
MATH 168: FINAL PROJECT

Troels Eriksen

1 Introduction

In the later years cryptosystems using elliptic curves have shown up and are
claimed to be just as secure as a system like RSA with much smaller key
sizes. This makes it faster and less resource demanding, and hence allows
implementation in a wide array of applications. It is generally accepted [1]
that a 160-bit elliptic curve key provides the same level of security as a
1024-bit RSA key.

This project will be a discussion about the security of cryptosystems based
primarily on a comparison between the classical and widely used RSA and
the elliptic curve variant of the El-Gamal system.

Both systems are public key systems, meaning that there is a secret key used
for decryption and a publicly available key used for encrypting. In theory
everyone can send you an encrypted message by using the public key (if
they know where to obtain it), but you’re the only one who can decrypt the
message. Of course these systems rely on the difficulties in obtaining the
private key, when knowing the public key and some mathematical properties
of the used cryptosystem.

Over the last years breaking cryptosystems, also known as the art of crypto-
analysis has received more and more attention. This is easy to understand
as cryptography plays a bigger and bigger role in our life. It is used to
store sensitive informations like pin-codes, bank informations and sending
protected informations e.g. over the Internet. For the last many years the
people behind RSA have been posting competitions to factor large numbers
on the RSA-website with rather large money prizes. But this doesn’t mean
that average John Doe can take out his PET 2001 from the closet and hope
to gain some easy money by writing a quick basic program to factor numbers.
It has turned out to be very difficult and extremely time consuming to factor
numbers as they get large enough. There is no known easy way around, but
there are better ways than plain brute force. We will look at these methods
later.

1

2 Overview of the cryptosystems

2.1 RSA

The RSA cryptosystem was invented by R. L. Rivest, S. Shamir, and L. M.
Adleman in 1978. The simplicity of the RSA system is almost shocking.
Everyone with just a tiny knowledge about mathematics can understand the
basics behind the system. The basic idea about the RSA system is that it
is far easier to find two large primes and multiply them together than it is
to find the two primes given their product. The system is based on an old
theorem by Euler, which is a generalization of Fermat’s Little Theorem:

Theorem 2.1 (Euler’s Theorem). If a, m are integers satisfying gcd(a, m) =
1, then aφ(n) ≡ 1 (mod m)

A proof for this theorem can be found in most elementary number theory
books.

The RSA systems consists of a public and a private key, where the public
key is used for encryption and the private for decryption. The two keys are
naturally tied together in a clever way to make this work.

Encrypting and decrypting using RSA:

Public key Consists of two integers n and e: n is called the modulus and is
a product of two primes p and q, and e is called the encryption exponent
and is an integer satisfying 1 < e < φ(n) and gcd e, φ(n) = 1. As n is
a product of two primes, φ(n)) = (p− 1)(q − 1)

Private key Consists of two integers n and d: d is the decryption exponent,
and is an integer satisfying 1 < d < φ(n) and ed ≡ 1 (mod φ(n)).

Encrypting is done by splitting the plain text m in parts and computing
c = me mod n

Decrypting is done by computing m = cd mod n. Decryption works as
cd ≡ (me)d ≡ m (mod n).

2

It could seem fairly easy to break a system like RSA given all the informa-
tions one knows. The only problem is that φ(n) isn’t known (it is most likely
deleted right after the keys are generated), so in order to obtain the private
key d, only knowing n and e, one would most likely need to know φ(n), and
the whole idea about RSA is that this number is pretty hard to calculate
without knowing p and q (which are also deleted right after the key genera-
tion). In fact, it has been proved that calculating φ(n) is equal to obtaining
p and q, hence factoring n:[2, p22]

Theorem 2.2. Suppose that n = pq is a product of two distinct primes.
Then determining φ(n) is equivalent to factoring n.

Proof: Knowing the factors p and q we can easily calculate φ(n) = (p −
1)(q−1). On the other hand, if φ(n) is known then it is also easy to compute
the factors p and q. We know that φ(n) = (p− 1)(q− 1) = pq− (p+ q)+1 =
n − (p + q) + 1. Let 2b = n + 1 − φ(n). Then we have that p + q = 2b
and pq = n. Two numbers whose sum is 2b and whose product is n must be
solutions to the quadratic equation x2 − (2b)x + n = 0, and hence p and q
can be found by solving this equation.

There are no theorems saying that factoring numbers is hard to do, but with
the current known methods, factoring numbers of the sizes normally used in
RSA, is a very time demanding task.

