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Basic Terminology I

A number field is a finite extension field of Q

The following objects are associated to any

number field K:

OK – the ring of integers of K

Every ideal of OK factors uniquely as a product

of prime ideals.

For any prime ideal p ∈ OK, OK/p is a finite

field.

µK – the group of roots of unity contained

inside of K

UK – the group of units inside of the ring OK

UK/µK is a finitely generated abelian group.
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Basic Terminology II

IK – the ideal group of K, composed of the

fractional ideals of K

PK – the subgroup of principal ideals of IK

CK = IK/PK – the ideal class group of K

The ideal class group is always finite, so we let

hK = |CK|

Infinite Places – The “primes at infinity” cor-

respond to the embeddings K →֒ R and the

pairs of conjugate embeddings K →֒ C

For an ideal a ∈ OK, the norm of a is given by

Na = [OK : a]
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Field Extensions

If K/k is an abelian Galois extension of number

fields and p ∈ Ik, then pOK ∈ IK factors as

pOK =





g
∏

i=1

Pi





e

.

p splits completely in K/k if g = [K : k]

p ramifies in K/k if e > 1.

K/k is unramified if no places (finite or inifi-

nite!) ramify in K/k.

The decomposition group of Pi is the subgroup

D(Pi/p) = {σ ∈ Gal(K/k)|σPi = Pi }
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The Artin Map

If p and Pi are as before, and if e = 1, then

D(K/k) ∼= Gal((OK/Pi)/(Ok/p)).

Furthermore, if Gal(K/k) is abelian, there is an

automorphism (p, K/k) ∈ Gal(K/k) depending

only on p that maps to the Frobenius automor-

phism under the above isomorphism.

Let S be a finite set of prime ideals of Ok con-

taining the ramified primes.

The Artin map is the homomorphism ( · , K/k) :

Ik,S → Gal(K/k) given by p 7→ (p, K/k) for

prime ideals not in S, and extended multiplica-

tively to all fractional ideals of k prime to the

ideals in S.
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Partial Zeta Functions

Let K/k be a finite abelian extension of number

fields with Galois group G, and let S be a finite

set of places Ok including all infinite places and

primes that ramify in K/k.

For any τ ∈ G, the associated

partial zeta function is defined by

ζS(τ, s) =
∑

(Na)−s

where the sum is over all integral ideals a ∈ Ik,S

with (a, K/k) = τ .

These functions can be analytically continued

to the entire complex plane with at most a

simple pole at s = 1.
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The L-function Evaluator

With K/k, G, and S as before, the

L-function evaluator θK/k,S ∈ C[G] is given by

θ =
∑

σ∈G

ζK/k(σ,0)σ−1.

Let WK = |µ (K)|. Then

• Theorem (Siegel 1970, Shintani 1976)

θ ∈ Q[G]

• Theorem (Deligne-Ribet, Cassou-Nogués,

Barsky, 1979)

ξθ ∈ Z[G] for all ξ ∈ AnnZ[G] (µ (K))

• In particular, wKθ ∈ Z[G]

• If |S| ≥ 2 and some prime of S splits com-

pletely in K, then θ = 0
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Example

Let m ≥ 2 be such that m ≡ 0,1, or 3 (mod 4).

Let ζ = e
2πi
m .

Set k = Q, K = Q(ζ), and let S = {∞, p | m }.

Under the canonical isomorphism G ∼= (Z/mZ)∗,
if (a, m) = 1, (a, K/k) 7→ a. Then

ζS(a, s) =
∑

n≡a(m)

n−s

is the Hurwitz zeta function.

It is known that

ζS(a,0) =
1

2
− a

m

so that

θ =
m
∑

a=1
(a,m)=1

(

1

2
− a

m

)

a−1.
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A Closer Look At θ

Write

ω = WKθK/k,S =
∑

σ∈G

aσσ−1,

where a1 is the coefficient of 1.

For τ ∈ G, choose Nτ ∈ Z so that ζτ = ζNτ for

all ζ ∈ µ (K). AnnZ[G] (µ (K)) is generated as

a Z-module by { τ − Nτ | τ ∈ G }.

It follows from the theorem of Deligne and Ri-

bet that there exists a γ ∈ Z[G] such that

ω = a1





∑

σ∈G

Nσ · σ−1



 + wKγ.

.

Definition: e = eK/k,S = gcd (wK, a1).

e is the largest divisor of wK for which
wK
e θ ∈ Z[G].
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Ankeny, Artin, and Chowla’s formula

If p ≡ 1 (mod 4) and k = Q(
√

p), then Uk/µk

is a cyclic group.

Let ε =
t+u

√
p

2 be its unique generator > 1.

