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1.3 Integration Technique 1: Substitution and Sym-

metry

Homework reminder.
Quiz reminder: Friday, Jan 20 (Ace the first quiz!).
Office Hours: Tue 11-1.
Monday is a holiday!
Wednesday – areas between curves and volumes

First midterm: Wed Feb 1 at 7pm (review lecture during day!)
Quick 5 minute discussion of computers and Maxima.
Quiz format: one question on front; one on back.

Remarks:

1. The total distance traveled is
R

t2

t1
|v(t)|dt since |v(t)| is the rate of change of F (t) =

distance traveled (your speedometer displays the rate of change of your odometer).

2. How to compute
R

b

a
|f(x)|dx.

(a) Find the zeros of f(x) on [a, b], and use these to break the interval up into subin-
tervals on which f(x) is always ≥ 0 or always ≤ 0.

(b) On the intervals where f(x) ≥ 0, compute the integral of f , and on the intervals
where f(x) ≤ 0, compute the integral of −f .

(c) The sum of the above integrals on intervals is
R

|f(x)|dx.

This section is primarly about a powerful technique for computing definite and
indefinite integrals.

1.3.1 The Substitution Rule

In first quarter calculus you learned numerous methods for computing derivatives of
functions. For example, the power rule asserts that

(xa)′ = a · xa−1.

We can turn this into a way to compute certain integrals:
∫

xadx =
1

a + 1
xa+1 if a 6= −1.

Just as with the power rule, many other rules and results that you already know
yield techniques for integration. In general integration is potentially much trickier than
differentiation, because it is often not obvious which technique to use, or even how to
use it. Integration is a more exciting than differentiation!

Recall the chain rule, which asserts that

d

dx
f(g(x)) = f ′(g(x))g′(x).

We turn this into a technique for integration as follows:

Proposition 1.3.1 (Substitution Rule). Let u = g(x), we have
∫

f(g(x))g′(x)dx =

∫

f(u)du,

assuming that g(x) is a function that is differentiable and whose range is an interval on
which f is continuous.
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Proof. Since f is continuous on the range of g, Theorem 1.1.5 (the fundamental theorem
of Calculus) implies that there is a function F such that F ′ = f . Then

∫

f(g(x))g′(x)dx =

∫

F ′(g(x))g′(x)dx

=

∫
(

d

dx
F (g(x))

)

dx

= F (g(x)) + C

= F (u) + C =

∫

F ′(u)du =

∫

f(u)du.

If u = g(x) then du = g′(x)dx, and the substitution rule simply says if you let
u = g(x) formally in the integral everywhere, what you naturally would hope to be true
based on the notation actually is true. The substitution rule illustrates how the notation
Leibniz invented for Calculus is incredibly brilliant. It is said that Leibniz would often
spend days just trying to find the right notation for a concept. He succeeded.

As with all of Calculus, the best way to start to get your head around a new concept
is to see severally clearly worked out examples. (And the best way to actually be able to
use the new idea is to do lots of problems yourself!) In this section we present examples
that illustrate how to apply the substituion rule to compute indefinite integrals.

Example 1.3.2.
∫

x2(x3 + 5)9dx

Let u = x3 + 5. Then du = 3x2dx, hence dx = du/(3x2). Now substitute it all in:

∫

x2(x3 + 5)9dx =

∫

1

3
u9 =

1

30
u10 =

1

30
(x3 + 5)10.

There’s no point in expanding this out: “only simplify for a purpose!”

Example 1.3.3.
∫

ex

1 + ex
dx

Substitute u = 1 + ex. Then du = exdx, and the integral above becomes

∫

du

u
= ln |u| = ln |1 + ex| = ln(1 + ex).

Note that the absolute values are not needed, since 1 + ex > 0 for all x.

Example 1.3.4.
∫

x2

√
1 − x

dx

Keeping in mind the power rule, we make the substitution u = 1 − x. Then du = −dx.
Noting that x = 1 − u by solving for x in u = 1 − x, we see that the above integral
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becomes
∫

− (1 − u)2√
u

du = −
∫

1 − 2u + u2

u1/2
du

= −
∫

u−1/2 − 2u1/2 + u3/2du

= −
(

2u1/2 − 4

3
u3/2 +

2

5
u5/2

)

= −2(1 − x)1/2 +
4

3
(1 − x)3/2 − 2

5
(1 − x)5/2.

1.3.2 The Substitution Rule for Definite Integrals

Proposition 1.3.5 (Substitution Rule for Definite Integrals). We have
∫ b

a

f(g(x))g′(x)dx =

∫ g(b)

g(a)

f(u)du,

assuming that u = g(x) is a function that is differentiable and whose range is an interval
on which f is continuous.

Proof. If F ′ = f , then by the chain rule, F (g(x)) is an antiderivative of f(g(x))g′(x).
Thus

∫ b

a

f(g(x))g′(x)dx =
[

F (g(x))
]b

a
= F (g(b)) − F (g(a)) =

∫ g(b)

g(a)

f(u)du.

Example 1.3.6.
∫

√
π

0

x cos(x2)dx

We let u = x2, so du = 2xdx and xdx = 1
2du and the integral becomes

1

2
·
∫ (

√
π)2

(0)2
cos(u)du =

1

2
· [sin(u)]

π
0 =

1

2
· (0 − 0) = 0.

1.3.3 Symmetry

An odd function is a function f(x) such that f(−x) = −f(x), and an even function one
for which f(−x) = f(x). If f is an odd function, then for any a,

∫ a

−a

f(x)dx = 0.

If f is an even function, then for any a,
∫ a

−a

f(x)dx = 2

∫ a

0

f(x)dx.

Both statements are clear if we view integrals as computing the signed area between
the graph of f(x) and the x-axis.

Example 1.3.7.
∫ 1

−1

x2dx = 2

∫ 1

0

x2dx = 2

[

1

3
x3

]1

0

=
2

3
.