2.2 Elliptic curves - The El-Gamal system

There are lots of other places in number theory that has a one way property
like the RSA system, and therefor can be used to build cryptosystems. One
of them is raising to a power within a finite field. Suppose we have a finite
field (Z/nZ)∗ or Fq, then it is fairly easy to compute bx even for large values
of x, but given an element y which is known to be of the form bx, then
computing x = logb(y) is very time consuming. This is known as the discrete
log problem. In this section, the elliptic curve analogue to the El-Gamal
cryptosystem will be presented. The el-gamal system uses the discrete log
problem, and can also be constructed without the use of elliptic curves.

E is an elliptic curve over a finite field Fp. Let P be a point on the elliptic

3

curve, and suppose that P has prime order n. Now the cyclic subgroup of
E(Fp) generated by P is:

〈P 〉 = {O, P, 2P, 3P, . . . , (n− 1)P}

Encrypting and decrypting using the elliptic curve El-Gamal sys-
tem: Everyone knows the prime p, the equation of the elliptic curve E, and
the point P and its order n.

Private key The private key is an integer d that is selected uniformly at
random from the interval [1, n− 1].

Public key The corresponding public key is Q = dP .

Encrypting First represent the plaintext message m as a point M on the
elliptic curve (in E(Fp)). Select a k ∈ [1, n − 1]. Compute C1 = kP
and C2 = M + kQ; C1 and C2 are the ciphertext, which are sent to the
recipient.

Decrypting Compute the point M = C2 − dC1, and return the plaintext
m. The reason why this works is because dC1 = d(kP) = k(dP) = kQ

To break the system, one would need to determine the private parameter d
given the public available parameters p, E, P , Q, and n. This might seem
even easier than in the RSA case with all these parameters known, but in
order to determine this d one would have to solve the so called elliptic curve
discrete logarithm problem which will be discussed in section 2.3.2.

2.3 Comparison

When choosing an algorithm for cryptography one has to consider things like
the security and the performance. How can we be sure that the system is
safe? Will the system be usable at all with the desired security level, or will
it be too performance demanding? As stated earlier there are no theorems
stating anything about either factoring numbers or solving the elliptic curve
discrete logarithm problem being hard, so in order to measure and compare
the level of security one has to find other methods. Usually what one does is

4

compare the efficiency of the algorithms by looking at the number of steps
needed for an algorithm to do the desired job. That way you can get an upper
bound on the time needed for the algorithm to finish, which of course is a
function of the key-size. An accepted notation for efficiency of an algorithm
with input of bitlength l is using the O-notation[1]:

Definition 2.1 (O-notation). If f and g are two positive real-valued func-
tions defined on the positive integers, then we write f = O(g) when there
exist positive constants c and L such that f(l) ≤ cg(l) for all l ≥ L.

The above definition means that f(l) grows no faster than g(l) within a
constant multiple.

Definition 2.2 (o-notation). We write f = o(g) if for any positive constant
c there exists a constant L such that f(l) ≤ cg(l) for l ≥ L.

The above definition means that f(l) becomes insignificant relative to g(l)
for large values of l.

Definition 2.3. Let A be an algorithm whose input has bitlength l.

1. A is a polynomial-time algorithm if its running time is O(lc) for some
constant c > 0.

2. A is an exponential-time algorithm if its running time is not of the
form O(lc) for any c > 0.

3. A is a subexponential-time algorithm if its running time is O(2o(l)), and
A is not a polynomial-time algorithm.

4. A is a fully-exponential-time algorithm if its running time is not of the
form O(2o(l)).

What this definition tells us is how fast an algorithm grows, which can then
be compared to another algorithm. Let’s say we have a polynomial-time
algorithm and a fully-exponential-time algorithm. The exponential one might
be faster for small inputs, but as the running time of exponential one grows
fastest of the two, the polynomial algorithm will be the fastest at some point

5

when the input is large enough. Of course it’s also possible to compare two
exponential-time algorithms and so on.

We will know look at the efficiency of some of today’s best algorithms for
factoring large integers and solving the elliptic curve discrete log problem.

2.3.1 Integer factorization

Breaking an RSA system would mean that one would have to factor the
modulus n. These days, the best algorithm for factoring large integers is the
Number Field Sieve (NFS), which was first proposed by J. M. Pollard in 1988
[3] and has since been refined. This algorithm currently has a subexponential
running time of:[1]

Ln[
1

3
, 1.923].

where a subexponential algorithm has a running time of the form

Ln[α, c] = O
(
ec+o(1)(log n)α(log log n)1−α

)
The Number Field Sieve is a pretty complicated algorithm, and would take
up too much space to explain in detail in this report. Very briefly told, the
core of the NFS algorithm, is to find a congruence of squares. A random
solution to the congruence x2 ≡ y2 (mod n) has a 50% chance of producing
a non-trivial factor of n. The algorithm consists of two stages [2, 1]:

1. A sieving stage where relations are collected to limit the amount of
needed calculations. This can be done as a distributed calculation, e.g.
using computers connected via the Internet, and hence saving time.