In 1952, Ankeny, Artin, and Chowla published

the following congruences:

4h(k)
u

t
≡

p−1
∑

ν=1

1

gν

(

ν

p

) [

gν

p

]

(mod p)

where g is any quadratic non-residue (mod p)

and also

h(k)
u

t
≡ Bp−1

2
(mod p)
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The Corresponding Partial Zeta Function

For k = Q(
√

p) and K = Q(ζp), and S consist-

ing of the places of k at infinity and the prime

ideal above p, θK/k,S can be computed from

θK/Q,S′.

It can be shown that in this case,

a1 ≡
∑

1≤µ,ν≤p−1
µν≡1 mod p

(

ν

p

) ⌊

µν

p

⌋

(mod p)

Using Ankeny, Artin, and Chowla’s formula, it

follows that

a1 ≡ −8h(k)
u

t
≡ −8Bp−1

2
(mod p)
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An Alternative to Voronoi’s Congruence

This uses a reformulation of Voronoi’s con-

gruence, one version of which says that for

(µ, p) = 1 and m > 1:

(µm − 1)
Bm

m
≡ µm−1

p−1
∑

ν=1

νm−1

⌊

µν

p

⌋

The equivalent reformulation is, for (c, p) = 1,

c

(

Bm

m
+ cm Bp−1−m

p − 1 − m

)

≡
∑

1≤µ,ν<p
µν≡c mod p

νm

⌊

µν

p

⌋
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A Similar Type of Extension

Let d ∈ Z be the discriminant of the real quadratic

field k = Q(
√

d), and assume d is square free,

3 ∤ d and (φ(d), d) = 1.

Set K = Q(ζd) and let S consist of the places

of k at infinity and the rational primes dividing

d.

Like the previous case, it can be shown that if

p|d and d = mp,

∑

1≤nu≤d−1
(ν,d)=1

1

gν

(

d

v

) ⌊

gν

d

⌋

≡ −4h(k)
u

t
(mod p)

when
(

d
g

)

= −1 and also that

a1 ≡ −8h(k)
u

t
≡ −8Bp−1

2 ,χm
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Slavutskii’s Congruences

Let p ≡ 1 (mod 4), l ≥ 1, k = Q(
√

p), let ε be

as before, and set εpl−1
= tl + ul

√
p. Also, let

r = p−1
2 pl−1.

In 1961, Slavutskii published the following ana-

logues of Ankeny, Artin, and Chowla’s formu-

lae:

h(k)
ul

pl−1
≡ −tl

4

pl
∑

ν=1

(

k

p

)

1

gk

⌊

gk

pl

⌋

(mod pl)

and

2h(k)
ul

pl−1
≡ −tl

Br

r
(mod pl)

These appear to be exactly what is needed to

evaluate a1 (mod pl) when K = Q(ζpl) and k =

Q(
√

p).
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The Cubic Base Field Case

If p ≡ 1 (mod 3), let K = Q(ζp) and let k be

the subfield of K of degree 3 over Q. Let S be

as usual. Let χ be a primitive cubic character

(mod p).

The formula for a1 can be reduced (mod p2)

to the equation:

pa1 ≡ −2
∑

µνω≡1 mod p
1≤µ,ν,ω<p

χ(µ)χ(ν)

⌊

µνω

p

⌋

Using elementary methods again, this can be

simplified to:

a1 ≡ −6
Bp−1

3
p−1
3

B2(p−1)
3

2(p−1)
3

(mod p)
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Two Identities

The proof of the preceding identity uses the

reformulation of Voronoi’s congruence as well

as the following two identities:

∑

1≤µ,ν<p
µν≡c mod p

µmνn ≡ mcnBm−n

m − n
p

+ ncm
Bp−1−(m−n)

p − 1 − (m − n)
p (mod p2)

under some minor hypotheses on m, n, and

p−1
∑

µ=1

p−1
∑

ν=1

µpp−1
3 −1νp2(p−1)

3 −1

⌊

µν

p

⌋

≡













Bp−1
3

p−1
3





2

−
Bp−1

3
p−1
3

B2(p−1)
3

2(p−1)
3

+







B2(p−1)
3

2(p−1)
3







2








p
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Connection With Units I

If k is a cubic field as above, it can be shown

that k contains a strong Minkowski unit δ, i.e.

δ and its Galois conjugates generate Uk/µk.

It can be shown that δ is, in some sense, unique.

Let β0, β1, and β2 be the Lagrange normal

basis for Ok, and write δ = xβ0 + yβ1 + zβ2.

Ke-Qin Feng showed that

chk ≡ 3

4
Bp−1

3
B2(p−1)

3

(mod p)

where c is a rational symmetric function in

x, y, z.
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Connection With Units II

Choosing δ with norm −1, let the minimal poly-

nomial for δ be x3 + ax2 + bx − 1. Then it can

be shown that Feng’s result is equivalent to

4h(k)
ab + 9

p
≡ a1 (mod p)

For every p ≡ 1 (mod 3), 4p can be written

uniquely (up to sign changes) in the form

4p = k2 + 27c2.

