Integrality Properties of a Special
Value of the Partial Zeta Functions of

Certain Abelian Field Extensions

Barry Smith
November 9, 2005
Advisor: Cristian D. Popescu



Basic Terminology I
A number field is a finite extension field of Q

The following objects are associated to any
number field K:

O — the ring of integers of K

Every ideal of Oy factors uniquely as a product
of prime ideals.

For any prime ideal p € Ok, Og/p is a finite
field.

ur — the group of roots of unity contained
inside of K

Ui — the group of units inside of the ring O
Uk /pg is a finitely generated abelian group.



Basic Terminology II

Iy — the ideal group of K, composed of the
fractional ideals of K

Py — the subgroup of principal ideals of I
Cx = I /Pg — the ideal class group of K

The ideal class group is always finite, so we let
hg = |Ck]|

Infinite Places — The “primes at infinity” cor-
respond to the embeddings K — R and the
pairs of conjugate embeddings K «— C

For an ideal a € O, the norm of a is given by
Na = [OK . Cl]



Field Extensions

If K/k is an abelian Galois extension of number
fields and p € I, then pOy € I factors as

g e
pOK = (H ’:Bz') :
i=1

p splits completely in K/k if g = [K : k]

p ramifies in K/k ife> 1.

K/k is unramified if no places (finite or inifi-
nite!) ramify in K/k.

The decomposition group of 3, is the subgroup

D(PBi/p) = {0 € Gal(K/k)|oB; = P; }



The Artin Map

If p and ‘B, are as before, and if e = 1, then
D(K/k) = Gal((Og /Bi)/(Ok/p)).

Furthermore, if Gal(K/k) is abelian, there is an
automorphism (p, K/k) € Gal(K/k) depending
only on p that maps to the Frobenius automor-
phism under the above isomorphism.

Let S be a finite set of prime ideals of O, con-
taining the ramified primes.

The Artin map is the homomorphism ( - , K/k) :
Iy s — Gal(K/k) given by p — (p,K/k) for
prime ideals not in S, and extended multiplica-
tively to all fractional ideals of k prime to the
ideals in S.



Partial Zeta Functions

Let K/k be a finite abelian extension of number
fields with Galois group G, and let S be a finite
set of places O, including all infinite places and
primes that ramify in K/k.

For any 7 € (G, the associated
partial zeta function is defined by

(s(Ty8) =) (Na)™*

where the sum is over all integral ideals a € I}, ¢
with (a, K/k) = .

These functions can be analytically continued
to the entire complex plane with at most a
simple pole at s = 1.



The L-function Evaluator

With K/k, G, and S as before, the
L-function evaluator 0y, 5 € C[G] is given by

0 = Z CK/IC(O—7 O)O'_l.

ceG

Let Wi = |pu (K)|. Then

e Theorem (Siegel 1970, Shintani 1976)
0 € Q[G]

e Theorem (Deligne-Ribet, Cassou-Nogués,
Barsky, 1979)
§0 € Z[G] for all £ € Annggy (1 (K))

e In particular, wgb € Z[G]

e If |S| > 2 and some prime of S splits com-
pletely in K, then 6 =0



Example

Let m > 2 besuchthatm =0,1, or 3 (mod 4).
271

Let ( =em.
Set k=Q, K=0Q(¢), and let S = {oco,p|m}.

Under the canonical isomorphism G = (Z/mZ)*,
if (a,m) =1, (a,K/k) —a. Then

CS(av S) — Z n=°
n=a(m)
iIs the Hurwitz zeta function.
It is known that
1 a
(5(a,0) =2 ——
m

so that



A Closer Look At 6

Write

— — —1
W—WKQK/k,S— Z Qo0 )
oeG

where a4 is the coefficient of 1.
For T € G, choose Nt € Z so that ¢7 = (N7 for
all ¢ € p(K). Anngg (r(K)) is generated as
a Z-module by {7 — N7 | T7€ G}.

It follows from the theorem of Deligne and Ri-
bet that there exists a v € Z[G] such that

w = ajy (Z NO"O'_]') + wgy.

Definition: e = ey, ¢ = gcd (wg, a1).

e is the largest divisor of wyg for which
K¢ € Z[G].



Ankeny, Artin, and Chowla’s formula

If p=1 (mod 4) and k£ = Q(,/p), then Ug/pu
IS a cyclic group.
Let ¢ = H’g‘/ﬁ be its unique generator > 1.

