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2.3 Average Values

Quiz Answers: (1) 29, (2) 1
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Exam 1: Wednesday, Feb 1, 7:00pm–7:50pm, here.
Today: §6.5 – Average Values
Today: §10.3 – Polar coords
NEXT: §10.4 –Areas in Polar coords

Why did we skip from §6.5 to §10.3? Later we’ll go back and look at trig functions and complex
exponentials; these ideas will fit together more than you might expect. We’ll go back to §7.1
on Feb 3.

In this section we use Riemann sums to extend the familiar notion of an average,
which provides yet another physical interpretation of integration.

Recall: Suppose y1, . . . , yn are the amount of rain each day in La Jolla, since you
moved here. The average rainful per day is

yavg =
y1 + · · · + yn

n
=

1

n

n
∑

i=1

yi.

Definition 2.3.1 (Average Value of Function). Suppose f is a continuous function
on an interval [a, b]. The average value of f on [a, b] is

favg =
1

b − a

∫ b

a

f(x)dx.

Motivation: If we sample f at n points xi, then

favg ∼ 1

n

n
∑

i=1

f(xi) =
(b − a)

n(b − a)

n
∑

i=1

f(xi) =
1

(b − a)

n
∑

i=1

f(xi)∆x,

since ∆x =
b − a

n
. This is a Riemann sum!

1

(b − a)
lim

n→∞

n
∑

i=1

f(xi)∆x =
1

(b − a)

∫ b

a

f(x)dx.

This explains why we defined favg as above.

Example 2.3.2. What is the average value of sin(x) on the interval [0, π]?

1

π − 0

∫ π

0

sin(x)dx =
1

π − 0

[

− cos(x)
]π

0

=
1

π

[

−(−1) − (−1)
]π

0
=

2

π

Observation: If you multiply both sides by (b − a) in Definition 2.3.1, you see that
the average value times the length of the interval is the area, i.e., the average value
gives you a rectangle with the same area as the area under your function. In particular,
in Figure 2.3.1 the area between the x-axis and sin(x) is exactly the same as the area
between the horizontal line of height 2/π and the x-axis.
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Figure 2.3.1: What is the average value of sin(x)?
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Figure 2.3.2: What is the average value?
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Example 2.3.3. What is the average value of sin(2x)e1−cos(2x) on the interval [−π, π]?

1

π − (−π)

∫ π

−π

sin(2x)e1−cos(2x)dx = 0 (since the function is odd!)

Theorem 2.3.4 (Mean Value Theorem). Suppose f is a continuous function on
[a, b]. Then there is a number c in [a, b] such that f(c) = favg.

This says that f assumes its average value. It is a used very often in understanding
why certain statements are true. Notice that in Examples 2.3.2 and 2.3.3 it is just the
assertion that the graphs of the function and the horizontal line interesect.

Proof. Let F (x) =
∫ x

a
f(t)dt. Then F ′(x) = f(x). By the mean value theorem for

derivatives, there is c ∈ [a, b] such that f(c) = F ′(c) = (F (b) − F (a))/(b − a). But by
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the fundamental theorem of calculus,

f(c) =
F (b) − F (a)

b − a
=

1

b − a

∫ b

a

f(x)dx = favg.

2.4 Polar Coordinates

Rectangular coordinates allow us to describe a point (x, y) in the plane in a different
way, namely

(x, y) ↔ (r, θ),

where r is any real number and θ is an angle.
Polar coordinates are extremely useful, especially when thinking about complex

numbers. Note, however, that the (r, θ) representation of a point is very non-unique.
First, θ is not determined by the point. You could add 2π to it and get the same

point:
(

2,
π

4

)

=

(

2,
9π

4

)

=
(

2,
π

4
+ 389 · 2π

)

. =

(

2,
−7π

4

)

Also that r can be negative introduces further non-uniqueness:

(

1,
π

2

)

=

(

−1,
3π

2

)

.

Think about this as follows: facing in the direction 3π/2 and backing up 1 meter gets
you to the same point as looking in the direction π/2 and walking forward 1 meter.

We can convert back and forth between cartesian and polar coordinates using that

x = r cos(θ) (2.4.1)

y = r sin(θ), (2.4.2)

and in the other direction

r2 = x2 + y2 (2.4.3)

tan(θ) =
y

x
(2.4.4)

(Thus r = ±
√

x2 + y2 and θ = tan−1(y/x).)

Example 2.4.1. Sketch r = sin(θ), which is a circle sitting on top the x axis.
We plug in points for one period of the function we are graphing—in this case [0, 2π]:

0 sin(0) = 0
π/6 sin(π/6) = 1/2

π/4 sin(π/4) =
√

2
2

π/2 sin(π/2) = 1

3π/4 sin(3π/4) =
√

2
2

π sin(π) = 0
π + π/6 sin(π + π/6) = −1/2
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Figure 2.4.1: Graph of r = sin(θ).
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Notice it is nice to allow r to be negative, so we don’t have to restrict the input. BUT
it is really painful to draw this graph by hand.

To more accurately draw the graph, let’s try converting the equation to one involving
polar coordinates. This is easier if we multiply both sides by r:

r2 = r sin(θ).

Note that the new equation has the extra solution (r = 0, θ = anything), so we have to
be careful not to include this point. Now convert to cartesian coordinates using (2.4.1)
to obtain (2.4.3):

x2 + y2 = y.

The graph of (2.4.1) is the same as that of r = sin(θ). To confirm this we complete the
square:

x2 + y2 = y

x2 + y2 − y = 0

x2 + (y − 1/2)2 = 1/4

Thus the graph of (2.4.1) is a circle of radius 1/2 centered at (0, 1/2).

Actually any polar graph of the form r = a sin(θ) + b cos(θ) is a circle, as you will
see in homework problem 67 by generalizing what we just did.