For primes satisfying 4p = 1+27c2, the above

result implies that a1 ≡ −4h(k) (mod p).

For primes satisfying 4p = k2 + 27, the above

result implies that a1 ≡ −108h(k) (mod p).
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Higher Degree Base Fields

Let l be an odd prime and p be a prime ≡
1 (mod l). Let K = Q(ζp) and let k be the

subfield of K of degree l over Q. Let S be as

usual.

Some empirical evidence supports the hypoth-

esis that in this case,

a1 ≡ −2l
l−1
∏

r=1

Br(p−1)
l

r(p−1)
l

(mod p)

Furthermore, Jakubec has extended Feng’s re-

sult to such fields k.

If p is an irregular prime dividing Bk, then it

would appear that the integer dp,k = p−1
(p−1,k)

is

of some interest.

18



Search For Small dp,k

Using Buhler’s table of irregular primes up to

16,000,000, one can find the following table

of pairs (dp,k, p) for which dp,k < 20:

dp,k p

3 5479, 15646243

5 130811

7 421, 44563

9 37, 13411

13 90247, 163307

14 633473

15 1446901

17 103, 3484729

19 43093, 3962603
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Remarks

Only one odd value of dp,k is missing, and only

one even value appears.

The Ankeny-Artin-Chowla conjecture can be

reinterpreted as saying 2 will never appear in

the dp,k column.

There is a heuristic argument that the density

of irregular primes should be about 1 − e−
1
2.

Perhaps this heuristic can be strengthened into

one giving the density of irregular primes and

corresponding indices for which dp,k = c, for

some fixed c ∈ Z ≥ 2.
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An Application

Hayes has defined a certain unramified Kum-

mer extension F of K (sometimes F = K) and

asked if the exponent of Gal(F/K) will always

divide e.

If so, then it is possible to reformulate a stronger

version of the Brumer-Stark conjecture – slight

evidence has been found to support this stronger

conjecture.

If proved, would imply the existence of a cer-

tain Hecke character on the idèle class group

A∗
K which produces an L-function with “nice”

properties.

All of the formulae and the conjecture previ-

ously mentioned can be shown to imply that

Hayes’ question has an affirmative answer in

these cases. However, the Ankeny-Artin-Chowla

conjecture would imply that this question is

trivial for Q(ζp)/Q(
√

p).
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Further Evidence I

If K/k is quadratic and G = { 1, τ }, let Coker

denote the cokernel of the map Ck,S → CK,S.

Tate showed that

θK/k,S =
2|S|−2|Coker|

WK
(1 − τ).

When p ≡ 1 (mod 4), K = Q(ζp), k = Q(ζp)+,

and S is as usual,

|Coker| = hK

h+
K

= h−
K

In this case, p divides the exponent of the Ga-

lois group of an unramified abelian extension

of K ⇒ p|hK ⇒ p|h−
K ⇒ p|e
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Further Evidence II

For p ≡ 1 (mod 3), k = Q(
√

p), K = k(
√
−3),

and S consisting of the places of k at infin-

ity and the prime ideals of OK which contain

rational primes that ramify in K/Q.

Set k̃ = Q(
√−3p). Then I believe it can be

shown that

a1 = 2|S|−1|Coker| =






2h(k̃), if p ≡ 1 (mod 4);

4h(k̃), if p ≡ 3 (mod 4).

Then it follows from a classical theorem of

Scholz about the 3-rank of Ck̃ that 3 divides

the exponent of some cubic unramified abelian

extension of K ⇒ 3|h(k̃) ⇒ 3|a1, so Hayes’

question as an affirmative answer in this case

as well.

Using PARI, I calculated that there are 6 primes

p < 500 for which 3 divides the exponent of the

Galois group of this unramified abelian exten-

sion of K, providing nontrivial cases of Hayes’

conjecture.
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Future Work I

To finish proving my conjecture for the value

of the numerator of ζS(1,0) for K = Q(ζm)

and k a subfield of prime degree over Q.

To formulate corresponding results in the case

where k has composite degree over Q.

To find new proofs of these results using p-adic

L-functions and/or Bernoulli distributions.

To convert Jakubec’s extension of Feng’s re-

sults into statements involving the coefficients

of minimal polynomials of certain units of k.
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Future Work II

To formulate and prove Hayes’ conjecture for

function fields.

Note 1: There are two kinds of L-functions

here.

Note 2: Anglès proved function-field analogue

of the formula of Ankeny-Artin-Chowla involv-

ing the Bernoulli-Carlitz numbers.

To proved a corresponding stronger version of

the Brumer-Stark conjecture in this case, using

Deligne’s 1-motives.
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