In 1952, Ankeny, Artin, and Chowla published
the following congruences:

w PZr 1 (v
4h(k)? = Z_:lg_l/ (;)

where g is any quadratic non-residue (mod p)
and also

%1 (mod p)

p

h(k % =B, 1 (modp)
2



The Corresponding Partial Zeta Function

For k = Q(y/p) and K = Q({p), and S consist-
ing of the places of k£ at infinity and the prime

ideal above p, QK/k,S can be computed from

QK/Q’S/

It can be shown that in this case,

ie 3 (] e

1<pu,v<p—1 \P p
ur=1 mod p

Using Ankeny, Artin, and Chowla’s formula, it
follows that

4y = —8h(k)% = -8B, 1 (mod p)
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An Alternative to Voronoi’s Congruence

This uses a reformulation of Voronoi's con-
gruence, one version of which says that for
(u,p) =1 and m > 1:

B aty
(,Um . 1)_m — Ium—l Z Vm—l {&J
m vr=1 p

The equivalent reformulation is, for (¢,p) = 1,

bentin)e 5 ol

c (— + "
m p—1-m 1<p,v<p p
purv=c mod p
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A Similar Type of Extension

Let d € Z be the discriminant of the real quadratic
field £k = Q(v/d), and assume d is square free,
3td and (¢(d),d) = 1.

Set K = Q({y) and let S consist of the places
of k at infinity and the rational primes dividing

d.

Like the previous case, it can be shown that if
pld and d = mp,

1 /d
- (_) FJ = _4h(k)Y  (mod p)
1§nu§d—1gy v d ¢
(v,d)=1
when <d> — —1 and also that
g

4y = —8h(k)% =_8B, 1

2 yXm
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Slavutskii’s Congruences

Let p=1 (mod4), 1 >1, k=Q(/p), let € be
as before, and set 5Pl_1 = t; + u;y/p. Also, let

-1 7
e

In 1961, Slavutskii published the following ana-
logues of Ankeny, Artin, and Chowla’'s formu-
lae:

[
h(k)% = _u pz <ﬁ> L {%J (mod p')

4 — \p) gk | p’
and
U B
Qh(k)pl—_ll = —tl% (mod p')

These appear to be exactly what is needed to
evaluate a; (mod p!) when K = Q(¢,) and k =

Q(v/P).
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The Cubic Base Field Case

If p=1 (mod 3), let K = Q(¢p) and let k be
the subfield of K of degree 3 over Q. Let S be
as usual. Let x be a primitive cubic character
(mod p).

The formula for a; can be reduced (mod p?)
to the equation:

pr=-2 Y x(WXW) {%J

purw=1l mod p
1§:U’7V7w<p

Using elementary methods again, this can be
simplified to:

By-1 Bap-1)
_ 3 3
3
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Two Identities

The proof of the preceding identity uses the
reformulation of Voronoi's congruence as well
as the following two identities:

Bm—n

1<p,v<p men
purv=c mod p

_I_ ncm Bp—l—(m—n)

p—1—(m—mn)
under some minor hypotheses on m,n, and

p (mod p?)

p—1 p—1

-1 2(p—1
D DA R i VVJ
lu,:]_ rv=1 p
2 2
Bp_1 By_1Bap-1) Bap-1)
_ 3 3 3 4 3 P
p—1 p—1 2(p—-1) 2(p—1)
3 3 T3 —3

15



Connection With Units 1

If £k is a cubic field as above, it can be shown
that £ contains a strong Minkowski unit 9, i.e.
0 and its Galois conjugates generate U/ up.

It can be shown that ¢4 is, in some sense, unique.

Let Bg, 81, and [Bo be the Lagrange normal
basis for O, and write 06 = z(6g + yB1 + 25>.

Ke-Qin Feng showed that

3
Chk = _Bp;lBQ(p_l) (mod p)
4 3 3

where c is a rational symmetric function in
r,Yy, .
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Connection With Units II

Choosing 6 with norm —1, let the minimal poly-
nomial for § be 23 4+ az? 4+ bz — 1. Then it can
be shown that Feng’s result is equivalent to

ab+9

4h(k) =a1 (mod p)

For every p = 1 (mod 3), 4p can be written
uniquely (up to sign changes) in the form
4p = k2 + 27c2.