2. A matrix stage where a large sparse system of linear equations is solved.
This is most efficiently done on one (really big) computer capable of
performing a lot of parallel calculations, as there will have to be a lot
of communications during the calculations.

The largest RSA prize number that has been factored so far is the RSA-640
— a number of 193 decimal digits.:

6

310741824049004372135075003588856793003734602284272754572016194

882320644051808150455634682967172328678243791627283803341547107

310850191954852900733772482278352574238645401469173660247765234

6609

This number was factored on november 2nd 2005 by F. Bahr et al. and
gave a money price of $20000[4]. According to the factoring team, the effort
took approximately 30 2.2GHz-Opteron-CPU years, and over five months
of calendar time. Notice that this is only one ∼ 200 digit number being
factored, so all the remaining 200 digit modulus does still give ”fairly secure”
RSA keys.

Today a minimum key-size of 1024 bits is recommended for use with RSA[5].
If we assume that Moore’s Law continues to hold, then it would take a
$10 million machine 10 days in the year 2015 to factor a 1024 bits RSA-
key.[5] Although a $10 million computer will most likely still be considered
expensive for a regular person in 2015 (I don’t intent to write a big economical
discussion), it is obvious that a 1024 bit key will not continue to be considered
as secure. We also have to remember that $10 million is a drop in the ocean
for a government agency or some large company. Why don’t we just move to
2048 bits or 4096 bits or even higher right away then? The answer to this is,
that using larger key-sizes also affects the time it takes to encrypt/decrypt
messages, and one would usually want these computations to take as little
time as possible. For very important data or data that needs to be securely
encrypted for several years is already recommended to use larger RSA key-
sizes of up to 3072 bits.[5]

The table below [6] shows the estimated computing power required to factor
integers with the current version of the Number Field Sieve. A MIPS year
is equivalent to the computational power of a computer that is rated at 1
MIPS and utilized for one year. A Pentium 4 processor clocked at 2.8GHz is
capable of performing approximately 5300MIPS (according to SiSoft Sandra
[7]).

7

size of n MIPS
(in bits) years

512 3 · 104

768 2 · 108

1024 3 · 1011

1280 1 · 1014

1536 3 · 1016

2048 3 · 1020

In some special cases the RSA system is very easy to break, but these are
well known and documented, so they can be avoided in the key generation.

• If the size of the two primes p and q are roughly the same, then p and q
can be found by searching for factors near

√
n. So we need two primes

that are both large, but on the other hand not too close to each other.

• If the private exponent d is too small, then the system is easily breakable.[8]

• If one knows of a cleartext m or ciphertext c that isn’t coprime to
n, then their greatest common divisor can be found using Euclid’s
algorithm, and the result must be either p or q. But as φ(n) = (p −
1)(q − 1), the numbers not coprime to n is extremely small, so the
chance of finding one is almost non existing.

2.3.2 Elliptic Curve Discrete Logarithm Problem

The Elliptic Curve Discrete Logarithm Problem (ECDLP) can be formulated
in the following way:[1, p. 153]

Definition 2.4 (ECDLP). Given an elliptic curve E defined over a finite
field Fq, a point P ∈ E(Fq) of order n, and a point Q ∈ 〈P 〉, find the integer
d ∈ [0, n−1] such that Q = dP . The integer d is called the discrete logarithm
of Q to the base P , denoted d = logP Q.

When solving the ECDLP, we’re trying to find the integer d ∈ [1, n−1], such
that Q = dP . In 2003 [1, p. 18] the fastest general algorithm known for

8

solving the ECDLP was Pollard’s rho algorithm[9]. This algorithm has an
expected running time of:

√
πn

2

The largest ECDLP solved with Pollard’s rho algorithm (2003) is for an el-
liptic curve over a 109-bit prime field. This corresponds to a decimal number
of the size (33 digits):

649037107316853453566312041152659

Notice that this number is alot smaller than the 640 bit RSA prize number.

Where part 2 in the number field Sieve algorithm worked best when im-
plemented on a single computer, Pollard’s rho algorithm can easily be dis-
tributed onto several computers, as the processors don’t have to communi-
cate a lot with each other. This gives a clear advantage for Pollard’s rho
algorithm.

