theta) \cos (\theta)\right]+c \\
& =\frac{9}{2}\left[\sin ^{-1}\left(\frac{x-2}{3}\right)+\left(\frac{x-2}{3}\right) \cdot\left(\frac{\sqrt{9-(x-2)^{2}}}{3}\right)\right]+c
\end{aligned}
$$

Here we use that $\sin (2 \theta)=2 \sin (\theta) \cos (\theta)$. Also, to compute $\cos \left(\sin ^{-1}\left(\frac{x-2}{3}\right)\right)$, we draw a right triangle with side lengths $x-2$ and $\sqrt{9-(x-2)^{2}}$, and hypotenuse 3 .

Example 5.3.4. Compute

$$
\int \frac{1}{\sqrt{t^{2}-6 t+13}} d t
$$

To compute this, we complete the square, etc.

$$
\int \frac{1}{\sqrt{t^{2}-6 t+13}} d t=\int \frac{1}{\sqrt{(t-3)^{2}+4}} d t
$$

[[Draw triangle with sides 2 and $t-3$ and hypotenuse $\sqrt{(t-3)^{2}+4}$. Then

$$
\begin{aligned}
t-3 & =2 \tan (\theta) \\
\sqrt{(t-3)^{2}+4} & =2 \sec (\theta)=\frac{2}{\cos (\theta)} \\
d t & =2 \sec ^{2}(\theta) d \theta
\end{aligned}
$$

Back to the integral, we have

$$
\begin{aligned}
\int \frac{1}{\sqrt{(t-3)^{2}+4}} d t & =\int \frac{2 \sec ^{2}(\theta)}{2 \sec (\theta)} d \theta \\
& =\int \sec (\theta) d \theta \\
& =\ln |\sec (\theta)+\tan (\theta)|+c \\
& =\ln \left|\sqrt{(t-3)^{2}+4} 2+\frac{t-3}{2}\right|+c
\end{aligned}
$$