For primes satisfying 4p =1 —|—27c22, the above
result implies that a; = —4h(k) (mod p).

For primes satisfying 4p = k2 + 27, the above
result implies that a; = —108h(k) (mod p).
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Higher Degree Base Fields

Let [ be an odd prime and p be a prime =
1 (modl). Let K = Q(¢p) and let k£ be the
subfield of K of degree [ over Q. Let S be as
usual.

Some empirical evidence supports the hypoth-
esis that in this case,

-1 Brop—1)
_ z
a; = -21 [] D) (mod p)

r=1 ]

Furthermore, Jakubec has extended Feng's re-
sult to such fields k.

If p is an irregular prime dividing Bj, then it
would appear that the integer d, j, = ﬁ is
of some interest.

18



Search For Small d i

Using Buhler’'s table of irregular primes up to
16,000,000, one can find the following table
of pairs (d, x,p) for which d, ; < 20:

dp,K | P
3 | 5479, 15646243
5 | 130811

4 421, 44563

9 37, 13411

13 | 90247, 163307
14 | 633473

15 | 1446901

17 | 103, 3484729
19 | 43093, 3962603
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Remarks

Only one odd value of dp,k IS missing, and only
one even value appears.

The Ankeny-Artin-Chowla conjecture can be
reinterpreted as saying 2 will never appear in
the d, j column.

There is a heuristic argument that the densiEy
of irregular primes should be about 1 — e 2.
Perhaps this heuristic can be strengthened into
one giving the density of irregular primes and
corresponding indices for which d k= c for

some fixed ce Z > 2.
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An Application

Hayes has defined a certain unramified Kum-
mer extension F' of K (sometimes F' = K) and
asked if the exponent of Gal(F/K) will always
divide e.

If so, then it is possible to reformulate a stronger
version of the Brumer-Stark conjecture — slight
evidence has been found to support this stronger
conjecture.

If proved, would imply the existence of a cer-
tain Hecke character on the idele class group
A%- which produces an L-function with “nice”
properties.

All of the formulae and the conjecture previ-
ously mentioned can be shown to imply that
Hayes' question has an affirmative answer in
these cases. However, the Ankeny-Artin-Chowla
conjecture would imply that this question is

trivial for Q(¢p)/Q(\/p).

21



Further Evidence 1

If K/k is quadratic and G = {1,717}, let Coker
denote the cokernel of the map Cp ¢ — Ck s

Tate showed that

2151=21Coker

When p =1 (mod 4), K = Q(¢p), k= Q)T
and S is as usual,

h
|Coker| = —f = h
hge
In this case, p divides the exponent of the Ga-
lois group of an unramified abelian extension

of K = plhx = plhy = ple
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Further Evidence 11

For p =1 (mod 3), £ = Q(y/p), K = k(v/-3),
and S consisting of the places of k£ at infin-
ity and the prime ideals of O which contain
rational primes that ramify in K/Q.

Set £k = Q(v/—3p). Then I believe it can be
shown that

2h(k),if p=1 (mod 4);
4h(k),if p=3 (mod 4).

Then it follows from a classical theorem of
Scholz about the 3-rank of Cj that 3 divides
the exponent of some cubic unramified abelian
extension of K = 3Jh(k) = 3|a;, so Hayes'’
question as an affirmative answer in this case
as well.

a] = 2|S|_1|Coker\ = {

Using PARI, I calculated that there are 6 primes
p < 500 for which 3 divides the exponent of the
Galois group of this unramified abelian exten-
sion of K, providing nontrivial cases of Hayes'’
conjecture.
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Future Work 1

To finish proving my conjecture for the value
of the numerator of (¢(1,0) for K = Q((m)
and k a subfield of prime degree over Q.

To formulate corresponding results in the case
where k has composite degree over Q.

To find new proofs of these results using p-adic
L-functions and/or Bernoulli distributions.

To convert Jakubec’'s extension of Feng’'s re-
sults into statements involving the coefficients
of minimal polynomials of certain units of k.
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Future Work II

To formulate and prove Hayes' conjecture for
function fields.

Note 1: There are two kinds of L-functions
here.

Note 2: Angles proved function-field analogue
of the formula of Ankeny-Artin-Chowla involv-
ing the Bernoulli-Carlitz numbers.

To proved a corresponding stronger version of
the Brumer-Stark conjecture in this case, using
Deligne’'s 1-motives.
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