The table below, shows the computing power required to solve the discrete
logarithm using the Pollard rho-method:

size of n MIPS
(in bits) years

160 9.6 · 1011

186 7.9 · 1015

234 1.6 · 1023

354 1.5 · 1041

426 1.0 · 1052

From this table and the table on page 7, it is pretty obvious why a 160 bit
elliptic curve system is believed to provide the same level of security as a
1024 bit RSA system.

Over the past decade, the ECDLP has received considerable attention from
mathematicians around the world, and so far, no significant weaknesses have
been reported. This doesn’t imply that there are no weaknesses though —
just think of how long it took before someone proved Fermat’s last theorem

9

(Fermat proposed his marvelous proof in 1637 and Wiles finally proved the
theorem in 1994).

The discrete logarithm problem also shows up in the RSA system in the
special case where someone would be in possession of a part of both the
plain- and cipher text, i.e. knowing both m and c for a number of text
blocks. In this case d is the only variable in the equation m = cd mod n, and
hence d can be found solving the discrete logarithm problem.

2.4 The future

The security of the different cryptosystems is based on the fact that breaking
the systems takes so long time with the algorithms known today, that it is
a near impossible task. Looking at the development of the algorithms over
the last years, we probably shouldn’t expect to see an algorithm that will
be able to break either of the systems in a very short time. But we know
absolutely nothing about what the future can bring, so perhaps we will see
an incredible algorithm next year, or perhaps already tomorrow. Maybe it’s
already there, but being kept secret by intelligence services — who knows?

We can expect the algorithms for factoring integers and solving the ECDLP
to become faster and more sofisticated in the coming years. The improve-
ments seems to roughly follow Moore’s law [5], which means that we can
expect a doubling in speed every 18 months. If the development continues in
the same way it’s been doing for the last decades, then neither RSA or cryp-
tosystems based on the ECDLP will be threatened in the next many decades.
But with some informations that needs to be kept secure for many decades,
like very sensitive informations about some person kept by the CIA or simi-
lar, very strong encryption is obviously needed. But for standard encryption
that just has to last for a few years or less, we just have to remember to
raise the security along with the release of faster computers. In order for an
algorithm to be a serious threat, it will have to be of polynomial-time, and
the algorithms we’ve seen so far have all been of some kind of exponential
time. We can’t easily tell if one system is more secure than the other, as
both RSA and the elliptic curve variant of the El-Gamal system takes ex-
tremely long time to break, but as elliptic curve cryptosystems seems to give
same security with much smaller keys this naturally leads to more possible

10

implementations, e.g. in small mobile devices where the computer power is
limited. Funnily enough elliptic curves has proved to be today’s best attack
on factoring large numbers, so not only does elliptic curves seem to be able
to give better security cryptosystems on itself, but it also makes the security
of systems like RSA weaker as they now have to use larger keys in order to
be secure.

Although both factoring large integers, and solving the ECDLP appears to
be very difficult on classic computers, both problems are known to be easy
to solve on a so called quantum computer. A quantum computer uses prin-
ciples from quantum mechanics, and according to the laws of physics, a
quantum computer is possible to make, but we probably won’t see sophisti-
cated quantum computers in the near future. In 1994, Schor [10] presented a
polynomial-time algorithm for computing discrete logarithms and factoring
integers using a quantum computer. This has later been extended to solving
the ECDLP. An interesting thing is that it seems to be alot easier to solve the
discrete log problem than factoring an integer using a quantum computer.[1,
p. 196]

References

[1] Darrel Hankerson, Alfred Menezes, and Scot Vanstone. Guide to Elliptic
Curve Cryptography. Springer-Verlag, 2004.

[2] Neal Koblitz. A Course in Number Theory and Cryptography. Springer-
Verlag, 2nd edition, 1994.

[3] A. Lenstra and H. Lenstra, editors. The Development of the Number
Field Sieve. Springer-Verlag, 1993.

[4] RSA Security - The RSA Challenge Numbers.
http://www.rsasecurity.com/rsalabs/node.asp?id=2093.

[5] RSA Security - TWIRL and RSA Key Size.
http://www.rsasecurity.com/rsalabs/node.asp?id=2004.

[6] A. Odlyzko. The future of integer factorization. CryptoBytes - The
technical newsletter of RSA Laboratories, 1(2):5–12, Summer 1995.

11

[7] http://www.sisoftware.net/.

[8] Dan Boneh and Glenn Durfee:. New Results on the Cryptanalysis of
Low Exponent RSA.

[9] J. Pollard. Monte Carlo methods for index computation (mod p). Math-
ematics of Computation, 32:918–924, 1978.

[10] P. W. Schor. Algorithms for quantum computation: Discrete logarithms
and factoring. Proceedings of the 35th Annual Symposium on the Foun-
dations of Computer Science, 1994.

12

